1
|
Winstanley YE, Rose RD, Sobinoff AP, Wu LL, Adhikari D, Zhang QH, Wells JK, Wong LH, Szeto HH, Piltz SG, Thomas PQ, Febbraio MA, Carroll J, Pickett HA, Russell DL, Robker RL. Telomere length in offspring is determined by mitochondrial-nuclear communication at fertilization. Nat Commun 2025; 16:2527. [PMID: 40087268 PMCID: PMC11909127 DOI: 10.1038/s41467-025-57794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
The initial setting of telomere length during early life in each individual has a major influence on lifetime risk of aging-associated diseases; however there is limited knowledge of biological signals that regulate inheritance of telomere length, and whether it is modifiable is not known. We now show that when mitochondrial activity is disrupted in mouse zygotes, via exposure to 20% O2 or rotenone, telomere elongation between the 8-cell and blastocyst stage is impaired, with shorter telomeres apparent in the pluripotent Inner Cell Mass (ICM) and persisting after organogenesis. Identical defects of elevated mtROS in zygotes followed by impaired telomere elongation, occurred with maternal obesity or advanced age. We further demonstrate that telomere elongation during ICM formation is controlled by mitochondrial-nuclear communication at fertilization. Using mitochondrially-targeted therapeutics (BGP-15, MitoQ, SS-31, metformin) we demonstrate that it is possible to modulate the preimplantation telomere resetting process and restore deficiencies in neonatal telomere length.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ryan D Rose
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Genea Fertility SA, St. Andrews Hospital, Adelaide, SA, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Linda L Wu
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Qing-Hua Zhang
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jadon K Wells
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne VIC, Australia
| | | | - Sandra G Piltz
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Paul Q Thomas
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Darryl L Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Skåra KH, Lee Y, Jugessur A, Gjessing HK, Aviv A, Brumpton B, Næss Ø, Hernáez Á, Hanevik HI, Magnus P, Magnus MC. Telomere length in relation to fecundability and use of assisted reproductive technologies: the Norwegian Mother, Father, and Child Cohort Study. BMC Med 2024; 22:580. [PMID: 39695676 DOI: 10.1186/s12916-024-03795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Telomere length (TL) has been reported to be associated with conditions such as endometriosis and polycystic ovary syndrome, with some studies finding associations with shorter TL and others with longer TL. In men, studies mostly report associations between shorter TL and sperm quality. To our knowledge, no studies have thus far investigated associations between TL and fecundability or the use of assisted reproductive technologies (ART). METHODS This study is based on the Norwegian Mother, Father, and Child Cohort (MoBa) Study and uses data from the Medical Birth Registry of Norway (MBRN). We included women (24,645 with genotype data and 1054 with TL measurements) and men (18,339 with genotype data and 965 with TL measurements) participating between 1998 and 2008. We investigated associations between leukocyte TL (LTL) and fecundability (defined as the probability to conceive within a given menstrual cycle), infertility (defined has having spent 12 months or more trying to conceive without success), and ART use. We also repeated the analyses using instrumental variables for LTL consisting of genetic risk scores for LTL and genetically predicted LTL. RESULTS Approximately 11% of couples had experienced infertility and 4% had used ART. LTL was not associated with fecundability in women (fecundability ratio [FR], 0.98; 95% confidence interval [CI], 0.92-1.04) or men (FR, 0.99; CI, 0.93-1.06), nor with infertility in women (odds ratio [OR], 1.03; CI, 0.85-1.24) or men (OR, 1.05; CI, 0.87-1.28). We observed an increased likelihood of using ART with increasing LTL in men (OR, 1.22; CI, 1.03-1.46), but not in women (OR, 1.10; CI, 0.92-1.31). No significant associations were observed using the instrumental variables for LTL. CONCLUSIONS We found no indication that LTL is a suitable biomarker for assessing fecundability, infertility, or ART use. Additional studies are required to replicate the association observed between LTL and ART use in men.
Collapse
Affiliation(s)
- Karoline H Skåra
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway.
- Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ben Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, 7030, Levanger, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University, Trondheim, Norway
| | - Øyvind Næss
- Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Álvaro Hernáez
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025, Barcelona, Spain
- Consortium for Biomedical Research-Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029, Madrid, Spain
| | - Hans Ivar Hanevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
- Telemark Hospital Trust, Fertilitetsavdelingen Soer, Porsgrunn, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| |
Collapse
|
3
|
Skåra KH, Lee Y, Jugessur A, Gjessing HK, Aviv A, Brumpton B, Naess Ø, Hernáez Á, Hanevik HI, Magnus P, Magnus MC. Telomere length in relation to fecundability and use of assisted reproductive technologies: the Norwegian Mother, Father, and Child Cohort Study. RESEARCH SQUARE 2024:rs.3.rs-4430021. [PMID: 38883734 PMCID: PMC11177952 DOI: 10.21203/rs.3.rs-4430021/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In women, shorter telomeres have been reported to be associated with conditions such as endometriosis and polycystic ovary syndrome, whereas other studies have reported the opposite. In men, studies mostly report associations between shorter telomeres and sperm quality. To our knowledge, no studies have thus far investigated the associations between TL and fecundability or the use of ART. This study is based on the Norwegian Mother, Father, and Child Cohort (MoBa) Study and uses data from the Medical Birth Registry of Norway (MBRN). We included women (24,645 with genotype data and 1,054 with TL measurements) and men (18,339 with genotype data and 965 with TL measurements) participating between 1998 and 2008. We investigated the associations between leukocyte TL and fecundability, infertility, and the use of ART. We also repeated the analyses using instrumental variables for TL, including genetic risk scores for TL and genetically predicted TL. Approximately 11% of couples had experienced infertility and 4% had used ART. TL was not associated with fecundability among women (fecundability ratio [FR], 0.98; 95% confidence interval [CI], 0.92-1.04) or men (FR, 0.99; CI, 0.93-1.06), nor with infertility among women (odds ratio [OR], 1.03; CI, 0.85-1.24) or men (OR, 1.05; CI, 0.87-1.28). We observed an increased likelihood of using ART with increasing TL among men (OR, 1.22; CI, 1.03-1.46), but not among women (OR, 1.10; CI, 0.92-1.31). No significant associations were observed using the instrumental variables. Our results indicate that TL is a poor biomarker of fecundability, infertility and use of ART in MoBa. Additional studies are required to replicate the association observed between TL and ART in men.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology
| | | | | | | | | | | |
Collapse
|
4
|
Zhao XX, Bai LL. Correlation between telomere shortening in maternal peripheral blood and fetal aneuploidy. BMC Pregnancy Childbirth 2024; 24:2. [PMID: 38166713 PMCID: PMC10759364 DOI: 10.1186/s12884-023-06185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study aimed to assess whether maternal telomere length is a more accurate predictor of trisomy 21 than maternal age while also exploring the factors influencing maternal and fetal telomere length. METHODS Forty mothers with fetuses carrying extra maternal copies of chromosome 21 were defined as trisomy 21 cases, and 18 mothers with normal karyotype fetuses were defined as controls. Telomere lengths of maternal blood lymphocytes and amniotic fluid cells were determined using real-time polymerase chain reaction. Fetal and maternal telomere lengths were compared between the two groups. Moreover, we analyzed the factors influencing maternal and fetal telomere length in the trisomy 21 pedigree. A logistic regression model was used to analyze the correlation between maternal telomere length and trisomy 21 risk. In addition, receiver operating characteristic (ROC) curve analysis was used to determine the accuracy of using maternal telomere length as an indicator of trisomy 21 risk. RESULTS The study revealed that both maternal and fetal telomere lengths were significantly shorter in trisomy 21 cases than in the controls. In the trisomy 21 group, the maternal age, occupation, and nationality showed no significant correlation with their telomere length; fetal telomere length exhibited a positive correlation with maternal telomere length. Furthermore, maternal telomere length shortening is associated with trisomy 21 (OR = 0.311; 95% CI, 0.109-0.885, P < 0.05). The results of ROC curve analysis indicated that a combined assessment of maternal age and maternal telomere length predicted fetal chromosome trisomy more effectively than a single assessment (area under the curve 0.808, 95% CI, 0.674-0.941, P < 0.001). CONCLUSION Maternal age combined with maternal telomere length proved to be a superior predictor of trisomy risk. Additionally, maternal telomere length was found to influence fetal telomere length.
Collapse
Affiliation(s)
- Xiao-Xi Zhao
- Department of Gynecology and Obstetrics, Affiliate Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China.
| | - Le Le Bai
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Randell Z, Dehghanbanadaki H, Fendereski K, Jimbo M, Aston K, Hotaling J. Sperm telomere length in male-factor infertility and reproduction. Fertil Steril 2024; 121:12-25. [PMID: 37949346 DOI: 10.1016/j.fertnstert.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The underlying reasons for male-factor infertility are often unknown. 30% of all men have unexplained semen analysis abnormalities. Moreover, 15%-40% of infertile men have normal semen analyses. There have been increasing efforts to identify causes and associations that may explain idiopathic male-factor infertility. Telomeres have become an area of considerable interest in the field because of the essential roles they have in cellular division and genome integrity. Research to date most consistently supports that men with infertility have shorter sperm telomere length (STL); however, associations between shorter STL and meaningful reproductive health outcomes are less consistent. There is a major need for additional studies to better identify the role of STL in male reproductive health and use the information to improve the counseling and treatment of couples with idiopathic male-factor infertility.
Collapse
Affiliation(s)
- Zane Randell
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah.
| | - Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kenneth Aston
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - James Hotaling
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Kurashova NA, Dashiev BG, Kolesnikov SI, Kolesnikova LI. Oxidative Stress, Telomere Length and Telomerase Activity in Spermatogenesis Disorders (Review of Scientific Activity). Bull Exp Biol Med 2023; 176:115-122. [PMID: 38189870 DOI: 10.1007/s10517-024-05979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 01/09/2024]
Abstract
The paper systematizes the available data on the study of oxidative stress, the relative length of telomeres, and telomerase activity in male infertility and disorders of spermatogenesis. The study of telomeres, the structures that protect chromosome ends and genome integrity, is of interest for researchers in various fields, from cell biology and epidemiology to ecology and evolutionary biology. The review includes our own data on the study of the relative length of telomeres, oxidative stress, and telomerase activity and reflects modern ideas about the importance of these structures both in the maintenance of genome stability during cell division and in gametogenesis and reproduction. Many studies indicate the role of oxidative stress in the pathogenesis of various diseases, including male infertility. In turn, studies of telomeres as a biomarker of male infertility are insufficient, and the results obtained are extremely controversial and require deeper knowledge about the mechanisms underlying the dynamics of telomere length.
