1
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
2
|
Xian S, Zeng Z. Methods for Establishing a Rat Model of Rheumatic Heart Disease. Rev Cardiovasc Med 2024; 25:346. [PMID: 39355577 PMCID: PMC11440394 DOI: 10.31083/j.rcm2509346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 10/03/2024] Open
Abstract
Rheumatic heart disease (RHD) is responsible for nearly 250,000 deaths annually and poses a significant health threat in developing areas. The unclear pathogenesis of RHD makes the development of cost-effective treatments challenging, particularly as current surgical options are expensive and technologically demanding, exacerbating the economic and quality-of-life burdens for patients. Given the risks associated with direct human experimentation due to the uncertain pathogenesis, using a rat model infected with Group A Streptococcus (GAS) has become a crucial experimental strategy for RHD research. The development of an RHD rat model, refined over 23 years, now stands as a pivotal approach in studies aiming to understand the disease's pathogenesis. This review summarizes the evolution, characteristics, advantages, and limitations of the RHD rat model, offering insights into potential areas for improvement. It aims to provide researchers with a comprehensive understanding of the model, supporting the advancement of research methodologies and the discovery of innovative treatments for RHD.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| |
Collapse
|
3
|
Xie O, Zachreson C, Tonkin-Hill G, Price DJ, Lacey JA, Morris JM, McDonald MI, Bowen AC, Giffard PM, Currie BJ, Carapetis JR, Holt DC, Bentley SD, Davies MR, Tong SYC. Overlapping Streptococcus pyogenes and Streptococcus dysgalactiae subspecies equisimilis household transmission and mobile genetic element exchange. Nat Commun 2024; 15:3477. [PMID: 38658529 PMCID: PMC11043366 DOI: 10.1038/s41467-024-47816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Cameron Zachreson
- School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia
| | | | - David J Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malcolm I McDonald
- Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Asha C Bowen
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia
| | - Philip M Giffard
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Faculty of Health, Charles Darwin University, Darwin, NT, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia
| | - Deborah C Holt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | | | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
5
|
Kirvan CA, Canini H, Swedo SE, Hill H, Veasy G, Jankelow D, Kosanke S, Ward K, Zhao YD, Alvarez K, Hedrick A, Cunningham MW. IgG2 rules: N-acetyl-β-D-glucosamine-specific IgG2 and Th17/Th1 cooperation may promote the pathogenesis of acute rheumatic heart disease and be a biomarker of the autoimmune sequelae of Streptococcus pyogenes. Front Cardiovasc Med 2023; 9:919700. [PMID: 36815140 PMCID: PMC9939767 DOI: 10.3389/fcvm.2022.919700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Antecedent group A streptococcal pharyngitis is a well-established cause of acute rheumatic fever (ARF) where rheumatic valvular heart disease (RHD) and Sydenham chorea (SC) are major manifestations. In ARF, crossreactive antibodies and T cells respond to streptococcal antigens, group A carbohydrate, N-acetyl-β-D-glucosamine (GlcNAc), and M protein, respectively, and through molecular mimicry target heart and brain tissues. In this translational human study, we further address our hypothesis regarding specific pathogenic humoral and cellular immune mechanisms leading to streptococcal sequelae in a small pilot study. The aims of the study were to (1) better understand specific mechanisms of pathogenesis in ARF, (2) identify a potential early biomarker of ARF, (3) determine immunoglobulin G (IgG) subclasses directed against GlcNAc, the immunodominant epitope of the group A carbohydrate, by reaction of ARF serum IgG with GlcNAc, M protein, and human neuronal cells (SK-N-SH), and (4) determine IgG subclasses deposited on heart tissues from RHD. In 10 pediatric patients with RHD and 6 pediatric patients with SC, the serum IgG2 subclass reacted significantly with GlcNAc, and distinguished ARF from 7 pediatric patients with uncomplicated pharyngitis. Three pediatric patients who demonstrated only polymigrating arthritis, a major manifestation of ARF and part of the Jones criteria for diagnosis, lacked the elevated IgG2 subclass GlcNAc-specific reactivity. In SC, the GlcNAc-specific IgG2 subclass in cerebrospinal fluid (CSF) selectively targeted human neuronal cells as well as GlcNAc in the ELISA. In rheumatic carditis, the IgG2 subclass preferentially and strongly deposited in valve tissues (n = 4) despite elevated concentrations of IgG1 and IgG3 in RHD sera as detected by ELISA to group A streptococcal M protein. Although our human study of ARF includes a very small limited sample set, our novel research findings suggest a strong IgG2 autoantibody response against GlcNAc in RHD and SC, which targeted heart valves and neuronal cells. Cardiac IgG2 deposition was identified with an associated IL-17A/IFN-γ cooperative signature in RHD tissue which displayed both IgG2 deposition and cellular infiltrates demonstrating these cytokines simultaneously. GlcNAc-specific IgG2 may be an important autoantibody in initial stages of the pathogenesis of group A streptococcal sequelae, and future studies will determine if it can serve as a biomarker for risk of RHD and SC or early diagnosis of ARF.
