1
|
Phillips RD. Neural and immune interactions linking early life stress and anhedonia. Brain Behav Immun Health 2024; 42:100881. [PMID: 39415844 PMCID: PMC11480252 DOI: 10.1016/j.bbih.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
Early experiences of stress and adversity are associated with blunted reward sensitivity and altered reward learning. Meanwhile, anhedonia is characterized by impairments in reward processing, including motivation, effort, and pleasure. Early life stress (ELS) and anhedonia share psychological, behavioral, and neurobiological correlates, and the system-level interactions that give rise to anhedonia have yet to be fully appreciated. The proposed framework uses a multilevel, multisystem approach to aid in understanding neural-immune interactions that link ELS and anhedonia. The interactions linking anhedonia and ELS presented here include reduced reward sensitivity, alterations in hypothalamic-pituitary-adrenal (HPA) axis response, elevated inflammatory cytokines or physiological markers of stress, and blunted reward circuitry functioning along the mesocorticolimbic pathway. The clinical implications and areas for future research are also discussed. Ultimately, this research may inform the development of more specific and individualized treatments for anhedonia.
Collapse
Affiliation(s)
- Rachel Deanna Phillips
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
2
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
4
|
Monfared MS, Mascret Q, Marroquin-Rivera A, Blanc-Árabe L, Lebouleux Q, Lévesque J, Gosselin B, Labonté B. High-throughput low-cost digital lickometer system for the assessment of licking behaviours in mice. J Neurosci Methods 2024; 410:110221. [PMID: 39053773 DOI: 10.1016/j.jneumeth.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Proper hydration is essential for maintaining health and supports various biological processes, including temperature regulation, immune function, nutrient delivery, and organ function. Visual assessment has traditionally been used to quantify liquid intake, although technological advances in optical and electrical sensors now offer higher accuracy and larger potential for automatic operation with millisecond precision and individual lick resolution. NEW METHOD We describe an inexpensive electronic sensor board to monitor mouse licking behavior. The system is equipped with integrated filtering and data preprocessing steps. It measures lick count, frequency, width and interlick intervals with high resolution, allowing the real-time monitoring of complex licking patterns in several mice in their respective home cages over prolonged periods. RESULTS Our lickometer provides two-millisecond resolution, efficiently detecting variations in licking behaviors in mice. The system is adapted to monitor licking behaviors in up to 12 mice simultaneously. Lick count, duration and interlick intervals, along with preference for sweet water were monitored over two days, revealing variations in licking patterns across light and dark phases extended over prolonged periods. COMPARISON WITH EXISTING METHODS Our lickometer allows for monitoring licking behaviors and dynamics. It can be adapted to conventional mouse cages using electrical circuits. It is open-source, cost-effective, efficient, and can be utilized in real-time for large cohorts, representing an ideal tool for studying ingestive dynamics in different environmental and pathological contexts. CONCLUSION We have developed a novel, cost-effective, and efficient device to monitor ingestive behaviors in mice. The throughput of our device allows for monitoring several mice simultaneously while it can be applied directly to a conventional mouse cage, simplifying its implementation into pre-existing experimental setups.
Collapse
Affiliation(s)
- M S Monfared
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Mascret
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - A Marroquin-Rivera
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - L Blanc-Árabe
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Lebouleux
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - J Lévesque
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Gosselin
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Labonté
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Mohamed ZI, Sivalingam M, Radhakrishnan AK, Jaafar F, Zainal Abidin SA. Chronic unpredictable stress (CUS) reduced phoenixin expression, induced abnormal sperm and testis morphology in male rats. Neuropeptides 2024; 107:102447. [PMID: 38870753 DOI: 10.1016/j.npep.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Scheggi S. Still controversial issues on assessing anhedonia in experimental modeling of depression. Transl Psychiatry 2024; 14:345. [PMID: 39191774 DOI: 10.1038/s41398-024-03057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
7
|
Okitsu M, Fujita M, Moriya Y, Kotajima-Murakami H, Ide S, Kojima R, Sekiyama K, Takahashi K, Ikeda K. Mouse Model of Parkinson's Disease with Bilateral Dorsal Striatum Lesion with 6-Hydroxydopamine Exhibits Cognitive Apathy-like Behavior. Int J Mol Sci 2024; 25:7993. [PMID: 39063235 PMCID: PMC11276653 DOI: 10.3390/ijms25147993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Among the symptoms of Parkinson's disease (PD), apathy comprises a set of behavioral, affective, and cognitive features that can be classified into several subtypes. However, the pathophysiology and brain regions that are involved in these different apathy subtypes are still poorly characterized. We examined which subtype of apathy is elicited in a mouse model of PD with 6-hydroxydopamine (6-OHDA) lesions and the behavioral symptoms that are exhibited. Male C57/BL6J mice were allocated to sham (n = 8) and 6-OHDA (n = 13) groups and locally injected with saline or 4 µg 6-OHDA bilaterally in the dorsal striatum. We then conducted motor performance tests and apathy-related behavioral experiments. We then pathologically evaluated tyrosine hydroxylase (TH) immunostaining. The 6-OHDA group exhibited significant impairments in motor function. In the behavioral tests of apathy, significant differences were observed between the sham and 6-OHDA groups in the hole-board test and novelty-suppressed feeding test. The 6-OHDA group exhibited impairments in inanimate novel object preference, whereas social preference was maintained in the three-chamber test. The number of TH+ pixels in the caudate putamen and substantia nigra compacta was significantly reduced in the 6-OHDA group. The present mouse model of PD predominantly showed dorsal striatum dopaminergic neuronal loss and a decrease in novelty seeking as a symptom that is related to the cognitive apathy component.
Collapse
Affiliation(s)
- Masato Okitsu
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan;
| | - Masayo Fujita
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
| | - Yuki Moriya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
| | - Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
| | - Rika Kojima
- Laboratory of Molecular Pathology and Histology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (R.K.); (K.S.)
| | - Kazunari Sekiyama
- Laboratory of Molecular Pathology and Histology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (R.K.); (K.S.)
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan;
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.O.); (M.F.); (Y.M.); (H.K.-M.); (S.I.)
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| |
Collapse
|
8
|
Wang J, Yu H, Li X, Li F, Chen H, Zhang X, Wang Y, Xu R, Gao F, Wang J, Liu P, Shi Y, Qin D, Li Y, Liu S, Ding S, Gao XY, Wang ZH. A TrkB cleavage fragment in hippocampus promotes Depressive-Like behavior in mice. Brain Behav Immun 2024; 119:56-83. [PMID: 38555992 DOI: 10.1016/j.bbi.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1β-C/EBPβ-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruifeng Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China; Laboratory of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Forys BJ, Winstanley CA, Kingstone A, Todd RM. Short-Term Memory Capacity Predicts Willingness to Expend Cognitive Effort for Reward. eNeuro 2024; 11:ENEURO.0068-24.2024. [PMID: 38866500 PMCID: PMC11218033 DOI: 10.1523/eneuro.0068-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We must often decide whether the effort required for a task is worth the reward. Past rodent work suggests that willingness to deploy cognitive effort can be driven by individual differences in perceived reward value, depression, or chronic stress. However, many factors driving cognitive effort deployment-such as short-term memory ability-cannot easily be captured in rodents. Furthermore, we do not fully understand how individual differences in short-term memory ability, depression, chronic stress, and reward anticipation impact cognitive effort deployment for reward. Here, we examined whether these factors predict cognitive effort deployment for higher reward in an online visual short-term memory task. Undergraduate participants were grouped into high and low effort groups (n HighEffort = 348, n LowEffort = 81; n Female = 332, n Male = 92, M Age = 20.37, Range Age = 16-42) based on decisions in this task. After completing a monetary incentive task to measure reward anticipation, participants completed short-term memory task trials where they could choose to encode either fewer (low effort/reward) or more (high effort/reward) squares before reporting whether or not the color of a target square matched the square previously in that location. We found that only greater short-term memory ability predicted whether participants chose a much higher proportion of high versus low effort trials. Drift diffusion modeling showed that high effort group participants were more biased than low effort group participants toward selecting high effort trials. Our findings highlight the role of individual differences in cognitive effort ability in explaining cognitive effort deployment choices.
