1
|
Warit S, Meesawat S, Cheawchanlertfa P, Makhao N, Srilohasin P, Kaewparuehaschai M, Noradechanon K, Pomcoke A, Kemthong T, Prammananan T, Kanitpun R, Palaga T, Malaivijitnond S, Chaiprasert A. The new gamma interferon (IFN-γ) algorithm for tuberculosis diagnosis in cynomolgus macaques. PLoS One 2024; 19:e0302349. [PMID: 39680542 DOI: 10.1371/journal.pone.0302349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB) is the first infectious disease to be screened-out from specified pathogen-free cynomolgus macaques (Macaca fascicularis; Mf) using in human pharmaceutical testing. Being in either latent or active stage after exposure to the Mycobacterium tuberculosis complex (MTBC), the monkey gamma-interferon release assay (mIGRA) was previously introduced for early TB detection. However, a notable incidence of indeterminate results was observed. In this study, we compared two positive mitogen references, phytohemagglutinin (PHA) that is used in the QuantiFERON-TB Gold Plus kit (QFT-PHA) and a combination of Concanavalin A and Pokeweed mitogen (ConA+PWM), in a cohort of 316 MTBC-exposed Mf. Following a 29-month follow-up of 100 selected animals, we established a new mIGRA interpretation algorithm that demonstrated a significant shift in the negative and indeterminate cases regardless of whether the QFT-PHA or ConA+PWM was used as a mitogen. That is, if the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB1/2-NIL were ≥0.05 and ≥25% of individual ODNIL, the mIGRA result was interpreted as 'positive'. If the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB-NIL was <0.05, the mIGRA result was interpreted as 'negative'. If the ODNIL value was >0.18 or the OD of mitogen references [OD(QFT-PHA) and OD(ConA+PWM)] were ≤0.18, the mIGRA result was interpreted as 'indeterminate'. As a result, negative cases increased by 10-50%, indeterminate cases decreased by 40-80%, and the number of TB-positive cases remained unchanged. Our findings highlight the critical role of mitogens as positive controls in mIGRA interpretation. This study provides the mIGRA value for the TB screening of cynomolgus macaques that enables the identification of true positive and suspicious TB cases for quarantine programs.
Collapse
Affiliation(s)
- Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | | | - Nampueng Makhao
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Srilohasin
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kirana Noradechanon
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Areeya Pomcoke
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | - Therdsak Prammananan
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Kaset Klang, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Cole SA, Lyke MM, Christensen C, Newman D, Bagwell A, Galindo S, Glenn J, Layne-Colon DG, Sayers K, Tardif S, Cox LA, Ross C, Cheeseman IH. Genetic characterization of a captive marmoset (Callithrix jacchus) colony using genotype-by-sequencing. Am J Primatol 2024; 86:e23630. [PMID: 38655843 PMCID: PMC11182716 DOI: 10.1002/ajp.23630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.
Collapse
Affiliation(s)
- Shelley A Cole
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Martha M Lyke
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Clinton Christensen
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deborah Newman
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Alec Bagwell
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Samuel Galindo
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jeremy Glenn
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Donna G Layne-Colon
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ken Sayers
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Suzette Tardif
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Corinna Ross
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ian H Cheeseman
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
4
|
Yin D, Zhan S, Liu Y, Yan L, Shi B, Wang X, Zhang S. Experimental models for peri-implant diseases: a narrative review. Clin Oral Investig 2024; 28:378. [PMID: 38884808 DOI: 10.1007/s00784-024-05755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Peri-implant diseases, being the most common implant-related complications, significantly impact the normal functioning and longevity of implants. Experimental models play a crucial role in discovering potential therapeutic approaches and elucidating the mechanisms of disease progression in peri-implant diseases. This narrative review comprehensively examines animal models and common modeling methods employed in peri-implant disease research and innovatively summarizes the in vitro models of peri-implant diseases. MATERIALS AND METHODS Articles published between 2015 and 2023 were retrieved from PubMed/Medline, Web of Science, and Embase. All studies focusing on experimental models of peri-implant diseases were included and carefully evaluated. RESULTS Various experimental models of peri-implantitis have different applications and advantages. The dog model is currently the most widely utilized animal model in peri-implant disease research, while rodent models have unique advantages in gene knockout and systemic disease induction. In vitro models of peri-implant diseases are also continuously evolving to meet different experimental purposes. CONCLUSIONS The utilization of experimental models helps simplify experiments, save time and resources, and promote advances in peri-implant disease research. Animal models have been proven valuable in the early stages of drug development, while technological advancements have brought about more predictive and relevant in vitro models. CLINICAL RELEVANCE This review provides clear and comprehensive model selection strategies for researchers in the field of peri-implant diseases, thereby enhancing understanding of disease pathogenesis and providing possibilities for developing new treatment strategies.
Collapse
Affiliation(s)
- Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Suying Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbo Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Lichao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binmian Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Mezias C, Huo B, Bota M, Jayakumar J, Mitra PP. Establishing neuroanatomical correspondences across mouse and marmoset brain structures. RESEARCH SQUARE 2024:rs.3.rs-4373678. [PMID: 38826382 PMCID: PMC11142350 DOI: 10.21203/rs.3.rs-4373678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Interest in the common marmoset is growing due to evolutionarily proximity to humans compared to laboratory mice, necessitating a comparison of mouse and marmoset brain architectures, including connectivity and cell type distributions. Creating an actionable comparative platform is challenging since these brains have distinct spatial organizations and expert neuroanatomists disagree. We propose a general theoretical framework to relate named atlas compartments across taxa and use it to establish a detailed correspondence between marmoset and mice brains. Contrary to conventional wisdom that brain structures may be easier to relate at higher levels of the atlas hierarchy, we find that finer parcellations at the leaf levels offer greater reconcilability despite naming discrepancies. Utilizing existing atlases and associated literature, we created a list of leaf-level structures for both species and establish five types of correspondence between them. One-to-one relations were found between 43% of the structures in mouse and 47% in marmoset, whereas 25% of mouse and 10% of marmoset structures were not relatable. The remaining structures show a set of more complex mappings which we quantify. Implementing this correspondence with volumetric atlases of the two species, we make available a computational tool for querying and visualizing relationships between the corresponding brains. Our findings provide a foundation for computational comparative analyses of mesoscale connectivity and cell type distributions in the laboratory mouse and the common marmoset.
Collapse
Affiliation(s)
- Christopher Mezias
- Cold Spring Harbor Laboratory, Department of Neuroscience, 1 Bungtown Rd, Cold Spring Harbor, NY
| | - Bingxing Huo
- Broad Institute of MIT and Harvard, Data Sciences Platform Division, 105 Broadway, Cambridge, MA
| | - Mihail Bota
- 15 Cismelei, 15 Bl. Constanta, Romania, 900842
| | - Jaikishan Jayakumar
- Indian Institute of Technology-Madras, Center for Computational Brain Research, Chennai, TM, India
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory, Department of Neuroscience, 1 Bungtown Rd, Cold Spring Harbor, NY
| |
Collapse
|
6
|
He Y, Li R, Yu Y, Huang C, Xu Z, Wang T, Chen M, Huang H, Qi Z. Human neural stem cells promote mitochondrial genesis to alleviate neuronal damage in MPTP-induced cynomolgus monkey models. Neurochem Int 2024; 175:105700. [PMID: 38417589 DOI: 10.1016/j.neuint.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China; The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545007, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530004, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Tianbao Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming Chen
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Quanzhou, Fujian, 362200, China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning, Guangxi, 530011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
7
|
Bhatt LK, Shah CR, Patel SD, Patel SR, Patel VA, Patel RJ, Joshi NM, Shah NA, Patel JH, Dwivedi P, Sundar R, Jain MR. A Retrospective Comparison of Electrocardiographic Parameters in Ketamine and Tiletamine-Zolazepam Anesthetized Indian Rhesus Monkeys ( Macaca mulatta). Int J Toxicol 2024; 43:184-195. [PMID: 38108647 DOI: 10.1177/10915818231221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Electrocardiographic evaluation is performed in rhesus monkeys to establish the cardiovascular safety of candidate molecules before progressing to clinical trials. These animals are usually immobilized chemically by ketamine (KTM) and tiletamine-zolazepam (TZ) to obtain a steady-state heart rate and to ensure adequate human safety. The present study aimed to evaluate the effect of these anesthetic regimens on different electrocardiographic parameters. Statistically significant lower HR and higher P-wave duration, RR, QRS, and QT intervals were observed in the KTM-anesthetized group in comparison to TZ-anesthetized animals. No significant changes were noticed in the PR interval and p-wave amplitude. Sex-based significance amongst these parameters was observed in male and female animals of TZ- and KTM-anesthetized groups. Regression analysis of four QTc formulas in TZ-anesthetized rhesus monkeys revealed that QTcNAK (Nakayama) better corrected the QT interval than QTcHAS (Hassimoto), QTcBZT (Bazett), and QTcFRD (Fridericia) formulas. QTcNAK exhibited the least correlation with the RR interval (slope closest to zero and r = .01) and displayed no statistical significance between male and female animals. These data will prove useful in the selection of anesthetic regimens for chemical restraint of rhesus monkeys in nonclinical safety evaluation studies.