Collapse
Affiliation(s)
- N A Kurashova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - B G Dashiev
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L I Kolesnikova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
7
|
Lis N, Lamnisos D, Bograkou-Tzanetakou A, Hadjimbei E, Tzanetakou IP. Preterm Birth and Its Association with Maternal Diet, and Placental and Neonatal Telomere Length. Nutrients 2023; 15:4975. [PMID: 38068836 PMCID: PMC10708229 DOI: 10.3390/nu15234975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Preterm birth (PTB), a multi-causal syndrome, is one of the global epidemics. Maternal nutrition, but also neonatal and placental telomere length (TL), are among the factors affecting PTB risk. However, the exact relationship between these factors and the PTB outcome, remains obscure. The aim of this review was to investigate the association between PTB, maternal nutrition, and placental-infant TL. Observational studies were sought with the keywords: maternal nutrition, placental TL, newborn, TL, and PTB. No studies were found that included all of the keywords simultaneously, and thus, the keywords were searched in dyads, to reach assumptive conclusions. The findings show that maternal nutrition affects PTB risk, through its influence on maternal TL. On the other hand, maternal TL independently affects PTB risk, and at the same time PTB is a major determinant of offspring TL regulation. The strength of the associations, and the extent of the influence from covariates, remains to be elucidated in future research. Furthermore, the question of whether maternal TL is simply a biomarker of maternal nutritional status and PTB risk, or a causative factor of PTB, to date, remains to be answered.
Collapse
Affiliation(s)
- Nikoletta Lis
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
- Maternity Clinic, Cork University Maternity Hospital, T12 YE02 Cork, Ireland
| | - Demetris Lamnisos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
| | | | - Elena Hadjimbei
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Irene P. Tzanetakou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
8
|
Gold NM, Okeke MN, He Y. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis 2023; 15:2470-2490. [PMID: 37962459 PMCID: PMC11567259 DOI: 10.14336/ad.2023.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
All linear chromosomal ends have specific DNA-protein complexes called telomeres. Telomeres serve as a "molecular clock" to estimate the potential length of cell replication. Shortening of telomere length (TL) is associated with cellular senescence, aging, and various age-related diseases in humans. Here we reviewed the structure, function, and regulation of telomeres and the age-related diseases associated with telomere attrition. Among the various determinants of TL, we highlight the connection between TL and heredity to provide a new overview of genetic determinants for TL. Studies across multiple species have shown that maternal and paternal TL influence the TL of their offspring, and this may affect life span and their susceptibility to age-related diseases. Hence, we reviewed the linkage between TL and parental influences and the proposed mechanisms involved. More in-depth studies on the genetic mechanism for TL attrition are needed due to the potential application of this knowledge in human medicine to prevent premature frailty at its earliest stage, as well as promote health and longevity.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Michael Ngozi Okeke
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Center for Nanomedical Technology Research, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Chu B, Liu Z, Liu Y, Jiang H. The Role of Advanced Parental Age in Reproductive Genetics. Reprod Sci 2023; 30:2907-2919. [PMID: 37171772 PMCID: PMC10556127 DOI: 10.1007/s43032-023-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The increase of parental reproductive age is a worldwide trend in modern society in recent decades. In general, older parents have a significant impact on reproductive genetics and the health of offspring. In particular, advanced parental age contributes to the increase in the risk of adverse neurodevelopmental outcomes in offspring. However, it is currently under debate how and to what extent the health of future generations was affected by the parental age. In this review, we aimed to (i) provide an overview of the effects of age on the fertility and biology of the reproductive organs of the parents, (ii) highlight the candidate biological mechanisms underlying reproductive genetic alterations, and (iii) discuss the relevance of the effect of parental age on offspring between animal experiment and clinical observation. In addition, we think that the impact of environmental factors on cognitive and emotional development of older offspring will be an interesting direction.
Collapse
Affiliation(s)
- Boling Chu
- Department of Biobank, Suining Central Hospital, Suining, 629000, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Yihong Liu
- College of Humanities And Management, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hui Jiang
- Department of Biobank, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
10
|
Gourinat A, Mazeaud C, Hubert J, Eschwege P, Koscinski I. Impact of paternal age on assisted reproductive technology outcomes and offspring health: a systematic review. Andrology 2023; 11:973-986. [PMID: 36640151 DOI: 10.1111/andr.13385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND The increase in paternal age and the percentage of births after assisted reproductive technologies (ART) may have consequences on offspring and society's position regarding access to ART must be questioned. Most countries recommend limiting ART to men under 60 years. What is the rationale for this threshold? OBJECTIVE This systematic review assesses scientific arguments to establish links between paternal age, male fertility, and offspring health. MATERIAL AND METHODS Using the PRISMA guidelines, this systematic review of the literature analyzed 111 articles selected after screening PubMed, ScienceDirect, and Web of Science for articles published between January 1, 1995 and December 31, 2021. RESULTS A strong correlation was highlighted between advanced paternal age and a decrease of some sperm parameters (semen volume and sperm motility) and infant morbidity (exponentially increased incidence of achondroplasia and Apert syndrome, and more moderately increased incidence of autism and schizophrenia). The impact of paternal age on pregnancy and fetal aneuploidy rates is more controversial. No association was found with spontaneous abortion rates. DISCUSSION AND CONCLUSION The scientific parameters should be explained to older parents undergoing ART. And for countries that discuss a limit on paternal age for access to ART, the debate requires consideration of social and ethical arguments.
Collapse
Affiliation(s)
| | | | - Jacques Hubert
- Department of Urology, University Hospital, Nancy, France
| | | | | |
Collapse
|
11
|
Liu Q, Song L, Fan G, Wu M, Bi J, Xu L, Xiong C, Xia W, Cao Z, Xu S, Wang Y. Associations of self-reported sleep duration and sleep quality during pregnancy with newborn telomere length. Sleep Health 2023; 9:475-481. [PMID: 37230863 DOI: 10.1016/j.sleh.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Telomere length (TL) at birth is considered a potential biomarker for lifelong health. Although maternal sleep disturbance has been linked to a series of adverse pregnancy outcomes, evidence on the effect of maternal sleep on newborn TL remains scarce. Therefore, we aim to investigate the association of maternal sleep duration and sleep quality with newborn TL. METHODS A total of 742 mother-newborn pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015. Cord blood TL was measured using real-time quantitative polymerase chain reaction. Maternal sleep duration and quality during late pregnancy were obtained via questionnaires. Multivariate linear regression models were used to estimate the effects of maternal sleep duration and sleep quality on newborn TL. RESULTS A total of 742 maternal-newborn pairs were included in the analyses. Mothers sleeping ≥10 hours had a 9.30% (95% CI: 2.09%, 15.99%) shorter newborn TL than those sleeping 7-<9 hours. However, the association in mothers with short sleep duration (<7 hours) did not reach statistical significance. Compared to mothers with good sleep quality, those with poor sleep quality had a 9.91% (95% CI: 4.06%, 15.40%) shorter newborn TL. We observed a joint effect of sleep duration and sleep quality on newborn telomere shortening. Women with sleep duration ≥10 hours and poor sleep quality were most likely to have newborns with short TL (percent change:-19.66%, 95% CI: -28.42, -9.84%). CONCLUSIONS Long sleep duration and poor sleep quality during late pregnancy were associated with shorter newborn TL.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luli Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
13
|
Kaltsas A, Moustakli E, Zikopoulos A, Georgiou I, Dimitriadis F, Symeonidis EN, Markou E, Michaelidis TM, Tien DMB, Giannakis I, Ioannidou EM, Papatsoris A, Tsounapi P, Takenaka A, Sofikitis N, Zachariou A. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes (Basel) 2023; 14:486. [PMID: 36833413 PMCID: PMC9957550 DOI: 10.3390/genes14020486] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father's age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father's age contributes to his offspring's higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father's advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father's advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring's diseases is crucial, so that they can be effectively guided through their reproductive years.
Collapse
Affiliation(s)
- Aris Kaltsas
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications and Technologies, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45500 Ioannina, Greece
| | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho chi Minh City 70000, Vietnam
| | - Ioannis Giannakis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian Univesity of Athens, 15126 Athens, Greece
| | - Panagiota Tsounapi
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Atsushi Takenaka
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
14
|
Farrukh S, Baig S, Hussain R, Imad R, Khalid M. Parental Genetics Communicate with Intrauterine Environment to Reprogram Newborn Telomeres and Immunity. Cells 2022; 11:cells11233777. [PMID: 36497039 PMCID: PMC9735452 DOI: 10.3390/cells11233777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Telomeres, markers for cellular senescence, have been found substantially influenced by parental inheritance. It is well known that genomic stability is preserved by the DNA repair mechanism through telomerase. This study aimed to determine the association between parents−newborn telomere length (TL) and telomerase gene (TERT), highlighting DNA repair combined with TL/TERT polymorphism and immunosenescence of the triad. The mother−father−newborn triad blood samples (n = 312) were collected from Ziauddin Hospitals, Pakistan, between September 2021 and June 2022. The telomere length (T/S ratio) was quantified by qPCR, polymorphism was identified by Sanger sequencing, and immunosenescence by flow cytometry. The linear regression was applied to TL and gene association. The newborns had longest TL (2.51 ± 2.87) and strong positive association (R = 0.25, p ≤ 0.0001) (transgenerational health effects) with mothers’ TL (1.6 ± 2.00). Maternal demographics—socioeconomic status, education, and occupation—showed significant effects on TL of newborns (p < 0.015, 0.034, 0.04, respectively). The TERT risk genotype CC (rs2736100) was predominant in the triad (0.6, 0.5, 0.65, respectively) with a strong positive association with newborn TL (β = 2.91, <0.0011). Further analysis highlighted the expression of KLRG 1+ in T-cells with shorter TL but less frequent among newborns. The study concludes that TERT, parental TL, antenatal maternal health, and immunity have a significantly positive effect on the repair of newborn TL.