Collapse
Affiliation(s)
- Christine A. Kirvan
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Heather Canini
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Susan E. Swedo
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Harry Hill
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - George Veasy
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - David Jankelow
- Division of Cardiology, University of Witwatersrand, Johannesburg, South Africa
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kent Ward
- Department of Pediatrics, Division of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andria Hedrick
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Reynolds S, Rafeek RAM, Hamlin A, Lepletier A, Pandey M, Ketheesan N, Good MF. Streptococcus pyogenes vaccine candidates do not induce autoimmune responses in a rheumatic heart disease model. NPJ Vaccines 2023; 8:9. [PMID: 36739443 PMCID: PMC9899064 DOI: 10.1038/s41541-023-00604-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
We have developed a candidate vaccine to protect against multiple strains of Streptococcus pyogenes infections. The candidate vaccine contains two synthetic peptides derived from S. pyogenes proteins: the M-protein epitope, p*17 and the IL-8 degrading S. pyogenes Cell-Envelope Proteinase (SpyCEP) epitope, K4S2. In this study we utilise a rat autoimmune valvulitis model that displays both the cardiac and neurobehavioural pathology associated with post-streptococcal sequelae, to assess if the vaccine candidate antigens induce autoimmune complications and inflammatory pathology. Each antigen was conjugated to carrier protein diphtheria toxoid (DT) and independently assessed for potential to induce autoimmune pathology in female Lewis rats. Rats were administered three subcutaneous doses, and one intranasal dose over a four-week study with a two-week recovery period. A positive control group received recombinant S. pyogenes M5 (rM5) protein, and the negative control group received PBS. Rats that received rM5 developed significant cardiac and neurological pathologies. There was no evidence of these pathologies in the PBS control group, or the rats administered either P*17-DT or K4S2-DT. This study provides further preclinical evidence of the safety of the vaccine candidates p*17 and K4S2 and their appropriateness as candidates in human clinical trials.
Collapse
Affiliation(s)
- Simone Reynolds
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Southport, Queensland Australia
| | - Rukshan Ahamed Mohamed Rafeek
- grid.1020.30000 0004 1936 7371School of Science & Technology, University of New England, Armidale, New South Wales Australia
| | - Adam Hamlin
- grid.1020.30000 0004 1936 7371School of Science & Technology, University of New England, Armidale, New South Wales Australia
| | - Ailin Lepletier
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Southport, Queensland Australia
| | - Manisha Pandey
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Southport, Queensland Australia
| | - Natkunam Ketheesan
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Southport, Queensland Australia ,grid.1020.30000 0004 1936 7371School of Science & Technology, University of New England, Armidale, New South Wales Australia
| | - Michael F. Good
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
7
|
Rani A, Toor D. Plausible Role of NLRP3 Inflammasome and Associated Cytokines in Pathogenesis of Rheumatic Heart Disease. Crit Rev Immunol 2023; 43:1-14. [PMID: 37824373 DOI: 10.1615/critrevimmunol.2023049463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Rheumatic heart disease (RHD) is a post-streptococcal sequela caused by Streptococcus pyogenes. The global burden of disease is high among people with low socio-economic status, with significant cases emerging every year despite global eradication efforts. The current treatment includes antibiotic therapies to target strep throat and rheumatic fever and valve replacement strategies as a corrective measure for chronic RHD patients. Valvular damage and valve calcification are considered to be the end-stage processes of the disease resulting from impairment of the endothelial arrangement due to immune infiltration. This immune infiltration is mediated by a cascade of events involving NLRP3 inflammasome activation. NLRP3 inflammasome is activated by wide range of stimuli including bacterial cell wall components like M proteins and leukocidal toxins like nicotinamide dehydrogenase (NADase) and streptolysin O (SLO) and these play a major role in sustaining the virulence of Streptococcus pyogenes and progression of RHD. In this review, we are discussing NLRP3 inflammasome and its plausible role in the pathogenesis of RHD by exploiting the host-pathogen interaction mainly focusing on the NLRP3 inflammasome-mediated cytokines IL-1β and IL-18. Different therapeutic approaches involving NLRP3 inflammasome inactivation, caspase-1 inhibition, and blockade of IL-1β and IL-18 are discussed in this review and may be promising for treating RHD patients.
