1
|
Hoffmann C, Krasemann S, Wurr S, Hartmann K, Adam E, Bockholt S, Müller J, Günther S, Oestereich L. Lassa virus persistence with high viral titers following experimental infection in its natural reservoir host, Mastomys natalensis. Nat Commun 2024; 15:9319. [PMID: 39472431 PMCID: PMC11522386 DOI: 10.1038/s41467-024-53616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Lassa virus (LASV) outbreaks in West Africa pose a significant public health threat. We investigated the infection phenotype and transmission (horizontal and vertical) of LASV strain Ba366 in its natural host, Mastomys natalensis. Here we analyze viral RNA levels in body fluids, virus titers in organs and antibody presence in blood. In adults and 2-week-old animals, LASV causes transient infections with subsequent seroconversion. However, mice younger than two weeks exhibit persistent infections lasting up to 16 months despite antibody presence. LASV can be detected in various body fluids, organs, and cell types, primarily in lung, kidney, and gonadal epithelial cells. Despite the systemic virus presence, no pathological alterations in organs are observed. Infected animals efficiently transmit the virus throughout their lives. Our findings underscore the crucial role of persistently infected individuals, particularly infected females and their progeny, in LASV dissemination within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Adam
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jonas Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
2
|
Guo Y, Dong Y, Zheng R, Yan J, Li W, Xu Y, Yan X, Ke Y, Li Y, Xiang L. Correlation between viral infections in male semen and infertility: a literature review. Virol J 2024; 21:167. [PMID: 39080728 PMCID: PMC11290048 DOI: 10.1186/s12985-024-02431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024] Open
Abstract
Infertility affects approximately one-sixth of couples globally, with the incidence of male infertility steadily increasing. However, our understanding of the impact of viral infections on fertility remains limited. This review consolidates findings from previous studies, outlining 40 viruses identified in human semen and summarizing their key characteristics, modes of transmission, and their effects on both the reproductive and endocrine systems. Furthermore, it elucidates potential pathogenic mechanisms and treatment prospects of viruses strongly associated with male infertility. This synthesis will enhance our comprehension of how viral infections influence male reproductive health, offering valuable insights for future research as well as the diagnosis and treatment of infectious infertility.
Collapse
Affiliation(s)
- Yan Guo
- Department of Reproductive Gynecology, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunhua Dong
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- KUST-YPFPH Reproductive Medicine Joint Research Center, Medical school of Kunming University of Science and Technology, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Runzi Zheng
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- KUST-YPFPH Reproductive Medicine Joint Research Center, Medical school of Kunming University of Science and Technology, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiacong Yan
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- KUST-YPFPH Reproductive Medicine Joint Research Center, Medical school of Kunming University of Science and Technology, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weiyuan Li
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- KUST-YPFPH Reproductive Medicine Joint Research Center, Medical school of Kunming University of Science and Technology, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ya Xu
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xuelan Yan
- Department of Reproductive Gynecology, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunmei Ke
- Department of Reproductive Gynecology, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yantao Li
- Department of Reproductive Gynecology, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lifeng Xiang
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- KUST-YPFPH Reproductive Medicine Joint Research Center, Medical school of Kunming University of Science and Technology, Kunming, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Hashizume M, Takashima A, Iwasaki M. An mRNA-LNP-based Lassa virus vaccine induces protective immunity in mice. J Virol 2024; 98:e0057824. [PMID: 38767352 PMCID: PMC11237644 DOI: 10.1128/jvi.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Cross RW, Fenton KA, Woolsey C, Prasad AN, Borisevich V, Agans KN, Deer DJ, Dobias NS, Fears AC, Heinrich ML, Geisbert JB, Garry RF, Branco LM, Geisbert TW. Monoclonal antibody therapy protects nonhuman primates against mucosal exposure to Lassa virus. Cell Rep Med 2024; 5:101392. [PMID: 38280377 PMCID: PMC10897540 DOI: 10.1016/j.xcrm.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Lassa fever (LF) is an acute viral illness that causes thousands of deaths annually in West Africa. There are currently no Lassa virus (LASV) vaccines or antivirals approved for human use. Recently, we showed that combinations of broadly neutralizing human monoclonal antibodies (BNhuMAbs) known as Arevirumab-2 or Arevirumab-3 protected up to 100% of cynomolgus macaques against challenge with diverse lineages of LASV when treatment was initiated at advanced stages of disease. This previous work assessed efficacy against parenteral exposure. However, transmission of LASV to humans occurs primarily by mucosal exposure to virus shed from Mastomys rodents. Here, we describe the development of a lethal intranasal exposure macaque model of LF. This model is employed to show that Arevirumab cocktails rescue 100% of macaques from lethal LASV infection when treatment is initiated 8 days after LASV exposure. Our work demonstrates BNhuMAbs have utility in treating LASV infection acquired through mucosal exposure.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alyssa C Fears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert F Garry
- Zalgen Labs, LLC, Frederick, MD, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Cross RW, Heinrich ML, Fenton KA, Borisevich V, Agans KN, Prasad AN, Woolsey C, Deer DJ, Dobias NS, Rowland MM, Lathigra R, Borrega R, Geisbert JB, Garry RF, Branco LM, Geisbert TW. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc Natl Acad Sci U S A 2023; 120:e2304876120. [PMID: 37590417 PMCID: PMC10450431 DOI: 10.1073/pnas.2304876120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
There are no approved treatments for Lassa fever (LF), which is responsible for thousands of deaths each year in West Africa. A major challenge in developing effective medical countermeasures against LF is the high diversity of circulating Lassa virus (LASV) strains with four recognized lineages and four proposed lineages. The recent resurgence of LASV in Nigeria caused by genetically distinct strains underscores this concern. Two LASV lineages (II and III) are dominant in Nigeria. Here, we show that combinations of two or three pan-lineage neutralizing human monoclonal antibodies (8.9F, 12.1F, 37.D) known as Arevirumab-2 or Arevirumab-3 can protect up to 100% of cynomolgus macaques against challenge with both lineage II and III LASV isolates when treatment is initiated at advanced stages of disease on day 8 after LASV exposure. This work demonstrates that it may be possible to develop postexposure interventions that can broadly protect against most strains of LASV.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Natalie S. Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Raju Lathigra
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | | | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Robert F. Garry
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA70112
| | - Luis M. Branco
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| |
Collapse
|
6
|
Molecular Engineering of a Mammarenavirus with Unbreachable Attenuation. J Virol 2023; 97:e0138522. [PMID: 36533953 PMCID: PMC9888291 DOI: 10.1128/jvi.01385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.
