1
|
Irwandi RA, Marruganti C, Collins G, Carvalho JDS, Gilroy D, D’Aiuto F. The translational potential of inflammation-induced skin blister human models in exploring the pathogenesis of periodontitis and its systemic health implications. Front Immunol 2024; 15:1469828. [PMID: 39737182 PMCID: PMC11682961 DOI: 10.3389/fimmu.2024.1469828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Periodontitis is a highly prevalent chronic disease. Despite decades of extensive research on the topic, a complete understanding of its immunopathogenesis, especially when linked to other inflammatory comorbidities, is lacking. Ex vivo human and in vivo animal experiments have shown the host inflammatory response's crucial role in both the disease's onset and its systemic implications. These approaches, however, remain questionable when translating these findings into real-world scenarios linked to periodontitis. A clear need for new in vivo human models is discussed, especially within the context of understanding the host response to key pathogens linked to periodontitis, such as Porphyromonas gingivalis (P. gingivalis). Therefore, a skin blister model was employed to describe the stages of the host immune response in humans after challenges by microbial and/or sterile insults. A novel human challenge model using UV-killed P. gingivalis holds promise in producing new evidence and bridging the gap of the host response to periodontitis and its links with other common chronic diseases.
Collapse
Affiliation(s)
- Rizky Aditya Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Crystal Marruganti
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - George Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Derek Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
2
|
Fredsgaard-Jones T, Harris SA, Morrison H, Ateere A, Nassanga B, Ramon RL, Mitton C, Fletcher E, Decker J, Preston-Jones H, Jackson S, Mawer A, Satti I, Barer M, Hinks T, Bettinson H, McShane H. A dose escalation study to evaluate the safety of an aerosol BCG infection in previously BCG-vaccinated healthy human UK adults. Front Immunol 2024; 15:1427371. [PMID: 39611145 PMCID: PMC11602284 DOI: 10.3389/fimmu.2024.1427371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. Bacillus Calmette-Guérin (BCG), the only licensed vaccine, provides limited protection. Controlled human infection models (CHIMs) are useful in accelerating vaccine development for pathogens with no correlates of protection; however, the need for prolonged treatment makes Mycobacterium tuberculosis an unethical challenge agent. Aerosolised BCG provides a potential safe surrogate of infection. A CHIM in BCG-vaccinated as well as BCG-naïve individuals would allow identification of novel BCG-booster vaccine candidates and facilitate CHIM studies in populations with high TB endemicity. The purpose of this study was to evaluate the safety and utility of an aerosol BCG CHIM in historically BCG-vaccinated volunteers. Methods There were 12 healthy, historically BCG-vaccinated UK adults sequentially enrolled into dose-escalating groups. The first three received 1 × 104 CFU aerosol BCG Danish 1331 via a nebuliser. After safety review, subsequent groups received doses of 1 × 105 CFU, 1 × 106 CFU, or 1 × 107 CFU. Safety was monitored through self-reported adverse events (AEs), laboratory tests, and lung function testing. Immunology blood samples were taken pre-infection and at multiple timepoints post-infection. A bronchoalveolar lavage (BAL) taken 14 days post-infection was analysed for presence of live BCG. Results No serious AEs occurred during the study. Solicited systemic and respiratory AEs were frequent in all groups, but generally short-lived and mild in severity. There was a trend for more reported AEs in the highest-dose group. No live BCG was detected in BAL from any volunteers. Aerosol BCG induced potent systemic cellular immune responses in the highest-dose group 7 days post-infection. Discussion Aerosol BCG infection up to a dose of 1 × 107 CFU was well-tolerated in historically BCG-vaccinated healthy, UK adults. No live BCG was detected in the BAL fluid 14 days post-infection despite potent systemic responses, suggesting early clearance. Further work is needed to expand the number of volunteers receiving BCG via the aerosol route to refine and establish utility of this aerosol BCG CHIM. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04777721.
Collapse
Affiliation(s)
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alberta Ateere
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Celia Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eve Fletcher
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jonathan Decker
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | | | - Susan Jackson
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Andrew Mawer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Michael Barer
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
4
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
6
|
Balasingam S, Dheda K, Fortune S, Gordon SB, Hoft D, Kublin JG, Loynachan CN, McShane H, Morton B, Nambiar S, Sharma NR, Robertson B, Schrager LK, Weller CL. Review of Current Tuberculosis Human Infection Studies for Use in Accelerating Tuberculosis Vaccine Development: A Meeting Report. J Infect Dis 2024; 230:e457-e464. [PMID: 38709726 PMCID: PMC11326834 DOI: 10.1093/infdis/jiae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Collapse
Affiliation(s)
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town (UCT) Lung Institute and South African Medical Research Council/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, South Africa
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen B Gordon
- Clinical Experimental Medicine, Malawi Liverpool Wellcome Programme, Blantyre
| | - Daniel Hoft
- Departments of Internal Medicine and Molecular Microbiology & Immunology, Saint Louis University of Medicine, Missouri
| | - James G Kublin
- Cancer Center, Vaccine and Infectious Disease Division, Fred Hutchinson Institute, Seattle, Washington
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, United Kingdom
| | - Sujatha Nambiar
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | | - Brian Robertson
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Lewis K Schrager
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | |
Collapse
|
7
|
Krishnan N, Priestman M, Uhía I, Charitakis N, Glegola-Madejska IT, Baer TM, Tranberg A, Faraj A, Simonsson USH, Robertson BD. A noninvasive BCG skin challenge model for assessing tuberculosis vaccine efficacy. PLoS Biol 2024; 22:e3002766. [PMID: 39159267 PMCID: PMC11361749 DOI: 10.1371/journal.pbio.3002766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/29/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
We report here on the characterisation in mice of a noninvasive bacille Calmette-Guérin (BCG) skin challenge model for assessing tuberculosis (TB) vaccine efficacy. Controlled human infection models (CHIMs) are valuable tools for assessing the relevant biological activity of vaccine candidates, with the potential to accelerate TB vaccine development into the clinic. TB infection poses significant constraints on the design of a CHIM using the causative agent Mycobacterium tuberculosis (Mtb). A safer alternative is a challenge model using the attenuated vaccine agent Mycobacterium bovis BCG as a surrogate for Mtb, and intradermal (skin) challenge as an alternative to pulmonary infection. We have developed a unique noninvasive imaging system based on fluorescent reporters (FluorBCG) to quantitatively measure bacterial load over time, thereby determining a relevant biological vaccine effect. We assessed the utility of this model to measure the effectiveness of 2 TB vaccines: the currently licenced BCG and a novel subunit vaccine candidate. To assess the efficacy of the skin challenge model, a nonlinear mixed-effects models was built describing the decline of fluorescence over time. The model-based analysis identified that BCG vaccination reduced the fluorescence readout of both fluorophores compared to unvaccinated mice (p < 0.001). However, vaccination with the novel subunit candidate did not alter the fluorescence decline compared to unvaccinated mice (p > 0.05). BCG-vaccinated mice that showed the reduced fluorescent readout also had a reduced bacterial burden in the lungs when challenged with Mtb. This supports the fluorescence activity in the skin as a reflection of vaccine induced functional pulmonary immune responses. This novel noninvasive approach allows for repeated measurements from the challenge site, providing a dynamic readout of vaccine induced responses over time. This BCG skin challenge model represents an important contribution to the ongoing development of controlled challenge models for TB.