Collapse
Affiliation(s)
- Sadia Farrukh
- Department Biochemistry, Ziauddin University, Karachi 74600, Pakistan
- Correspondence: (S.F.); (S.B.)
| | - Saeeda Baig
- Department Biochemistry, Ziauddin University, Karachi 74600, Pakistan
- Correspondence: (S.F.); (S.B.)
| | - Rubina Hussain
- Department Gynecology and Obstetrics, Ziauddin University, Karachi 74600, Pakistan
| | - Rehan Imad
- Department Molecular Medicine, Ziauddin University, Karachi 74600, Pakistan
| | - Maria Khalid
- Department Gynecology and Obstetrics, Ziauddin University, Karachi 74600, Pakistan
| |
Collapse
|
15
|
Wong KK, Cheng F, Mao D, Lim CKP, Tam CHT, Wang CC, Yuen LY, Chan MHM, Ho CS, Joglekar MV, Hardikar AA, Jenkins AJ, Metzger BE, Lowe WL, Tam WH, Ma RCW. Vitamin D Levels During Pregnancy Are Associated With Offspring Telomere Length: A Longitudinal Mother-Child Study. J Clin Endocrinol Metab 2022; 107:e3901-e3909. [PMID: 35588001 PMCID: PMC9761577 DOI: 10.1210/clinem/dgac320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/14/2022]
Abstract
CONTEXT Leukocyte telomere length (LTL) is a biomarker of biological aging and is associated with metabolic diseases such as type 2 diabetes. Insufficient maternal vitamin D was associated with increased risk for many diseases and adverse later life outcomes. OBJECTIVE This study investigates the relationship between vitamin D levels and offspring LTL at early life. METHODS This observational, longitudinal, hospital-based cohort study included eligible mother-child pairs from the HAPO Hong Kong Field Centre, with 853 offspring at age 6.96 ± 0.44 (mean ± SD) years. LTL was measured using real-time polymerase chain reaction while serum vitamin D metabolites 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3 were measured in maternal blood (at gestation 24-32 weeks) and cord blood by liquid chromatography-mass spectrometry. RESULTS LTL at follow-up was significantly shorter in boys compared with girls (P < 0.001) at age 7. Childhood LTL was negatively associated with childhood BMI (β ± SE = -0.016 ± 0.007)(P = 0.02) and HOMA-IR (β ± SE = -0.065 ± 0.021)(P = 0.002). Multiple linear regression was used to evaluate the relationship between 25(OH)D and LTL, with covariate adjustments. Childhood LTL was positively correlated with total maternal 25(OH)D (0.048 ± 0.017) (P = 0.004) and maternal 3-epi-25(OH)D3 (0.05 ± 0.017) (P = 0.003), even after adjustment for covariates. A similar association was also noted for cord 3-epi-25(OH)D3 (0.037 ± 0.018) (P = 0.035) after adjustment for offspring sex and age. CONCLUSION Our findings suggest 25(OH)D3 and 3-epi-25(OH)D3 in utero may impact on childhood LTLs, highlighting a potential link between maternal vitamin D and biological aging.
Collapse
Affiliation(s)
- Kwun Kiu Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Mao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong–Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai Yuk Yuen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael H M Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Australia
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Australia
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Australia
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Australia
| | - Boyd E Metzger
- Northwestern University Feinberg School of Medicine, Chicago, USA
| | - William L Lowe
- Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Correspondence: Ronald C. W. Ma, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
16
|
Zakharova N, Bravve L, Mamedova G, Kaydan M, Ershova E, Martynov A, Veiko N, Kostyuk S. Telomere Length as a Marker of Suicidal Risk in Schizophrenia. CONSORTIUM PSYCHIATRICUM 2022; 3:37-47. [PMID: 39045115 PMCID: PMC11262099 DOI: 10.17816/cp171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Schizophrenia and suicidal behavior are associated with shortening in the length of telomeres. The aim of the study was to compare the content (pg/mcg) of telomeric repeat in DNA isolated from peripheral blood cells in three groups of subjects: patients with schizophrenia and a history of suicide attempts, patients with schizophrenia without suicidal tendencies, and healthy control volunteers. METHODS Relapses according to gender and age were examined in 47 patients with schizophrenia with suicidal behavior, 47 patients without self-destructive conditions, and 47 volunteers with healthy control and maintenance for the content of telomeric and the number of copies of mitochondrial DNA (mtDNA) in peripheral blood leukocytes. RESULTS Analysis of determining the content of telomeric repeat (TR) in the DNA of massive weight gain in the series: patients with schizophrenia and suicidal attempts - patients with schizophrenia without suicidal observations - healthy controls (225±28.4 (227 [190; 250]) vs. 243±21 (245 [228; 260]) vs. 255±17.9 (255 [242; 266]), p <0.005. The same trend is observed for the number of mtDNA copies (257±101.5 (250 [194; 297])) vs. 262.3±59.3 (254 [217; 312]) vs. 272±79.9 (274 [213; 304]); p=0.012), but no significant differences were recorded. CONCLUSIONS For the first time, the phenomenon of telomere shortening was discovered in schizophrenics with suicidal risk. The length of the telomere corresponds to the parameter of a biological marker - an objectively measured indicator of normal or pathological processes, but gaining an idea of its reliability is still necessary for verification with an assessment of its sensitivity, specificity, and positive and negative predictive value. The telomere may be considered a putative predictive indicator of suicidal risk.
Collapse
|
17
|
Raftopoulou C, Paltoglou G, Charmandari E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022; 14:nu14061244. [PMID: 35334902 PMCID: PMC8949519 DOI: 10.3390/nu14061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Objective: Telomere length (TL) is a robust marker of biological aging, and increased telomere attrition is noted in adults with obesity. The primary objective of this systematic review was to summarize current knowledge on the effects of childhood obesity in TL. The secondary objective was to assess the effect of weight management interventions in TL. Methods: The following databases were searched: PubMed, Scopus, Web of Science and Heal-link.gr from inception to September 2021. The search was performed using the following combinations of terms: “telomer*” [All Fields] AND (“length” [All Fields] OR “lengths” [All Fields]) AND “obes*” [All Fields] AND (“child*” [All Fields] OR “adolescen*” [All Fields]). Results: A total of 16 original articles were included in this systematic review. Eleven of them were cross-sectional and five were lifestyle interventions. Conclusions: There was a tendency towards a negative association between childhood obesity and TL. Life-style interventions in children have been associated with increased TL peripherally, indicating a possible association of the redistribution of younger cells in the periphery with the favorable effect of these interventions. Further prospective studies with larger sample sizes that employ other markers of cell aging would potentially elucidate this important mechanistic relation.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
18
|
Chen L, Tan KML, Gong M, Chong MFF, Tan KH, Chong YS, Meaney MJ, Gluckman PD, Eriksson JG, Karnani N. Variability in newborn telomere length is explained by inheritance and intrauterine environment. BMC Med 2022; 20:20. [PMID: 35073935 PMCID: PMC8787951 DOI: 10.1186/s12916-021-02217-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus. METHODS Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26-28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied. RESULTS Longer maternal TL (β = 0.14, P = 1.99E-05) and higher paternal age (β = 0.10, P = 3.73E-03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: Pmeta = 5.95E-08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother's TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL. CONCLUSIONS Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors. TRIAL REGISTRATION ClinicalTrials.gov , NCT01174875. Registered on 1 July 2010.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.
| | | | - Min Gong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore. .,Bioinformatics Institute, A*STAR, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Genazzani AR, Monteleone P, Giannini A, Simoncini T. Hormone therapy in the postmenopausal years: considering benefits and risks in clinical practice. Hum Reprod Update 2021; 27:1115-1150. [PMID: 34432008 DOI: 10.1093/humupd/dmab026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Menopausal symptoms can be very distressing and considerably affect a woman's personal and social life. It is becoming more and more evident that leaving bothersome symptoms untreated in midlife may lead to altered quality of life, reduced work productivity and, possibly, overall impaired health. Hormone therapy (HT) for the relief of menopausal symptoms has been the object of much controversy over the past two decades. At the beginning of the century, a shadow was cast on the use of HT owing to the concern for cardiovascular and cerebrovascular risks, and breast cancer, arising following publication of a large randomized placebo-controlled trial. Findings of a subanalysis of the trial data and extended follow-up studies, along with other more modern clinical trials and observational studies, have provided new evidence on the effects of HT. OBJECTIVE AND RATIONALE The goal of the following paper is to appraise the most significant clinical literature on the effects of hormones in postmenopausal women, and to report the benefits and risks of HT for the relief of menopausal symptoms. SEARCH METHODS A Pubmed search of clinical trials was performed using the following terms: estrogens, progestogens, bazedoxifene, tibolone, selective estrogen receptor modulators, tissue-selective estrogen complex, androgens, and menopause. OUTCOMES HT is an effective treatment for bothersome menopausal vasomotor symptoms, genitourinary syndrome, and prevention of osteoporotic fractures. Women should be made aware that there is a small increased risk of stroke that tends to persist over the years as well as breast cancer risk with long-term estrogen-progestin use. However, healthy women who begin HT soon after menopause will probably earn more benefit than harm from the treatment. HT can improve bothersome symptoms, all the while conferring offset benefits such as cardiovascular risk reduction, an increase in bone mineral density and a reduction in bone fracture risk. Moreover, a decrease in colorectal cancer risk is obtainable in women treated with estrogen-progestin therapy, and an overall but nonsignificant reduction in mortality has been observed in women treated with conjugated equine estrogens alone or combined with estrogen-progestin therapy. Where possible, transdermal routes of HT administration should be preferred as they have the least impact on coagulation. With combined treatment, natural progesterone should be favored as it is devoid of the antiapoptotic properties of other progestogens on breast cells. When beginning HT, low doses should be used and increased gradually until effective control of symptoms is achieved. Unless contraindications develop, patients may choose to continue HT as long as the benefits outweigh the risks. Regular reassessment of the woman's health status is mandatory. Women with premature menopause who begin HT before 50 years of age seem to have the most significant advantage in terms of longevity. WIDER IMPLICATIONS In women with bothersome menopausal symptoms, HT should be considered one of the mainstays of treatment. Clinical practitioners should tailor HT based on patient history, physical characteristics, and current health status so that benefits outweigh the risks.