Collapse
Affiliation(s)
- Brandon J Forys
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alan Kingstone
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rebecca M Todd
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
10
|
Talebi V, Alamdari KA, Patel DI. Simple and Complex Wheel Running Effect on Depression, Memory, Neuroinflammation, and Neurogenesis in Alzheimer's Rat Model. Med Sci Sports Exerc 2024; 56:1159-1167. [PMID: 38227543 DOI: 10.1249/mss.0000000000003394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
INTRODUCTION The aim of this study was to investigate 12 wk of simple and complex voluntary wheel running on Alzheimer's disease (AD), associated biomarkers, and behaviors. METHODS Sixty male Wistar rats were randomly divided into six groups: healthy control (Con-Sed), AD only (AD-Sed), simple wheel control (SWC), complex wheel control (CWC), simple wheel AD (SWAD), and complex wheel AD (CWAD). Novelty-suppressed feeding test and the Morris water maze test were used to evaluate depression and memory, respectively. Ki67 was measured in the hippocampus, whereas interleukin (IL)-1β and neural/glial antigen 2 (NG2) were measured in both the hippocampus and the prefrontal cortex. One-way ANOVA with Tukey's post hoc test was performed. RESULTS AD-Sed group had significantly lower spacial memory ( P < 0.001) compared with Con-Sed. Simple and complex wheel running attenuated these deficits in the SWAD and CWAD groups, respectively ( P < 0.001). Only the CWAD group had significantly improved novelty-suppressed feeding test time compared with AD-Sed ( P < 0.001), equivalent to the healthy wheel running groups. AD-Sed has significantly higher hippocampal concentrations of Ki67 ( P = 0.01) compared with the Con-Sed. Both SWAD and CWAD had significantly reduced Ki67 with similar concentrations compared with the SWC and CWC groups ( P > 0.05). AD-Sed animals also presented with significantly higher hippocampal and prefrontal cortex concentrations of IL-1β compared with Con-Sed ( P < 0.001). SWAD and CWAD had no effect in changing these concentrations. Complex wheel running significantly increased NG2 in the healthy control and AD models, whereas simple wheel running significantly increased NG2 in the AD model. CONCLUSIONS The results of our study suggest that complex wheel running might be more advantageous in promoting memory and neuroplasticity while reducing depression that is associated with AD.
Collapse
Affiliation(s)
- Vahid Talebi
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, IRAN
| | - Karim Azali Alamdari
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, IRAN
| | - Darpan I Patel
- School of Nursing, University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
11
|
Jackson MG, Lightman SL, Robinson ESJ. Characterisation of behaviours relevant to apathy syndrome in the aged male rat. Behav Brain Res 2024; 466:114977. [PMID: 38570074 DOI: 10.1016/j.bbr.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Apathy is a complex psychiatric syndrome characterised by motivational deficit, emotional blunting and cognitive changes. It occurs alongside a broad range of neurological disorders, but also occurs in otherwise healthy ageing. Despite its clinical prevalence, apathy does not yet have a designated treatment strategy. Generation of a translational animal model of apathy syndrome would facilitate the development of novel treatments. Given the multidimensional nature of apathy, a model cannot be achieved with a single behavioural test. Using a battery of behavioural tests we investigated whether aged rats exhibit behavioural deficits across different domains relevant to apathy. Using the effort for reward and progressive ratio tasks we found that aged male rats (21-27 months) show intact reward motivation. Using the novelty supressed feeding test and position-based object exploration we found aged rats showed increased anxiety-like behaviour inconsistent with emotional blunting. The sucrose preference test and reward learning assay showed intact reward sensitivity and reward-related cognition in aged rats. However, using a bowl-digging version of the probabilistic reversal learning task, we found a deficit in cognitive flexibility in aged rats that did not translate across to a touchscreen version of the task. While these data reveal important changes in cognitive flexibility and anxiety associated with ageing, aged rats do not show deficits across other behavioural domains relevant to apathy. This suggests that aged rats are not a suitable model for age-related apathy syndrome. These findings contrast with previous work in mice, revealing important species differences in behaviours relevant to apathy syndrome in ageing.
Collapse
Affiliation(s)
- Megan G Jackson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Gray NE, Hack W, Brandes MS, Zweig JA, Yang L, Marney L, Choi J, Magana AA, Cerruti N, McFerrin J, Koike S, Nguyen T, Raber J, Quinn JF, Maier CS, Soumyanath A. Amelioration of age-related cognitive decline and anxiety in mice by Centella asiatica extract varies by sex, dose and mode of administration. FRONTIERS IN AGING 2024; 5:1357922. [PMID: 38770167 PMCID: PMC11102990 DOI: 10.3389/fragi.2024.1357922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Background: A water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water has been shown to improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice are compared. Methods: Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1,000 mg/kg/d CAW for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water CAW for a total of 5 weeks to deliver the same exposure of CAW as the highest dietary dose (1,000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n = 12 of each sex per treatment group in each test). Results: Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1,000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1,000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. Conclusions: These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.
Collapse
Affiliation(s)
- Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Wyatt Hack
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Mikah S. Brandes
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan A. Zweig
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Luke Marney
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Natasha Cerruti
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Oregon’s Wild Harvest, Redmond, OR, United States
| | - Janis McFerrin
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Oregon’s Wild Harvest, Redmond, OR, United States
| | - Seiji Koike
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, United States
| | - Thuan Nguyen
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, United States
| | - Jacob Raber
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joseph F. Quinn
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Healthcare System, Portland, OR, United States
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
13
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
14
|
Lago MW, Marques LS, Jung JTK, Felipeto V, Nogueira CW. A high salt intake in early life affects stress-coping response in males but not in female rats. Physiol Behav 2024; 277:114498. [PMID: 38367943 DOI: 10.1016/j.physbeh.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Eating diets high in salt has been associated with alterations in the immune system and the potential development of neuropsychiatric disorders. This area of research shows promise, but there is currently a limited amount of research on this topic. The present study investigated whether a high salt diet (HSD) affects anhedonia and stress-coping response behaviors in young male and female Wistar rats. In this study, male and female Wistar rats were fed an HSD (8 % NaCl w/w) from weaning to post-natal day (PND) 64. From PND 60 to 64, the rats underwent a spontaneous locomotor activity test (SLA), sucrose splash test (SST), sucrose preference test (SPT), and forced swim test (FST), followed by euthanasia at PND 65. Male and female rats consuming the HSD exhibited an increase in water intake compared to the corresponding control diet (CD) groups. Male rats had lower body weight despite having similar food intakes compared to the CD group. Male rats displayed an active stress-coping behavior in the FST, characterized by increased mobility. Additionally, HSD-fed males exhibited a greater preference for sucrose solution in the SPT. However, no effect of diet and sex were detected in the SST and the SLA, and hypothalamic levels of leptin and ghrelin receptors. On the other hand, female rats were less susceptible to the experimental conditions applied in this protocol than males.
Collapse
Affiliation(s)
- M W Lago
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - L S Marques
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - Juliano T K Jung
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - V Felipeto
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - C W Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Gray NE, Hack W, Brandes MS, Zweig JA, Yang L, Marney L, Choi J, Magana AA, Cerruti N, McFerrin J, Koike S, Nguyen T, Raber J, Quinn JF, Maier CS, Soumyanath A. Amelioration of age-related cognitive decline and anxiety in mice by Centella asiatica extract varies by sex, dose and mode of administration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576700. [PMID: 38328129 PMCID: PMC10849617 DOI: 10.1101/2024.01.23.576700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We have previously reported that a water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water can improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here we compared the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice. Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1000 mg/kg/d for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water for a total of five weeks to deliver the same exposure of CAW as the highest dietary dose (1000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n=12 of each sex per treatment group in each test). Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.