Collapse
|
8
|
Nashed JY, Shearer KT, Wang JZ, Chen Y, Cook EE, Champagne AA, Coverdale NS, Fernandez-Ruiz J, Striver SI, Flanagan JR, Gallivan JP, Cook DJ. Spontaneous Behavioural Recovery Following Stroke Relates to the Integrity of Parietal and Temporal Regions. Transl Stroke Res 2024; 15:127-139. [PMID: 36542292 DOI: 10.1007/s12975-022-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Stroke is a devastating disease that results in neurological deficits and represents a leading cause of death and disability worldwide. Following a stroke, there is a degree of spontaneous recovery of function, the neural basis of which is of great interest among clinicians in their efforts to reduce disability following stroke and enhance rehabilitation. Conventionally, work on spontaneous recovery has tended to focus on the neural reorganization of motor cortical regions, with comparably little attention being paid to changes in non-motor regions and how these relate to recovery. Here we show, using structural neuroimaging in a macaque stroke model (N = 31) and by exploiting individual differences in spontaneous behavioural recovery, that the preservation of regions in the parietal and temporal cortices predict animal recovery. To characterize recovery, we performed a clustering analysis using Non-Human Primate Stroke Scale (NHPSS) scores and identified a good versus poor recovery group. By comparing the preservation of brain volumes in the two groups, we found that brain areas in integrity of brain areas in parietal, temporal and somatosensory cortex were associated with better recovery. In addition, a decoding approach performed across all subjects revealed that the preservation of specific brain regions in the parietal, somatosensory and medial frontal cortex predicted recovery. Together, these findings highlight the importance of parietal and temporal regions in spontaneous behavioural recovery.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kaden T Shearer
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Justin Z Wang
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Yining Chen
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elise E Cook
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Allen A Champagne
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shirley I Striver
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada
| | - J Randal Flanagan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jason P Gallivan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas J Cook
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada.
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
9
|
Qiu L, Xu E, Chambule S, LaTourette P, Dyer CD, Wallace CK, Donocoff R, Wilson JM, Lucas TH, Chen HI. Magnetic Resonance Imaging-Guided Frameless Stereotactic Injections of the Bilateral Cerebellar Dentate Nuclei in Nonhuman Primates: Technical Note. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01040. [PMID: 38310346 DOI: 10.1227/ons.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Nonhuman primates (NHPs) are important preclinical models for evaluating therapeutics because of their anatomophysiological similarities to humans, and can be especially useful for testing new delivery targets. With the growing promise of cell and gene therapies for the treatment of neurological diseases, it is important to ensure the accurate and safe delivery of these agents to target structures in the brain. However, a standard guideline or method has not been developed for stereotactic targeting in NHPs. In this article, we describe the safe use of a magnetic resonance imaging-guided frameless stereotactic system to target bilateral cerebellar dentate nuclei for accurate, real-time delivery of viral vector in NHPs. METHODS Seventeen rhesus macaques (Macaca mulatta) underwent stereotactic surgery under real-time MRI guidance using the ClearPoint® system. Bilateral cerebellar dentate nuclei were targeted through a single parietal entry point with a transtentorial approach. Fifty microliters of contrast-impregnated infusate was delivered to each dentate nucleus, and adjustments were made as necessary according to real-time MRI monitoring of delivery. Perioperative clinical outcomes and postoperative volumes of distribution were recorded. RESULTS All macaques underwent bilateral surgery successfully. Superficial pin site infection occurred in 4/17 (23.5%) subjects, which resolved with antibiotics. Two episodes of transient neurological deficit (anisocoria and unilateral weakness) were recorded, which did not require additional postoperative treatment and resolved over time. Volume of distribution of infusate achieved satisfactory coverage of target dentate nuclei, and only 1 incidence (2.9%) of cerebrospinal fluid penetration was recorded. Mean volume of distribution was 161.22 ± 39.61 mm3 (left, 173.65 ± 48.29; right, 148.80 ± 23.98). CONCLUSION MRI-guided frameless stereotactic injection of bilateral cerebellar dentate nuclei in NHPs is safe and feasible. The use of this technique enables real-time modification of the surgical plan to achieve adequate target coverage and can be readily translated to clinical use.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Xu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Chambule
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip LaTourette
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chelsea K Wallace
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Donocoff
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Bristol Myers Squibb, Princeton, New Jersey, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy H Lucas
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer. Immunol Rev 2023; 320:83-99. [PMID: 37491719 DOI: 10.1111/imr.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.
Collapse
Affiliation(s)
- Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| |
Collapse
|
11
|
Chakraborty N, Holmes-Hampton GP, Gautam A, Kumar R, Hritzo B, Legesse B, Dimitrov G, Ghosh SP, Hammamieh R. Early to sustained impacts of lethal radiation on circulating miRNAs in a minipig model. Sci Rep 2023; 13:18496. [PMID: 37898651 PMCID: PMC10613244 DOI: 10.1038/s41598-023-45250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Raina Kumar
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Bernadette Hritzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
12
|
Colman R, Pierre P, Adriansjach J, Crosno K, Noguchi KK, Ikonomidou C. Behavioral and Cognitive Outcomes of Rhesus Macaques Following Neonatal Exposure to Antiseizure Medications. Ann Neurol 2023; 95:10.1002/ana.26794. [PMID: 37706347 PMCID: PMC10937326 DOI: 10.1002/ana.26794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Exposure of neonatal macaques to the antiseizure medications phenobarbital and midazolam (PbM) causes widespread apoptotic death of neurons and oligodendrocytes. We studied behavior and neurocognitive performance in 12 to 24 month-old macaques treated as neonates with PbM. METHODS A total of 14 monkeys received phenobarbital and midazolam over 24 hours under normothermia (n = 8) or mild hypothermia (n = 6). Controls (n = 8) received no treatment. Animals underwent testing in the human intruder paradigm at ages 12 and 18 months, and a 3-step stimulus discrimination task at ages 12, 18, and 24 months. RESULTS Animals treated with PbM displayed lower scores for environmental exploration, and higher scores for locomotion and vocalizations compared with controls. Combined PbM and hypothermia resulted in lower scores for aggression and vigilance at 12 months compared with controls and normothermic PbM animals. A mixed-effects generalized linear model was used to test for differences in neurocognitive performance between the control and PbM groups in the first step of the stimulus discrimination task battery (shape center baited to shape center non-baited). The odds of passing this step differed by group (p = 0.044). At any given age, the odds of passing for a control animal were 9.53-fold (95% CI 1.06-85) the odds for a PbM animal. There was also evidence suggesting a higher learning rate in the shape center non-baited for the control relative to the PbM group (Cox model HR 2.13, 95% CI 1.02-4.43; p = 0.044). INTERPRETATION These findings demonstrate that a 24-hour-long neonatal treatment with a clinically relevant combination of antiseizure medications can have long-lasting effects on behavior and cognition in nonhuman primates. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Ricki Colman
- Wisconsin National Primate Research Center, Madison WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin, School of Medicine, Madison WI USA
| | - Peter Pierre
- Wisconsin National Primate Research Center, Madison WI, USA
| | | | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison WI, USA
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, School of Medicine, Madison WI USA
| |
Collapse
|
13
|
Jagadesan S, Mondal P, Carlson MA, Guda C. Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches. Biomedicines 2023; 11:2197. [PMID: 37626695 PMCID: PMC10452283 DOI: 10.3390/biomedicines11082197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The suitability of an animal model for use in studying human diseases relies heavily on the similarities between the two species at the genetic, epigenetic, and metabolic levels. However, there is a lack of consistent data from different animal models at each level to evaluate this suitability. With the availability of genome sequences for many mammalian species, it is now possible to compare animal models based on genomic similarities. Herein, we compare the coding sequences (CDSs) of five mammalian models, including rhesus macaque, marmoset, pig, mouse, and rat models, with human coding sequences. We identified 10,316 conserved CDSs across the five organisms and the human genome based on sequence similarity. Mapping the human-disease-associated single-nucleotide polymorphisms (SNPs) from these conserved CDSs in each species has identified species-specific associations with various human diseases. While associations with a disease such as colon cancer were prevalent in multiple model species, the rhesus macaque showed the most model-specific human disease associations. Based on the percentage of disease-associated SNP-containing genes, marmoset models are well suited to study many human ailments, including behavioral and cardiovascular diseases. This study demonstrates a genomic similarity evaluation of five animal models against human CDSs that could help investigators select a suitable animal model for studying their target disease.