Collapse
|
7
|
Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, Edeogu CO, Onisuru OO, Orji OU, Achilonu I. Combating Lassa Fever in West African Sub-Region: Progress, Challenges, and Future Perspectives. Viruses 2023; 15:146. [PMID: 36680186 PMCID: PMC9864412 DOI: 10.3390/v15010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology (MUST), Mbarara P.O. Box 1410, Uganda
- Department of Medical Biochemistry, Kampala International University, Bushenyi, Ishaka P.O. Box 71, Uganda
| | - Chinedum Uche Emelike
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Chuks Oswald Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|
8
|
Luna Virus and Helminths in Wild Mastomys natalensis in Two Contrasting Habitats in Zambia: Risk Factors and Evidence of Virus Dissemination in Semen. Pathogens 2022; 11:pathogens11111345. [DOI: 10.3390/pathogens11111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV–helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47–59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11–76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35–86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10–18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.
Collapse
|
9
|
LaVergne SM, Sakabe S, Momoh M, Kanneh L, Bond N, Garry RF, Grant DS, de la Torre JC, Oldstone MBA, Schieffelin JS, Sullivan BM. Expansion of CD8+ T cell population in Lassa virus survivors with low T cell precursor frequency reveals durable immune response in most survivors. PLoS Negl Trop Dis 2022; 16:e0010882. [PMID: 36441765 PMCID: PMC9731491 DOI: 10.1371/journal.pntd.0010882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/08/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Lassa virus is a priority pathogen for vaccine research and development, however the duration of cellular immunity and protection in Lassa fever (LF) survivors remains unclear. METHODS We investigated Lassa virus specific CD8+ T cell responses in 93 LF survivors. Peripheral blood mononuclear cells from these individuals were infected with recombinant vesicular stomatitis virus encoding Lassa virus antigens and virus specific T cell responses were measured after 18-hour incubation. Participants who had undetectable CD8+ T cell response underwent further analysis using a 10-day T cell proliferation assays to evaluate for low T cell precursor frequency. RESULTS Forty-five of the 93 LF survivors did not have a Lassa virus specific CD8+ T cell response. Of those with responses and a known date of onset of LF (N = 11), 9 had LF within the last ten years. Most participants without a measurable CD8+ T cell response were more than 10 years removed from a clinical history of LF (N = 14/16). Fourteen of 21 patients (67%) with undetectable CD8+ T cell response had a measurable Lassa virus specific CD8+ T cell response with the 10-day assay. DISCUSSION Despite reports of strong CD8+ T cell responses during acute Lassa virus infection, circulating Lassa virus-specific CD8+ T cells declined to undetectable levels in most Lassa fever survivors after ten years when evaluated with an 18-hour T cell stimulation. However, when Lassa virus-specific T cells were expanded prior to restimulation, a Lassa virus-specific CD8+ T cell response could be detected in many if the samples that were negative in the 18-hour stimulation assay, suggesting that prolonged cellular immunity does exist in Lassa fever survivors at low frequencies.
Collapse
Affiliation(s)
- Stephanie M. LaVergne
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
- Division of Infectious Diseases, University of California, San Diego, California, United States of America
| | - Saori Sakabe
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- Eastern Technical University of Sierra Leone, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Nell Bond
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Robert F. Garry
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Donald S. Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Juan Carlos de la Torre
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - Michael B. A. Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - John S. Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Brian M. Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
- La Jolla Institute for Immunology, San Diego, California, United States of America
| |
Collapse
|
10
|
Reyna RA, Maruyama J, Mantlo EK, Manning JT, Taniguchi S, Makishima T, Lukashevich IS, Paessler S. Depletion of CD4 and CD8 T Cells Reduces Acute Disease and Is Not Associated with Hearing Loss in ML29-Infected STAT1-/- Mice. Biomedicines 2022; 10:2433. [PMID: 36289695 PMCID: PMC9598517 DOI: 10.3390/biomedicines10102433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa virus (LASV) is a zoonotic virus endemic to western Africa that can cause a potentially lethal and hemorrhagic disease, Lassa fever (LF). Survivors suffer a myriad of sequelae, most notably sudden onset sensorineural hearing loss (SNHL), the mechanism of which remains unclear. Unfortunately, studies aiming to identify the mechanism of these sequelae are limited due to the biosafety level 4 (BSL4) requirements of LASV itself. ML29, a reassortant virus proposed as an experimental vaccine candidate against LASV, is potentially an ideal surrogate model of LF in STAT1-/- mice due to similar phenotype in these animals. We intended to better characterize ML29 pathogenesis and potential sequelae in this animal model. Our results indicate that while both CD4 and CD8 T cells are responsible for acute disease in ML29 infection, ML29 induces significant hearing loss in a mechanism independent of either CD4 or CD8 T cells. We believe that this model could provide valuable information for viral-associated hearing loss in general.