Collapse
Affiliation(s)
- Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
21
|
Telomere length shortening in hospitalized preterm infants: A pilot study. PLoS One 2021; 16:e0243468. [PMID: 33471805 PMCID: PMC7817026 DOI: 10.1371/journal.pone.0243468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Leukocyte telomere length is a biomarker of aging-related health risks. Hospitalized preterm infants frequently experience elevated oxidative stress and inflammation, both of which contribute to telomere shortening. Our aim was to examine changes in telomere length during neonatal intensive care unit (NICU) hospitalization in a cohort of preterm infants <32 weeks' gestation. We conducted a longitudinal study of 10 infants (mean gestational age 27 weeks, range 23.5 to 29, at birth). We isolated DNA from dried blood spots and used Real Time Quantitative PCR to measure relative leukocyte telomere length in triplicate at three time points for each participant. From birth to discharge, infants experienced an average decline in relative telomere length of 0.021 units per week (95% CI -0.040, -0.0020; p = 0.03), after adjustment for gestational age at birth. Our results suggest a measurable decline in telomere length during NICU hospitalization. We speculate that telomere length change may convey information about NICU exposures that carry short- and long-term health risks.
Collapse
|
22
|
Sun Y, Li X, Jiang W, Fan Y, Ouyang Q, Shao W, Alolga RN, Ge Y, Ma G. Advanced paternal age and risk of cancer in offspring. Aging (Albany NY) 2020; 13:3712-3725. [PMID: 33411681 PMCID: PMC7906132 DOI: 10.18632/aging.202333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 04/24/2023]
Abstract
Many risk factors of cancer have been established, but the contribution of paternal age in this regard remains largely unexplored. To further understand the etiology of cancer, we investigated the relationship between paternal age and cancer incidence using PLCO cohort. Cox proportional hazards models were performed to assess the association between paternal age and the risk of cancers. During follow-up time (median 11.5 years), 18,753 primary cancers occurred. Paternal age was associated with reduced risk of cancers of the female genitalia (HR, 0.79; 95%CI, 0.66-0.94; P = 0.008) as well as cancers of the respiratory and intrathoracic organs (HR, 0.78; 95%CI, 0.63-0.97; P = 0.026). The association was stronger for lung cancer (HR, 0.67; 95%CI, 0.52-0.86; P = 0.002). The subgroup analysis suggested that age, gender, smoking and BMI were related to the decreased cancer incidence of the respiratory and intrathoracic organs, lung and the female genitalia. Positive linear associations were observed between paternal age and cancer incidence of the female genitalia, respiratory and intrathoracic organs and the lungs. These findings indicate that advanced paternal age is an independent protective factor against various cancers in offspring.
Collapse
Affiliation(s)
- Yangyang Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Jiang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiong Ouyang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Shao
- Department of Science and Technology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Raphael N. Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Nudelman KNH, Lin J, Lane KA, Nho K, Kim S, Faber KM, Risacher SL, Foroud TM, Gao S, Davis JW, Weiner MW, Saykin AJ. Telomere Shortening in the Alzheimer's Disease Neuroimaging Initiative Cohort. J Alzheimers Dis 2020; 71:33-43. [PMID: 31322561 DOI: 10.3233/jad-190010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although shorter telomeres have been associated with Alzheimer's disease (AD), it is unclear whether longitudinal change in telomere length is associated with AD progression. OBJECTIVE To investigate the association of telomere length change with AD diagnosis and progression. METHODS In 653 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, T/S ratio (telomere versus single copy gene), a proxy of telomere length, was measured for up to five visits per participant (N = 1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate association of telomere length with AD diagnostic group and interaction of age and diagnosis. Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to MCI or AD to telomere change in participants with stable diagnoses. RESULTS Shorter telomeres were associated with older age (Effect Size (ES) = -0.23) and male sex (ES = -0.26). Neither baseline T/S ratio (ES = -0.036) nor T/S ratio change (ES = 0.046) differed significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-significant, telomere shortening compared to non-converters (ES = -0.186). CONCLUSIONS Although AD compared to controls showed small, non-significant effects for baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant effect for greater telomere shortening in converters compared to non-converters. Although our results do not support telomere shortening as a robust biomarker of AD progression, further investigation in larger samples and for subgroups of participants may be informative.
Collapse
Affiliation(s)
- Kelly N H Nudelman
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Lane
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Electrical and Computer Engineering, SUNY Oswego, Oswego, NY, USA
| | - Kelley M Faber
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin W Davis
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Saykin
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
24
|
Patterns of change in telomere length over the first three years of life in healthy children. Psychoneuroendocrinology 2020; 115:104602. [PMID: 32120019 PMCID: PMC7183438 DOI: 10.1016/j.psyneuen.2020.104602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
There is growing interest in the use of telomere length as a biomarker of health and a predictor of later morbidity and mortality. However, little is known about developmentally expected telomere erosion over the first years of life. This gap hinders our ability to interpret the meaning of relative telomere length and rate of attrition in relation to risk factors and health outcomes. The overall goal of this study was to examine the rate of relative telomere length attrition in a large, normative sample of healthy children (N = 630) followed from infancy to three years of age. A secondary goal was to explore associations between sociodemographic characteristics and telomere erosion over this time period. Relative telomere length was assessed from DNA in saliva samples collected in infancy (M = 8.6 months), age 2 years (M = 25.2 months), and age 3 years (M = 38.3 months). In the sample as a whole, relative telomere length decreased from infancy to 2 years but remained stable from 2 years to 3 years. Notably, increases in relative telomere length were observed in 29 % of children between infancy and 2 years of age and in 46 % of children between 2 and 3 years of age; 62 % of children showed both increases and decreases in relative telomere length across the study period. Females showed longer relative telomere length than males, regardless of timepoint. There was some evidence that parental age and family finances were associated with changes in child relative telomere length across time. Overall, the findings suggest that telomere length attrition is not uniform across the early years of life, with the most rapid attrition occurring during the first two years, and that increases as well as decreases in telomere length during this period are commonly observed.
Collapse
|
25
|
Osorio-Yáñez C, Clemente DBP, Maitre L, Vives-Usano M, Bustamante M, Martinez D, Casas M, Alexander J, Thomsen C, Chatzi L, Gützkow KB, Grazuleviciene R, Martens DS, Plusquin M, Slama R, McEachan RC, Wright J, Yang TC, Urquiza J, Tamayo I, Sunyer J, Vafeiadi M, Nawrot TS, Vrijheid M. Early life tobacco exposure and children's telomere length: The HELIX project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135028. [PMID: 32000334 DOI: 10.1016/j.scitotenv.2019.135028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Telomere length and mitochondrial DNA content are considered biomarkers of cellular aging, oxidative stress, and inflammation, but there is almost no information on their association with tobacco smoke exposure in fetal and early life. The aim of this study was to assess whether prenatal and childhood tobacco exposure were associated with leukocyte telomere length (LTL) and mitochondrial DNA (mtDNA) content in children. As part of a multi-centre European birth cohort study HELIX (Human Early-Life Exposome) (n = 1396) we assessed maternal smoking status during pregnancy through questionnaires, and through urinary cotinine levels that were then used to classify women as not exposed to smoking (<10 µg/L), exposed to secondhand smoke (SHS) (10-50 µg/L) and active smokers (>50 µg/L). When the children were around 8 years of age (range: 5.4-12.0 years), childhood SHS tobacco smoke exposure was assessed through an extensive questionnaire and through measurements of urinary cotinine (<3.03 µg/L non-detected, >3.03 µg/L detected). Leukocyte mtDNA content and LTL were measured in the children at 8 years employing real time polymerase chain reaction (qPCR). Effect estimates were calculated using multivariate linear regression models for prenatal and childhood exposures adjusted for potential confounders. Maternal cotinine levels indicative of SHS exposure during pregnancy were associated with a decrease of 3.90% in LTL in children (95% CI: -6.68, -0.91), compared with non-smoking, whereas the association for maternal cotinine levels indicative of active smoking did not reach statistical significance (-3.24%; 95% CI: -6.59, 0.21). Childhood SHS tobacco exposure was not associated with LTL in children. Global SHS exposure during childhood was associated with an increase of 3.51% (95% CI: 0.78, 6.27) in mtDNA content. Our findings suggest that tobacco smoke exposure during pregnancy, even at SHS levels, may accelerate telomere shortening in children and thus induce biological aging from an early age.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico
| | - Diana B P Clemente
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Lea Maitre
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Martha Vives-Usano
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - David Martinez
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Maribel Casas
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | - Dries S Martens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Rosemary C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jose Urquiza
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ibon Tamayo
- ISGlobal, Institute for Global Health, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Unit Environment & Health, Leuven University, Leuven, Belgium
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain; Univeristat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
26
|
Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod 2020; 100:305-317. [PMID: 30277496 DOI: 10.1093/biolre/ioy208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Telomeres are repeated DNA sequences whose main function is to preserve genome stability, protecting chromosomes ends from shortening caused by progressive loss during each cell replication or DNA damage. Telomere length regulation is normally achieved by telomerase enzyme, whose activity is progressively shut off during embryonic differentiation in somatic tissues, whereas it is maintained in germ cells, activated lymphocytes, and certain types of stem cell populations. The maintenance of telomerase activity for a longer time is necessary for germ cells to delay telomere erosion, thus avoiding chromosome segregation defects that could contribute to aneuploid or unbalanced gametes. Over the last few years, telomere biology has become an important topic in the field of human reproduction, encouraging several studies to focus on the relation between telomere length and spermatogenesis and male fertility, embryo development and quality during assisted reproductive treatment, and female pathologies as polycystic ovary, premature ovarian insufficiency, and endometriosis. This review analyzes whether telomere length in germ cells is related to reproduction fitness, whether telomere length is related to pathologies associated with male and female fertility, and whether measurement of telomere length could represent a biomarker of germ cell and embryo quality. Telomere length could be considered a molecular marker of spermatogenesis and sperm quality and is somewhat related to male fertility potential. Fewer evidence, although promising, is available for oocytes, female (in)fertility, and embryo quality. The increasing evidence for a role of telomeres and telomere length in human reproduction, indeed, has expanded the historical view of considering them just a marker of aging. Telomere length might have in the future a prognostic potential in couple infertility, especially useful to select best germ cells with the greatest potential of fertilization.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Amir S, Vakonaki E, Tsiminikaki K, Tzatzarakis M, Michopoulou V, Flamourakis M, Kalliantasi K, Karzi V, Fragkiadaki P, Renieri E, Tsoukalas D, Thanasoula M, Sarandi E, Sakellaris G, Makrigiannakis A, Nepka C, Spandidos D, Tsatsakis A. Sperm telomere length: Diagnostic and prognostic biomarker in male infertility (Review). ACTA ACUST UNITED AC 2020. [DOI: 10.3892/wasj.2020.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Islamabad, Islamabad Capital Territory 45550, Pakistan
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Manolis Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vasiliki Michopoulou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vasiliki Karzi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Maria Thanasoula
- Venizeleio General Hospital, Department of Surgery, 71409 Heraklion, Greece
| | - Evangelia Sarandi
- Venizeleio General Hospital, Department of Surgery, 71409 Heraklion, Greece
| | - George Sakellaris
- Department of Pediatric Surgery, University Hospital of Heraklion, 71003 Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, School of Medicine, University Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Charitini Nepka
- Department of Cytopathology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demetrios Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
28
|
Griffin I, Ibrahimou B, Navejar N, Aggarwal A, Myers K, Mauck D, Yusuf KK, Wudil UJ, Aliyu MH, Salihu HM. Maternal Caffeine Consumption and Racial Disparities in Fetal Telomere Length. Int J MCH AIDS 2020; 9:14-21. [PMID: 32123624 PMCID: PMC7031881 DOI: 10.21106/ijma.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The identification of risk factors for shorter telomere length, especially during fetal development, would be important towards caffeine consumption recommendations for pregnant women on a global scale. The purpose of this study was to evaluate the association between caffeine intake and fetal telomere length as well as racial/ethnic differences in telomere length regardless of maternal caffeine consumption status. METHODS Caffeine intake was measured using a food frequency questionnaire (FFQ). Three generalized linear models (GLM) were compared based on binary categorical variables of caffeine levels using data mean value of 117.3 mg as cut-off; the World Health Organization (WHO) recommendations of 300 mg; and the American College of Obstetricians and Gynecologists (ACOG) recommendations of 200 mg. The association between caffeine consumption and telomere length (telomere to single-copy [T/S] ratio) was then assessed. RESULTS Among 57 maternal-fetal dyads, 77.2% reported less than 200 mg of caffeine (ACOG) and 89.5% less than 300 mg (WHO). Both WHO and ACOG models found that caffeine intake was significantly and positively associated with longer telomere length (p<0.05); and sodium (p<0.05). Other" race (p<0.001) and "white" race (p<0.001) were also significantly and positively associated with longer telomere length in the same models. Increasing maternal age shortened telomere length significantly in all models (p<0.001). CONCLUSION AND GLOBAL HEALTH IMPLICATIONS Caffeine intake, maternal age, and race may be associated with alterations in fetal telomere length. This indicates that caffeine consumption during pregnancy may have long-term implications for fetal development. The racial/ethnic differences in telomere length found in this study warrant larger studies to further confirm these associations.
Collapse
Affiliation(s)
- Isabel Griffin
- Florida International University, Robert Stempel College of Public Health and Social Work, Department of Epidemiology, 11200 SW 8 Street #500, Miami, Florida 33174, USA
| | - Boubakari Ibrahimou
- Florida International University, Robert Stempel College of Public Health and Social Work, Department of Epidemiology, 11200 SW 8 Street #500, Miami, Florida 33174, USA
| | - Natasha Navejar
- Center of Excellence in Health Equity, Training and Research, Baylor College of Medicine, One Baylor Plaza, MS:411 Houston, TX 77030, USA
| | - Anjali Aggarwal
- Department of Family and Community Medicine, Baylor College of Medicine, 3701 Kirby Drive, Houston, Texas, 77098, USA
| | - Kristopher Myers
- Florida International University, Robert Stempel College of Public Health and Social Work, Department of Epidemiology, 11200 SW 8 Street #500, Miami, Florida 33174, USA
| | - Daniel Mauck
- Florida International University, Robert Stempel College of Public Health and Social Work, Department of Epidemiology, 11200 SW 8 Street #500, Miami, Florida 33174, USA
| | - Korede K Yusuf
- Adelphi University, College of Nursing and Public Health, One South Avenue, Garden City, NY 11530, USA
| | - Usman J Wudil
- Vanderbilt University Medical Center, Vanderbilt Institute for Global Health, 2525 West End Ave, Suite 750, Nashville, TN 37203, USA
| | - Muktar H Aliyu
- Vanderbilt University Medical Center, Vanderbilt Institute for Global Health, 2525 West End Ave, Suite 750, Nashville, TN 37203, USA
| | - Hamisu M Salihu
- Center of Excellence in Health Equity, Training and Research, Baylor College of Medicine, One Baylor Plaza, MS:411 Houston, TX 77030, USA
| |
Collapse
|
29
|
Shadyab AH, Manson JE, Li W, Gass M, Brunner RL, Naughton MJ, Cannell B, Howard BV, LaCroix AZ. Associations of parental ages at childbirth with healthy aging among women. Maturitas 2019; 129:6-11. [PMID: 31547915 PMCID: PMC6761991 DOI: 10.1016/j.maturitas.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/29/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine associations of parental ages at childbirth with healthy survival to age 90 years among older women. STUDY DESIGN This study included a racially and ethnically diverse sub-cohort of 8,983 postmenopausal women from the larger Women's Health Initiative population, recruited during 1993-1998 and followed for up to 25 years through 2018. MAIN OUTCOME MEASURES The outcome was categorized as: 1) healthy survival, defined as survival to age 90 without major morbidities (coronary heart disease, stroke, diabetes, cancer, or hip fracture) or mobility disability; 2) usual survival, defined as survival to age 90 without healthy aging (reference category); or 3) death before age 90. Women reported their own and their parents' birth years, and parental ages at childbirth were calculated and categorized as <25, 25-29, 30-34, or ≥35 years. RESULTS Women were aged on average 71.3 (standard deviation 2.7; range 65-79) years at baseline. There was no significant association of maternal age at childbirth with healthy survival to age 90 or death before age 90. Women born to fathers aged ≥35 compared with 30-34 years at their births were more likely to achieve healthy than usual survival (OR, 1.15; 95% CI, 1.00-1.32). There was no association of paternal age at childbirth with death before age 90. CONCLUSIONS Findings suggest that being born to older fathers was associated with healthy survival to age 90 among women who had survived to ages 65-79 years at study baseline. There was no association of maternal age at childbirth with healthy survival to age 90 among these older women.
Collapse
Affiliation(s)
- Aladdin H Shadyab
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, 9500 Gilman Drive #0725, La Jolla, CA 92093, USA.
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health and Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, Department of Medicine, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| | - Margery Gass
- North American Menopause Society Emeritus, 30100 Chagrin Blvd, Pepper Pike, OH 44124, USA
| | - Robert L Brunner
- Department of Family and Community Medicine, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Michelle J Naughton
- Division of Population Sciences, Department of Internal Medicine, The Ohio State University, 1590 N High St, Columbus, OH 43201, USA
| | - Brad Cannell
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Barbara V Howard
- MedStar Health Research Institute and Georgetown-Howard Universities Center for Clinical and Translational Science, 6525 Belcrest Road, Hyattsville, MD 20782, USA
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, 9500 Gilman Drive #0725, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Belmaker A, Hallinger KK, Glynn RA, Winkler DW, Haussmann MF. The environmental and genetic determinants of chick telomere length in Tree Swallows ( Tachycineta bicolor). Ecol Evol 2019; 9:8175-8186. [PMID: 31380080 PMCID: PMC6662556 DOI: 10.1002/ece3.5386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Conditions during early life can have dramatic effects on adult characteristics and fitness. However, we still know little about the mechanisms that mediate these relationships. Telomere shortening is one possibility. Telomeres are long sequences of DNA that protect the ends of chromosomes. They shorten naturally throughout an individual's life, and individuals with short telomeres tend to have poorer health and reduced survival. Given this connection between telomere length (TL) and fitness, natural selection should favor individuals that are able to retain longer telomeres for a greater portion of their lives. However, the ability of natural selection to act on TL depends on the extent to which genetic and environmental factors influence TL. In this study, we experimentally enlarged broods of Tree Swallows (Tachycineta bicolor) to test the effects of demanding early-life conditions on TL, while simultaneously cross-fostering chicks to estimate heritable genetic influences on TL. In addition, we estimated the effects of parental age and chick sex on chick TL. We found that TL is highly heritable in Tree Swallow chicks, and that the maternal genetic basis for TL is stronger than is the paternal genetic basis. In contrast, the experimental manipulation of brood size had only a weak effect on chick TL, suggesting that the role of environmental factors in influencing TL early in life is limited. There was no effect of chick sex or parental age on chick TL. While these results are consistent with those reported in some studies, they are in conflict with others. These disparate conclusions might be attributable to the inherent complexity of telomere dynamics playing out differently in different populations or to study-specific variation in the age at which subjects were measured.