Collapse
Affiliation(s)
- Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
| | - Pinaki Mondal
- Department of Surgery and Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Mark A. Carlson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
- Department of Surgery and Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Ail D, Nava D, Hwang IP, Brazhnikova E, Nouvel-Jaillard C, Dentel A, Joffrois C, Rousseau L, Dégardin J, Bertin S, Sahel JA, Goureau O, Picaud S, Dalkara D. Inducible nonhuman primate models of retinal degeneration for testing end-stage therapies. SCIENCE ADVANCES 2023; 9:eadg8163. [PMID: 37531424 PMCID: PMC10396314 DOI: 10.1126/sciadv.adg8163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.
Collapse
Affiliation(s)
- Divya Ail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Diane Nava
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - In Pyo Hwang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Alexandre Dentel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, F-75013 Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Lionel Rousseau
- ESYCOM, Université Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Stephane Bertin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
15
|
Stout MB, Vaughan KL, Isola JVV, Mann SN, Wellman B, Hoffman JM, Porter HL, Freeman WM, Mattison JA. Assessing tolerability and physiological responses to 17α-estradiol administration in male rhesus macaques. GeroScience 2023; 45:2337-2349. [PMID: 36897526 PMCID: PMC10651821 DOI: 10.1007/s11357-023-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17β-estradiol, which is aligned with the sevenfold increase in serum 17β-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.
Collapse
Affiliation(s)
- Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US.
- Oklahoma Medical Research Foundation, 825 NE 13Th Street Chapman S212, 73104, Oklahoma City, OK, US.
| | - Kelli L Vaughan
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, US
| | - Bayli Wellman
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, US
| | - Hunter L Porter
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Willard M Freeman
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Julie A Mattison
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US.
- National Institute On Aging, 16701 Elmer School Road, Building 103, 20842, Dickerson, MD, US.
| |
Collapse
|
16
|
Kaufmann A. Introducing individual sentience profiles in nonhuman primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100104. [PMID: 37576492 PMCID: PMC10415712 DOI: 10.1016/j.crneur.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023] Open
Abstract
The Animal Research Declaration is committed to establishing cohesive and rigorous ethical standards to safeguard the welfare of nonhuman primates (NHPs) engaged in neuroscience research (Petkov et al., 2022 this issue). As part of this mission, there is an expanding dialogue amongst neuroscientists, philosophers, and policymakers, that is centred on diverse aspects of animal welfare and scientific practice. This paper emphasises the necessity of integrating the assessment of animal sentience into the declaration. Animal sentience, in this context, refers to the recognized capacity that animals have for various kinds of subjective experience, with an associated positive or negative valence (Browning and Birch, 2022). Accordingly, NHP neuroscience researchers should work toward instituting a standardised approach for evaluating what can be termed "individual sentience profiles," representing the unique manner in which an individual NHP experiences specific events or environments. The adoption of this novel parameter would serve a triad of indispensable purposes: enhancing NHP welfare throughout research involvement, elevating the quality of life for NHPs in captivity, and refining the calibre of research outcomes.
Collapse
Affiliation(s)
- Angelica Kaufmann
- Cognition in Action Unit, University of Milan, Italy
- Center for Mind & Cognition, Ruhr-Universität Bochum, Germany
| |
Collapse
|
17
|
D'Mello RJ, Lo JO, Hagen OL, Castro JN, Graham JA, Frias AE, Roberts VHJ. Ultrasound evaluation of normal rhesus macaque fetal biometry and uteroplacental hemodynamics. Am J Primatol 2023; 85:e23504. [PMID: 37166160 PMCID: PMC10311129 DOI: 10.1002/ajp.23504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Nonhuman primates are important preclinical models for translational, reproductive, and developmental science. Clinical evaluation of human fetal development is performed using standard sonographic-derived fetal biometry, assessments of amniotic fluid, and uteroplacental hemodynamics. These noninvasive in utero measurements provide important information regarding fetal growth and pregnancy well-being. Abnormalities in fetal growth, amniotic fluid volume, or placental vascular function are associated with placental insufficiency and adverse perinatal outcomes including stillbirth. The fetal biometric parameters most commonly assessed are biparietal diameter, head circumference, abdominal circumference, and femur diaphysis length. Evaluation of amniotic fluid volume includes measuring the fluid in four quadrants of the uterus to generate an Amniotic Fluid Index. Measures of uteroplacental hemodynamics typically include doppler assessment of the umbilical artery and ductus venosus, but can also include interrogation of the uterine artery and umbilical vein. In this study, we compile prenatal ultrasound data of fetal biometry, amniotic fluid measurements, and uteroplacental hemodynamics obtained from pregnancy studies conducted at the Oregon National Primate Research Center. The data included are from control unperturbed pregnant animals who have not undergone in utero experimental manipulations. This is the first report of comprehensive sonographic measurements following standardized clinical obstetric protocols utilized in rhesus macaques. The outcome is a large, prenatal ultrasound resource to be used by laboratory animal researchers in future nonhuman primate pregnancy studies for antenatal assessment.
Collapse
Affiliation(s)
- Rahul J D'Mello
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Olivia L Hagen
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jenna N Castro
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jason A Graham
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Antonio E Frias
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
18
|
Kim JY, Rosenberger MG, Rutledge NS, Esser-Kahn AP. Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics 2023; 15:1687. [PMID: 37376133 PMCID: PMC10300703 DOI: 10.3390/pharmaceutics15061687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Adjuvants are a critical component of vaccines. Adjuvants typically target receptors that activate innate immune signaling pathways. Historically, adjuvant development has been laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development consists of screening for an activating molecule, formulating lead molecules with an antigen, and testing this combination in an animal model. There are very few adjuvants approved for use in vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects, or formulation limitations. Here, we consider new approaches using tools from engineering to improve next-generation adjuvant discovery and development. These approaches will create new immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches to interpret "big data" obtained from experimentation. Applying engineering concepts and solutions will provide alternative perspectives, further accelerating the field of adjuvant discovery.
Collapse
Affiliation(s)
| | | | | | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA; (J.Y.K.); (M.G.R.); (N.S.R.)
| |
Collapse
|
19
|
Tsivitis A, Wang A, Murphy J, Khan A, Jin Z, Moore R, Tateosian V, Bergese S. Anesthesia, the developing brain, and dexmedetomidine for neuroprotection. Front Neurol 2023; 14:1150135. [PMID: 37351266 PMCID: PMC10282145 DOI: 10.3389/fneur.2023.1150135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Anesthesia-induced neurotoxicity is a set of unfavorable adverse effects on central or peripheral nervous systems associated with administration of anesthesia. Several animal model studies from the early 2000's, from rodents to non-human primates, have shown that general anesthetics cause neuroapoptosis and impairment in neurodevelopment. It has been difficult to translate this evidence to clinical practice. However, some studies suggest lasting behavioral effects in humans due to early anesthesia exposure. Dexmedetomidine is a sedative and analgesic with agonist activities on the alpha-2 (ɑ2) adrenoceptors as well as imidazoline type 2 (I2) receptors, allowing it to affect intracellular signaling and modulate cellular processes. In addition to being easily delivered, distributed, and eliminated from the body, dexmedetomidine stands out for its ability to offer neuroprotection against apoptosis, ischemia, and inflammation while preserving neuroplasticity, as demonstrated through many animal studies. This property puts dexmedetomidine in the unique position as an anesthetic that may circumvent the neurotoxicity potentially associated with anesthesia.