Collapse
|
16
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Fusi S, Kheirbek MA. Identifying and modulating neural signatures of stress susceptibility and resilience enables control of anhedonia. RESEARCH SQUARE 2024:rs.3.rs-3581329. [PMID: 38343839 PMCID: PMC10854313 DOI: 10.21203/rs.3.rs-3581329/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Anhedonia is a core aspect of major depressive disorder. Traditionally viewed as a blunted emotional state in which individuals are unable to experience joy, anhedonia also diminishes the drive to seek rewards and the ability to value and learn about them 1-4.The neural underpinnings of anhedonia and how this emotional state drives related behavioral changes remain unclear. Here, we investigated these questions by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, where they cease to seek high-value rewards, while others remain resilient. By performing high density electrophysiological recordings and comparing neural activity patterns of these groups in the basolateral amygdala (BLA) and ventral CA1 (vCA1) of awake behaving animals, we identified neural signatures of susceptibility and resilience to anhedonia. When animals actively sought rewards, BLA activity in resilient mice showed stronger discrimination between upcoming reward choices. In contrast, susceptible mice displayed a rumination-like signature, where BLA neurons encoded the intention to switch or stay on a previously chosen reward. When animals were at rest, the spontaneous BLA activity of susceptible mice was higher dimensional than in controls, reflecting a greater number of distinct neural population states. Notably, this spontaneous activity allowed us to decode group identity and to infer if a mouse had a history of stress better than behavioral outcomes alone. Finally, targeted manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed their anhedonic behavior. This work reveals population-level neural signatures that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Nina Vishwakarma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
17
|
Berrio JP, Hestehave S, Kalliokoski O. Reliability of sucrose preference testing following short or no food and water deprivation-a Systematic Review and Meta-Analysis of rat models of chronic unpredictable stress. Transl Psychiatry 2024; 14:39. [PMID: 38242881 PMCID: PMC10799054 DOI: 10.1038/s41398-024-02742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The sucrose preference test is a popular test for anhedonia in the chronic unpredictable stress model of depression. Yet, the test does not always produce consistent results. Long food and water deprivation before the test, while often implemented, confounds the results by introducing unwanted drives in the form of hunger and thirst. We assessed the reliability of the test when only short or no fasting was used. We searched PubMed, Embase, and Web of Science for studies in rats exposed to chronic unpredictable stress that used no more than 6 h of food and/or water deprivation before the test. Sweet consumptions, for stressed and control/antidepressant-treated animals, in 132 studies were pooled using random effects models. We found a decrease in sweet consumption in stressed rats, compared to controls, that was halved when a non-caloric sweetener was used and significantly reduced when sucrose consumption was corrected for body weight. What is more, the length of food and water deprivation was found to confound the effect. The effect was reversed when the stressed rats were treated with antidepressants. Methodological strategies meant to control for recognized sources of bias when conducting the test were often missing, and so was a clear and complete report of essential study information. Our results indicate that not only is food and water deprivation before the test unnecessary, but not recommended. Even in absence of long fasting, we found evidence of an additional effect on sweet consumption that is unrelated to anhedonia. Without properly controlling for non-hedonic drivers of consumption, the test is unreliable as a proxy measure of anhedonia. Strengthening the methodological rigor and addressing the confounding effect of metabolic factors in the sucrose preference test prevents misleading conclusions that harm the translatability of the associated research and perpetuates the use of animals for little gain.
Collapse
Affiliation(s)
- Jenny P Berrio
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| | - Sara Hestehave
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Otto Kalliokoski
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
18
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|
19
|
Robinson L, Dreesen E, Mondesir M, Harrington C, Wischik C, Riedel G. Apathy-like behaviour in tau mouse models of Alzheimer's disease and frontotemporal dementia. Behav Brain Res 2024; 456:114707. [PMID: 37820751 DOI: 10.1016/j.bbr.2023.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Apathy is the most common behavioural and psychological symptom in Alzheimer's disease (AD) and other neurodegenerative diseases including frontotemporal dementia (FTD) and Parkinson's disease (PD). In patients, apathy can include symptoms of loss of motivation, initiative, and interest, listlessness, and indifference, flattening of emotions, absence of drive and passion. Researchers have later refined this to a reduction in goal direct behaviours. In animals, specific symptoms of apathy-like behaviour have been modelled including goal directed or nest-building behaviour which are seen as indicative of proxies for motivation and daily activities. In the present study a nest-building protocol was established using four different inbred mouse strains (CD1, BALB/c, C57Bl/6J, C3H) before assessing AD and FTD tau transgenic mice of Line 1 (L1) and Line 66 (L66) in this paradigm. Female mice aged 5 - 6 months were assessed in the home cage over a period of 7 days with nest-building behaviour scored by three independent experimenters at intervals of 1-, 2- and 7-days post nestlet introduction. Inbred mouse strains displayed different levels of nesting behaviour. BALB/c mice were more proficient than CD1 and C3H mice, while all strains displayed similar nest-building behaviour by day 7. In the tau mouse models, L66 presented with impaired nesting compared to wild-type on days 1 and 2 (not day 7), whereas L1 performed like wild-type on all days. Anhedonia measured in a sucrose preference test was only observed in L66. Anhedonia and low nesting scores in L66 mice are indicative of apathy-like phenotypes. Differences evident between the L1 and L66 tau transgenic mouse models are likely due to the different human tau species expressed in these mice.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom.
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom
| | - Miguel Mondesir
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom
| | - Charles Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom; TauRx Therapeutics Ltd, 395 King Street, Aberdeen AB24 5RP, United Kingdom
| | - Claude Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom; TauRx Therapeutics Ltd, 395 King Street, Aberdeen AB24 5RP, United Kingdom
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, United Kingdom
| |
Collapse
|
20
|
Ghaffari-Nasab A, Javani G, Yousefi H, Sharafkhani R, Taghizadeh S. Prolonged stress-induced depression-like behaviors in aged rats are mediated by endoplasmic reticulum stress and apoptosis in the hippocampus. Neurosci Res 2024; 198:39-46. [PMID: 37392834 DOI: 10.1016/j.neures.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Structural and functional recovery from stress-induced depression is impaired in the context of aging brain. Since investigating the molecular substrates that facilitate behavioral recovery may have important implications for understanding brain plasticity and resilience of individuals, we studied depressive-like behaviors in young and aged rats 6 weeks after chronic stress exposure as a recovery period and examined the levels of TNF-α and IL-6 inflammatory cytokines, NADH oxidase activity, NADPH oxidase, endoplasmic reticulum (ER) stress markers, and apoptosis in the hippocampus. Young (3 months old) and aged (22 months old) male Wistar rats were divided into four groups; young control (Young), depression model of young rats that received chronic stress procedure followed by a 6-week recovery period (Young+S), aged control (Aged), and depression model of aged rats that received chronic stress procedure followed by a 6-week recovery period (Aged+S). After the recovery period, aged but not young rats showed depression-like behaviors, evaluated by the sucrose preference test (SPT) and forced swimming test (FST), coincided with the altered levels of TNF-α, IL-6, NADH oxidase activity, NADPH oxidase, GRP78, CHOP, and cleaved caspase-12 in the hippocampus of these animals. These data suggested that oxidative and ER stress-induced apoptosis in the aging hippocampus may affect the recovery-related outcomes after the stress paradigm.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Gonja Javani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran.
| | - Rahim Sharafkhani
- School of Health, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran
| | - Sajjad Taghizadeh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| |
Collapse
|
21
|
Oak S, Nguyen C, Rodney-Hernández P, Rincón-Cortés M. Behavioral responses to natural rewards in developing male and female rats. Dev Psychobiol 2024; 66:e22448. [PMID: 38131245 DOI: 10.1002/dev.22448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Reward deficits are a hallmark feature of multiple psychiatric disorders and often recapitulated in rodent models useful for the study of psychiatric disorders, including those employing early life stress. Moreover, rodent studies have shown sex differences during adulthood in response to natural and drug rewards under normative conditions and in stress-based rodent models. Yet, little is known about the development of reward-related responses under normative conditions, including how these may differ in rats of both sexes during early development. Comparing reward-related behavioral responses between developing male and female rats may be useful for understanding how these processes may be affected in rodent models relevant to psychiatric disorders. To this end, we tested behavioral responses to natural rewards in male and female rats using sucrose consumption, sweet palatable food intake and social play tests at two timepoints (peripuberty, adolescence). Our results suggest comparable responses to consummatory and social rewards in male and female rats during peripuberty and adolescence as no sex differences were found for sucrose preference, chocolate candy intake or a subset of play behaviors (dorsal contacts, pins). These findings suggest that sex differences in response to these natural rewards emerge and may be more robust during adulthood.