Collapse
Affiliation(s)
- Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Miles Priestman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Iria Uhía
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Natalie Charitakis
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Izabella T. Glegola-Madejska
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Thomas M. Baer
- Stanford Photonics Research Center, Stanford University, Stanford, California, United States of America
| | - Albin Tranberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alan Faraj
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulrika SH Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Satti I, Marshall JL, Harris SA, Wittenberg R, Tanner R, Lopez Ramon R, Wilkie M, Ramos Lopez F, Riste M, Wright D, Peralta Alvarez MP, Williams N, Morrison H, Stylianou E, Folegatti P, Jenkin D, Vermaak S, Rask L, Cabrera Puig I, Powell Doherty R, Lawrie A, Moss P, Hinks T, Bettinson H, McShane H. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:909-921. [PMID: 38621405 DOI: 10.1016/s1473-3099(24)00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.
Collapse
Affiliation(s)
- Iman Satti
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Morven Wilkie
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Michael Riste
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Nicola Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Linnea Rask
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Alison Lawrie
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Jeyanathan M, Xing Z. A new tool for accelerating tuberculosis vaccine development. THE LANCET. INFECTIOUS DISEASES 2024; 24:803-804. [PMID: 38621406 DOI: 10.1016/s1473-3099(24)00178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Carter E, Morton B, ElSafadi D, Jambo K, Kenny-Nyazika T, Hyder-Wright A, Chiwala G, Chikaonda T, Chirwa AE, Gonzalez Sanchez J, Yip V, Biagini G, Pennington SH, Saunderson P, Farrar M, Myerscough C, Collins AM, Gordon SB, Ferreira DM. A feasibility study of controlled human infection with intradermal Bacillus Calmette-Guérin (BCG) injection: Pilot BCG controlled human infection model. Wellcome Open Res 2024; 8:424. [PMID: 39219857 PMCID: PMC11362739 DOI: 10.12688/wellcomeopenres.19811.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 09/04/2024] Open
Abstract
Tuberculosis (TB) caused 1.5 million deaths in 2020, making it the leading infectious killer after COVID-19. Bacille Calmette-Guerin (BCG) is the only licensed vaccine against TB but has sub-optimal efficacy against pulmonary TB and reduced effectiveness in regions close to the equator with high burden. Efforts to find novel vaccines are hampered due to the need for large-scale, prolonged, and costly clinical trials. Controlled human infection models (CHIMs) for TB may be used to accelerate vaccine development by ensuring only the most promising vaccine candidates are selected for phase 3 trials, but it is not currently possible to give participants Mycobacterium tuberculosis as a challenge agent. This study aims to replicate and refine an established BCG CHIM at the Liverpool School of Tropical Medicine. Participants will receive an intradermal injection with licensed BCG vaccine (Statens Serum Institut strain). In phase A, participants will undergo punch biopsy two weeks after administration, paired with minimally invasive methods of skin sampling (skin swab, microbiopsy, skin scrape). BCG detection by classical culture and molecular methods will be compared between these techniques and gold standard punch biopsy. Techniques meeting our pre-defined sensitivity and specificity criteria will be applied in Phase B to longitudinally assess intradermal BCG growth two, seven and fourteen days after administration. We will also measure compartmental immune responses in skin, blood and respiratory mucosa in Phase B. This feasibility study will transfer and refine an existing and safe model of BCG controlled human infection. Longitudinal BCG quantification has the potential to increase model sensitivity to detect vaccine and therapeutic responses. If successful, we aim to transfer the model to Malawi in future studies, a setting with endemic TB disease, to accelerate development of vaccines and therapeutics relevant for underserved populations who stand to benefit the most. Registration: ISRCTN: ISRCTN94098600 and ClinicalTrials.gov: NCT05820594.
Collapse
Affiliation(s)
- Emma Carter
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Dima ElSafadi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | | | | | - Gift Chiwala
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Tarsizio Chikaonda
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Anthony E. Chirwa
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | | | - Vincent Yip
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- University of Liverpool, Liverpool, England, L69 3BX, UK
| | | | | | | | - Madlen Farrar
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | | | - Stephen B. Gordon
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- University of Oxford, Oxford, England, UK
| |
Collapse
|
11
|
Blazevic A, Edwards RL, Xia M, Eickhoff CS, Hamzabegovic F, Meza KA, Ning H, Tennant J, Mosby KJ, Ritchie JC, Girmay T, Lai L, McCullough M, Beck A, Kelley C, Edupuganti S, Kabbani S, Buchanan W, Makhene MK, Voronca D, Cherikh S, Goll JB, Rouphael NG, Mulligan MJ, Hoft DF. Phase 1 Open-Label Dose Escalation Trial for the Development of a Human Bacillus Calmette-Guérin Challenge Model for Assessment of Tuberculosis Immunity In Vivo. J Infect Dis 2024; 229:1498-1508. [PMID: 38019956 PMCID: PMC11095547 DOI: 10.1093/infdis/jiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION NCT01868464 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Azra Blazevic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Rachel L Edwards
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Mei Xia
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | | | - Fahreta Hamzabegovic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Krystal A Meza
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Huan Ning
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Janice Tennant
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Karla J Mosby
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - James C Ritchie
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Tigisty Girmay
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Lilin Lai
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Michele McCullough
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Allison Beck
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Colleen Kelley
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Srilatha Edupuganti
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Sarah Kabbani
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Wendy Buchanan
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mamodikoe K Makhene
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Delia Voronca
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Sami Cherikh
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Johannes B Goll
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Nadine G Rouphael
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | | | - Daniel F Hoft
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| |
Collapse
|
12
|
Tian X, Janes HE, Kublin JG. Statistical design and analysis of controlled human malaria infection trials. Malar J 2024; 23:133. [PMID: 38702775 PMCID: PMC11068571 DOI: 10.1186/s12936-024-04959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials. METHODS Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies. RESULTS In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test. CONCLUSIONS Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.