Collapse
Affiliation(s)
- Amos Belmaker
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York
- Present address:
The Steinhardt Museum of Natural HistoryTel‐Aviv UniversityTel AvivIsrael
| | - Kelly K. Hallinger
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona
| | | | - David W. Winkler
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York
| | | |
Collapse
|
31
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
32
|
Vasilopoulos E, Fragkiadaki P, Kalliora C, Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM, Georgiadis G, Mamoulakis C, Makrigiannakis A, Spandidos DA, Tsatsakis A. The association of female and male infertility with telomere length (Review). Int J Mol Med 2019; 44:375-389. [PMID: 31173155 PMCID: PMC6605974 DOI: 10.3892/ijmm.2019.4225] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Telomere length (TL) has long been associated with aging, as telomeres serve as protective caps of chromosomes, and are thus deeply involved in the preservation of genome integrity and are vital to cellular functions. Traditionally, a strong link connects aging and infertility in both sexes, with an earlier onset in females. Over the past decade, telomeres have attracted increasing attention due to the role they play in fertility. In this review, we investigated the potential positive or negative association between relative TL and different factors of female and male infertility. A systematic search of the PubMed database was conducted. Out of the 206 studies identified, 45 were reviewed as they fulfilled the criteria of validity and relevance. Following an analysis and a comparison of the study outcomes, several clear trends were observed. The majority of female infertility factors were associated with a shorter TL, with the exception of endometriosis, premature ovarian failure and clear cell carcinoma that were associated with a longer TL and polycystic ovary syndrome (PCOS), which revealed conflicting results among several studies, leading to ambiguous conclusions. Male infertility factors were associated with a shorter TL. Although this review can provide an outline of general trends in the association of TL with infertility factors, further epidemiological and original research studies are required to focus on investigating the basis of these varying lengths of telomeres.
Collapse
Affiliation(s)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - George Georgiadis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
33
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
34
|
Perales-Puchalt A, Soberón N, Monterde M, Hervas-Marin D, Foronda M, Desantes D, Soler I, Perales-Marin A, Pellicer A, Blasco MA. Maternal telomere length is shorter in intrauterine growth restriction versus uncomplicated pregnancies, but not in the offspring or in IVF-conceived newborns. Reprod Biomed Online 2018; 38:606-612. [PMID: 30826299 DOI: 10.1016/j.rbmo.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
RESEARCH QUESTION The study aimed to determine whether IVF or intrauterine growth restriction (IUGR) result in short neonatal telomeres, which could explain the higher risk of cardiovascular and metabolic disease described in these populations. DESIGN This was an observational, analytical, cross-sectional, prospective study with controls in a tertiary hospital. The main outcome was to determine the leukocyte telomere length in 126 newborns and their mothers (n = 109). Newborns were conceived spontaneously or by IVF, and uncomplicated and IUGR pregnancies were studied. Telomere lengths were measured using high-throughput telomere quantitative fluorescent in-situ hybridization. RESULTS There was no difference in average telomere length between newborns conceived by IVF or those with IUGR and spontaneously conceived healthy newborns (P = 0.466 and P = 0.732, respectively); this remained after controlling for confounders (P = 0.218 and P = 0.991, respectively). Mothers of newborns with IUGR had a shorter average telomere length than women with uncomplicated pregnancies (P = 0.023), which was confirmed after controlling for age, body mass index and smoking habit (P = 0.034). CONCLUSIONS The results support the safety of IVF and IUGR in terms of the postnatal health of the newborns. The shorter telomeres of IUGR mothers may represent a higher cardiovascular risk, which would have clinical implications under the stress of pregnancy in otherwise healthy adults.
Collapse
Affiliation(s)
- Alfredo Perales-Puchalt
- Departamento de Obstetricia y Ginecología, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain.
| | - Nora Soberón
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Mercedes Monterde
- Instituto de Investigación Sanitaria La Fe, Grupo Acreditado de Investigación en Medicina Reproductiva, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - David Hervas-Marin
- Instituto de Investigación Sanitaria La Fe, Departamento de Bioestadística, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Miguel Foronda
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Domingo Desantes
- Departamento de Obstetricia y Ginecología, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain
| | - Inmaculada Soler
- Departamento de Obstetricia y Ginecología, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain
| | - Alfredo Perales-Marin
- Departamento de Obstetricia y Ginecología, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain
| | - Antonio Pellicer
- Departamento de Obstetricia y Ginecología, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Grupo Acreditado de Investigación en Medicina Reproductiva, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain; Instituto Valenciano de Infertilidad (IVI), Plaça de la Policia Local, 46015 Valencia, Spain
| | - Maria A Blasco
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
35
|
Delgado DA, Zhang C, Gleason K, Demanelis K, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Doherty JA, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum Genet 2018; 138:49-60. [PMID: 30536049 DOI: 10.1007/s00439-018-1964-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., "direct" inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere "reprogramming" during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kevin Gleason
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, GA, 30333, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | | | | | | | | | | | | | - Muhammad Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jennifer A Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.,Department of Medicine, University of Chicago, Chicago, IL, 60615, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA. .,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA. .,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
36
|
Wulaningsih W, Hardy R, Wong A, Kuh D. Parental age and offspring leukocyte telomere length and attrition in midlife: Evidence from the 1946 British birth cohort. Exp Gerontol 2018; 112:92-96. [PMID: 30223048 PMCID: PMC6189452 DOI: 10.1016/j.exger.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
Background There is evidence that paternal age may influence offspring telomere length, but the joint effects of father's and mother's age are unclear. We evaluated whether parental ages, individually and jointly, were associated with offspring telomere length and shortening. Methods We included 2305 British birth cohort participants with measured leukocyte telomere length (LTL) at age 53, among whom 941 had a second measurement at age 60–64. Linear regressions were performed to assess the associations of father's and mother's age at birth and the parental age gap, i.e. the difference between maternal and paternal age with LTL and LTL change. Results A one year increase in father's age corresponded to a 0.26% (95% CI: 0.04–0.47%) increase in offspring LTL at age 53 in the sex-adjusted model. No association was observed for mother's age. Associations of father's or mother's age with offspring LTL at age 53 went to opposite directions when both parental ages were included together. For the difference in parental age, every year that fathers were older than mothers corresponded to a 0.94% (95% CI, 0.38–1.50%) increase in LTL at age 53 after adjustment for potential confounders. Neither parental ages nor the difference in parental ages were correlated with LTL change. Conclusion There was a joint effect of parental ages on offspring telomere length, further denoting a complex role of reproductive age in offspring health and ageing.
Collapse
Affiliation(s)
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| |
Collapse
|
37
|
Chang SC, Crous-Bou M, Prescott J, Rosner B, Simon NM, Wang W, De Vivo I, Okereke OI. Prospective association of depression and phobic anxiety with changes in telomere lengths over 11 years. Depress Anxiety 2018; 35:431-439. [PMID: 29486096 PMCID: PMC6085135 DOI: 10.1002/da.22732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although depression and anxiety have been associated with shorter telomeres in cross-sectional studies, the data regarding the prospective relations of depression and anxiety to accelerated telomere length shortening are limited and findings are mixed. We prospectively examined relations of baseline depression and phobic anxiety to subsequent 11-year change in relative leukocyte telomere lengths (LTLs). METHODS We selected 1,250 women from a subcohort of the Nurses' Health Study who provided blood specimens at both blood collections (1989-1990 and 2000-2001). Depression was defined by self-reported regular antidepressant use or presence of severe depressive symptoms; anxiety symptoms were assessed using the Crown-Crisp Experiential Index. Using quantitative real-time polymerase chain reaction assay, LTLs were measured as the copy number ratio of telomere repeat to a single control gene. Changes in LTLs were defined in three ways: absolute change, symmetrized percent change, and decile shift. RESULTS Overall, there were no statistically significant associations of depression or phobic anxiety to subsequent 11-year LTL shortening, despite a point estimates in the direction of greater telomere shortening among participants with versus without depression, across all three metrics of telomere change. The strongest predictor of LTL change was baseline telomere length, and regression-to-the-mean was observed. CONCLUSION Baseline depression and phobic anxiety were not significantly associated with 11-year attrition in LTLs among 1,250 mid-life and older women. However, a suggestion of depression and greater subsequent LTL attrition, while not statistically significant, may warrant further inquiry, particularly in prospective studies with larger sample sizes and broader windows of the lifespan.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marta Crous-Bou
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA,Clinical Research Program, Barcelona Beta Brain Research Center, 08005 Barcelona, Spain
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA,Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Naomi M. Simon
- Anxiety and Complicated Grief Program, Department of Psychiatry, NYU Langone Medical Center, New York NY 10016 USA
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA,Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Olivia I. Okereke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA,Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
38
|
Maguire D, Neytchev O, Talwar D, McMillan D, Shiels PG. Telomere Homeostasis: Interplay with Magnesium. Int J Mol Sci 2018; 19:E157. [PMID: 29303978 PMCID: PMC5796106 DOI: 10.3390/ijms19010157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.
Collapse
Affiliation(s)
- Donogh Maguire
- Emergency Medicine Department, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Ognian Neytchev
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Dinesh Talwar
- The Scottish Trace Element and Micronutrient Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow G31 2ER, UK.
| | - Donald McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Paul G Shiels
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
39
|
Impact of Antiretroviral Treatment Containing Tenofovir Difumarate on the Telomere Length of Aviremic HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 76:102-109. [PMID: 28418989 DOI: 10.1097/qai.0000000000001391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the in vivo relevance of the inhibitory effect of tenofovir on telomerase activity observed in vitro. DESIGN Cross-sectional study of HIV-infected patients with suppressed virological replication (HIV RNA <50 copies/mL for more than 1 year). METHODS Telomere length in whole blood was measured by quantitative real-time polymerase chain reaction. We performed a multivariate analysis to elucidate variables associated with telomere length and also evaluated the association between telomere length and use of tenofovir difumarate (TDF) adjusted by significant confounders. RESULTS 200 patients included, 72% men, median age 49 (IQR 45-54.5), 103 with exposure to a TDF containing antiretroviral treatment (ART) regimen (69.9% for more than 5 years) and 97 never exposed to a TDF containing ART regimen. In the multivariate analysis, significant predictors of shorter telomere length were older age (P = 0.008), parental age at birth (P = 0.038), white race (P = 0.048), and longer time of known HIV infection (10-20 and ≥20 years compared with <10 years, P = 0.003 and P = 0.056, respectively). There was no association between TDF exposure and telomere length after adjusting for possible confounding factors (age, parental age at birth, race, and time of HIV infection). Total time receiving ART and duration of treatment with nucleoside reverse transcriptase inhibitors were associated with shorter telomere length, but these associations were explained by time of known HIV infection. CONCLUSIONS Our data do not suggest that telomerase activity inhibition caused by TDF in vitro leads to telomere shortening in peripheral blood of HIV-infected patients.