Collapse
Affiliation(s)
- Sasha Oak
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| | - Christine Nguyen
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Millie Rincón-Cortés
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
22
|
Wang Y, Wang J, Chen H, Li X, Xu R, Gao F, Yu H, Li F, Qin D, Wang J, Shi Y, Li Y, Liu S, Zhang X, Ding S, Hu Y, Huang L, Gao XY, Lu Z, Luo J, Wang ZH. A tau fragment links depressive-like behaviors and cognitive declines in Alzheimer's disease mouse models through attenuating mitochondrial function. Front Aging Neurosci 2023; 15:1293164. [PMID: 38131009 PMCID: PMC10734641 DOI: 10.3389/fnagi.2023.1293164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by extracellular senile plaques including amyloid-β peptides and intracellular neurofibrillary tangles consisting of abnormal Tau. Depression is one of the most common neuropsychiatric symptoms in AD, and clinical evidence demonstrates that depressive symptoms accelerate the cognitive deficit of AD patients. However, the underlying molecular mechanisms of depressive symptoms present in the process of AD remain unclear. Methods Depressive-like behaviors and cognitive decline in hTau mice were induced by chronic restraint stress (CRS). Computational prediction and molecular experiments supported that an asparagine endopeptidase (AEP)-derived Tau fragment, Tau N368 interacts with peroxisome proliferator-activated receptor delta (PPAR-δ). Further behavioral studies investigated the role of Tau N368-PPAR-δ interaction in depressive-like behaviors and cognitive declines of AD models exposed to CRS. Results We found that mitochondrial dysfunction was positively associated with depressive-like behaviors and cognitive deficits in hTau mice. Chronic stress increased Tau N368 and promoted the interaction of Tau N368 with PPAR-δ, repressing PPAR-δ-mediated transactivation in the hippocampus of mice. Then we predicted and identified the binding sites of PPAR-δ. Finally, inhibition of AEP, clearance of Tau N368 and pharmacological activation of PPAR-δ effectively alleviated CRS-induced depressive-like behaviors and cognitive decline in mice. Conclusion These results demonstrate that Tau N368 in the hippocampus impairs mitochondrial function by suppressing PPAR-δ, facilitating the occurrence of depressive-like behaviors and cognitive decline. Therefore, our findings may provide new mechanistic insight in the pathophysiology of depression-like phenotype in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruifeng Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqian Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Laboratory of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Luo
- Center for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
24
|
Primo MJ, Fonseca-Rodrigues D, Almeida A, Teixeira PM, Pinto-Ribeiro F. Sucrose preference test: A systematic review of protocols for the assessment of anhedonia in rodents. Eur Neuropsychopharmacol 2023; 77:80-92. [PMID: 37741164 DOI: 10.1016/j.euroneuro.2023.08.496] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/25/2023]
Abstract
Anhedonia is described as a decreased ability to experience rewarding and enjoyable activities, a core symptom of major depressive disorder. The sucrose preference test (SPT) is a widely used and reliable behavioural test to assess anhedonia in rodents, based on a two-bottle choice paradigm. To date, different protocols are in use, inducing variability between researchers and hampering comparisons between studies. We performed a systematic review of the SPT protocols used in 2021 to identify the parameters in which they differ and their potential impact. We searched a total of four databases (PubMed, Scopus, Web of Science and Science Direct), from 1st January 2021 to 31st December 2021, and screened a total of 1066 articles. After screening by title and abstract, a total of 415 articles were included in this review. We extracted and analysed the different procedures used, the type of sweet solution and the habituation, deprivation, and testing protocols. The overall quality of the studies was considered very good, however, SPT protocols were extremely variable between studies with a total of 65 different habituation protocols and 104 combinations of food/water deprivation and preference testing duration. As the SPT is one of the most used tests to assess anhedonia in rodents, this work raises awareness of the great variability in SPT protocols being currently used. Furthermore, we call for standardization in the protocol used, and overall improvement of data reporting of methodologies and results, to increase the consistency between studies and allow a better comparison of results between different labs.
Collapse
Affiliation(s)
- Maria João Primo
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Fonseca-Rodrigues
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M Teixeira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
25
|
Carr KD, Weiner SP, Vasquez C, Schmidt AM. Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats. Physiol Behav 2023; 271:114337. [PMID: 37625475 PMCID: PMC10592025 DOI: 10.1016/j.physbeh.2023.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Clinical and basic science investigation indicates a link between insulin resistance and anhedonia. Previous results of this laboratory point to impaired nucleus accumbens (NAc) insulin signaling as an underpinning of diet-induced anhedonia, based on use of a glucose lick microstructure assay. The present study evaluated whether advanced glycation end products (AGEs) and their receptor (RAGE), known to mediate obesogenic diet-induced inflammation and pathological metabolic conditions, are involved in this behavioral change. Six weeks maintenance of male and female rats on a high fat-high sugar liquid diet (chocolate Ensure) increased body weight gain, and markedly increased circulating insulin and leptin, but induced anhedonia (decreased first minute lick rate and lick burst size) in males only. In these subjects, anhedonia correlated with plasma concentrations of insulin. Although the diet did not alter plasma or NAc AGEs, or the expression of RAGE in the NAc, marginally significant correlations were seen between anhedonia and plasma content of several AGEs and NAc RAGE. Importantly, a small molecule RAGE antagonist, RAGE229, administered twice daily by oral gavage, prevented diet-induced anhedonia. This beneficial effect was associated with improved adipose function, reflected in the adiponectin/leptin ratio, and increased pCREB/total CREB in the NAc, and a shift in the pCREB correlation with pThr34-DARPP-32 from near-zero to strongly positive, such that both phospho-proteins correlated with the rescued hedonic response. This set of findings suggests that the receptor/signaling pathway and cell type underlying the RAGE229-mediated increase in pCREB may mediate anhedonia and its prevention. The possible role of adipose tissue as a locus of diet-induced RAGE signaling, and source of circulating factors that target NAc to modify hedonic reactivity are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
26
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Fusi S, Kheirbek MA. Neural signatures of stress susceptibility and resilience in the amygdala-hippocampal network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563652. [PMID: 37961124 PMCID: PMC10634760 DOI: 10.1101/2023.10.23.563652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The neural dynamics that underlie divergent anhedonic responses to stress remain unclear. Here, we identified neuronal dynamics in an amygdala-hippocampal circuit that distinguish stress resilience and susceptibility. In a reward-choice task, basolateral amygdala (BLA) activity in resilient mice showed enhanced discrimination of upcoming reward choices. In contrast, a rumination-like signature emerged in the BLA of susceptible mice; a linear decoder could classify the intention to switch or stay on a previously chosen reward. Spontaneous activity in the BLA of susceptible mice was higher dimensional than controls, reflecting the exploration of a larger number of distinct neural states. Manipulation of vCA1-BLA inputs rescued dysfunctional neural dynamics and anhedonia in susceptible mice, suggesting that targeting this pathway can enhance BLA circuit function and ameliorate of depression-related behaviors.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Nina Vishwakarma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
27
|
Medina-Vera D, Zambrana-Infantes EN, López-Gambero AJ, Verheul-Campos J, Santín LJ, Baixeras E, Suarez J, Pavon FJ, Rosell-Valle C, de Fonseca FR. Transcending the amyloid-beta dominance paradigm in Alzheimer's disease: An exploration of behavioural, metabolic, and gut microbiota phenotypes in 5xFAD mice. Neurobiol Dis 2023; 187:106295. [PMID: 37717663 DOI: 10.1016/j.nbd.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The amyloid cascade hypothesis is widely accepted as an explanation for the neuropathological changes in Alzheimer's disease (AD). However, the role of amyloid-beta (Aβ) as the sole cause of these changes is being questioned. Using the 5xFAD mouse model of AD, we investigated various factors contributing to neuropathology, including genetic load (heterozygous (HTZ) versus homozygous (HZ) condition), behavioural phenotype, neuropathology markers, metabolic physiology, and gut microbiota composition at early (5 months of age) and late (12 months of age) stages of disease onset, and considering both sexes. At 5 months of age, both HTZ and HZ mice exhibited hippocampal alterations associated with Aβ accumulation, leading to increased neuroinflammation and disrupted PI3K-Akt pathway. However, only HZ mice showed cognitive impairment in the Y-maze and Morris water maze tests, worsening with age. Dysregulation of both insulin and insulin secretion-regulating GIP peptide were observed at 5 months of age, disappearing later. Circulating levels of metabolic-regulating hormones, such as Ghrelin and resisting helped to differentiates HTZ mice from HZ mice. Differences between HTZ and HZ mice were also observed in gut microbiota composition, disrupted intestinal barrier proteins, and increased proinflammatory products in the intestine. These findings suggest that cognitive impairment in 5xFAD mice may not solely result from Aβ aggregation. Other factors, including altered PI3K-Akt signalling, disrupted insulin-linked metabolic pathways, and changes in gut microbiota, contribute to disease progression. Targeting Aβ deposition alone may not suffice. Understanding AD pathogenesis and its multiple contributing factors is vital for effective therapies.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio J López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Julia Verheul-Campos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavon
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| |
Collapse
|
28
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
29
|
Harkness KL, Chakrabarty T, Rizvi SJ, Mazurka R, Quilty L, Uher R, Milev RV, Frey BN, Parikh SV, Foster JA, Rotzinger S, Kennedy SH, Lam RW. The Differential Relation of Emotional, Physical, and Sexual Abuse Histories to Antidepressant Treatment Remission and Persistence of Anhedonia in Major Depression: A CAN-BIND-1 Report. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2023; 68:586-595. [PMID: 36785892 PMCID: PMC10411366 DOI: 10.1177/07067437231156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Childhood maltreatment is a potent enviromarker of risk for poor response to antidepressant medication (ADM). However, childhood maltreatment is a heterogeneous construct that includes distinct exposures that have distinct neurobiological and psychological correlates. The purpose of the current study is to examine the differential associations of emotional, physical, and sexual maltreatment to ADM outcome and to examine the unique role of anhedonia in driving poor response in patients with specific maltreatment histories. METHODS In a multicentre clinical trial of major depression, 164 individuals were assessed for childhood emotional, physical, and sexual maltreatment with a contextual interview with independent, standardized ratings. All individuals received 8 weeks of escitalopram, with nonresponders subsequently also receiving augmentation with aripiprazole, with outcomes measured with depression rating scales and an anhedonia scale. RESULTS Greater severity of emotional maltreatment perpetrated by the mother was a significant and direct predictor of lower odds of week 16 remission (odds ratio [OR] = 1.68, P = 0.02). In contrast, the relations of paternal-perpetrated emotional maltreatment and physical maltreatment to week 16 remission were indirect, mediated through greater severity of anhedonia at week 8. CONCLUSIONS We identify emotional maltreatment as a specific early exposure that places patients at the greatest risk for nonremission following pharmacological treatment. Further, we suggest that anhedonia is a key symptom domain driving nonremission in patients with particular maltreatment histories.