Collapse
Affiliation(s)
- Xiaowen Tian
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Holly E Janes
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
14
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
16
|
Hilligan KL, Namasivayam S, Clancy CS, Baker PJ, Old SI, Peluf V, Amaral EP, Oland SD, O'Mard D, Laux J, Cohen M, Garza NL, Lafont BAP, Johnson RF, Feng CG, Jankovic D, Lamiable O, Mayer-Barber KD, Sher A. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2. Nat Commun 2023; 14:8229. [PMID: 38086794 PMCID: PMC10716133 DOI: 10.1038/s41467-023-43447-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Victoria Peluf
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danielle O'Mard
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julie Laux
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole L Garza
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carl G Feng
- Immunology and Host Defense Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
18
|
Hu C, Qiu Y, Guo J, Cao Y, Li D, Du Y. An Oxygen Supply Strategy for Sonodynamic Therapy in Tuberculous Granuloma Lesions Using a Catalase-Loaded Nanoplatform. Int J Nanomedicine 2023; 18:6257-6274. [PMID: 37936950 PMCID: PMC10627092 DOI: 10.2147/ijn.s430019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (MTB) that remains a major global health challenge. One of the main obstacles to effective treatment is the heterogeneous microenvironment of TB granulomas. This study aimed to investigate the potential of a hypoxic remission-based strategy to enhance the outcome of tuberculosis treatment when implemented in combination with ultrasound. Methods A PLGA nanoparticle (LEV@CAT-NPs) loaded with levofloxacin (LEV) and catalase (CAT) was fabricated by a double emulsification method, and its physical characteristics, oxygen production capacity, drug release capacity, and biosafety were thoroughly investigated. The synergistic therapeutic effects of ultrasound (US)-mediated LEV@CAT-NPs were evaluated using an experimental mouse model of subcutaneous tuberculosis granuloma induced by Bacille Calmette-Guérin (BCG) as a substitute for MTB. Results LEV@CAT-NPs exhibited excellent oxygen production capacity, biosafety, and biocompatibility. Histological analysis revealed that ultrasound-mediated LEV@CAT-NPs could effectively remove bacteria from tuberculous granulomas, significantly alleviate the hypoxia state, reduce the necrotic area and inflammatory cells within the granuloma, and increase the penetration of dyes in granuloma tissues. The combined treatment also reduced the serum levels of inflammatory cytokines (eg, TNF-α, IL-6, and IL-8), and significantly downregulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). These results suggested that the synergistic treatment of ultrasound-mediated LEV@CAT-NPs effectively eradicated the bacterial infection and reversed the hypoxic microenvironment of tuberculous granulomas, further promoting tissue repair. Conclusion This study provides a non-invasive and new avenue for treating refractory tuberculosis infections. The potential role of regulating hypoxia within infected lesions as a therapeutic target for infection deserves further exploration in future studies.
Collapse
Affiliation(s)
- Can Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuchao Cao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
19
|
Nasiri MJ, Silva DR, Rommasi F, Zahmatkesh MM, Tajabadi Z, Khelghati F, Sarmastzadeh T, Centis R, D'Ambrosio L, Bombarda S, Dalcolmo MP, Galvão T, de Queiroz Mello FC, Rabahi MF, Pontali E, Solovic I, Tadolini M, Marconi L, Tiberi S, van den Boom M, Sotgiu G, Migliori GB. Vaccination in post-tuberculosis lung disease management: A review of the evidence. Pulmonology 2023:S2531-0437(23)00129-0. [PMID: 37679219 DOI: 10.1016/j.pulmoe.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Post-tuberculosis lung disease (PTLD), as other chronic respiratory disorders, may have infectious complications; some of them can be prevented with vaccinations. So far, no document has discussed the potential role of vaccination in PTLD. Therefore, the objective of this review was to describe vaccination recommendations to prevent infections potentially capable of complicating PTLD. MATERIALS AND METHODS A non-systematic review of the literature was conducted. The following keywords were used: tuberculosis, vaccination, vaccines and PTLD. PubMed/MEDLINE and Embase were used as the search engine, focusing on English-language literature only. RESULTS We identified 9 vaccines potentially useful in PTLD. Influenza, pneumococcal and anti-COVID-19 vaccinations should be recommended. Patients with PTLD can also benefit from vaccination against shingles. Vaccination against pertussis is mainly relevant during childhood. Diphtheria, tetanus and measles vaccination are recommended for general population and should be considered in patients with PTLD not previously vaccinated. Tdap (Tetanus, diphtheria, and pertussis) booster should be repeated in every adult every ten years. Vaccination against BCG retains its importance during early childhood in countries where TB is endemic. CONCLUSIONS Vaccination deserves to be considered among the strategies to prevent and/or mitigate PTLD complications. Further evidence is necessary to better understand which vaccines have the greatest impact and cost-benefit.