Collapse
Affiliation(s)
- Alexandra Tsivitis
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY, United States
| | - Ayesha Khan
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Robert Moore
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Vahe Tateosian
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| |
Collapse
|
20
|
Munesue Y, Ageyama N, Kimura N, Takahashi I, Nakayama S, Okabayashi S, Katakai Y, Koie H, Yagami KI, Ishii K, Tamaoka A, Yasutomi Y, Shimozawa N. Cynomolgus macaque model of neuronal ceroid lipofuscinosis type 2 disease. Exp Neurol 2023; 363:114381. [PMID: 36918063 DOI: 10.1016/j.expneurol.2023.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal-recessive fatal neurodegenerative diseases that occur in children and young adults, with symptoms including ataxia, seizures and visual impairment. We report the discovery of cynomolgus macaques carrying the CLN2/TPP1 variant and our analysis of whether the macaques could be a new non-human primate model for NCL type 2 (CLN2) disease. Three cynomolgus macaques presented progressive neuronal clinical symptoms such as limb tremors and gait disturbance after about 2 years of age. Morphological analyses using brain MRI at the endpoint of approximately 3 years of age revealed marked cerebellar and cerebral atrophy of the gray matter, with sulcus dilation, gyrus thinning, and ventricular enlargement. Histopathological analyses of three affected macaques revealed severe neuronal loss and degeneration in the cerebellar and cerebral cortices, accompanied by glial activation and/or changes in axonal morphology. Neurons observed throughout the central nervous system contained autofluorescent cytoplasmic pigments, which were identified as ceroid-lipofuscin based on staining properties, and the cerebral cortex examined by transmission electron microscopy had curvilinear profiles, the typical ultrastructural pattern of CLN2. These findings are commonly observed in all forms of NCL. DNA sequencing analysis identified a homozygous single-base deletion (c.42delC) of the CLN2/TPP1 gene, resulting in a frameshifted premature stop codon. Immunohistochemical analysis showed that tissue from the affected macaques lacked a detectable signal against TPP1, the product of the CLN2/TPP1 gene. Analysis for transmission of the CLN2/TPP1 mutated gene revealed that 47 (49.5%) and 48 (50.5%) of the 95 individuals genotyped in the CLN2-affected macaque family were heterozygous carriers and homozygous wild-type individuals, respectively. Thus, we identified cynomolgus macaques as a non-human primate model of CLN2 disease. The CLN2 macaques reported here could become a useful resource for research and the development of drugs and methods for treating CLN2 disease, which involves severe symptoms in humans.
Collapse
Affiliation(s)
- Yoshiko Munesue
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Ichiro Takahashi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Shunya Nakayama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sachi Okabayashi
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.
| |
Collapse
|
21
|
Salian-Mehta S, Poling J, Birkebak J, Rensing S, Carosino C, Santos R, West W, Adams K, Orsted K, Fillman-Holliday D, Burns M. Non-Human Primate Husbandry and Impact on Non-Human Primates Health: Outcomes From an IQ DruSafe/3RS Industrial Benchmark Survey. Int J Toxicol 2023; 42:111-121. [PMID: 36543758 DOI: 10.1177/10915818221146523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of health issues (diarrhea, poor body condition) in non-human primates can impact animal welfare, confound toxicity study data, and lead to animal exclusion from studies. A working group cosponsored by DruSafe and 3Rs Translational and Predictive Sciences Leadership Groups of the IQ Consortium conducted a survey to benchmark quarantine, pre-study screening, husbandry, and veterinary care practices and their impact on NHP health. Nineteen companies participated in the survey providing separate responses for studies conducted in-house and at Contract Research Organizations from 3 regions (North America (NA), Europe and Asia) for an aggregate of 33 responses. A majority of responding companies conducted studies at North America CROs (39%) or in-house (36%) using primarily Chinese (33%) or Cambodian (27%) and to a lesser extent Vietnam (18%) or Mauritian (15%) origin NHPs. Forty-Five percent of responses had pre-study health issues (fecal abnormalities, etc.) on ≥ 1 studies with the highest incidence observed in Vietnam origin NHPs (80%). The survey suggested variable pre-screening and quarantine practices across facilities. Husbandry practices including behavioral assessments, environmental enrichment and consistent diets were associated with a lower incidence of health issues. The survey also benchmarked approaches used to diagnose and manage abnormal feces in NHPs and has provided strategies to minimize impact on NHP health. The survey highlighted opportunities for harmonizing screening criteria across industry and for improving tracking and sharing of health screening results, leading to further refinement of NHP veterinary care practices, higher quality studies, and reduced NHP use.
Collapse
Affiliation(s)
| | - Jerry Poling
- 1539Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Susanne Rensing
- 385232AbbVie Deutschland GmbH and Co KG, Ludwigshafen, Germany
| | | | | | - Wanda West
- 6893Boehringer Ingelheim, Ridgefield, CT, USA
| | - Khary Adams
- Incyte Research Institute, Wilmington, DE, USA
| | | | | | - Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
22
|
Nakamura T, Dinh TH, Asai M, Matsumoto J, Nishimaru H, Setogawa T, Honda S, Yamada H, Mihara T, Nishijo H. Suppressive effects of ketamine on auditory steady-state responses in intact, awake macaques: A non-human primate model of schizophrenia. Brain Res Bull 2023; 193:84-94. [PMID: 36539101 DOI: 10.1016/j.brainresbull.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Auditory steady-state responses (ASSRs) are recurrent neural activities entrained to regular cyclic auditory stimulation. ASSRs are altered in individuals with schizophrenia, and may be related to hypofunction of the N-methyl-D-aspartate (NMDA) glutamate receptor. Noncompetitive NMDA receptor antagonists, including ketamine, have been used in ASSR studies of rodent models of schizophrenia. Although animal studies using non-human primates are required to complement rodent studies, the effects of ketamine on ASSRs are unknown in intact awake non-human primates. In this study, after administration of vehicle or ketamine, click trains at 20-83.3 Hz were presented to elicit ASSRs during recording of electroencephalograms in intact, awake macaque monkeys. The results indicated that ASSRs quantified by event-related spectral perturbation and inter-trial coherence were maximal at 83.3 Hz after vehicle administration, and that ketamine reduced ASSRs at 58.8 and 83.3 Hz, but not at 20 and 40 Hz. The present results demonstrated a reduction of ASSRs by the NMDA receptor antagonist at optimal frequencies with maximal responses in intact, awake macaques, comparable to ASSR reduction in patients with schizophrenia. These findings suggest that ASSR can be used as a neurophysiological biomarker of the disturbance of gamma-oscillatory neural circuits in this ketamine model of schizophrenia using intact, awake macaques. Thus, this model with ASSRs would be useful in the investigation of human brain pathophysiology as well as in preclinical translational research.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Department of Physiology, Vietnam Military Medical University, Hanoi 100000, Viet Nam
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
23
|
Zhai Y, Miao J, Peng Y, Wang Y, Dong J, Zhao X. Clinical features of Danon disease and insights gained from LAMP-2 deficiency models. Trends Cardiovasc Med 2023; 33:81-89. [PMID: 34737089 DOI: 10.1016/j.tcm.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Danon disease (DD) is an X-linked multisystem disorder with clinical features characterized by the triad of hypertrophic cardiomyopathy, skeletal muscle weakness, and mental retardation. Cardiac involvement can be fatal in the absence of an effective treatment option such as heart transplantation. Molecular studies have proved that LAMP-2 protein deficiency, mainly LAMP-2B isoform, resulting from LAMP2 gene mutation, is the culprit for DD. Autophagy impairment due to LAMP-2 deficiency mediated the accumulation of abnormal autophagic vacuoles in cells. While it is not ideal for mimicking DD phenotypes in humans, the emergence of LAMP-2-deficient animal models and induced pluripotent stem cells from DD patients provided powerful tools for exploring DD mechanism. In both in vitro and in vivo studies, much evidence has demonstrated that mitochondria dysfunction and fragmentation can result in DD pathology. Fundamental research contributes to the therapeutic transformation. By targeting the molecular core, several potential therapies have demonstrated promising results in partial phenotypes improvement. Among them, gene therapies anticipate inaugurate a class of symptom control and prevention drugs as their in vivo effects are promising, and one clinical trial is currently underway.