Collapse
Affiliation(s)
- Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Emily K. Mantlo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
de Albuquerque BHDR, de Oliveira MTFC, Aderaldo JF, de Medeiros Garcia Torres M, Lanza DCF. Human seminal virome: a panel based on recent literature. Basic Clin Androl 2022; 32:16. [PMID: 36064315 PMCID: PMC9444275 DOI: 10.1186/s12610-022-00165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Background The seminal virome and its implications for fertility remain poorly understood. To date, there are no defined panels for the detection of viruses of clinical interest in seminal samples. Results In this study, we characterized the human seminal virome based on more than 1,000 studies published over the last five years. Conclusions The number of studies investigating viruses that occur in human semen has increased, and to date, these studies have been mostly prospective or related to specific clinical findings. Through the joint analysis of all these studies, we have listed the viruses related to the worsening of seminal parameters and propose a new panel with the main viruses already described that possibly affect male fertility and health. This panel can assist in evaluating semen quality and serve as a tool for investigation in cases of infertility.
Collapse
|
12
|
Maruyama J, Reyna RA, Kishimoto-Urata M, Urata S, Manning JT, Harsell N, Cook R, Huang C, Nikolich-Zugich J, Makishima T, Paessler S. CD4 T-cell depletion prevents Lassa fever associated hearing loss in the mouse model. PLoS Pathog 2022; 18:e1010557. [PMID: 35605008 PMCID: PMC9166448 DOI: 10.1371/journal.ppat.1010557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), which presents as a lethal hemorrhagic disease in severe cases. LASV-induced hearing loss in survivors is a huge socioeconomic burden, however, the mechanism(s) leading to hearing loss is unknown. In this study, we evaluate in a mouse LF model the auditory function using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to determine the mechanisms underlying LASV-induced hearing loss. In the process, we pioneered measures of ABR and DPOAE tests in rodents in biosafety level 4 (BSL-4) facilities. Our T cell depletion studies demonstrated that CD4 T-cells play an important role in LASV-induced hearing loss, while CD8 T-cells are critical for the pathogenicity in the acute phase of LASV infection. Results presented in this study may help to develop future countermeasures against acute disease and LASV-induced hearing loss.
Collapse
Affiliation(s)
- Junki Maruyama
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rachel A. Reyna
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Megumi Kishimoto-Urata
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Urata
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nantian Harsell
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rebecca Cook
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Tomoko Makishima
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
13
|
To A, Lai CY, Wong TAS, Namekar M, Lieberman MM, Lehrer AT. Adjuvants Differentially Modulate the Immunogenicity of Lassa Virus Glycoprotein Subunits in Mice. FRONTIERS IN TROPICAL DISEASES 2022; 3. [PMID: 37034031 PMCID: PMC10081732 DOI: 10.3389/fitd.2022.847598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lassa Fever (LF) is an acute viral hemorrhagic fever caused by Lassa virus (LASV) that is primarily transmitted through contact with wild rodents in West Africa. Although several advanced vaccine candidates are progressing through clinical trials, some effective vaccines are virally vectored and thus require a stringent cold-chain, making distribution to rural and resource-poor areas difficult. Recombinant subunit vaccines are advantageous in this aspect as they can be thermostabilized and deployed with minimal storage and transportation requirements. However, antigen dose and adjuvant formulation must be carefully selected to ensure both the appropriate humoral and cell-mediated immune responses are elicited. In this study, we examine the immunogenicity of a two-step immunoaffinity-purified recombinant LASV glycoprotein (GP) with five clinical- and preclinical-grade adjuvants. Swiss Webster mice immunized intramuscularly with 2 or 3 doses of each vaccine formulation showed complete seroconversion and maximal GP-specific antibody response after two immunizations. Formulations with GPI-0100, LiteVax, Montanide™ ISA 51, and Montanide™ ISA 720 induced both IgG1 and IgG2 antibodies suggesting a balanced Th1/Th2 response, whereas formulation of LASV GP with Alhydrogel elicited a IgG1-dominant response. Splenocytes secreting both Th1 and Th2 cytokines i.e., IFN-γ, TNF-α, IL-2, IL-4 and IL-5, were observed from mice receiving both antigen doses formulated with ISA 720, LiteVax and GPI-0100. However, robust, multifunctional T-cells were only detected in mice receiving a higher dose of LASV GP formulated with GPI-0100. Our results emphasize the importance of careful adjuvant selection and lay the immunological basis for a recombinant subunit protein LF vaccine formulation.
Collapse
Affiliation(s)
- Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Correspondence: Axel T. Lehrer,
| |
Collapse
|
14
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
15
|
Zebley CC, Akondy RS, Youngblood BA, Kissick HT. Defining the Molecular Hallmarks of T-Cell Memory. Cold Spring Harb Perspect Biol 2022; 14:a037804. [PMID: 34127444 PMCID: PMC8886980 DOI: 10.1101/cshperspect.a037804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pool of memory CD8 T cells is comprised of highly specialized subpopulations of cells with both shared and distinct functions. The ongoing study of T-cell memory is focused on how these different subpopulations arise, how the cells are maintained over the life of the host, and how the cells protect a host against reinfection. As a field we have used the convenience of a narrow range of surface markers to define and study these memory T-cell subsets. However, as we learn more about these cells, it is becoming clear that these broad definitions are insufficient to capture the complexity of the CD8 memory T-cell pool, and an updated definition of these cellular states are needed. Here, we discuss data that have recently arisen that highlight the difficulty in using surface markers to functionally characterize CD8 T-cell populations, and the possibility of using the epigenetic state of cells to more clearly define the functional capacity of CD8 memory T-cell subsets.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Rama S Akondy
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Benjamin A Youngblood
- Immunology Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Merson L, Bourner J, Jalloh S, Erber A, Salam AP, Flahault A, Olliaro PL. Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl Trop Dis 2021; 15:e0009788. [PMID: 34547033 PMCID: PMC8486098 DOI: 10.1371/journal.pntd.0009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/01/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Research is urgently needed to reduce the morbidity and mortality of Lassa fever (LF), including clinical trials to test new therapies and to verify the efficacy and safety of the only current treatment recommendation, ribavirin, which has a weak clinical evidence base. To help establish a basis for the development of an adaptable, standardised clinical trial methodology, we conducted a systematic review to identify the clinical characteristics and outcomes of LF and describe how LF has historically been defined and assessed in the scientific literature. METHODOLOGY Primary clinical studies and reports of patients with suspected and confirmed diagnosis of LF published in the peer-reviewed literature before 15 April 2021 were included. Publications were selected following a two-stage screening of abstracts, then full-texts, by two independent reviewers at each stage. Data were extracted, verified, and summarised using descriptive statistics. RESULTS 147 publications were included, primarily case reports (36%), case series (28%), and cohort studies (20%); only 2 quasi-randomised studies (1%) were found. Data are mostly from Nigeria (52% of individuals, 41% of publications) and Sierra Leone (42% of individuals, 31% of publications). The results corroborate the World Health Organisation characterisation of LF presentation. However, a broader spectrum of presenting symptoms is evident, such as gastrointestinal illness and other nervous system and musculoskeletal disorders that are not commonly included as indicators of LF. The overall case fatality ratio was 30% in laboratory-confirmed cases (1896/6373 reported in 109 publications). CONCLUSION Systematic review is an important tool in the clinical characterisation of diseases with limited publications. The results herein provide a more complete understanding of the spectrum of disease which is relevant to clinical trial design. This review demonstrates the need for coordination across the LF research community to generate harmonised research methods that can contribute to building a strong evidence base for new treatments and foster confidence in their integration into clinical care.