Collapse
Affiliation(s)
- M J Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Rommasi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M M Zahmatkesh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Tajabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Khelghati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - T Sarmastzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - L D'Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - S Bombarda
- Secretaria de Estado da Saúde de São Paulo, Programa de Controle da Tuberculose, São Paulo, Brazil
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - T Galvão
- Serviço de Pneumologia, Hospital Especializado Octávio Mangabeira, Secretaria de Saúde do Estado da Bahia, Salvador, Brazil
| | - F C de Queiroz Mello
- Thorax Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F Rabahi
- Faculdade de Medicina, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - E Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - I Solovic
- Department of Public Health, Faculty of Health, Catholic University, Ruzomberok, Slovakia; National Institute of Tuberculosis, Pulmonary Diseases and Thoracic Surgery, Vysne Hagy, Slovakia
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - L Marconi
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT United Kingdom
| | - M van den Boom
- World Health Organisation, Regional Office for the Eastern Mediterranean Region, Cairo, Egypt
| | - G Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Italy
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy.
| |
Collapse
|
20
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
23
|
Muhi S, Osowicki J, O'Brien D, Johnson PDR, Pidot S, Doerflinger M, Marshall JL, Pellegrini M, McCarthy J, Stinear TP. A human model of Buruli ulcer: The case for controlled human infection and considerations for selecting a Mycobacterium ulcerans challenge strain. PLoS Negl Trop Dis 2023; 17:e0011394. [PMID: 37384606 DOI: 10.1371/journal.pntd.0011394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Critical knowledge gaps regarding infection with Mycobacterium ulcerans, the cause of Buruli ulcer (BU), have impeded development of new therapeutic approaches and vaccines for prevention of this neglected tropical disease. Here, we review the current understanding of host-pathogen interactions and correlates of immune protection to explore the case for establishing a controlled human infection model of M. ulcerans infection. We also summarise the overarching safety considerations and present a rationale for selecting a suitable challenge strain.
Collapse
Affiliation(s)
- Stephen Muhi
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Daniel O'Brien
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Paul D R Johnson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Sacha Pidot
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julia L Marshall
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James McCarthy
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Timothy P Stinear
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Morrison H, Jackson S, McShane H. Controlled human infection models in COVID-19 and tuberculosis: current progress and future challenges. Front Immunol 2023; 14:1211388. [PMID: 37304270 PMCID: PMC10248465 DOI: 10.3389/fimmu.2023.1211388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.
Collapse
|
25
|
Dijkman K, Lindenstrøm T, Rosenkrands I, Søe R, Woodworth JS, Lindestam Arlehamn CS, Mortensen R. A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG. NPJ Vaccines 2023; 8:66. [PMID: 37160970 PMCID: PMC10169149 DOI: 10.1038/s41541-023-00666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
The only licensed tuberculosis (TB) vaccine, Bacillus Calmette Guerin (BCG), fails to reliably protect adolescents and adults from pulmonary TB, resulting in ~1.6 million deaths annually. Protein subunit vaccines have shown promise against TB in clinical studies. Unfortunately, most subunit vaccines require multiple administrations, which increases the risk of loss to follow-up and necessitates more complex and costly logistics. Given the well-documented adjuvant effect of BCG, we hypothesized that BCG co-administration could compensate for a reduced number of subunit vaccinations. To explore this, we developed an expression-optimized version of our H107 vaccine candidate (H107e), which does not cross-react with BCG. In the CAF®01 adjuvant, a single dose of H107e induced inferior protection compared to three H107e/CAF®01 administrations. However, co-administering a single dose of H107e/CAF®01 with BCG significantly improved protection, which was equal to BCG co-administered with three H107e/CAF®01 doses. Importantly, combining BCG with a single H107e/CAF®01 dose also increased protection in previously BCG-primed animals. Overall, a single dose of H107e/CAF®01 with BCG induced long-lived immunity and triggered BCG-specific Th17 responses. These data support co-administration of BCG and subunit vaccines in both BCG naïve and BCG-primed individuals as an improved TB vaccine strategy with reduced number of vaccination visits.
Collapse
Affiliation(s)
- Karin Dijkman
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Rikke Søe
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
26
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Vaccination with intravenous BCG protects macaques with pre-existing SIV infection from tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-2802306. [PMID: 37090620 PMCID: PMC10120779 DOI: 10.21203/rs.3.rs-2802306/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
28
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
29
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
30
|
Koeken VACM, Qi C, Mourits VP, de Bree LCJ, Moorlag SJCFM, Sonawane V, Lemmers H, Dijkstra H, Joosten LAB, van Laarhoven A, Xu CJ, van Crevel R, Netea MG, Li Y. Plasma metabolome predicts trained immunity responses after antituberculosis BCG vaccination. PLoS Biol 2022; 20:e3001765. [PMID: 36094960 PMCID: PMC9499240 DOI: 10.1371/journal.pbio.3001765] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/22/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
The antituberculosis vaccine Bacillus Calmette–Guérin (BCG) induces nonspecific protection against heterologous infections, at least partly through induction of innate immune memory (trained immunity). The amplitude of the response to BCG is variable, but the factors that influence this response are poorly understood. Metabolites, either released by cells or absorbed from the gut, are known to influence immune responses, but whether they impact BCG responses is not known. We vaccinated 325 healthy individuals with BCG, and collected blood before, 2 weeks and 3 months after vaccination, to assess the influence of circulating metabolites on the immune responses induced by BCG. Circulating metabolite concentrations after BCG vaccination were found to have a more pronounced impact on trained immunity responses, such as the increase in IL-1β and TNF-α production upon Staphylococcus aureus stimulation, than on specific adaptive immune memory, assessed as IFN-γ production in response to Mycobacterium tuberculosis. Circulating metabolites at baseline were able to predict trained immunity responses at 3 months after vaccination and enrichment analysis based on the metabolites positively associated with trained immunity revealed enrichment of the tricarboxylic acid (TCA) cycle and glutamine metabolism, both of which were previously found to be important for trained immunity. Several new metabolic pathways that influence trained immunity were identified, among which taurine metabolism associated with BCG-induced trained immunity, a finding validated in functional experiments. In conclusion, circulating metabolites are important factors influencing BCG-induced trained immunity in humans. Modulation of metabolic pathways may be a novel strategy to improve vaccine and trained immunity responses. The response to the BCG vaccine, which provides protection against tuberculosis as well as unrelated pathogens, is variable. This study shows that the baseline plasma metabolome is able to partially predict trained immunity upon BCG vaccination, identifying the metabolome as a potential source of this heterogeneity.