Collapse
Affiliation(s)
- Yafei Zhai
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, P.R. China
| | - Jinxin Miao
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China;Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China; Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ying Peng
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China; Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jianzeng Dong
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, P.R. China; Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiaoyan Zhao
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
24
|
Vallender EJ, Hotchkiss CE, Lewis AD, Rogers J, Stern JA, Peterson SM, Ferguson B, Sayers K. Nonhuman primate genetic models for the study of rare diseases. Orphanet J Rare Dis 2023; 18:20. [PMID: 36721163 PMCID: PMC9887761 DOI: 10.1186/s13023-023-02619-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Pre-clinical research and development relies heavily upon translationally valid models of disease. A major difficulty in understanding the biology of, and developing treatments for, rare disease is the lack of animal models. It is important that these models not only recapitulate the presentation of the disease in humans, but also that they share functionally equivalent underlying genetic causes. Nonhuman primates share physiological, anatomical, and behavioral similarities with humans resulting from close evolutionary relationships and high genetic homology. As the post-genomic era develops and next generation sequencing allows for the resequencing and screening of large populations of research animals, naturally occurring genetic variation in nonhuman primates with clinically relevant phenotypes is regularly emerging. Here we review nonhuman primate models of multiple rare genetic diseases with a focus on the similarities and differences in manifestation and etiologies across species. We discuss how these models are being developed and how they can offer new tools and opportunities for researchers interested in exploring novel therapeutics for these and other genetic diseases. Modeling human genetic diseases in translationally relevant nonhuman primates presents new prospects for development of therapeutics and a better understanding of rare diseases. The post-genomic era offers the opportunity for the discovery and further development of more models like those discussed here.
Collapse
Affiliation(s)
- Eric J. Vallender
- University of Mississippi Medical Center, Jackson, MS USA
- Tulane National Primate Research Center, Covington, LA USA
| | - Charlotte E. Hotchkiss
- University of Washington, Seattle, WA USA
- Washington National Primate Research Center, Seattle, WA USA
| | - Anne D. Lewis
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Jeffrey Rogers
- Baylor College of Medicine, Houston, TX USA
- Wisconsin National Primate Research Center, Madison, WI USA
| | - Joshua A. Stern
- University of California-Davis, Davis, CA USA
- California National Primate Research Center, Davis, CA USA
| | - Samuel M. Peterson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Betsy Ferguson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Ken Sayers
- Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, San Antonio, TX USA
| |
Collapse
|
25
|
Tailor N, Warner BM, Griffin BD, Tierney K, Moffat E, Frost K, Vendramelli R, Leung A, Willman M, Thomas SP, Pei Y, Booth SA, Embury-Hyatt C, Wootton SK, Kobasa D. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses 2022; 15:85. [PMID: 36680125 PMCID: PMC9863330 DOI: 10.3390/v15010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic with millions of human infections. There continues to be a pressing need to develop potential therapies and vaccines to inhibit SARS-CoV-2 infection to mitigate the ongoing pandemic. Epidemiological data from the current pandemic indicates that there may be sex-dependent differences in disease outcomes. To investigate these differences, we proposed to use common small animal species that are frequently used to model disease with viruses. However, common laboratory strains of mice are not readily infected by SARS-CoV-2 because of differences in the angiotensin-converting enzyme 2 (ACE2), the cellular receptor for the virus. To overcome this limitation, we transduced common laboratory accessible strains of mice of different sexes and age groups with a novel a triple AAV6 mutant, termed AAV6.2FF, encoding either human ACE2 or luciferase via intranasal administration to promote expression in the lung and nasal turbinates. Infection of AAV-hACE2-transduced mice with SARS-CoV-2 resulted in high viral titers in the lungs and nasal turbinates, establishment of an IgM and IgG antibody response, and modulation of lung and nasal turbinate cytokine profiles. There were insignificant differences in infection characteristics between age groups and sex-related differences; however, there were significant strain-related differences between BALB/c vs. C57BL/6 mice. We show that AAV-hACE2-transduced mice are a useful for determining immune responses and for potential evaluation of SARS-CoV-2 vaccines and antiviral therapies, and this study serves as a model for the utility of this approach to rapidly develop small-animal models for emerging viruses.
Collapse
Affiliation(s)
- Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Bryce M. Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada
| | - Kathy Frost
- Molecular Pathobiology, National Microbiology Laboratory NML, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Marnie Willman
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephanie A. Booth
- Molecular Pathobiology, National Microbiology Laboratory NML, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
26
|
Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M, Karlsson Hedestam GB, Eggink D, Claireaux M, Bogers WMJM, van Gils MJ, Koopman G. Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 2022; 13:1026951. [PMID: 36405682 PMCID: PMC9670313 DOI: 10.3389/fimmu.2022.1026951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Several studies have shown that the first encounter with influenza virus shapes the immune response to future infections or vaccinations. However, a detailed analysis of the primary antibody response is lacking as this is difficult to study in humans. It is therefore not known what the frequency and dynamics of the strain-specific hemagglutinin (HA) head- and stem-directed antibody responses are directly after primary influenza virus infection. Here, sera of twelve H1N1pdm2009 influenza virus-infected cynomolgus macaques were evaluated for HA-head and HA-stem domain antibody responses. We observed an early induction of HA-stem antibody responses, which was already decreased by day 56. In contrast, responses against the HA-head domain were low early after infection and increased at later timepoint. The HA-specific B cell repertoires in each animal showed diverse VH-gene usage with preferred VH-gene and JH-gene family usage for HA-head or HA-stem B cells but a highly diverse allelic variation within the VH-usage. HA-head B cells had shorter CDRH3s and higher VH-gene somatic hyper mutation levels relative to HA-stem B cells. In conclusion, our data suggest that HA-stem antibodies are the first to react to the infection while HA-head antibodies show a delayed response, but a greater propensity to enter the germinal center and undergo affinity maturation.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marlies M. van Haaren
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet (KI), Stockholm, Sweden
| | | | - Dirk Eggink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
27
|
Chandrabhatla AS, Narahari AK, Mehaffey JH, Schaff DL, Kron IL, Brayman K. National Institutes of Health Funding for Abdominal Organ Transplantation Research Has Declined: A 30-year Analysis. Transplantation 2022; 106:1909-1911. [PMID: 35175240 PMCID: PMC9378811 DOI: 10.1097/tp.0000000000004082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Dylan L. Schaff
- University of Virginia Health System, Charlottesville, VA 22903
| | - Irving L. Kron
- University of Virginia Health System, Charlottesville, VA 22903
| | - Kenneth Brayman
- University of Virginia Health System, Charlottesville, VA 22903
| |
Collapse
|
28
|
Nakamura T, Dinh TH, Asai M, Nishimaru H, Matsumoto J, Setogawa T, Ichijo H, Honda S, Yamada H, Mihara T, Nishijo H. Characteristics of auditory steady-state responses to different click frequencies in awake intact macaques. BMC Neurosci 2022; 23:57. [PMID: 36180823 PMCID: PMC9524006 DOI: 10.1186/s12868-022-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Auditory steady-state responses (ASSRs) are periodic evoked responses to constant periodic auditory stimuli, such as click trains, and are suggested to be associated with higher cognitive functions in humans. Since ASSRs are disturbed in human psychiatric disorders, recording ASSRs from awake intact macaques would be beneficial to translational research as well as an understanding of human brain function and its pathology. However, ASSR has not been reported in awake macaques. Results Electroencephalograms (EEGs) were recorded from awake intact macaques, while click trains at 20–83.3 Hz were binaurally presented. EEGs were quantified based on event-related spectral perturbation (ERSP) and inter-trial coherence (ITC), and ASSRs were significantly demonstrated in terms of ERSP and ITC in awake intact macaques. A comparison of ASSRs among different click train frequencies indicated that ASSRs were maximal at 83.3 Hz. Furthermore, analyses of laterality indices of ASSRs showed that no laterality dominance of ASSRs was observed. Conclusions The present results demonstrated ASSRs, comparable to those in humans, in awake intact macaques. However, there were some differences in ASSRs between macaques and humans: macaques showed maximal ASSR responses to click frequencies higher than 40 Hz that has been reported to elicit maximal responses in humans, and showed no dominant laterality of ASSRs under the electrode montage in this study compared with humans with right hemisphere dominance. The future ASSR studies using awake intact macaques should be aware of these differences, and possible factors, to which these differences were ascribed, are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00741-9.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Department of Physiology, Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan. .,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
29
|
Ruiz MCM, Guimarães RP, Mortari MR. Parkinson’s Disease Rodent Models: are they suitable for DBS research? J Neurosci Methods 2022; 380:109687. [DOI: 10.1016/j.jneumeth.2022.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
|
30
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
31
|
Yan Y, Wang J, Qiu S, Duan Y, Si W. The Lumenal Microbiota Varies Biogeographically in the Gastrointestinal Tract of Rhesus Macaques. Microbiol Spectr 2022; 10:e0034322. [PMID: 35499338 PMCID: PMC9241614 DOI: 10.1128/spectrum.00343-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The strategy of adjusting the composition of gastrointestinal microbiota has shown great promise for the treatment of diseases. Currently, the relationship between gut microbes and human diseases is mainly presented by the fecal microbiota from the colon. Due to the limits of sampling, the healthy baseline of biogeographic microbiota in the human gastrointestinal tract remains blurry. Captive nonhuman primates (NHPs) present a "humanized" intestinal microbiome and may make up for the lack of atlas data for better understanding of the gut microbial composition and diseases. Therefore, the intestinal microbiota of 6 GIT regions of healthy rhesus monkeys were analyzed in this study; our results showed that Proteobacteria gradually decreased from the small intestine to the large intestine but Bacteroidetes gradually increased from the small intestine to the large intestine. Streptococcus and Lactobacillus can be used as markers to distinguish the small intestine from the large intestine. Sarcina is the most enriched in the middle site of the connection between the large intestine and the small intestine. Cyanobacteria are enriched in the small intestine, especially the duodenum and jejunum, and are absent in the large intestine. The lumenal microbiota of the small intestine is more susceptible to individual differences than is that of the large intestine. Metabolism and oxygen affect the distribution of the microbes, and the diversity of microbiota is the highest in the colon. Our results provide accurate comprehensive GIT microbiota data on nonhuman primates and will be beneficial for the better understanding of the composition of microbiota in the human gastrointestinal tract. IMPORTANCE For the study of upper gastrointestinal microbiota in humans, endoscopic sampling is the main source of information, which limits the understanding of healthy upper gastrointestinal microbiota. Rhesus monkeys show very close similarity to humans in physiology, genetics, and behavior and act as the most suitable animal models for human diseases. The present research made up for the lack of atlas data due to the ethical limitations of sampling in humans and provided baseline data on microbiota in 6 GIT regions of healthy NHPs. These important references will be beneficial for the better understanding of the regional organization and functions of gut microbial communities along the GIT and their relevance to conditions of health and disease.