Collapse
|
40
|
Froy H, Bird EJ, Wilbourn RV, Fairlie J, Underwood SL, Salvo-Chirnside E, Pilkington JG, Bérénos C, Pemberton JM, Nussey DH. No evidence for parental age effects on offspring leukocyte telomere length in free-living Soay sheep. Sci Rep 2017; 7:9991. [PMID: 28855677 PMCID: PMC5577307 DOI: 10.1038/s41598-017-09861-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
In humans, the effect of paternal age at conception (PAC) on offspring leukocyte telomere length (LTL) is well established, with older fathers thought to pass on longer telomeres to their offspring in their sperm. Few studies have looked for PAC effects in other species, but it has been hypothesised that the effect will be exacerbated in polygamous species with higher levels of sperm competition and production. We test for maternal (MAC) and paternal age at conception effects on offspring LTL in Soay sheep, a primitive breed experiencing strong sperm competition. We use qPCR to measure relative telomere length in 389 blood samples (n = 318 individuals) collected from an unmanaged population of sheep on St Kilda, where individual age and parentage are known. We find no evidence that either MAC or PAC are associated with LTL in offspring across the age range, or when considering only young lambs (n = 164). This is the first study to test for parental age effects on offspring LTL in a wild mammal population, and the results contrast with the findings of numerous human studies that find a PAC effect, as well as predictions of a stronger PAC effect in polygamous species.
Collapse
Affiliation(s)
- H Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - E J Bird
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - R V Wilbourn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - J Fairlie
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - S L Underwood
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - J G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - C Bérénos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - D H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
41
|
Is telomere length associated with mate choice in a songbird with a high rate of extra-pair paternity? PLoS One 2017; 12:e0182446. [PMID: 28783753 PMCID: PMC5544213 DOI: 10.1371/journal.pone.0182446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Telomere length is related to aging in many eukaryotes and the rate of telomere attrition has been suggested to reflect individual genetic quality. Telomere length could thus have implications for mate choice. We investigated telomere length variation in bluethroat Luscinia svecica families with mixed paternity, including social parents, extra-pair fathers and nestlings, testing whether telomere length is associated with social and/or extra-pair mate choice through assortative mating or selection of mates with relatively long telomeres. In adults, relative telomere length (rTL) did not differ between the sexes, nor between two age categories. In chicks, however, rTL decreased with body mass at sampling (an index of nestling age). We found a positive correlation between the rTL of social mates, suggesting assortative mating with respect to telomere length or a correlative thereof. However, extra-pair males did not differ from social mates in rTL, and accordingly there was also no difference between within- and extra-pair young (i.e. half-siblings) when controlling for the effect of mass. We found no relationships between telomere length, age and fitness-related traits in adults, but an intriguing year-difference in telomere length in both sexes. In conclusion, we found no support for the idea that females choose extra-pair males based on their telomere length, but social mate choice seems to be influenced by rTL, possibly through its co-variation with aspects reflecting individual quality, like early arrival at the breeding grounds.
Collapse
|
42
|
Mons U, Müezzinler A, Schöttker B, Dieffenbach AK, Butterbach K, Schick M, Peasey A, De Vivo I, Trichopoulou A, Boffetta P, Brenner H. Leukocyte Telomere Length and All-Cause, Cardiovascular Disease, and Cancer Mortality: Results From Individual-Participant-Data Meta-Analysis of 2 Large Prospective Cohort Studies. Am J Epidemiol 2017; 185:1317-1326. [PMID: 28459963 DOI: 10.1093/aje/kww210] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
We studied the associations of leukocyte telomere length (LTL) with all-cause, cardiovascular disease, and cancer mortality in 12,199 adults participating in 2 population-based prospective cohort studies from Europe (ESTHER) and the United States (Nurses' Health Study). Blood samples were collected in 1989-1990 (Nurses' Health Study) and 2000-2002 (ESTHER). LTL was measured by quantitative polymerase chain reaction. We calculated z scores for LTL to standardize LTL measurements across the cohorts. Cox proportional hazards regression models were used to calculate relative mortality according to continuous levels and quintiles of LTL z scores. The hazard ratios obtained from each cohort were subsequently pooled by meta-analysis. Overall, 2,882 deaths were recorded during follow-up (Nurses' Health Study, 1989-2010; ESTHER, 2000-2015). LTL was inversely associated with age in both cohorts. After adjustment for age, a significant inverse trend of LTL with all-cause mortality was observed in both cohorts. In random-effects meta-analysis, age-adjusted hazard ratios for the shortest LTL quintile compared with the longest were 1.23 (95% confidence interval (CI): 1.04, 1.46) for all-cause mortality, 1.29 (95% CI: 0.83, 2.00) for cardiovascular mortality, and 1.10 (95% CI: 0.88, 1.37) for cancer mortality. In this study population with an age range of 43-75 years, we corroborated previous evidence suggesting that LTL predicts all-cause mortality beyond its association with age.
Collapse
Affiliation(s)
- Ute Mons
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Aysel Müezzinler
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Schick
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Anne Peasey
- Department of Epidemiology and Public Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Immaculata De Vivo
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Paolo Boffetta
- Hellenic Health Foundation, Athens, Greece
- Institute for Translational Epidemiology and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
43
|
Eisenberg DT, Tackney J, Cawthon RM, Cloutier CT, Hawkes K. Paternal and grandpaternal ages at conception and descendant telomere lengths in chimpanzees and humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:201-207. [PMID: 27731903 PMCID: PMC5250553 DOI: 10.1002/ajpa.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 12/27/2022]
Abstract
Telomeres are repeating DNA at chromosome ends. Telomere length (TL) declines with age in most human tissues, and shorter TL is thought to accelerate senescence. In contrast, older men have sperm with longer TL; correspondingly, older paternal age at conception (PAC) predicts longer TL in offspring. This PAC-effect could be a unique form of transgenerational genetic plasticity that modifies somatic maintenance in response to cues of recent ancestral experience. The PAC-effect has not been examined in any non-human mammals. OBJECTIVES Here, we examine the PAC-effect in chimpanzees (Pan troglodytes). The PAC-effect on TL is thought to be driven by continual production of sperm-the same process that drives increased de novo mutations with PAC. As chimpanzees have both greater sperm production and greater sperm mutation rates with PAC than humans, we predict that the PAC-effect on TL will be more pronounced in chimpanzees. Additionally we examine whether PAC predicts TL of grandchildren. MATERIALS AND METHODS TL were measured using qPCR from DNA from blood samples from 40 captive chimpanzees and 144 humans. RESULTS Analyses showed increasing TL with PAC in chimpanzees (p = .009) with a slope six times that in humans (p = .026). No associations between TL and grandpaternal ages were found in humans or chimpanzees-although statistical power was low. DISCUSSION These results suggest that sperm production rates across species may be a determinant of the PAC-effect on offspring TL. This raises the possibility that sperm production rates within species may influence the TL passed on to offspring.
Collapse
Affiliation(s)
- Dan T.A. Eisenberg
- Department of Anthropology, University of Washington
- Center for Studies in Demography and Ecology, University of Washington
| | | | | | | | | |
Collapse
|
44
|
Influence of In Utero Maternal and Neonate Factors on Cord Blood Leukocyte Telomere Length: Clues to the Racial Disparity in Prostate Cancer? Prostate Cancer 2016; 2016:3691650. [PMID: 28070423 PMCID: PMC5192337 DOI: 10.1155/2016/3691650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/23/2016] [Indexed: 02/06/2023] Open
Abstract
Background. Modifiable factors in adulthood that explain the racial disparity in prostate cancer have not been identified. Because racial differences in utero that may account for this disparity are understudied, we investigated the association of maternal and neonate factors with cord blood telomere length, as a cumulative marker of cell proliferation and oxidative damage, by race. Further, we evaluated whether cord blood telomere length differs by race. Methods. We measured venous umbilical cord blood leukocyte relative telomere length by qPCR in 38 black and 38 white full-term male neonates. Using linear regression, we estimated geometric mean relative telomere length and tested for differences by race. Results. Black mothers were younger and had higher parity and black neonates had lower birth and placental weights. These factors were not associated with relative telomere length, even after adjusting for or stratifying by race. Relative telomere length in black (2.72) and white (2.73) neonates did not differ, even after adjusting for maternal or neonate factors (all p > 0.9). Conclusions. Maternal and neonate factors were not associated with cord blood telomere length, and telomere length did not differ by race. These findings suggest that telomere length at birth does not explain the prostate cancer racial disparity.