Collapse
Affiliation(s)
- Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cancan Qi
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Vera P. Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - L. Charlotte J. de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J. C. F. M. Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vidhisha Sonawane
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- * E-mail:
| |
Collapse
|
31
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
32
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
33
|
Warr AJ, Anterasian C, Shah JA, De Rosa SC, Nguyen FK, Maleche-Obimbo E, Cranmer LM, Matemo D, Mecha J, Kinuthia J, LaCourse SM, John-Stewart GC, Hawn TR. A CD4+ TNF+ monofunctional memory T-cell response to BCG vaccination is associated with Mycobacterium tuberculosis infection in infants exposed to HIV. EBioMedicine 2022; 80:104023. [PMID: 35533496 PMCID: PMC9092381 DOI: 10.1016/j.ebiom.2022.104023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/20/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The immunologic correlates of risk of Mycobacterium tuberculosis (Mtb) infection after BCG vaccination are unknown. The mechanism by which BCG influences the tuberculin skin test (TST) remains poorly understood. We evaluated CD4+ T-cell responses in infants exposed to HIV and uninfected (HEU) who received BCG at birth and examined their role in susceptibility to Mtb infection and influence on TST induration. METHODS HEU infants were enrolled in a randomised clinical trial of isoniazid (INH) to prevent Mtb infection in Kenya. We measured mycobacterial antigen-specific Th1 and Th17 cytokine responses at 6-10 weeks of age prior to INH randomisation and compared responses between Mtb infected and uninfected infants. Outcomes at 14 months of age included TST, QuantiFERON-Plus (QFT-Plus), and ESAT-6/CFP-10-specific non-IFN-γ cytokines measured in QFT-Plus supernatants. FINDINGS A monofunctional mycobacterial antigen-specific TNF+ CD4+ effector memory (CCR7-CD45RA-) T-cell response at 6-10 weeks of age was associated with Mtb infection at 14 months of age as measured by ESAT-6/CFP-10-specific IFN-γ and non-IFN-γ responses (Odds Ratio 2.26; Confidence Interval 1.27-4.15; P = 0.006). Mycobacterial antigen-specific polyfunctional effector memory Th1 responses at 6-10 weeks positively correlated with TST induration in infants without evidence of Mtb infection at 14 months, an association which was diminished by INH therapy. INTERPRETATION Induction of monofunctional TNF+ CD4+ effector memory T-cell responses may be detrimental in TB vaccine development. This study also provides mechanistic insight into the association of BCG-induced immune responses with TST induration and further evidence that TST-based diagnoses of Mtb infection in infants are imprecise. FUNDING Thrasher Research Fund.
Collapse
Affiliation(s)
- Alex J. Warr
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA,Corresponding author.
| | - Christine Anterasian
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Javeed A Shah
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA,Veteran Affairs Puget Sound Healthcare System, 1660 South Columbian Way, Seattle, WA 98108, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave North, E4-200, Seattle, WA 98109, USA,Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Felicia K. Nguyen
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA
| | - Elizabeth Maleche-Obimbo
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, PO Box 20723-00202, Nairobi, Kenya
| | - Lisa M. Cranmer
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Daniel Matemo
- Kenyatta National Hospital, PO Box 20723-00202, Nairobi, Kenya
| | - Jerphason Mecha
- Kenyatta National Hospital, PO Box 20723-00202, Nairobi, Kenya
| | - John Kinuthia
- Kenyatta National Hospital, PO Box 20723-00202, Nairobi, Kenya
| | - Sylvia M. LaCourse
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA,Department of Global Health, University of Washington, 325 9th Ave, Seattle, WA, 98104, USA
| | - Grace C. John-Stewart
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA,Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA,Department of Global Health, University of Washington, 325 9th Ave, Seattle, WA, 98104, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA
| |
Collapse
|
34
|
Kleinwaks G, Schmit V, Morrison J. Considering human challenge trials for tuberculosis vaccine development. Vaccine 2021; 40:173-174. [PMID: 34922788 DOI: 10.1016/j.vaccine.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Human challenge trials provide a promising route to cut down on the high, sometimes prohibitive, costs of vaccine development. By requiring fewer participants than a conventional clinical trial and reducing the time required for a trial, human challenge trials improve economic feasibility and reduce the risk of vaccine development. Tuberculosis is one disease where challenge trials could be very impactful, given that it is a widespread and dangerous disease that is nonetheless difficult to track in a standard clinical vaccine trial. Various attenuated strains of Mycobacterium tuberculosis are in development and can be used in a challenge trial in order to reduce the risk to challenge trial participants and their surrounding communities.
Collapse
|
35
|
Li G, Li J, Hou Y, Xie S, Xu J, Yang M, Li D, Du Y. Levofloxacin-Loaded Nanosonosensitizer as a Highly Efficient Therapy for Bacillus Calmette-Guérin Infections Based on Bacteria-Specific Labeling and Sonotheranostic Strategy. Int J Nanomedicine 2021; 16:6553-6573. [PMID: 34602818 PMCID: PMC8478796 DOI: 10.2147/ijn.s321631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The rapid emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) poses a significant challenge to the treatment of tuberculosis (TB). Sonodynamic antibacterial chemotherapy (SACT) combined with sonosensitizer-loaded nanoparticles with targeted therapeutic function is highly expected to eliminate bacteria without fear of drug resistance. This study aimed to investigate the antibacterial effect and underlying mechanism of levofloxacin-loaded nanosonosensitizer with targeted therapeutic function against Bacillus Calmette-Guérin bacteria (BCG, an MTB model). Methods This study developed levofloxacin-loaded PLGA-PEG (poly lactide-co-glycolide-polyethylene glycol) nanoparticles with BM2 aptamer conjugation on its surface using the crosslinking agents EDC and NHS (BM2-LVFX-NPs). The average diameter, zeta potential, morphology, drug-loading properties, and drug release efficiency of the BM2-LVFX-NPs were investigated. In addition, the targeting and toxicity of BM2-LVFX-NPs in the subcutaneous BCG infection model were evaluated. The biosafety, reactive oxygen species (ROS) production, cellular phagocytic effect, and antibacterial effect of BM2-LVFX-NPs in the presence of ultrasound stimulations (42 kHz, 0.67 W/cm2, 5 min) were also systematically evaluated. Results BM2-LVFX-NPs not only specifically recognized BCG bacteria in vitro but also gathered accurately in the lesion tissues. Drugs loaded in BM2-LVFX-NPs with the ultrasound-responsive feature were effectively released compared to the natural state. In addition, BM2-LVFX-NPs exhibited significant SACT efficiency with higher ROS production levels than others, resulting in the effective elimination of bacteria in vitro. Meanwhile, in vivo experiments, compared with other options, BM2-LVFX-NPs also exhibited an excellent therapeutic effect in a rat model with BCG infection after exposure to ultrasound. Conclusion Our work demonstrated that a nanosonosensitizer formulation with LVFX could efficiently translocate therapeutic drugs into the cell and improve the bactericidal effects under ultrasound, which could be a promising strategy for targeted therapy for MTB infections with high biosafety.