Collapse
Affiliation(s)
- Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junfeng Wang
- Digital Medical Research Center, Department of Hepatobiliary Surgery, the First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, China
| | - Shuai Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
32
|
A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc 2022; 17:2054-2084. [PMID: 35760857 DOI: 10.1038/s41596-022-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Over decades of research into the treatment of stroke, nearly all attempts to translate experimental treatments from discovery in cells and rodents to use in humans have failed. The prevailing belief is that it might be necessary to pretest pharmacological neuroprotection in higher-order brains, especially those of nonhuman primates (NHPs). Over the past few years, chemical thrombolysis and mechanical thrombectomy have been established as the standard of care for ischemic stroke in patients. The spotlight is now shifting towards emphasizing both focal ischemia and subsequent reperfusion in developing a clinically relevant stroke model in NHPs. This protocol describes an embolic model of middle cerebral artery occlusion in adult rhesus monkeys. An autologous clot is combined with a microcatheter or microwire through endovascular procedures, and reperfusion is achieved through local intra-artery thrombolysis with tissue plasminogen activator. These NHP models formed relatively stable infarct sizes, delivered predictable reperfusion and survival outcomes, and recapitulated key characteristics of patients with ischemic stroke as observed on MRI images and behavioral assays. Importantly, treated animals could survive 30 d after the surgery for post-stroke neurologic deficit analyses. Thus far, this model has been used in several translational studies. Here we describe in detail the teamwork necessary for developing stroke models of NHPs, including the preoperation preparations, endovascular surgery, postoperation management and histopathological analysis. The model can be established by the following procedures over a 45-d period, including preparation steps (14 d), endovascular operation (1 d) and evaluation steps (30 d).
Collapse
|
33
|
Li D, Liu C, Abuduaini R, Du M, Wang Y, Zhu H, Chen H, Zhou N, Xin Y, Wu L, Ma J, Zhou Y, Lu Y, Jiang C, Sun Q, Liu S. The monkey microbial biobank brings previously uncultivated bioresources for nonhuman primate and human gut microbiomes. MLIFE 2022; 1:210-217. [PMID: 38817672 PMCID: PMC10989993 DOI: 10.1002/mlf2.12017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2024]
Abstract
Nonhuman primates (NHPs) such as monkeys are the closest living relatives to humans and are the best available models for causative studies of human health and diseases. Gut microbiomes are intensively involved in host health. In this study, by large-scale cultivation of microbes from fecal samples of monkeys, we obtained previously uncultured bacterial species and constructed a Macaca fascicularis Gut Microbial Biobank (MfGMB). The MfGMB consisted of 250 strains that represent 97 species of 63 genera, 25 families, and 4 phyla. The information of the 250 strains and the genomes of 97 cultured species are publicly accessible. The MfGMB represented nearly 50% of core gut microbial compositions at the genus level and covered over 80% of the KO-based known gut microbiome functions of M. fascicularis. Data mining showed that the bacterial species in the MfGMB were prevalent not only in NHPs gut microbiomes but also in human gut microbiomes. This study will help the understanding and future investigations on how gut microbiomes interact with their mammalian hosts.
Collapse
Affiliation(s)
- Danhua Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Rexiding Abuduaini
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Mengxuan Du
- State Key Laboratory of Microbial BiotechnologyShandong UniversityQingdaoChina
| | - Yujing Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Honghe Chen
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yuhua Xin
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- China General Microorganism Culture Collection, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of NeuroscienceShanghaiChina
| | - Juncai Ma
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of NeuroscienceShanghaiChina
| | - Yuguang Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- China General Microorganism Culture Collection, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yong Lu
- Microbial Resources and Big Data Center, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Microbial Resources and Big Data Center, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Qiang Sun
- Microbial Resources and Big Data Center, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial BiotechnologyShandong UniversityQingdaoChina
| |
Collapse
|
34
|
Lillethorup TP, Noer O, Alstrup AKO, Real CC, Stokholm K, Thomsen MB, Zaer H, Orlowski D, Mikkelsen TW, Glud AN, Nielsen EHT, Schacht AC, Winterdahl M, Brooks DJ, Sørensen JCH, Landau AM. Spontaneous Partial Recovery of Striatal Dopaminergic Uptake Despite Nigral Cell Loss in Asymptomatic MPTP-Lesioned Female Minipigs. Neurotoxicology 2022; 91:166-176. [DOI: 10.1016/j.neuro.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
35
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
36
|
de Oliveira LR, Borges LS, Sarmet M, Kagiyama K, Silva BO, Picinato-Pirola M, Takehara S, Kumei Y, Zeredo JLL. "Anatomical, behavioral, and physiological analyses of craniofacial development by cineradiographic imaging in marmosets". J Oral Rehabil 2022; 49:701-711. [PMID: 35340028 DOI: 10.1111/joor.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nonhuman primates are the closest animal models to humans regarding genetics, physiology, and behavior. Marmoset monkeys in particular are one of the most versatile species for biomedical research. OBJECTIVE To assess the craniofacial growth and development of the masticatory function in the common marmoset (Callithrix jacchus), from birth to the fourth month of life through minimally invasive cineradiographic imaging. METHODS Ten individuals were followed-up from zero to four months of age regarding craniofacial growth and masticatory function assessed by cineradiography. For the experimental procedure, we used a microfocal x-ray source apparatus and a beryllium fast-response image-intensifier. RESULTS The duration of the masticatory cycles was stable across age groups. Chewing a very soft Castella cake or the slightly harder Marshmallow did not change the masticatory cycle in the time domain. On the other hand, linear and angular measurements of the jaw-opening movement showed a tendency for bigger movements at the latter stages of craniofacial growth. Qualitative analysis showed that marmosets had a small preference for Castella over Marshmallow, that they most often bit off pieces of food to chew with their posterior teeth, that they manipulated the food with their hands, and that they chewed the food continuously. CONCLUSION We observed critical developmental events during the first three months of life in marmosets. Cineradiographic imaging in marmosets may provide valuable information on craniofacial form and function for basic and preclinical research models.