Collapse
|
45
|
See VHL, Mas E, Burrows S, O'Callaghan NJ, Fenech M, Prescott SL, Beilin LJ, Huang RC, Mori TA. Prenatal omega-3 fatty acid supplementation does not affect offspring telomere length and F2-isoprostanes at 12 years: A double blind, randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 2016; 112:50-5. [PMID: 27637341 DOI: 10.1016/j.plefa.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Oxidative stress and nutritional deficiency may influence the excessive shortening of the telomeric ends of chromosomes. It is known that stress exposure in intrauterine life can produce variations in telomere length (TL), thereby potentially setting up a long-term trajectory for disease susceptibility. OBJECTIVE To assess the effect of omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy on telomere length and oxidative stress in offspring at birth and 12 years of age (12y). DESIGN In a double-blind, placebo-controlled, parallel-group study, 98 pregnant atopic women were randomised to 4g/day of n-3 LCPUFA or control (olive oil [OO]), from 20 weeks gestation until delivery. Telomere length as a marker of cell senescence and plasma and urinary F2-isoprostanes as a marker of oxidative stress were measured in the offspring at birth and 12y. RESULTS Maternal n-3 LCPUFA supplementation did not influence offspring telomere length at birth or at 12y with no changes over time. Telomere length was not associated with F2-isoprostanes or erythrocyte total n-3 fatty acids. Supplementation significantly reduced cord plasma F2-isoprostanes (P<0.001), with a difference in the change over time between groups (P=0.05). However, the differences were no longer apparent at 12y. Between-group differences for urinary F2-isoprostanes at birth and at 12y were non-significant with no changes over time. CONCLUSIONS This study does not support the hypothesis that n-3 LCPUFA during pregnancy provides sustained effects on postnatal oxidative stress and telomere length as observed in the offspring.
Collapse
Affiliation(s)
- V H L See
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - E Mas
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - S Burrows
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - N J O'Callaghan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Food, Nutrition and Bioproducts Flagship, Adelaide, South Australia, Australia
| | - M Fenech
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Food, Nutrition and Bioproducts Flagship, Adelaide, South Australia, Australia
| | - S L Prescott
- Telethon Kid's Institute, University of Western Australia, Perth, Australia; School of Paediatrics and Child Health, Princess Margaret Hospital, University of Western Australia, Perth, Australia
| | - L J Beilin
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - R C Huang
- Telethon Kid's Institute, University of Western Australia, Perth, Australia
| | - T A Mori
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Australia.
| |
Collapse
|
46
|
Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr 2016; 71:151-158. [PMID: 27530475 DOI: 10.1038/ejcn.2016.149] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/08/2022]
Abstract
Telomere length (TL) is recognized as a biomarker of aging and shorter telomeres are linked with shorter lifespan. Inter-individual variability in telomere length is highly heritable. However, there has been a resurgence of interest in the controversial relationship between diet and TL. Evaluating the impact of diet at the food group and dietary pattern level will provide greater insight into the effect of diet on TL dynamics, which are of significant importance in health and longevity. This article reports the first systematic review of the relation between food groups, dietary patterns and TL in human populations based on PRISMA guidelines. DESIGN PubMed, Science Direct, The Cochrane Library and Google Scholar databases were electronically searched for all relevant studies, up to November 2015. Among the 17 included studies, 3 and 10 of them were regarding the effect of dietary patterns and various food groups on TL, respectively. Also, in 4 studies, both dietary patterns and different food groups were assessed in relation to TL. Mediterranean dietary pattern was related to longer TL in 3 studies. Five studies indicated beneficial effect of fruits or vegetables on TL. In 7 studies, a reverse association between TL and intake of cereals, processed meat, and fats and oils was reported. Our systematic review supports the health benefits of adherence to Mediterranean diet on TL. Except for the fruits and vegetables, which showed positive association with TL, results were inconsistent for other dietary factors. Also, certain food categories including processed meat, cereals and sugar-sweetened beverages may be associated with shorter TLs. However, additional epidemiological evidence and clinical trials should be considered in future research in order to develop firm conclusions in this regard.
Collapse
|
47
|
Townsend MK, Aschard H, De Vivo I, Michels KB, Kraft P. Genomics, Telomere Length, Epigenetics, and Metabolomics in the Nurses' Health Studies. Am J Public Health 2016; 106:1663-8. [PMID: 27459442 DOI: 10.2105/ajph.2016.303344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To review the contribution of the Nurses' Health Study (NHS) and NHS II to genomics, epigenetics, and metabolomics research. METHODS We performed a narrative review of the publications of the NHS and NHS II between 1990 and 2016 based on biospecimens, including blood and tumor tissue, collected from participants. RESULTS The NHS has contributed to the discovery of genetic loci influencing more than 45 complex human phenotypes, including cancers, diabetes, cardiovascular disease, reproductive characteristics, and anthropometric traits. The combination of genomewide genotype data with extensive exposure and lifestyle data has enabled the evaluation of gene-environment interactions. Furthermore, data suggest that longer telomere length increases risk of cancers not related to smoking, and that modifiable factors (e.g., diet) may have an impact on telomere length. "Omics" research in the NHS continues to expand, with epigenetics and metabolomics becoming greater areas of focus. CONCLUSIONS The combination of prospective biomarker data and broad exposure information has enabled the NHS to participate in a variety of "omics" research, contributing to understanding of the epidemiology and biology of multiple complex diseases.
Collapse
Affiliation(s)
- Mary K Townsend
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Hugues Aschard
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Immaculata De Vivo
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Karin B Michels
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| | - Peter Kraft
- Mary K. Townsend is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. Hugues Aschard and Peter Kraft are with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health, Boston. Immaculata De Vivo is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. Karin B. Michels is with the Channing Division of Network Medicine in the Department of Medicine and the Obstetrics and Gynecology Epidemiology Center in the Department of Obstetrics, Gynecology, and Reproductive Biology at Brigham and Women's Hospital and Harvard Medical School, and the Department of Epidemiology at the Harvard T. H. Chan School of Public Health
| |
Collapse
|
48
|
Wojcicki JM, Shiboski S, Heyman MB, Elwan D, Lin J, Blackburn E, Epel E. Telomere length change plateaus at 4 years of age in Latino children: associations with baseline length and maternal change. Mol Genet Genomics 2016; 291:1379-89. [PMID: 26965507 DOI: 10.1007/s00438-016-1191-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/30/2023]
Abstract
Telomeres are the protective complexes at the end of chromosomes, required for genomic stability. Little is known about predictors of attrition in young children or the relationship between parental and child patterns of telomere change. Telomere length was assessed twice over one year, at 4 and at 5 years of age, in Latino preschool children (n = 77) and their mothers (n = 70) in whole blood leukocytes. Maternal and child rates of attrition during the same time period were compared in 70 mother-child pairs. More children showed lengthened telomeres over one year compared to their mothers and very few children showed attrition (2.6 %). Approximately 31 % of children and 16 % of mothers displayed lengthening over one year while 66 % of children showed maintenance in contrast with 74 % of mothers. The strongest predictor for child telomere length change was child's baseline telomere length (r = -0.61, p < 0.01). Maternal rate of change was associated with child rate of change (r = 0.33, p < 0.01). After controlling for child baseline telomere length, the relationship between child and maternal rate of change trended towards significance (Coeff = 0.20, 95 % CI -0.03 to 0.43; p = 0.08). We found primarily maintenance and lengthening from 4 to 5 years of age in children, with minimal telomere attrition, indicating that most of the telomere loss happens in the first 4 years, plateauing by age 4. Lastly, we found close to 10 % of the variance in rate of change in children shared by mothers. While some of this shared variance is genetic, there are likely environmental factors that need to be further identified that impact rate of telomere length change.
Collapse
Affiliation(s)
- Janet M Wojcicki
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Stephen Shiboski
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Deena Elwan
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Jue Lin
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Blackburn
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Fernández del Río L, Gutiérrez-Casado E, Varela-López A, Villalba JM. Olive Oil and the Hallmarks of Aging. Molecules 2016; 21:163. [PMID: 26840281 PMCID: PMC6273542 DOI: 10.3390/molecules21020163] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
Abstract
Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the "hallmarks of aging", which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source.
Collapse
Affiliation(s)
- Lucía Fernández del Río
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| | - Elena Gutiérrez-Casado
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, 18100 Granada, Spain.
| | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain.
| |
Collapse
|
50
|
Prescott J, Karlson EW, Orr EH, Zee RYL, De Vivo I, Costenbader KH. A Prospective Study Investigating Prediagnostic Leukocyte Telomere Length and Risk of Developing Rheumatoid Arthritis in Women. J Rheumatol 2016; 43:282-8. [PMID: 26773113 DOI: 10.3899/jrheum.150184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To prospectively examine the association between leukocyte telomere length (LTL) and subsequent rheumatoid arthritis (RA) development in women. METHODS Using a case-control design nested within the prospective Nurses' Health Study (NHS), NHS II (NHSII), and Women's Health Study (WHS), each validated case of RA with a prediagnostic blood sample was matched to 3 controls by cohort, age, menopausal status, postmenopausal hormone therapy, and blood collection covariates. We measured telomere length in genomic DNA extracted from stored buffy coat samples using quantitative PCR. We used unconditional logistic regression to determine OR and 95% CI, and random-effects metaanalysis to combine study results. RESULTS In total, we analyzed 296 incident RA cases and 827 matched controls. Mean age of diagnosis among women who developed RA was 60.5 in NHS/NHSII and 61.3 in WHS. Metaanalysis demonstrated that longer prediagnostic LTL was associated with increased RA risk when women in the longest versus shortest LTL tertile were compared (OR 1.51, 95% CI 1.03-2.23, Pheterogeneity = 0.27). However, statistically significant between-study heterogeneity was observed for the intermediate tertile category (Pheterogeneity = 0.008). We did not observe heterogeneity by menopausal status, inflammatory cytokine levels, age at diagnosis, age at blood collection, body mass index, seropositivity, or HLA-DRβ1 shared epitope status. CONCLUSION Our results do not support an involvement for short LTL preceding RA development.
Collapse
Affiliation(s)
- Jennifer Prescott
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine.
| | - Elizabeth W Karlson
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine
| | - Esther H Orr
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine
| | - Robert Y L Zee
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine
| | - Immaculata De Vivo
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine
| | - Karen H Costenbader
- From the Channing Division of Network Medicine, and the Division of Rheumatology, Allergy, and Immunology, and Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.J. Prescott, PhD, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.H. Orr, BS, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; I. De Vivo, PhD, MPH, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health; E.W. Karlson, MD, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; K.H. Costenbader, MD, MPH, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; R.Y. Zee, BDS, PhD, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Pediatric Dentistry, Tufts University School of Dental Medicine
| |
Collapse
|