Collapse
Affiliation(s)
- Laura Merson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Josephine Bourner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Astrid Erber
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alex Paddy Salam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Piero L. Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Arruda LB, Haider N, Olayemi A, Simons D, Ehichioya D, Yinka-Ogunleye A, Ansumana R, Thomason MJ, Asogun D, Ihekweazu C, Fichet-Calvet E, Kock RA. The niche of One Health approaches in Lassa fever surveillance and control. Ann Clin Microbiol Antimicrob 2021; 20:29. [PMID: 33894784 PMCID: PMC8067790 DOI: 10.1186/s12941-021-00431-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.
Collapse
Affiliation(s)
- Liã Bárbara Arruda
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Nigeria
| | - David Simons
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Deborah Ehichioya
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Microbiology, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Rashid Ansumana
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Margaret J Thomason
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Danny Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Richard A Kock
- The Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
18
|
Abstract
Lassa fever (LF) is a lethal hemorrhagic disease primarily concentrated in the tropical savannah regions of Nigeria and the Mano River Union countries of Sierra Leone, Liberia, and Guinea. Endemic hotspots within these countries have had recurrent exposure to Lassa virus (LASV) via continual spillover from the host reservoir Mastomys natalensis. Increased trade and travel throughout the region have spread the virus to previously unexposed countries, including Ghana, Benin, Mali, and Côte d'Ivoire. In the absence of effective treatment or vaccines to LASV, preventative measures against Lassa fever rely heavily on reducing or eliminating rodent exposure, increasing the knowledge base surrounding the virus and disease in communities, and diminishing the stigmas faced by Lassa fever survivors.
Collapse
|
19
|
Wang M, Li R, Li Y, Yu C, Chi X, Wu S, Liu S, Xu J, Chen W. Construction and Immunological Evaluation of an Adenoviral Vector-Based Vaccine Candidate for Lassa Fever. Viruses 2021; 13:v13030484. [PMID: 33804206 PMCID: PMC8001012 DOI: 10.3390/v13030484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Lassa virus (LASV) is a rodent-borne arenavirus circulating in West African regions that causes Lassa fever (LF). LF is normally asymptomatic at the initial infection stage, but can progress to severe disease with multiorgan collapse and hemorrhagic fever. To date, the therapeutic choices are limited, and there is no approved vaccine for avoiding LASV infection. Adenoviral vector-based vaccines represent an effective countermeasure against LASV because of their safety and adequate immunogenicity, as demonstrated in use against other emerging viral infections. Here, we constructed and characterized a novel Ad5 (E1-, E3-) vectored vaccine containing the glycoprotein precursor (GPC) of LASV. Ad5-GPCLASV elicited both humoral and cellular immune responses in BALB/c mice. Moreover, a bioluminescent imaging-based BALB/c mouse model infected with GPC-bearing and luciferase-expressing replication-incompetent LASV pseudovirus was utilized to evaluate the vaccine efficacy. The bioluminescence intensity of immunized mice was significantly lower than that of control mice after being inoculated with LASV pseudovirus. This study suggests that Ad5-GPCLASV represents a potential vaccine candidate against LF.
Collapse
|
20
|
Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun Biol 2021; 4:27. [PMID: 33398113 PMCID: PMC7782745 DOI: 10.1038/s42003-020-01543-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.
Collapse
|
21
|
Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. J Virol 2020; 94:JVI.01367-20. [PMID: 32817220 PMCID: PMC7565638 DOI: 10.1128/jvi.01367-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates. Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017–2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF. IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.
Collapse
|
22
|
Dynamics of human B and T cell adaptive immune responses to Kyasanur Forest disease virus infection. Sci Rep 2020; 10:15306. [PMID: 32943687 PMCID: PMC7499197 DOI: 10.1038/s41598-020-72205-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
Kyasanur Forest disease (KFD) is a tick-borne, acute, febrile viral illness endemic in southern India. No major studies have been done to understand the adaptive immune response during KFDV infection in humans. In this study, KFDV-positive patients were prospectively enrolled, and repeated peripheral blood collections were performed. Clinical and virologic characterization of these samples is reported along with phenotypic analysis of cellular immunity and quantitation of humoral immunity. We noted robust T and B cell responses, particularly of CD8 T cells, during KFDV infection in most of the patients. Virus clearance from the blood coincided with peak CD8 T cell activation and the appearance of KFDV-specific IgG. Increased frequency of plasmablasts and very few activated B cells were observed in the acute phase of KFD infection. Notably, only humoral immunity and activated B cell frequency in the acute phase correlated with prior KFDV vaccination, and only with 2 or more doses. This novel work has implications in KFD vaccine research as well as in understanding the pathogenesis.