Collapse
Affiliation(s)
| | - Luana Siqueira Borges
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Max Sarmet
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | | | - Brena Oliveira Silva
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Melissa Picinato-Pirola
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luís Lopes Zeredo
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
37
|
Raval NR, Nasser A, Madsen CA, Beschorner N, Beaman EE, Juhl M, Lehel S, Palner M, Svarer C, Plavén-Sigray P, Jørgensen LM, Knudsen GM. An in vivo Pig Model for Testing Novel Positron Emission Tomography Radioligands Targeting Cerebral Protein Aggregates. Front Neurosci 2022; 16:847074. [PMID: 35368260 PMCID: PMC8966485 DOI: 10.3389/fnins.2022.847074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-β or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein in the brain for diagnosing, e.g., Parkinson's Disease. Access to a large animal model with α-synuclein pathology would critically enable a more translationally appropriate evaluation of novel radioligands. We here establish a pig model with cerebral injections of α-synuclein preformed fibrils or brain homogenate from postmortem human brain tissue from individuals with Alzheimer's disease (AD) or dementia with Lewy body (DLB) into the pig's brain, using minimally invasive surgery and validated against saline injections. In the absence of a suitable α-synuclein radioligand, we validated the model with the unselective amyloid-β tracer [11C]PIB, which has a high affinity for β-sheet structures in aggregates. Gadolinium-enhanced MRI confirmed that the blood-brain barrier was intact. A few hours post-injection, pigs were PET scanned with [11C]PIB. Quantification was done with Logan invasive graphical analysis and simplified reference tissue model 2 using the occipital cortex as a reference region. After the scan, we retrieved the brains to confirm successful injection using autoradiography and immunohistochemistry. We found four times higher [11C]PIB uptake in AD-homogenate-injected regions and two times higher uptake in regions injected with α-synuclein-preformed-fibrils compared to saline. The [11C]PIB uptake was the same in non-injected (occipital cortex, cerebellum) and injected (DLB-homogenate, saline) regions. With its large brain and ability to undergo repeated PET scans as well as neurosurgical procedures, the pig provides a robust, cost-effective, and good translational model for assessment of novel radioligands including, but not limited to, proteinopathies.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Emily Eufaula Beaman
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Szabolcs Lehel
- Department of Clinical Physiology, Nuclear Medicine and Positron Emission Tomography (PET), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Department of Clinical Research, Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Møller Jørgensen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Spine Research Unit, Copenhagen University Hospital (Rigshospitalet), Glostrup, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Charbonneau JA, Amaral DG, Bliss-Moreau E. Social housing status impacts rhesus monkeys' affective responding in classic threat processing tasks. Sci Rep 2022; 12:4140. [PMID: 35264698 PMCID: PMC8907189 DOI: 10.1038/s41598-022-08077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Individuals’ social contexts are broadly recognized to impact both their psychology and neurobiology. These effects are observed in people and in nonhuman animals who are the subjects for comparative and translational science. The social contexts in which monkeys are reared have long been recognized to have significant impacts on affective processing. Yet, the social contexts in which monkeys live as adults are often ignored and could have important consequences for interpreting findings, particularly those related to biopsychiatry and behavioral neuroscience studies. The extant nonhuman primate neuropsychological literature has historically tested individually-housed monkeys, creating a critical need to understand how social context might impact the outcomes of such experiments. We evaluated affective responding in adult rhesus monkeys living in four different social contexts using two classic threat processing tasks—a test of responsivity to objects and a test of responsivity to an unfamiliar human. These tasks have been commonly used in behavioral neuroscience for decades. Relative to monkeys with full access to a social partner, individually-housed monkeys had blunted reactivity to threat and monkeys who had limited contact with their partner were more reactive to some threatening stimuli. These results indicate that monkeys’ social housing contexts impact affective reactivity and point to the potential need to reconsider inferences drawn from prior studies in which the impacts of social context have not been considered.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, Davis, USA.,California National Primate Research Center, University of California Davis, Davis, USA
| | - David G Amaral
- California National Primate Research Center, University of California Davis, Davis, USA.,The MIND Institute, University of California Davis School of Medicine, Davis, USA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Davis, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, Davis, USA. .,Department of Psychology, University of California Davis, Davis, USA.
| |
Collapse
|
39
|
Wang C, Liu S, Liu F, Bhutta A, Patterson TA, Slikker W. Application of Nonhuman Primate Models in the Studies of Pediatric Anesthesia Neurotoxicity. Anesth Analg 2022; 134:1203-1214. [PMID: 35147575 DOI: 10.1213/ane.0000000000005926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous animal models have been used to study developmental neurotoxicity associated with short-term or prolonged exposure of common general anesthetics at clinically relevant concentrations. Pediatric anesthesia models using the nonhuman primate (NHP) may more accurately reflect the human condition because of their phylogenetic similarity to humans with regard to reproduction, development, neuroanatomy, and cognition. Although they are not as widely used as other animal models, the contribution of NHP models in the study of anesthetic-induced developmental neurotoxicity has been essential. In this review, we discuss how neonatal NHP animals have been used for modeling pediatric anesthetic exposure; how NHPs have addressed key data gaps and application of the NHP model for the studies of general anesthetic-induced developmental neurotoxicity. The appropriate application and evaluation of the NHP model in the study of general anesthetic-induced developmental neurotoxicity have played a key role in enhancing the understanding and awareness of the potential neurotoxicity associated with pediatric general anesthetics.
Collapse
Affiliation(s)
- Cheng Wang
- From the Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas
| | - Shuliang Liu
- From the Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas
| | - Fang Liu
- From the Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas
| | - Adnan Bhutta
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tucker A Patterson
- Office of the Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas
| | - William Slikker
- Office of the Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas
| |
Collapse
|
40
|
Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 2022; 28:272-282. [PMID: 35115708 DOI: 10.1038/s41591-021-01645-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.
Collapse
|
41
|
Preimplantation Endometrial Transcriptomics in Natural Conception Cycle of the Rhesus Monkey. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is no report on preimplantation phase endometrial transcriptomics in natural conception cycles of primates. In the present study, the whole-genome expression array of endometrium on Days 2, 4, and 6 post-ovulation (pov) in proven natural conception (Group 1; n = 12) and non-mated, ovulatory (Group 2; n = 12) cycles of rhesus monkeys was examined, compared, and validated. Of fifteen (15) genes showing differential expression (>2-fold; pFDR < 0.05), six genes (CHRND, FOXD3, GJD4, MAPK8IP3, MKS1, and NUP50) were upregulated, while eight genes (ADCY5, ADIPOR1, NNMT, PATL1, PIGV, TGFBR2, TOX2, and VWA5B1) were down regulated on Day 6 pov as compared to Day 2 pov in conception cycles. On Day 6 pov, four genes (ADCY5, NNMT, TOX2, and VWA5B1) were down regulated, and AVEN was upregulated in conception cycles compared with the non-conception cycle. These observations were orthogonally validated at protein expression level. Group-specifically expressed unique genes in conception cycles influence the process of induction of immune-tolerance, while the genes expressed in both groups influence processes of protein targeting and metabolism. A triad of timed-actions of progesterone, seminal plasma, and preimplantation embryo putatively regulate several input molecules to CREB, NF-kB, and STAT regulatory networks during secretory phase towards evolution of endometrial receptivity in the rhesus monkey.
Collapse
|
42
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
43
|
Tran NT, Kelly SB, Snow RJ, Walker DW, Ellery SJ, Galinsky R. Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies. Cells 2021; 10:2902. [PMID: 34831126 PMCID: PMC8616304 DOI: 10.3390/cells10112902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE. METHODS We reviewed preclinical studies up to 20 September 2021 using PubMed, EMBASE and OVID MEDLINE databases. The SYRCLE risk of bias assessment tool was utilized. RESULTS Seventeen studies were identified. Dietary creatine was the most common administration route. Cerebral creatine loading was age-dependent with near term/term-equivalent studies reporting higher increases in creatine/phosphocreatine compared to adolescent-adult equivalent studies. Most studies did not control for sex, study long-term histological and functional outcomes, or test creatine post-HI. None of the perinatal studies that suggested benefit directly controlled core body temperature (a known confounder) and many did not clearly state controlling for potential study bias. CONCLUSION Creatine is a promising neuroprotective intervention for HIE. However, this systematic review reveals key knowledge gaps and improvements to preclinical studies that must be addressed before creatine can be trailed for neuroprotection of the human fetus/neonate.