Collapse
Affiliation(s)
- Kate L. Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sakina J. Rizvi
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Lena Quilty
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Roumen V. Milev
- Department of Psychiatry, Queen's University, and Providence Care, Kingston, ON, Canada
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sidney H. Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Raymond W. Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Begega A, Jove CI, López M, Moreno RD. Impact of environmental enrichment on the GABAergic neurons and glucocorticoid receptors in the hippocampus and nucleus accumbens of Wistar rats: pro-resilient effects. Brain Res Bull 2023; 200:110699. [PMID: 37406885 DOI: 10.1016/j.brainresbull.2023.110699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model has been used to induce depressive-like symptoms in animal models. Our work aims to evaluate the impact of environmental enrichment on male Wistar rats in an animal model for depression. For this purpose, we aim to assess changes in GR and GABAergic (PV+) density in cerebral regions related to cognitive-affective processes associated with depressive disorder, such as the dorsal- ventral hippocampus and accumbens nuclei. Three groups of rats were used: UCMs (unpredictable chronic mild stress), EE+ UCMs (enrichment + stress) and CONT (behavioral tests only). Hedonic responses elicited by sucrose solution were examined by licking behavior analysis; the anxiety level was evaluated using the elevated zero maze and the forced swimming (passive coping) tests. The environmental enrichment reduced the effects of chronic stress, promoting greater resilience. Thus, the UCMs group showed an anhedonia response, more anxiety and immobility behavior than either the control or the EE+ UCMs groups. Regarding immunochemistry results, there was a reduction in GABAergic activity coupled with increased activation of GR in UCMs in the dorsal hippocampus, but there were no differences between groups in the ventral hippocampus. These results suggest environmental enrichment could enhance greater resilience, reducing the vulnerability of the subjects to develop disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Azucena Begega
- Laboratory of Neuroscience. Faculty of Psychology. Plaza Feijoo s/n Oviedo, 33003. Principado de Asturias, Spain; Institute of Neuroscience of Principado Asturias, INEUROPA. Plaza Feijoo s/n Oviedo, 33003. Principado de Asturias, Spain.
| | - Claudia I Jove
- Laboratory of Neuroscience. Faculty of Psychology. Plaza Feijoo s/n Oviedo, 33003. Principado de Asturias, Spain
| | - Matías López
- Institute of Neuroscience of Principado Asturias, INEUROPA. Plaza Feijoo s/n Oviedo, 33003. Principado de Asturias, Spain; Basic Psychology Area. Faculty of Psychology. Plaza Feijoo s/n Oviedo, 33003. Principado de Asturias, Spain
| | - Román-Darío Moreno
- Faculty of Education and Psychology. University Francisco de Vitoria, Pozuelo de Alarcón, 28223. Madrid, Spain
| |
Collapse
|
31
|
Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health 2023; 30:100638. [PMID: 37256192 PMCID: PMC10225896 DOI: 10.1016/j.bbih.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sienna L. Wu
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey S. Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Claire S. Harper
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
32
|
Casillas-Espinosa PM, Lin R, Li R, Nandakumar NM, Dawson G, Braine EL, Martin B, Powell KL, O'Brien TJ. Effects of the T-type calcium channel Ca V3.2 R1584P mutation on absence seizure susceptibility in GAERS and NEC congenic rats models. Neurobiol Dis 2023:106217. [PMID: 37391087 DOI: 10.1016/j.nbd.2023.106217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
RATIONALE Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Rui Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Nanditha M Nandakumar
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Georgia Dawson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Emma L Braine
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Benoît Martin
- Univ Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| |
Collapse
|
33
|
Arab HH, Khames A, Mohammad MK, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Gad AM. Meloxicam Targets COX-2/NOX1/NOX4/Nrf2 Axis to Ameliorate the Depression-like Neuropathology Induced by Chronic Restraint Stress in Rats. Pharmaceuticals (Basel) 2023; 16:848. [PMID: 37375795 DOI: 10.3390/ph16060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meloxicam has shown significant neuroprotection in experimental models of stroke, Alzheimer's disease, and Parkinson's disease. However, the potential of meloxicam to treat depression-like neuropathology in a chronic restraint stress (CRS) model and the associated molecular changes has been insufficiently explored. The current work aimed to explore the potential neuroprotective actions of meloxicam against CRS-evoked depression in rats. In the current experiments, animals received meloxicam (10 mg/kg/day; i.p.) for 21 days, and CRS was instigated by restraining the animals for 6 h/day during the same period. The sucrose preference test and the forced swimming test were used to explore the depression-linked anhedonia/despair, whereas the open-field test examined the animals' locomotor activity. The current findings revealed that CRS elicited typical depression behavioral anomalies in the animals, including anhedonia, despair, and diminished locomotor activity; these findings were reinforced with Z-normalization scores. These observations were corroborated by brain histopathological changes and increased damage scores. In CRS-exposed animals, serum corticosterone spiked, and the hippocampi revealed decreased monoamine neurotransmitter levels (norepinephrine, serotonin, and dopamine). Mechanistically, neuroinflammation was evident in stressed animals, as shown by elevated hippocampal TNF-α and IL-1β cytokines. Moreover, the hippocampal COX-2/PGE2 axis was activated in the rats, confirming the escalation of neuroinflammatory events. In tandem, the pro-oxidant milieu was augmented, as seen by increased hippocampal 8-hydroxy-2'-deoxyguanosine alongside increased protein expression of the pro-oxidants NOX1 and NOX4 in the hippocampi of stressed animals. In addition, the antioxidant/cytoprotective Nrf2/HO-1 cascade was dampened, as evidenced by the lowered hippocampal protein expression of Nrf2 and HO-1 signals. Interestingly, meloxicam administration mitigated depression manifestations and brain histopathological anomalies in the rats. These beneficial effects were elicited by meloxicam's ability to counteract the corticosterone spike and hippocampal neurotransmitter decrease while also inhibiting COX-2/NOX1/NOX4 axis and stimulating Nrf2/HO-1 antioxidant pathway. Together, the present findings prove the neuroprotective/antidepressant actions of meloxicam in CRS-induced depression by ameliorating hippocampal neuroinflammation and pro-oxidant changes, likely by modulating COX-2/NOX1/NOX4/Nrf2 axis.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82511, Egypt
| | - Mostafa K Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sphinx University, New Assiut City 71515, Assiut, Egypt
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
- Department of Pharmacology, Egyptian Drug Authority (EDA)-Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
34
|
Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology 2023; 228:109468. [PMID: 36813161 DOI: 10.1016/j.neuropharm.2023.109468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Acute injections of ketamine lead to rapid but transient antidepressant effects. Chronic oral treatment at low doses, a promising non-invasive alternative, may prolong this therapeutic effect. Here, we examine the antidepressant effects of chronic oral ketamine in rats under chronic unpredictable mild stress (CUMS), and reveal their neuronal correlates. Male Wistar rats were divided into control, ketamine, CUMS, and CUMS-ketamine groups. The CUMS protocol was applied to the latter two groups for 9 weeks, and ketamine (0.013 mg/ml) was provided ad libitum to the ketamine and CUMS-ketamine groups for 5 weeks. The sucrose consumption test, forced swim test, open field test, elevated plus maze, and Morris water maze were respectively used to assess anhedonia, behavioral despair, general locomotor activity, anxiety-like behavior and spatial reference memory. CUMS caused a reduction of sucrose consumption and impaired spatial memory, accompanied by increased neuronal activation in the lateral habenula (LHb) and paraventricular thalamic nucleus (PVT). Oral ketamine prevented behavioral despair and CUMS-induced anhedonia. Reward-triggered c-Fos immunoreactivity was decreased in the LHb and increased in the nucleus accumbens shell (NAcSh) in the CUMS-ketamine group compared to the CUMS group. Ketamine did not produce a differential effect in the OFT, EPM and MWM. These results show that chronic oral ketamine at low doses prevents anhedonia without impairing spatial reference memory. The observed neuronal activation changes in the LHb and NAcSh may be involved in the preventive effects of ketamine on anhedonia. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
|
35
|
Verharen JPH, de Jong JW, Zhu Y, Lammel S. A computational analysis of mouse behavior in the sucrose preference test. Nat Commun 2023; 14:2419. [PMID: 37105954 PMCID: PMC10140068 DOI: 10.1038/s41467-023-38028-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The sucrose preference test (SPT) measures the relative preference of sucrose over water to assess hedonic behaviors in rodents. Yet, it remains uncertain to what extent the SPT reflects other behavioral components, such as learning, memory, motivation, and choice. Here, we conducted an experimental and computational decomposition of mouse behavior in the SPT and discovered previously unrecognized behavioral subcomponents associated with changes in sucrose preference. We show that acute and chronic stress have sex-dependent effects on sucrose preference, but anhedonia was observed only in response to chronic stress in male mice. Additionally, reduced sucrose preference induced by optogenetics is not always indicative of anhedonia but can also reflect learning deficits. Even small variations in experimental conditions influence behavior, task outcome and interpretation. Thus, an ostensibly simple behavioral task can entail high levels of complexity, demonstrating the need for careful dissection of behavior into its subcomponents when studying the underlying neurobiology.