Collapse
|
23
|
Di Paola N, Sanchez-Lockhart M, Zeng X, Kuhn JH, Palacios G. Viral genomics in Ebola virus research. Nat Rev Microbiol 2020; 18:365-378. [PMID: 32367066 PMCID: PMC7223634 DOI: 10.1038/s41579-020-0354-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. Advances in the sequencing and functional characterization of both pathogen and host genomes have provided a wealth of knowledge to clinicians, epidemiologists and public health responders during outbreaks of high-consequence viral disease. Here, we describe how genomics has been historically used to investigate Ebola virus disease outbreaks and how new technologies allow for rapid, large-scale data generation at the point of care. We highlight how genomics extends beyond consensus-level sequencing of the virus to include intra-host viral transcriptomics and the characterization of host responses in acute and persistently infected patients. Similar genomics techniques can also be applied to the characterization of non-human primate animal models and to known natural reservoirs of filoviruses, and metagenomic sequencing can be the key to the discovery of novel filoviruses. Finally, we outline the importance of reverse genetics systems that can swiftly characterize filoviruses as soon as their genome sequences are available.
Collapse
Affiliation(s)
- Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
24
|
Identification of Common CD8 + T Cell Epitopes from Lassa Fever Survivors in Nigeria and Sierra Leone. J Virol 2020; 94:JVI.00153-20. [PMID: 32269122 PMCID: PMC7307091 DOI: 10.1128/jvi.00153-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine. Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity. IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.
Collapse
|
25
|
Downs IL, Shaia CI, Zeng X, Johnson JC, Hensley L, Saunders DL, Rossi F, Cashman KA, Esham HL, Gregory MK, Pratt WD, Trefry JC, Everson KA, Larcom CB, Okwesili AC, Cardile AP, Honko A. Natural History of Aerosol Induced Lassa Fever in Non‑Human Primates. Viruses 2020; 12:E593. [PMID: 32485952 PMCID: PMC7354473 DOI: 10.3390/v12060593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Lassa virus (LASV), an arenavirus causing Lassa fever, is endemic to West Africa with up to 300,000 cases and between 5000 and 10,000 deaths per year. Rarely seen in the United States, Lassa virus is a CDC category A biological agent inasmuch deliberate aerosol exposure can have high mortality rates compared to naturally acquired infection. With the need for an animal model, specific countermeasures remain elusive as there is no FDA-approved vaccine. This natural history of aerosolized Lassa virus exposure in Macaca fascicularis was studied under continuous telemetric surveillance. The macaque response to challenge was largely analogous to severe human disease with fever, tachycardia, hypotension, and tachypnea. During initial observations, an increase trend of activated monocytes positive for viral glycoprotein was accompanied by lymphocytopenia. Disease uniformly progressed to high viremia followed by low anion gap, alkalosis, anemia, and thrombocytopenia. Hypoproteinemia occurred late in infection followed by increased levels of white blood cells, cytokines, chemokines, and biochemical markers of liver injury. Viral nucleic acids were detected in tissues of three non‑survivors at endpoint, but not in the lone survivor. This study provides useful details to benchmark a pivotal model of Lassa fever in support of medical countermeasure development for both endemic disease and traditional biodefense purposes.
Collapse
Affiliation(s)
- Isaac L. Downs
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Carl I. Shaia
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Xiankun Zeng
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Joshua C. Johnson
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lisa Hensley
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David L. Saunders
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Franco Rossi
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Kathleen A. Cashman
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Heather L. Esham
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Melissa K. Gregory
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - William D. Pratt
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - John C. Trefry
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Kyle A. Everson
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Charles B. Larcom
- Madigan Army Medical Center, Joint Base Lewis-McChord, WA 98431, USA;
| | - Arthur C. Okwesili
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Anthony P. Cardile
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
| | - Anna Honko
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (I.L.D.); (C.I.S.); (X.Z.); (J.C.J.); (L.H.); (D.L.S.); (F.R.); (K.A.C.); (H.L.E.); (M.K.G.); (W.D.P.); (J.C.T.); (K.A.E.); (A.C.O.); (A.H.)
- Investigator at National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
26
|
Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell 2020; 178:1004-1015.e14. [PMID: 31398326 DOI: 10.1016/j.cell.2019.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.
Collapse
Affiliation(s)
- Kathryn M Hastie
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert W Cross
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Stephanie S Harkins
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle A Zandonatti
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - James E Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Thomas W Geisbert
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Robert F Garry
- Zalgen Labs, Germantown, MD, USA; Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | | | - Erica Ollmann Saphire
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa Virus, but Not Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-Stranded RNA Accumulation during Infection. J Virol 2020; 94:e02006-19. [PMID: 32051278 PMCID: PMC7163147 DOI: 10.1128/jvi.02006-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022] Open
Abstract
The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.
Collapse
Affiliation(s)
- Elizabeth J Mateer
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Junki Maruyama
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Galen E Card
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
28
|
High crossreactivity of human T cell responses between Lassa virus lineages. PLoS Pathog 2020; 16:e1008352. [PMID: 32142546 PMCID: PMC7080273 DOI: 10.1371/journal.ppat.1008352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/18/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages. Lassa virus (LASV), the causative agent of the hemorrhagic illness Lassa fever (LF), is found throughout West Africa. Humans are usually infected after contact with infected rodent excreta or aerosolized virus. The mortality rate among hospitalized LF cases is high and no effective treatments or vaccines exist. A vaccine effective against the four main lineages of LASV is needed to protect susceptible individuals across West Africa. To understand how this protection could occur, we examined the immune responses of LF survivors from two different regions of West Africa. As previous infection with Lassa virus protects from disease after subsequent exposure, the immune response of LF survivors provides a model of protective immunity that could be induced after vaccination. We found that LASV strains from lineages different from those that infected the LF survivors efficiently activated memory CD8+ T cell responses. We identified regions within LASV proteins that elicit memory responses in the majority of individuals. From these data, we propose that an effective vaccine that protects against lineages across West Africa should be designed to elicit memory CD8+ T cell responses in addition to antibody responses.