Collapse
Affiliation(s)
- Gangjing Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianhu Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuru Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuang Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
36
|
Klinger D, Hill BL, Barda N, Halperin E, Gofrit ON, Greenblatt CL, Rappoport N, Linial M, Bercovier H. Bladder Cancer Immunotherapy by BCG Is Associated with a Significantly Reduced Risk of Alzheimer's Disease and Parkinson's Disease. Vaccines (Basel) 2021; 9:vaccines9050491. [PMID: 34064775 PMCID: PMC8151667 DOI: 10.3390/vaccines9050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bacillus Calmette–Guerin (BCG) is a live attenuated form of Mycobacterium bovis that was developed 100 years ago as a vaccine against tuberculosis (TB) and has been used ever since to vaccinate children globally. It has also been used as the first-line treatment in patients with nonmuscle invasive bladder cancer (NMIBC), through repeated intravesical applications. Numerous studies have shown that BCG induces off-target immune effects in various pathologies. Accumulating data argue for the critical role of the immune system in the course of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, we tested whether repeated exposure to BCG during the treatment of NMIBC is associated with the risk of developing AD and PD. We presented a multi-center retrospective cohort study with patient data collected between 2000 and 2019 that included 12,185 bladder cancer (BC) patients, of which 2301 BCG-treated patients met all inclusion criteria, with a follow-up of 3.5 to 7 years. We considered the diagnosis date of AD and nonvascular dementia cases for BC patients. The BC patients were partitioned into those who underwent a transurethral resection of the bladder tumor followed by BCG therapy, and a disjoint group that had not received such treatment. By applying Cox proportional hazards (PH) regression and competing for risk analyses, we found that BCG treatment was associated with a significantly reduced risk of developing AD, especially in the population aged 75 years or older. The older population (≥75 years, 1578 BCG treated, and 5147 controls) showed a hazard ratio (HR) of 0.726 (95% CI: 0.529–0.996; p-value = 0.0473). While in a hospital-based cohort, BCG treatment resulted in an HR of 0.416 (95% CI: 0.203–0.853; p-value = 0.017), indicating a 58% lower risk of developing AD. The risk of developing PD showed the same trend with a 28% reduction in BCG-treated patients, while no BCG beneficial effect was observed for other age-related events such as Type 2 diabetes (T2D) and stroke. We attributed BCG’s beneficial effect on neurodegenerative diseases to a possible activation of long-term nonspecific immune effects. We proposed a prospective study in elderly people for testing intradermic BCG inoculation as a potential protective agent against AD and PD.
Collapse
Affiliation(s)
- Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Brian L. Hill
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Noam Barda
- Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat-Gan 6578898, Israel;
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah University Hospital, Jerusalem 91904, Israel;
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| | - Nadav Rappoport
- Department of Software and Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Correspondence: ; Tel.: +972-54-882-0035
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| |
Collapse
|
37
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
38
|
Brothwell JA, Griesenauer B, Chen L, Spinola SM. Interactions of the Skin Pathogen Haemophilus ducreyi With the Human Host. Front Immunol 2021; 11:615402. [PMID: 33613541 PMCID: PMC7886810 DOI: 10.3389/fimmu.2020.615402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
The obligate human pathogen Haemophilus ducreyi causes both cutaneous ulcers in children and sexually transmitted genital ulcers (chancroid) in adults. Pathogenesis is dependent on avoiding phagocytosis and exploiting the suppurative granuloma-like niche, which contains a myriad of innate immune cells and memory T cells. Despite this immune infiltrate, long-lived immune protection does not develop against repeated H. ducreyi infections—even with the same strain. Most of what we know about infectious skin diseases comes from naturally occurring infections and/or animal models; however, for H. ducreyi, this information comes from an experimental model of infection in human volunteers that was developed nearly three decades ago. The model mirrors the progression of natural disease and serves as a valuable tool to determine the composition of the immune cell infiltrate early in disease and to identify host and bacterial factors that are required for the establishment of infection and disease progression. Most recently, holistic investigation of the experimentally infected skin microenvironment using multiple “omics” techniques has revealed that non-canonical bacterial virulence factors, such as genes involved in central metabolism, may be relevant to disease progression. Thus, the immune system not only defends the host against H. ducreyi, but also dictates the nutrient availability for the invading bacteria, which must adapt their gene expression to exploit the inflammatory metabolic niche. These findings have broadened our view of the host-pathogen interaction network from considering only classical, effector-based virulence paradigms to include adaptations to the metabolic environment. How both host and bacterial factors interact to determine infection outcome is a current focus in the field. Here, we review what we have learned from experimental H. ducreyi infection about host-pathogen interactions, make comparisons to what is known for other skin pathogens, and discuss how novel technologies will deepen our understanding of this infection.
Collapse
Affiliation(s)
- Julie A Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brad Griesenauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stanley M Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
39
|
Assessment of Immune Protective T Cell Repertoire in Humans Immunized with Novel Tuberculosis Vaccines. Methods Mol Biol 2021. [PMID: 31933208 DOI: 10.1007/978-1-0716-0266-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tuberculosis (TB) is one of the major global health concerns. There has been a lack of an effective vaccine strategy. The Bacillus Calmette-Guerin (BCG), the only licensed vaccine against TB, is not effective against adult pulmonary TB, the highly contagious form of TB. In the past two decades or so, many novel TB vaccines have been developed, and some of them were evaluated in clinical trials. However, the lack of validated immune correlates to assess the clinical relevance of novel TB vaccines before their entry into costly efficacy trials is a huge challenge to the field of TB vaccine development. Here we describe a general protocol for the procedure of a systematic immunological approach that can be utilized to better assess the clinical relevance of TB vaccine-activated T cells in early phases of clinical studies.