Collapse
Affiliation(s)
- Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
36
|
Li JH, Liu JL, Li XW, Liu Y, Yang JZ, Chen LJ, Zhang KK, Xie XL, Wang Q. Gut microbiota from sigma-1 receptor knockout mice induces depression-like behaviors and modulates the cAMP/CREB/BDNF signaling pathway. Front Microbiol 2023; 14:1143648. [PMID: 37089558 PMCID: PMC10116000 DOI: 10.3389/fmicb.2023.1143648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDepression is a common mental disorder that affects approximately 350 million people worldwide. Much remains unknown about the molecular mechanisms underlying this complex disorder. Sigma-1 receptor (Sig-1R) is expressed at high levels in the central nervous system. Increasing evidence has demonstrated a close association between the Sig-1R and depression. Recently, research has suggested that the gut microbiota may play a crucial role in the development of depression.MethodsMale Sig-1R knockout (Sig-1R KO) and wild-type (WT) mice were used for this study. All transgenic mice were of a pure C57BL/6J background. Mice received a daily gavage of vancomycin (100 mg/kg), neomycin sulfate (200 mg/kg), metronidazole (200 mg/kg), and ampicillin (200 mg/kg) for one week to deplete gut microbiota. Fecal microbiota transplantation (FMT) was conducted to assess the effects of gut microbiota. Depression-like behaviors was evaluated by tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT). Gut microbiota was analyzed by 16s rRNA and hippocampal transcriptome changes were assessed by RNA-seq.ResultsWe found that Sig-1R knockout induced depression-like behaviors in mice, including a significant reduction in immobility time and an increase in latency to immobility in the FST and TST, which was reversed upon clearance of gut microbiota with antibiotic treatment. Sig-1R knockout significantly altered the composition of the gut microbiota. At the genus level, the abundance of Alistipes, Alloprevotella, and Lleibacterium decreased significantly. Gut microbiota dysfunction and depression-like phenotypes in Sig-1R knockout mice could be reproduced through FMT experiments. Additionally, hippocampal RNA sequencing identified multiple KEGG pathways that are associated with depression. We also discovered that the cAMP/CREB/BDNF signaling pathway is inhibited in the Sig-1R KO group along with lower expression of neurotrophic factors including CTNF, TGF-α and NGF. Fecal bacteria transplantation from Sig-1R KO mice also inhibited cAMP/CREB/BDNF signaling pathway.DiscussionIn our study, we found that the gut-brain axis may be a potential mechanism through which Sig-1R regulates depression-like behaviors. Our study provides new insights into the mechanisms by which Sig-1R regulates depression and further supports the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
- *Correspondence: Xiao-Li Xie,
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Qi Wang, ;
| |
Collapse
|
37
|
Roets M, Brand L, Steyn SF. Increased depressive-like behaviour of postpartum Flinders sensitive and resistant line rats is reversed by a predictable postpartum stressor. Behav Brain Res 2023; 442:114321. [PMID: 36720349 DOI: 10.1016/j.bbr.2023.114321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
During the peripartum period, women are at an increased risk to develop perinatal distress, presenting as symptoms of depression and/or anxiety. Yet, due to practical and ethical restrictions, our understanding of this condition remains limited. Animal studies that focus on the neuropsychiatric mechanisms associated with the postpartum period, often ignore the genetical predisposition factor. We therefore investigated whether pregnancy could alter the bio-behavioural profile of the Flinders sensitive and resistant line rats, and whether these effects are exacerbated by a postpartum stressor. Postpartum dams were compared to nulliparous controls in behavioural tests, analysing depressive- and anxiety-like behaviours. Next, postpartum dams were subjected to a maternal separation and early weaning (MSEW) regimen, with their behaviour and serotonergic and noradrenergic concentrations compared to rats not separated from their pups. Regardless of strain, pregnancy decreased time spent in the open arms of the elevated plus maze and hippocampal serotonin concentrations. Time spent immobile in the forced swim test was also increased, with a significant effect in the FRL and a strong trend in the FSL rats. MSEW reversed these behaviours in both strains and increased social interaction with a male counterpart in the FSL rats, without influencing hippocampal or cortical serotonin or norepinephrine. Taken together, these results suggest that pregnancy influences postpartum behaviour, in a strain-dependent manner. Contrary to what we expected, MSEW overall decreased depressive- and anxiety-like behaviours, with strain specific differences, indicating that a chronic, predictable stressor may not necessarily adversely affect postpartum behaviour.
Collapse
Affiliation(s)
- Mareli Roets
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Linda Brand
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
38
|
Seo MK, Jeong S, Seog DH, Lee JA, Lee JH, Lee Y, McIntyre RS, Park SW, Lee JG. Effects of liraglutide on depressive behavior in a mouse depression model and cognition in the probe trial of Morris water maze test. J Affect Disord 2023; 324:8-15. [PMID: 36566932 DOI: 10.1016/j.jad.2022.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test. METHODS Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days. RESULTS Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased. LIMITATION Additional animal model experiments and molecular level studies are needed to support the results obtained in this study. CONCLUSIONS Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Sehoon Jeong
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea; Institute for Digital Antiaging and Healthcare, Inje University, Gimhae, Republic of Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, College of Medicine, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jung An Lee
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yena Lee
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Roger S McIntyre
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
39
|
Mula M. Anhedonia: From Epicurus to the interictal dysphoric disorder. Epilepsy Behav 2023; 140:109092. [PMID: 36740499 DOI: 10.1016/j.yebeh.2023.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Marco Mula
- St George's University Hospital and St George's University of London, United Kingdom.
| |
Collapse
|
40
|
Reorganization of Brain Networks as a Substrate of Resilience: An Analysis of Cytochrome c Oxidase Activity in Rats. Neuroscience 2023; 516:75-90. [PMID: 36805003 DOI: 10.1016/j.neuroscience.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/18/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model has been used to induce depressive-like symptoms in animal models, showing adequate predictive validity. Our work aims to evaluate the effects of environmental enrichment (EE) on resilience in this experimental model of depression. We also aim to assess changes in brain connectivity using cytochrome c oxidase histochemistry in cerebral regions related to cognitive-affective processes associated with depressive disorder: dorsal hippocampus, prefrontal cortex, amygdala, accumbens, and habenula nuclei. Five groups of rats were used: UCMS, EE, EE + UCMS (enrichment + stress), BG (basal level of brain activity), and CONT (behavioral tests only). We assessed the hedonic responses elicited by sucrose solution using a consumption test; the anxiety level was evaluated using the elevated zero maze test, and the unconditioned fear responses were assessed by the cat odor test. The behavioral results showed that the UCMS protocol induces elevated anhedonia and anxiety. But these responses are attenuated previous exposure to EE. Regarding brain activity, the UCMS group showed greater activity in the habenula compared to the EE + UCMS group. EE induced a functional reorganization of brain activity. The EE + UCMS and UCMS groups showed different patterns of connections between brain regions. Our results showed that EE favors greater resilience and could reduce vulnerability to disorders such as depression and anxiety, modifying metabolic brain activity.