Collapse
|
29
|
The Utility of Human Immune System Mice for High-Containment Viral Hemorrhagic Fever Research. Vaccines (Basel) 2020; 8:vaccines8010098. [PMID: 32098330 PMCID: PMC7157695 DOI: 10.3390/vaccines8010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Human immune system (HIS) mice are a subset of humanized mice that are generated by xenoengraftment of human immune cells or tissues and/or their progenitors into immunodeficient mice. Viral hemorrhagic fevers (VHFs) cause severe disease in humans, typically with high case fatality rates. HIS mouse studies have been performed to investigate the pathogenesis and immune responses to VHFs that must be handled in high-containment laboratory facilities. Here, we summarize studies on filoviruses, nairoviruses, phenuiviruses, and hantaviruses, and discuss the knowledge gained from using various HIS mouse models. Furthermore, we discuss the complexities of designing and interpreting studies utilizing HIS mice while highlighting additional questions about VHFs that can still be addressed using HIS mouse models.
Collapse
|
30
|
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses. Vaccines (Basel) 2019; 7:vaccines7040138. [PMID: 31581720 PMCID: PMC6963578 DOI: 10.3390/vaccines7040138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.
Collapse
|
31
|
Maruyama J, Mateer EJ, Manning JT, Sattler R, Seregin AV, Bukreyeva N, Jones FR, Balint JP, Gabitzsch ES, Huang C, Paessler S. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine 2019; 37:6824-6831. [PMID: 31561999 DOI: 10.1016/j.vaccine.2019.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/18/2022]
Abstract
Lassa virus (LASV), the causative agent of Lassa fever (LF), was first identified in 1969. Since then, outbreaks in the endemic countries of Nigeria, Liberia, and Sierra Leone occur on an annual basis resulting in a case-fatality rate of 15-70% in hospitalized patients. There is currently no licensed vaccine and there are limited animal models to test vaccine efficacy. An estimated 37.7 million people are at risk of contracting LASV; therefore, there is an urgent need for the development of a safe, effective vaccine against LASV infection. The LF endemic countries are also inflicted with HIV, Ebola, and malaria infections. The safety in immunocompromised populations must be considered in LASV vaccine development. The novel adenovirus vector-based platform, Ad5 (E1-,E2b-) has been used in clinical trial protocols for treatment of immunocompromised individuals, has been shown to exhibit high stability, low safety risk in humans, and induces a strong cell-mediated and pro-inflammatory immune response even in the presence of pre-existing adenovirus immunity. To this nature, our lab has developed an Ad5 (E1-,E2b-) vector-based vaccine expressing the LASV-NP or LASV-GPC. We found that guinea pigs vaccinated with two doses of Ad5 (E1-,E2b-) LASV-NP and Ad5 (E1-,E2b-) LASV-GPC were protected against lethal LASV challenge. The Ad5 (E1-,E2b-) LASV-NP and LASV-GPC vaccine represents a potential vaccine candidate against LF.
Collapse
Affiliation(s)
- Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elizabeth J Mateer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - John T Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rachel Sattler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexey V Seregin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Crimean-Congo Hemorrhagic Fever Mouse Model Recapitulating Human Convalescence. J Virol 2019; 93:JVI.00554-19. [PMID: 31292241 DOI: 10.1128/jvi.00554-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/28/2019] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a cause of severe hemorrhagic fever. Its tick reservoir and vector are widely distributed throughout Africa, Southern and Eastern Europe, the Middle East, and Asia. Serological evidence suggests that CCHFV can productively infect a wide variety of species, but only humans develop severe, sometimes fatal disease. The role of the host adaptive immunity in control or contribution to the severe pathology seen in CCHF cases is largely unknown. Studies of adaptive immune responses to CCHFV have been limited due to lack of suitable small animal models. Wild-type mice are resistant to CCHFV infection, and type I interferon-deficient mice typically develop a rapid-onset fatal disease prior to development of adaptive immune responses. We report here a mouse model in which type I interferon-deficient mice infected with a clinical isolate of CCHFV develop a severe inflammatory disease but ultimately recover. Recovery was coincident with development of CCHFV-specific B- and T-cell responses that were sustained for weeks postinfection. We also found that recovery from a primary CCHFV infection could protect against disease following homologous or heterologous reinfection. Together this model enables study of multiple aspects of CCHFV pathogenesis, including convalescence, an important aspect of CCHF disease that existing mouse models have been unsuitable for studying.IMPORTANCE The role of antibody or virus-specific T-cell responses in control of acute Crimean-Congo hemorrhagic fever virus infection is largely unclear. This is a critical gap in our understanding of CCHF, and investigation of convalescence following severe acute CCHF has been limited by the lack of suitable small animal models. We report here a mouse model of CCHF in which infected mice develop severe disease but ultimately recover. Although mice developed an inflammatory immune response along with severe liver and spleen pathology, these mice also developed CCHFV-specific B- and T-cell responses and were protected from reinfection. This model provides a valuable tool to investigate how host immune responses control acute CCHFV infection and how these responses may contribute to the severe disease seen in CCHFV-infected humans in order to develop therapeutic interventions that promote protective immune responses.