Collapse
|
40
|
Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, van Crevel R, Curtis N, DiNardo AR, Dominguez-Andres J, Duivenvoorden R, Fanucchi S, Fayad Z, Fuchs E, Hamon M, Jeffrey KL, Khan N, Joosten LAB, Kaufmann E, Latz E, Matarese G, van der Meer JWM, Mhlanga M, Moorlag SJCFM, Mulder WJM, Naik S, Novakovic B, O'Neill L, Ochando J, Ozato K, Riksen NP, Sauerwein R, Sherwood ER, Schlitzer A, Schultze JL, Sieweke MH, Benn CS, Stunnenberg H, Sun J, van de Veerdonk FL, Weis S, Williams DL, Xavier R, Netea MG. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol 2021; 22:2-6. [PMID: 33293712 PMCID: PMC8020292 DOI: 10.1038/s41590-020-00845-6] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The similarities and differences between trained immunity and other immune processes are the subject of intense interrogation. Therefore, a consensus on the definition of trained immunity in both in vitro and in vivo settings, as well as in experimental models and human subjects, is necessary for advancing this field of research. Here we aim to establish a common framework that describes the experimental standards for defining trained immunity.
Collapse
Affiliation(s)
- Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre and McGill International TB Centre, McGill University, Montreal, QC, Canada.
| | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Shabaana Abdul Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Luis B Barreiro
- Department of Medicine, Genetic Section and, University of Chicago, Chicago, IL, USA
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nigel Curtis
- Department of Paediatrics, Infectious Diseases Research Group, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew R DiNardo
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jorge Dominguez-Andres
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphael Duivenvoorden
- Biomedical Engineering and Imaging Institute and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zahi Fayad
- The BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, NY, USA
| | - Melanie Hamon
- Chromatine et Infection G5, Institut Pasteur, Paris, France
| | - Kate L Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre and McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre and McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn and German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II" and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | | | - Musa Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Institute of Innate Immunity, University Hospitals Bonn and German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Shruti Naik
- Department of Pathology, Department of Medicine and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Luke O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Edward R Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics & Immunoregulation, Life and Medical Sciences Bonn, University of Bonn, Bonn, Germany
| | - Michael H Sieweke
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Henk Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Joseph Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine and Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - David L Williams
- Department of Surgery, Quillen College of Medicine and Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
42
|
Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, Fanucchi S, Theunissen K, Novakovic B, de Bont CM, Negishi Y, Fok ET, Kalafati L, Verginis P, Mourits VP, Koeken VACM, de Bree LCJ, Pruijn GJM, Fenwick C, van Crevel R, Joosten LAB, Joosten I, Koenen H, Mhlanga MM, Diavatopoulos DA, Chavakis T, Netea MG. BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils. Cell Rep 2020; 33:108387. [PMID: 33207187 PMCID: PMC7672522 DOI: 10.1016/j.celrep.2020.108387] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yessica Alina Rodriguez-Rosales
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Theunissen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Novakovic
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia M de Bont
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ezio T Fok
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, the Netherlands
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa M Mhlanga
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
43
|
Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development. Cells 2020; 9:cells9092109. [PMID: 32948003 PMCID: PMC7564904 DOI: 10.3390/cells9092109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.
Collapse
|
44
|
Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology 2020; 225:151951. [PMID: 32423788 DOI: 10.1016/j.imbio.2020.151951] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a major global health emergency. It is estimated that one third of global population are affected, predominantly with latent granuloma form of the disease. Mtb co-evolved with humans, for its obligatory intra-macrophage phagosome habitat and slow replication, balanced against unique mycobacterial innate immunity, which appears to be highly complex. TB is transmitted via cough aerosol Mtb inhalation. Bovine TB attenuated Bacillus Calmette Guerin (BCG) live vaccine has been in practice for protection of young children from severe disseminated Mtb infection, but not sufficiently for their lungs, as obtained by trials in TB endemic community. To augment BCG vaccine-driven innate and adaptive immunity for neonates and better protection against adult pulmonary TB, a number of BCG pre-vaccination based, subset vaccine candidates have been tested via animal preclinical, followed by safe clinical trials. BCG also enhances innate macrophage trained immunity and memory, through primordial intracellular Toll-like receptors (TLRs) 7 and 9, which recognise distinct mycobacterial molecular pattern signature. This signature is transmitted by TLR signalling via nuclear factor-κB, for activating innate immune transcription and expression of gene profiling in a mycobacterial signature-specific manner. These are epigenetically imprinted in reprogramming of distinct chromatin areas for innate immune memory, to be recalled following lung reinfection. Unique TB innate immunity and its trained memory are considered independent from adaptive immune B and T cells. On the other hand, adaptive immunity is crucial in Mtb containment in granulomatous latency, supported by innate immune cell infiltration. In nearly 5-10 % of susceptible people, latent TB may be activated due to immune evasion by Mtb from intracellular phagosome within macrophage, perpetrating TB. However, BCG and new recombinant BCG vaccines have the capacity, as indicated in pre- and clinical trials, to overcome such Mtb evasion. Various strategies include pro-inflammatory-bactericidal type 1 polarisation (M1) phenotype of the infected macrophage, involving thrombospondin-TLR pathway. Saprophytic M. smegmatis-based recombinant vaccines are also promising candidates against TB. BCG vaccination of neonates/infants in TB endemic countries also reduced their pneumonia caused by various microbes independent of TB immunity. Here, we discuss host immune response against Mtb, its immune evasion strategies, and the important role innate immunity plays in the development of protection against TB.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sanjib Bhakta
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
45
|
Schrager LK, Vekemens J, Drager N, Lewinsohn DM, Olesen OF. The status of tuberculosis vaccine development. THE LANCET. INFECTIOUS DISEASES 2020; 20:e28-e37. [DOI: 10.1016/s1473-3099(19)30625-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
|
46
|
Abdellrazeq GS, Mahmoud AH, Park KT, Fry LM, Elnaggar MM, Schneider DA, Hulubei V, Davis WC. relA is Achilles' heel for mycobacterial pathogens as demonstrated with deletion mutants in Mycobacterium avium subsp. paratuberculosis and mycobacterium bovis bacillus Calmette-Guérin (BCG). Tuberculosis (Edinb) 2020; 120:101904. [PMID: 32090858 DOI: 10.1016/j.tube.2020.101904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/22/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
Studies with Mycobacterium avium subsp. paratuberculosis (Map) in cattle revealed deletion of relA, a global regulator gene, abrogated ability of the mutant to establish a persistent infection, attributed to development of an immune response that cleared infection. Analysis of the recall response demonstrated presence of CD8 cytotoxic T cells that kill intracellular bacteria. Replication of the primary response demonstrated the CTL response could be elicited with the ΔMap/relA mutant or the target of the immune response, a 35 kD membrane protein. Follow up comparative studies with Mycobacterium bovis bacillus Calmette-Guérin (BCG) and a BCG relA (ΔBCG/relA) deletion mutant revealed deletion of relA enhanced the CTL response compared to BCG. Analysis of the cytokine profile of cells proliferating in response to stimulation with BCG or BCG/relA showed increased expression of IFN-γ, TNF-α, and IL-17 by cells stimulated with ΔBCG/relA in comparison with BCG. The proliferative and CTL responses were markedly reduced in response to stimulation with heat killed BCG or ΔBCG/relA. Intracellular bacterial killing was mediated through the perforin, granzyme B (GnzB), and the granulysin pathway. The data indicate relA is the Achilles' heel for pathogenic mycobacteria and deletion may be key to improving efficacy of attenuated vaccines for mycobacterial pathogens.