Collapse
|
41
|
Sex Differences in Behavior and Learning Abilities in Adult Rats. Life (Basel) 2023; 13:life13020547. [PMID: 36836904 PMCID: PMC9966297 DOI: 10.3390/life13020547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Laboratory rats have excellent learning abilities and are often used in cognitive neuroscience research. The majority of rat studies are conducted on males, whereas females are usually overlooked. Here, we examined sex differences in behavior and tactile sensitivity in littermates during adulthood (5.8-7.6 months of age). We used a battery of behavioral tests, including the 2% sucrose preference test (positive motivation), a free-choice paradigm (T-maze, neutral situation), and associative fear-avoidance learning (negative motivation, aversive situation). Tactile perception was examined using the von Frey test (aversive situation). In two aversive situations (von Frey test and avoidance learning), females were examined during the diestrus stage of the estrous cycle, and ultrasonic vocalization was recorded in both sexes. It was found that (1) females, but not males, lost their body weight on the first day of the sucrose preference test, suggesting sex differences in their reaction to environmental novelty or in metabolic homeostasis; (2) the tactile threshold in females was lower than in males, and females less frequently emitted aversive ultrasonic calls; (3) in the avoidance learning task, around 26% of males (but no females) were not able to learn and experienced frizzing. Overall, the performance of associative fear-avoidance in males was worse than in females. In general, females demonstrated higher abilities of associative learning and less persistently emitted aversive ultrasonic calls.
Collapse
|
42
|
Arab HH, Khames A, Alsufyani SE, El-Sheikh AAK, Gad AM. Targeting the Endoplasmic Reticulum Stress-Linked PERK/GRP78/CHOP Pathway with Magnesium Sulfate Attenuates Chronic-Restraint-Stress-Induced Depression-like Neuropathology in Rats. Pharmaceuticals (Basel) 2023; 16:300. [PMID: 37259443 PMCID: PMC9961498 DOI: 10.3390/ph16020300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 09/29/2023] Open
Abstract
Magnesium sulfate has demonstrated marked neuroprotection in eclampsia, hypoxia, stroke, and post-traumatic brain injury rodent models. However, its potential impact against chronic-restraint-stress (CRS)-induced depression-like neuropathology and associated alterations in endoplasmic reticulum (ER) stress have not been adequately examined. The present study aimed to investigate the neuroprotective potential of magnesium sulfate in a rat model of CRS-triggered depression-like behavioral disturbance and the underlying molecular mechanisms. Herein, CRS was induced by placing rats into restraining tubes for 6 h/day for 21 days and the animals were intraperitoneally injected with magnesium sulfate (100 mg/kg/day) during the study period. After stress cessation, the depression-like behavior was examined by the open-field test, sucrose preference test, and forced swimming test. The present data demonstrated that CRS triggered typical depression-like behavioral changes which were confirmed by the Z-normalization scores. Mechanistically, serum circulating corticosterone levels spiked, and the hippocampi of CRS-exposed animals demonstrated a significant decline in serotonin, norepinephrine, and dopamine neurotransmitters. At the molecular level, the hippocampal pro-inflammatory TNF-alpha and IL-1β cytokines and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-HG) increased in stressed animals. In tandem, enhancement of hippocampal ER stress was evidenced by the activation of iNOS/PERK/GRP78/CHOP axis seen by increased protein expression of iNOS, PERK, GRP78, and CHOP signal proteins in the hippocampi of stressed rats. Interestingly, magnesium sulfate administration attenuated the depression-like behavioral outcomes and the histopathological changes in the brain hippocampi. These favorable actions were driven by magnesium sulfate's counteraction of corticosterone spike, and hippocampal neurotransmitter decline, alongside the attenuation of neuroinflammation, pro-oxidation, and ER stress. In conclusion, the current results suggest the promising neuroprotective/antidepressant actions of magnesium sulfate in CRS by dampening inflammation, ER stress, and the associated PERK/GRP78/CHOP pathway.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82511, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amany M. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
43
|
Bagnall-Moreau C, Spielman B, Brimberg L. Maternal brain reactive antibodies profile in autism spectrum disorder: an update. Transl Psychiatry 2023; 13:37. [PMID: 36737600 PMCID: PMC9898547 DOI: 10.1038/s41398-023-02335-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with multifactorial etiologies involving both genetic and environmental factors. In the past two decades it has become clear that in utero exposure to toxins, inflammation, microbiome, and antibodies (Abs), may play a role in the etiology of ASD. Maternal brain-reactive Abs, present in 10-20% of mothers of a child with ASD, pose a potential risk to the developing brain because they can gain access to the brain during gestation, altering brain development during a critical period. Different maternal anti-brain Abs have been associated with ASD and have been suggested to bind extracellular or intracellular neuronal antigens. Clinical data from various cohorts support the increase in prevalence of such maternal brain-reactive Abs in mothers of a child with ASD compared to mothers of a typically developing child. Animal models of both non-human primates and rodents have provided compelling evidence supporting a pathogenic role of these Abs. In this review we summarize the data from clinical and animal models addressing the role of pathogenic maternal Abs in ASD. We propose that maternal brain-reactive Abs are an overlooked and promising field of research, representing a modifiable risk factor that may account for up to 20% of cases of ASD. More studies are needed to better characterize the Abs that contribute to the risk of having a child with ASD, to understand whether we can we predict such cases of ASD, and to better pinpoint the antigenic specificity of these Abs and their mechanisms of pathogenicity.
Collapse
Affiliation(s)
- Ciara Bagnall-Moreau
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY USA
| | - Benjamin Spielman
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Lior Brimberg
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
44
|
Woodward EM, Ringland A, Ackerman J, Coutellier L. Prepubertal ovariectomy confers resilience to stress-induced anxiety in adult female mice. Psychoneuroendocrinology 2023; 148:105997. [PMID: 36470154 PMCID: PMC9898172 DOI: 10.1016/j.psyneuen.2022.105997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The increased vulnerability to stress-induced neuropsychiatric disorders in women, including anxiety disorders, does not emerge until pubertal onset, suggesting a role for ovarian hormones in organizing sex-specific vulnerability to anxiety. Parvalbumin (PV) interneurons in the prefrontal cortex are a potential target for these ovarian hormones. PV+ interneurons undergo maturation during the adolescent period and have been shown to be sensitive to stress and to mediate stress-induced anxiety in female mice. To test the idea that ovarian hormones at puberty are necessary for the acquisition of sensitivity to stress, hypothetically driving the response of PV+ interneurons to stress, we performed ovariectomy or sham surgery before pubertal onset in female mice. These mice then were exposed to four weeks of unpredictable chronic mild stress in adulthood. We then assessed anxiety-like behavior and PV/FosB colocalization in the medial PFC. Additionally, we assessed stress-induced anxiety-like behavior in female mice following ovariectomy in adulthood to determine if puberty is a sensitive period for ovarian hormones in mediating vulnerability to stress. We found that prepubertal ovariectomy protects against the development of anxiety-like behavior in adulthood, an effect not found following ovariectomy in adulthood. This effect may be independent of ovarian hormones on prefrontal PV+ interneurons response to stress.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Amanda Ringland
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Jennifer Ackerman
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
45
|
Khatibi VA, Rahdar M, Rezaei M, Davoudi S, Nazari M, Mohammadi M, Raoufy MR, Mirnajafi-Zadeh J, Hosseinmardi N, Behzadi G, Janahmadi M. The Glycolysis Inhibitor 2-Deoxy-D-Glucose Exerts Different Neuronal Effects at Circuit and Cellular Levels, Partially Reverses Behavioral Alterations and does not Prevent NADPH Diaphorase Activity Reduction in the Intrahippocampal Kainic Acid Model of Temporal Lobe Epilepsy. Neurochem Res 2023; 48:210-228. [PMID: 36064822 PMCID: PMC9444119 DOI: 10.1007/s11064-022-03740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/27/2022] [Indexed: 01/11/2023]
Abstract
Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model. We found that epileptic animals were less anxious, more depressed, with more locomotion activity. Interestingly, by masking the effect of increased locomotor activity on the parameters of the zero-maze test, no altered anxiety behavior was noted in epileptic animals. However, 2-DG could partially reverse the behavioral changes induced by kainic acid. The findings also showed that 2-DG treatment partially suppresses cellular level alterations while failing to reverse circuit-level changes resulting from kainic acid injection. Analysis of NADPH-diaphorase positive neurons in the CA1 area of the hippocampus revealed that the number of positive neurons was significantly reduced in dorsal CA1 of the epileptic animals and 2-DG treatment did not affect the diminishing effect of kainic acid on NADPH-d+ neurons in the CA1 area. In the control group receiving 2-DG, however, an augmented NADPH-d+ cell number was noted. These data suggest that 2-DG cannot suppress epileptiform activity at the circuit-level in this model of epilepsy and therefore, may fail to control the seizures in temporal lobe epilepsy cases.