Collapse
|
33
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
34
|
Sullivan NL, Eberhardt CS, Wieland A, Akondy RS, Yi J, McElroy AK, Ahmed R. Characterization of Virus-specific Immune Response During Varicella Zoster Virus Encephalitis in a Young Adult. Clin Infect Dis 2019; 69:348-351. [PMID: 30668661 PMCID: PMC7322817 DOI: 10.1093/cid/ciy984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
An immunocompetent adult received corticosteroids for chest pain, which later was clinically found to be herpes zoster (HZ). She developed severe disease and rapid viral dissemination that elicited an exceptionally strong varicella zoster virus-specific B-cell and CD8 T-cell response. Clinicians should consider atypical HZ presentation prior to corticosteroid administration.
Collapse
Affiliation(s)
- Nicole L Sullivan
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Department of Pediatrics and Pathology-Immunology, Center for Vaccinology and Neonatal Immunology, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Switzerland
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Rama S Akondy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jumi Yi
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Georgia
| | - Anita K McElroy
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Georgia
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Liu DX, Perry DL, DeWald LE, Cai Y, Hagen KR, Cooper TK, Huzella LM, Hart R, Bonilla A, Bernbaum JG, Janosko KB, Adams R, Johnson RF, Kuhn JH, Schnell MJ, Crozier I, Jahrling PB, de la Torre JC. Persistence of Lassa Virus Associated With Severe Systemic Arteritis in Convalescing Guinea Pigs (Cavia porcellus). J Infect Dis 2019; 219:1818-1822. [PMID: 30517671 PMCID: PMC6500557 DOI: 10.1093/infdis/jiy641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Lassa fever (LF) survivors develop various clinical manifestations including polyserositis, myalgia, epididymitis, and hearing loss weeks to months after recovery from acute infection. We demonstrate a systemic lymphoplasmacytic and histiocytic arteritis and periarteritis in guinea pigs more than 2 months after recovery from acute Lassa virus (LASV) infection. LASV was detected in the arterial tunica media smooth muscle cells by immunohistochemistry, in situ hybridization, and transmission electron microscopy. Our results suggest that the sequelae of LASV infection may be due to virus persistence resulting in systemic vascular damage. These findings shed light on the pathogenesis of LASV sequelae in convalescent human survivors.
Collapse
Affiliation(s)
- David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Lisa Evans DeWald
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Katie R Hagen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Timothy K Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Amanda Bonilla
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - John G Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Krisztina B Janosko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Reed F Johnson
- Emerging Viral Pathogens Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ian Crozier
- Clinical Monitoring Research Program, Leidos Biomedical Research, Inc. Support to: NIAID/IRF, Fort Detrick, Frederick, Maryland
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
36
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Lassa fever virus: a genetically diverse pathogen found in low-resource settings. BMJ Glob Health 2019; 4:e001116. [PMID: 30899575 PMCID: PMC6407561 DOI: 10.1136/bmjgh-2018-001116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Lassa fever virus (LASV) causes acute viral haemorrhagic fever with symptoms similar to those seen with Ebola virus infections. LASV is endemic to West Africa and is transmitted through contact with excretions of infected Mastomys natalensis rodents and other rodent species. Due to a high fatality rate, lack of treatment options and difficulties with prevention and control, LASV is one of the high-priority pathogens included in the WHO R&D Blueprint. The WHO LASV vaccine strategy relies on availability of effective diagnostic tests. Current diagnostics for LASV include in-house and commercial (primarily research-only) laboratory-based serological and nucleic acid amplification tests. There are two commercially available (for research use only) rapid diagnostic tests (RDTs), and a number of multiplex panels for differential detection of LASV infection from other endemic diseases with similar symptoms have been evaluated. However, a number of diagnostic gaps remain. Lineage detection is a challenge due to the genomic diversity of LASV, as pan-lineage sensitivity for both molecular and immunological detection is necessary for surveillance and outbreak response. While pan-lineage ELISA and RDTs are commercially available (for research use only), validation and external quality assessment (EQA) is needed to confirm detection sensitivity for all known or relevant strains. Variable sensitivity of LASV PCR tests also highlights the need for improved validation and EQA. Given that LASV outbreaks typically occur in low-resource settings, more options for point-of-care testing would be valuable. These requirements should be taken into account in target product profiles for improved LASV diagnostics.
Collapse
|
37
|
Emperador DM, Yimer SA, Mazzola LT, Norheim G, Kelly-Cirino C. Diagnostic applications for Lassa fever in limited-resource settings. BMJ Glob Health 2019; 4:e001119. [PMID: 30899576 PMCID: PMC6407552 DOI: 10.1136/bmjgh-2018-001119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/03/2022] Open
Abstract
Lassa fever, caused by arenavirus Lassa virus (LASV), is an acute viral haemorrhagic disease that affects up to an estimated 300 000 individuals and causes up to 5000 deaths per year in West Africa. Currently available LASV diagnostic methods are difficult to operationalise in low-resource health centres and may be less sensitive to detecting all known or emerging LASV strains. To prioritise diagnostic development for LASV, we assessed the diagnostic applications for case detection, clinical management, surveillance, outbreak response, and therapeutic and vaccine development at various healthcare levels. Diagnostic development should prioritise point-of-care and near-patient diagnostics, especially those with the ability to detect all lineages of LASV, as they would allow for rapid detection in resource-limited health facilities closer to the patient.