Collapse
Affiliation(s)
- Nhi Thao Tran
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia; (N.T.T.); (D.W.W.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
| | - Sharmony B. Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| | - Rod J. Snow
- Institute for Physical Activity & Nutrition, Deakin University, Melbourne 3125, Australia;
| | - David W. Walker
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia; (N.T.T.); (D.W.W.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| |
Collapse
|
44
|
Costa G, Gołembiowska K. Neurotoxicity of MDMA: Main effects and mechanisms. Exp Neurol 2021; 347:113894. [PMID: 34655576 DOI: 10.1016/j.expneurol.2021.113894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Preclinical and clinical studies indicate that 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy'), in addition to having abuse potential, may elicit acute and persistent abnormalities of varying severity at the central level. Importantly, neurotoxic effects of MDMA have been demonstrated in experimental animals. Accordingly, central toxicity induced by MDMA may pose a serious harm for health, since MDMA is among the substances that are used for recreational purposes by young and adult people. This review provides a concise overview of recent findings from preclinical and clinical studies that evaluated the central effects of MDMA, and the mechanisms involved in the neurotoxicity induced by this amphetamine-related drug.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343 Kraków, Poland
| |
Collapse
|
45
|
Divergent Enteroviruses from Macaques with Chronic Diarrhea. Microbiol Resour Announc 2021; 10:e0069921. [PMID: 34351224 PMCID: PMC8340857 DOI: 10.1128/mra.00699-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequences of five novel members of the family Picornaviridae that were isolated from the stool of rhesus macaques (Macaca mulatta) with chronic diarrhea. The strains were named NOLA-1 through NOLA-5 because the macaques were residents of the Tulane National Primate Research Center.
Collapse
|
46
|
Autio JA, Zhu Q, Li X, Glasser MF, Schwiedrzik CM, Fair DA, Zimmermann J, Yacoub E, Menon RS, Van Essen DC, Hayashi T, Russ B, Vanduffel W. Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection. Neuroimage 2021; 236:118082. [PMID: 33882349 PMCID: PMC8594288 DOI: 10.1016/j.neuroimage.2021.118082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.
Collapse
Affiliation(s)
- Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Xiaolian Li
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
| | - Matthew F Glasser
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077 Göttingen, Germany; Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Damien A Fair
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - David C Van Essen
- Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Brian Russ
- Department of Psychiatry, New York University Langone, New York City, New York, USA; Center for the Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA; Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York City, New York, USA
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
47
|
Rodriguez-Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, Tereshchenko Y, Urrutia-Cabrera D, Haaf T, Dressel R, Bartels I, Behr R. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep 2021; 11:15439. [PMID: 34326359 PMCID: PMC8322147 DOI: 10.1038/s41598-021-94419-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Non-human primates (NHPs) are, due to their close phylogenetic relationship to humans, excellent animal models to study clinically relevant mutations. However, the toolbox for the genetic modification of NHPs is less developed than those for other species like mice. Therefore, it is necessary to further develop and refine genome editing approaches in NHPs. NHP pluripotent stem cells (PSCs) share key molecular signatures with the early embryo, which is an important target for genomic modification. Therefore, PSCs are a valuable test system for the validation of embryonic genome editing approaches. In the present study, we made use of the versatility of the piggyBac transposon system for different purposes in the context of NHP stem cell technology and genome editing. These include (1) Robust reprogramming of rhesus macaque fibroblasts to induced pluripotent stem cells (iPSCs); (2) Culture of the iPSCs under feeder-free conditions even after removal of the transgene resulting in transgene-free iPSCs; (3) Development of a CRISPR/Cas-based work-flow to edit the genome of rhesus macaque PSCs with high efficiency; (4) Establishment of a novel protocol for the derivation of gene-edited monoclonal NHP-iPSC lines. These findings facilitate efficient testing of genome editing approaches in NHP-PSC before their in vivo application.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Polo
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sophie Mißbach
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Stoyan Petkov
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Felix Mattern
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Anna Maierhofer
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Iga Grządzielewska
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Max Planck Molecular Biology Program (M.Sc./Ph.D.), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Yuliia Tereshchenko
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Max Planck Molecular Biology Program (M.Sc./Ph.D.), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Daniel Urrutia-Cabrera
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Cellular Reprogramming Unit, Center for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Australia
| | - Thomas Haaf
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtalle 34, 37073, Göttingen, Germany
| | - Iris Bartels
- Institute of Human Genetics, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
48
|
Tee NGZ, Loo SJ, Su LP, Tao ZH, Gui F, Luo JH, Ye L. A diastolic dysfunction model in non-human primates with transverse aortic constriction. Exp Anim 2021; 70:498-507. [PMID: 34135271 PMCID: PMC8614021 DOI: 10.1538/expanim.21-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Transverse aortic constriction (TAC) has been widely used to study cardiac hypertrophy, fibrosis, diastolic dysfunction, and heart failure in rodents. Few studies have been reported in preclinical animal models. The similar physiology and anatomy between non-human primates (NHPs) and humans make NHPs valuable models for disease modeling and testing of drugs and devices. In the current study, we aimed to establish a TAC model in NHPs and characterize the structural and functional profiles of the heart after TAC. A non-absorbable suture was placed around the aorta between the brachiocephalic artery and left common carotid artery to create TAC. NHPs were divided into 2 groups according to pressure gradient (PG): the Mild Group (PG=31.01 ± 12.40 mmHg, n=3) and the Moderate Group (PG=53.00 ± 9.37 mmHg, n=4). At 4 weeks after TAC, animals in both TAC groups developed cardiac hypertrophy: enlarged myocytes and increased wall thickness of the left ventricular (LV) anterior wall. Although both TAC groups had normal systolic function that was similar to a Sham Group, the Moderate Group showed diastolic dysfunction that was associated with more severe cardiac fibrosis, as evidenced by a reduced A wave velocity, large E wave velocity/A wave velocity ratio, and short isovolumic relaxation time corrected by heart rate. Furthermore, no LV arrhythmia was observed in either animal group after TAC. A diastolic dysfunction model with cardiac hypertrophy and fibrosis was successfully developed in NHPs.
Collapse
Affiliation(s)
- Nicole Gee-Zhi Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore
| | - Sze-Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore
| | - Li-Ping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore
| | - Zhong-Hao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University
| | - Jun-Hua Luo
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore
| |
Collapse
|
49
|
Hritzo B, Legesse B, Ward JM, Kaur A, Holmes-Hampton GP, Moroni M. Investigating the Multi-Faceted Nature of Radiation-Induced Coagulopathies in a Göttingen Minipig Model of Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 196:156-174. [PMID: 34019667 DOI: 10.1667/rade-20-00073.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.
Collapse
Affiliation(s)
- Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
50
|
Park EJ, Kim SN, Yoon C, Cho JW, Lee GH, Kim DW, Park J, Choi I, Lee SH, Song J, Lim HJ, Kang MS, Lee HS. Repeated intratracheal instillation of zinc oxide nanoparticles induced pulmonary damage and a systemic inflammatory response in cynomolgus monkeys. Nanotoxicology 2021; 15:621-635. [PMID: 33870832 DOI: 10.1080/17435390.2021.1905899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, some researchers have demonstrated that inhaled zinc oxide nanoparticles (ZnONPs) induce an acute systemic inflammatory response in workers. Considering nonhuman primates are preferably considered an animal model for translational research due to their proven similarity with humans in terms of genetics and physiology, we intratracheally instilled ZnONPs to cynomolgus monkey for 14 days and identified the toxic mechanism and bioaccumulation. ZnONPs were rapidly ionized or aggregated in a simulated pulmonary fluid, and they attracted neutrophils to the lungs and increased the pulmonary level of inflammatory mediators. Additionally, thickened alveolar walls, fibrin clots, and hemorrhages were observed in the lungs of the monkeys instilled with the higher dose accompanied by cell debris in the alveolar ducts and alveoli. Dark-field microscopy images revealed translocation of ZnONPs into other tissues accompanied by an increase in the relative weight of livers to body weight. In addition, when instilled at the higher dose, the albumin/globulin ratio notably decreased compared to the control, whereas the C-reactive protein (CRP) level was significantly elevated. ZnONPs also clearly induced apoptotic cell death in a 24 h exposure to alveolar macrophages. Taken together, part of inhaled ZnONPs may be ionized in the lung, resulting in acute toxic effects, including cell death and tissue damage, and the rest may move to other tissues in the form of particles, causing a systemic inflammatory response. Based on the proven evidence among workers, we also suggest that the CRP level can be recommended as a biomarker for ZnONPs-induced adverse health effects.
Collapse
Affiliation(s)
- Eun-Jung Park
- East-West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Human Health and Environmental Toxins Research Center, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea
| | - Soo Nam Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Bio-Health Convergence Institute GLP Lab, Korea Testing Certification Institute, Cheongju, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Seoul, South Korea
| | - Jae-Woo Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Seung Hyeun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeongah Song
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hyun-Ji Lim
- Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea.,Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hong-Soo Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| |
Collapse
|