Collapse
Affiliation(s)
- Vahid Ahli Khatibi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mohammad Mohammadi
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Mohammad Reza Raoufy
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Zühlsdorff K, López-Cruz L, Dutcher EG, Jones JA, Pama C, Sawiak S, Khan S, Milton AL, Robbins TW, Bullmore ET, Dalley JW. Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity. Neurobiol Stress 2023; 22:100507. [PMID: 36505960 PMCID: PMC9731893 DOI: 10.1016/j.ynstr.2022.100507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a stress-related condition hypothesized to involve aberrant reinforcement learning (RL) with positive and negative stimuli. The present study investigated whether repeated early maternal separation (REMS) stress, a procedure widely recognized to cause depression-like behaviour, affects how subjects learn from positive and negative feedback. The REMS procedure was implemented by separating male and female rats from their dam for 6 h each day from post-natal day 5-19. Control rat offspring were left undisturbed during this period. Rats were tested as adults for behavioral flexibility and feedback sensitivity on a probabilistic reversal learning task. A computational approach based on RL theory was used to derive latent behavioral variables related to reward learning and flexibility. To assess underlying brain substrates, a seed-based functional MRI connectivity analysis was applied both before and after an additional adulthood stressor in control and REMS rats. Female but not male rats exposed to REMS stress showed increased response 'stickiness' (repeated responses regardless of reward outcome). Following repeated adulthood stress, reduced functional connectivity from the basolateral amygdala (BLA) to the dorsolateral striatum (DLS), cingulate cortex (Cg), and anterior insula (AI) cortex was observed in females. By contrast, control male rats exposed to the second stressor showed impaired learning from negative feedback (i.e., non-reward) and reduced functional connectivity from the BLA to the DLS and AI compared to maternally separated males. RL in male rats exposed to REMS was unaffected. The fMRI data further revealed that connectivity between the mOFC and other prefrontal cortical and subcortical structures was positively correlated with response 'stickiness'. These findings reveal differences in how females and males respond to early life adversity and subsequent stress. These effects may be mediated by functional divergence in resting-state connectivity between the basolateral amygdala and fronto-striatal brain regions.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Laura López-Cruz
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Jolyon A. Jones
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Claudia Pama
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Stephen Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 65, Cambridge, CB2 0QQ, UK
| | - Shahid Khan
- GlaxoSmithKline Research & Development, Stevenage, UK
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Edward T. Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| |
Collapse
|
47
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
48
|
Desnouveaux L, Poly B, Edmond M, Aphezberro C, Coulon D, Boutet F, Le Coz C, Fargeau F, Linard C, Caillol P, Duffaud AM, Servonnet A, Ferhani O, Trousselard M, Taudon N, Canini F, Claverie D. Steady electrocorticogram characteristics predict specific stress-induced behavioral phenotypes. Front Neurosci 2023; 17:1047848. [PMID: 37113159 PMCID: PMC10126346 DOI: 10.3389/fnins.2023.1047848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Depending on the individual, exposure to an intense stressor may, or may not, lead to a stress-induced pathology. Predicting the physiopathological evolution in an individual is therefore an important challenge, at least for prevention. In this context, we developed an ethological model of simulated predator exposure in rats: we call this the multisensorial stress model (MSS). We hypothesized that: (i) MSS exposure can induce stress-induced phenotypes, and (ii) an electrocorticogram (ECoG) recorded before stress exposure can predict phenotypes observed after stress. Methods Forty-five Sprague Dawley rats were equipped with ECoG telemetry and divided into two groups. The Stress group (n = 23) was exposed to an MSS that combined synthetic fox feces odor deposited on filter paper, synthetic blood odor, and 22 kHz rodent distress calls; the Sham group (n = 22) was not exposed to any sensorial stimulus. Fifteen days after initial exposure, the two groups were re-exposed to a context that included a filter paper soaked with water as a traumatic object (TO) reminder. During this re-exposure, freezing behavior and avoidance of the filter paper were measured. Results Three behaviors were observed in the Stress group: 39% developed a fear memory phenotype (freezing, avoidance, and hyperreactivity); 26% developed avoidance and anhedonia; and 35% made a full recovery. We also identified pre-stress ECoG biomarkers that accurately predicted cluster membership. Decreased chronic 24 h frontal Low θ relative power was associated with resilience; increased frontal Low θ relative power was associated with fear memory; and decreased parietal β2 frequency was associated with the avoidant-anhedonic phenotype. Discussion These predictive biomarkers open the way to preventive medicine for stress-induced diseases.
Collapse
Affiliation(s)
- Laura Desnouveaux
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Betty Poly
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Mathilde Edmond
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Cathy Aphezberro
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - David Coulon
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Francis Boutet
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Christine Le Coz
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Francisca Fargeau
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Cyril Linard
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Pierre Caillol
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Anaïs M. Duffaud
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Aurélie Servonnet
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Ouamar Ferhani
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Marion Trousselard
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- APEMAC, EA 4360, Université de Lorraine, Nancy, France
- Ecole du Val de Grâce, Paris, France
- Réseau ABC des Psychotraumas, Montpellier, France
| | - Nicolas Taudon
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Frédéric Canini
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
- Réseau ABC des Psychotraumas, Montpellier, France
| | - Damien Claverie
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Réseau ABC des Psychotraumas, Montpellier, France
- *Correspondence: Damien Claverie
| |
Collapse
|
49
|
Li Y, Chen H, Wang J, Wang J, Niu X, Wang C, Qin D, Li F, Wang Y, Xiong J, Liu S, Huang L, Zhang X, Gao F, Gao D, Fan M, Xiao X, Wang ZH. Inflammation-activated C/EBPβ mediates high-fat diet-induced depression-like behaviors in mice. Front Mol Neurosci 2022; 15:1068164. [PMID: 36578534 PMCID: PMC9790918 DOI: 10.3389/fnmol.2022.1068164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Depression, one of the most common causes of disability, has a high prevalence rate in patients with metabolic syndrome. Type 2 diabetes patients are at an increased risk for depression. However, the molecular mechanism coupling diabetes to depressive disorder remains largely unknown. Here we found that the neuroinflammation, associated with high-fat diet (HFD)-induced diabetes and obesity, activated the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) in hippocampal neurons. This factor repressed brain-derived neurotrophic factor (BDNF) expression and caused depression-like behaviors in male mice. Besides, the loss of C/EBPβ expression in C/EBPβ heterozygous knockout male mice attenuated HFD-induced depression-like behaviors, whereas Thy1-C/EBPβ transgenic male mice (overexpressing C/EBPβ) showed depressive behaviors after a short-term HFD. Furthermore, HFD impaired synaptic plasticity and decreased surface expression of glutamate receptors in the hippocampus of wild-type (WT) mice, but not in C/EBPβ heterozygous knockout mice. Remarkably, the anti-inflammatory drug aspirin strongly alleviated HFD-elicited depression-like behaviors in neuronal C/EBPβ transgenic mice. Finally, the genetic delivery of BDNF or the pharmacological activation of the BDNF/TrkB signaling pathway by 7,8-dihydroxyflavone reversed anhedonia in a series of behavioral tests on HFD-fed C/EBPβ transgenic mice. Therefore, our findings aim to demonstrate that the inflammation-activated neuronal C/EBPβ promotes HFD-induced depression by diminishing BDNF expression.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingxia Fan
- Animal Experiment Center, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| |
Collapse
|
50
|
Arshad HM, Ahmad FUD, Lodhi AH. Methanolic Extract of Aerva javanica Leaves Prevents LPS-Induced Depressive Like Behavior in Experimental Mice. Drug Des Devel Ther 2022; 16:4179-4204. [PMID: 36514526 PMCID: PMC9741839 DOI: 10.2147/dddt.s383054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aim Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.
Collapse
Affiliation(s)
- Hafiza Maida Arshad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan,Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, the Islamia University of Bahawalpur, Pakistan Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|