Collapse
Affiliation(s)
- Devy M Emperador
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Solomon A Yimer
- Department of Vaccine Science, Coalition for Epidemic Preparedness Innovation (CEPI), Oslo, Norway
| | - Laura T Mazzola
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Gunnstein Norheim
- Department of Vaccine Science, Coalition for Epidemic Preparedness Innovation (CEPI), Oslo, Norway
| | - Cassandra Kelly-Cirino
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| |
Collapse
|
38
|
Lukashevich IS, Paessler S, de la Torre JC. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res 2019; 8. [PMID: 30774934 PMCID: PMC6357994 DOI: 10.12688/f1000research.16989.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Lassa virus (LASV) is a highly prevalent mammarenavirus in West Africa and is maintained in nature in a persistently infected rodent host, Mastomys natalensis, which is widely spread in sub-Saharan Africa. LASV infection of humans can cause Lassa fever (LF), a disease associated with high morbidity and significant mortality. Recent evidence indicates an LASV expansion outside its traditional endemic areas. In 2017, the World Health Organization (WHO) included LASV in top-priority pathogens and released a Target Product Profile (TPP) for vaccine development. Likewise, in 2018, the US Food and Drug Administration added LF to a priority review voucher program to encourage the development of preventive and therapeutics measures. In this article, we review recent progress in LASV vaccine research and development with a focus on the impact of LASV genetic and biological diversity on the design and development of vaccine candidates meeting the WHO's TPP for an LASV vaccine.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC. T-Cell Response to Viral Hemorrhagic Fevers. Vaccines (Basel) 2019; 7:E11. [PMID: 30678246 PMCID: PMC6466054 DOI: 10.3390/vaccines7010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
40
|
Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1 -/- Mice. Pathogens 2019; 8:pathogens8010009. [PMID: 30650607 PMCID: PMC6470856 DOI: 10.3390/pathogens8010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host’s immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements.
Collapse
|
41
|
Zapata JC, Medina-Moreno S, Guzmán-Cardozo C, Salvato MS. Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens 2018; 7:E84. [PMID: 30373278 PMCID: PMC6313495 DOI: 10.3390/pathogens7040084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world's foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013⁻2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease.
Collapse
Affiliation(s)
- Juan Carlos Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Camila Guzmán-Cardozo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Hawman DW, Haddock E, Meade-White K, Williamson B, Hanley PW, Rosenke K, Komeno T, Furuta Y, Gowen BB, Feldmann H. Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice. Antiviral Res 2018; 157:18-26. [PMID: 29936152 PMCID: PMC11093520 DOI: 10.1016/j.antiviral.2018.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a cause of serious hemorrhagic disease in humans. Humans infected with CCHFV develop a non-specific febrile illness and then progress to the hemorrhagic phase where case fatality rates can be as high as 30%. Currently there is lack of vaccines and the recommended antiviral treatment, ribavirin, has inconsistent efficacy in both human and animal studies. In this study we developed a model of CCHFV infection in type I interferon deficient mice using the clinical CCHFV isolate strain Hoti. Mice infected with strain Hoti develop a progressively worsening and ultimately fatal disease. We utilized this model along with our established model using the prototypical CCHFV strain 10200 to evaluate treatment with ribavirin or the antiviral favipiravir. While ribavirin treatment was able to suppress viral loads at early time points it was ultimately unable to prevent development of terminal disease in mice infected with either strain of CCHFV. In contrast, favipiravir showed clinical benefit even when administered late in the clinical progression of CCHF. Interestingly, in a small subset of mice, late-onset of CCHF was observed after favipiravir treatment was stopped and persistence of viral RNA in favipiravir treated survivors was also seen. Nevertheless, favipiravir showed significant clinical benefit against two distinct strains of CCHFV suggesting it may be a potent antiviral for treatment of human CCHFV infections.
Collapse
|
43
|
Mateer EJ, Huang C, Shehu NY, Paessler S. Lassa fever-induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl Trop Dis 2018; 12:e0006187. [PMID: 29470486 PMCID: PMC5823363 DOI: 10.1371/journal.pntd.0006187] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although an association between Lassa fever (LF) and sudden-onset sensorineural hearing loss (SNHL) was confirmed clinically in 1990, the prevalence of LF-induced SNHL in endemic countries is still underestimated. LF, a viral hemorrhagic fever disease caused by Lassa virus (LASV), is endemic in West Africa, causing an estimated 500,000 cases and 5,000 deaths per year. Sudden-onset SNHL, one complication of LF, occurs in approximately one-third of survivors and constitutes a neglected public health and social burden. In the endemic countries, where access to hearing aids is limited, SNHL results in a decline of the quality of life for those affected. In addition, hearing loss costs Nigeria approximately 43 million dollars per year. The epidemiology of LF-induced SNHL has not been characterized well. The complication of LF induced by SNHL is also an important consideration for vaccine development and treatments. However, research into the mechanism has been hindered by the lack of autopsy samples and relevant small animal models. Recently, the first animal model that mimics the symptoms of SNHL associated with LF was developed. Preliminary data from the new animal model as well as the clinical case studies support the mechanism of immune-mediated injury that causes SNHL in LF patients. This article summarizes clinical findings of hearing loss in LF patients highlighting the association between LASV infection and SNHL as well as the potential mechanism(s) for LF-induced SNHL. Further research is necessary to identify the mechanism and the epidemiology of LF-induced SNHL.
Collapse
Affiliation(s)
- Elizabeth J. Mateer
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nathan Y. Shehu
- Department of Medicine, Infectious Disease Unit, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Slobodan Paessler
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Thi EP, Mire CE, Lee AC, Geisbert JB, Ursic-Bedoya R, Agans KN, Robbins M, Deer DJ, Cross RW, Kondratowicz AS, Fenton KA, MacLachlan I, Geisbert TW. siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J Clin Invest 2017; 127:4437-4448. [PMID: 29106386 DOI: 10.1172/jci96185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein-targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.
Collapse
Affiliation(s)
- Emily P Thi
- Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada
| | - Chad E Mire
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Amy Ch Lee
- Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada
| | - Joan B Geisbert
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Krystle N Agans
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marjorie Robbins
- Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada
| | - Daniel J Deer
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Karla A Fenton
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ian MacLachlan
- Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada
| | - Thomas W Geisbert
- Galveston National Laboratory and.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|