Collapse
Affiliation(s)
- Gaber S Abdellrazeq
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Asmaa H Mahmoud
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; Veterinary Quarantine of Alexandria, General Organization for Veterinary Services, Ministry of Agriculture and Land Reclamation, Egypt
| | - Kun-Taek Park
- Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, South Korea
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; USDA, ARS, Animal Disease Research Unit, Pullman, WA, USA
| | - Mahmoud M Elnaggar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; USDA, ARS, Animal Disease Research Unit, Pullman, WA, USA
| | - Victoria Hulubei
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
47
|
Tanner R, Satti I, Harris SA, O'Shea MK, Cizmeci D, O'Connor D, Chomka A, Matsumiya M, Wittenberg R, Minassian AM, Meyer J, Fletcher HA, McShane H. Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection. Front Immunol 2020; 10:2983. [PMID: 31998295 PMCID: PMC6968127 DOI: 10.3389/fimmu.2019.02983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a leading global cause of morbidity and mortality and an effective new vaccine is urgently needed. A major barrier to the rational development of novel TB vaccines is the lack of a validated immune correlate or biomarker of protection. Mycobacterial Growth Inhibition Assays (MGIAs) provide an unbiased measure of ability to control mycobacterial growth in vitro, and may represent a functional correlate of protection. However, the biological relevance of any potential correlate can only be assessed by determining the association with in vivo protection from either a controlled mycobacterial infection or natural development of TB disease. Our data demonstrate that the direct MGIA using peripheral blood mononuclear cells (PBMC) is measuring a biologically relevant response that correlates with protection from in vivo human BCG infection across two independent cohorts. This is the first report of an MGIA correlating with in vivo protection in the species-of-interest, humans, and furthermore on a per-individual as well as per-group basis. Control of mycobacterial growth in the MGIA is associated with a range of immune parameters measured post-BCG infection in vivo including the IFN-γ ELISpot response, frequency of PPD-specific IFN-γ or TNF-α producing CD4+ T cells and frequency of specific sub-populations of polyfunctional CD4+ T cells. Distinct transcriptomic profiles are associated with good vs. poor mycobacterial control in the MGIA, with good controllers showing enrichment for gene sets associated with antigen processing/presentation and the IL-23 pathway, and poor controllers showing enrichment for hypoxia-related pathways. This study represents an important step toward biologically validating the direct PBMC MGIA for use in TB vaccine development and furthermore demonstrates the utility of this assay in determining relevant immune mechanisms and pathways of protection.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew K. O'Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Deniz Cizmeci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Agnieszka Chomka
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Magali Matsumiya
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Wittenberg
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joel Meyer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Biffar L, Blunt L, Atkins W, Anderson P, Holder T, Xing Z, Vordermeier M, McShane H, Villarreal-Ramos B. Evaluating the sensitivity of the bovine BCG challenge model using a prime boost Ad85A vaccine regimen. Vaccine 2019; 38:1241-1248. [PMID: 31759733 DOI: 10.1016/j.vaccine.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-ɣ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-ɣ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.
Collapse
Affiliation(s)
- Lucia Biffar
- Jenner Institute Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK; TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Laura Blunt
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - William Atkins
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Paul Anderson
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Tom Holder
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK; Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Helen McShane
- Jenner Institute Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK; Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| |
Collapse
|
49
|
McShane H. Insights and challenges in tuberculosis vaccine development. THE LANCET. RESPIRATORY MEDICINE 2019; 7:810-819. [PMID: 31416767 DOI: 10.1016/s2213-2600(19)30274-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 02/09/2023]
Abstract
Tuberculosis kills more people than any other pathogen and the need for a universally effective vaccine has never been greater. An effective vaccine will be a key tool in achieving the targets set by WHO in the End TB Strategy. Tuberculosis vaccine development is difficult and slow. Substantial progress has been made in research and development of tuberculosis vaccines in the past 20 years, and two clinical trial results from 2018 provide reason for optimism. However, many challenges to the successful licensure and deployment of an effective tuberculosis vaccine remain. The development of new tools for vaccine evaluation might facilitate these processes, and continued collaborative working and sustained funding will be essential.
Collapse
Affiliation(s)
- Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Mendum TA, Chandran A, Williams K, Vordermeier HM, Villarreal-Ramos B, Wu H, Singh A, Smith AA, Butler RE, Prasad A, Bharti N, Banerjee R, Kasibhatla SM, Bhatt A, Stewart GR, McFadden J. Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle. BMC Genomics 2019; 20:431. [PMID: 31138110 PMCID: PMC6540422 DOI: 10.1186/s12864-019-5791-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.
Collapse
Affiliation(s)
- Tom A. Mendum
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aneesh Chandran
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Kerstin Williams
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | | | | | - H. Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Albel Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex A. Smith
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Rachel E. Butler
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aravind Prasad
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Neeraj Bharti
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Sunitha M. Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham R. Stewart
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| |
Collapse
|