Collapse
Affiliation(s)
- Aishwarya Rani
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
8
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
9
|
Wright CM, Moorin R, Pearson G, Dyer J, Carapetis J, Manning L. Invasive Infections Caused by Lancefield Groups C/G and A Streptococcus, Western Australia, Australia, 2000–2018. Emerg Infect Dis 2022; 28:2190-2197. [DOI: 10.3201/eid2811.220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Rafeek RAM, Hamlin AS, Andronicos NM, Lawlor CS, McMillan DJ, Sriprakash KS, Ketheesan N. Characterization of an experimental model to determine streptococcal M protein–induced autoimmune cardiac and neurobehavioral abnormalities. Immunol Cell Biol 2022; 100:653-666. [PMID: 35792671 PMCID: PMC9545610 DOI: 10.1111/imcb.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Group A streptococcal (GAS) infection is associated with a spectrum of autoimmune diseases including acute rheumatic fever/rheumatic heart disease (ARF/RHD) and neurobehavioral abnormalities. Antibodies against GAS M proteins cross‐react with host tissue proteins in the heart and brain leading to the symptomatology observed in ARF/RHD. As throat carriage of Streptococcus dysgalactiae subspecies equisimilis (SDSE) has been reported to be relatively high in some ARF/RHD endemic regions compared with GAS, and both SDSE and GAS express coiled‐coil surface protein called M protein, we hypothesized that streptococci other than GAS can also associated with ARF/RHD and neurobehavioral abnormalities. Neurobehavioral assessments and electrocardiography were performed on Lewis rats before and after exposure to recombinant GAS and SDSE M proteins. Histological assessments were performed to confirm inflammatory changes in cardiac and neuronal tissues. ELISA and Western blot analysis were performed to determine the cross‐reactivity of antibodies with host connective, cardiac and neuronal tissue proteins. Lewis rats injected with M proteins either from GAS or SDSE developed significant cardiac functional and neurobehavioral abnormalities in comparison to control rats injected with phosphate‐buffered saline. Antibodies against GAS and SDSE M proteins cross‐reacted with cardiac, connective and neuronal proteins. Serum from rats injected with streptococcal antigens showed higher immunoglobulin G binding to the striatum and cortex of the brain. Cardiac and neurobehavioral abnormalities observed in our experimental model were comparable to the cardinal symptoms observed in patients with ARF/RHD. Here for the first time, we demonstrate in an experimental model that M proteins from different streptococcal species could initiate and drive the autoimmune‐mediated cardiac tissue damage and neurobehavioral abnormalities.
Collapse
Affiliation(s)
- Rukshan AM Rafeek
- School of Science & Technology University of New England Armidale NSW Australia
| | - Adam S Hamlin
- School of Science & Technology University of New England Armidale NSW Australia
| | | | - Craig S Lawlor
- School of Science & Technology University of New England Armidale NSW Australia
| | - David J McMillan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| | - Kadaba S Sriprakash
- School of Science & Technology University of New England Armidale NSW Australia
- Infection and Inflammation Laboratory QIMR Berghofer Medical Research Institute Herston QLDAustralia
| | - Natkunam Ketheesan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| |
Collapse
|
11
|
Rwebembera J, Nascimento BR, Minja NW, de Loizaga S, Aliku T, dos Santos LPA, Galdino BF, Corte LS, Silva VR, Chang AY, Dutra WO, Nunes MCP, Beaton AZ. Recent Advances in the Rheumatic Fever and Rheumatic Heart Disease Continuum. Pathogens 2022; 11:179. [PMID: 35215123 PMCID: PMC8878614 DOI: 10.3390/pathogens11020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Nearly a century after rheumatic fever (RF) and rheumatic heart disease (RHD) was eradicated from the developed world, the disease remains endemic in many low- and middle-income countries (LMICs), with grim health and socioeconomic impacts. The neglect of RHD which persisted for a semi-centennial was further driven by competing infectious diseases, particularly the human immunodeficiency virus (HIV) pandemic. However, over the last two-decades, slowly at first but with building momentum, there has been a resurgence of interest in RF/RHD. In this narrative review, we present the advances that have been made in the RF/RHD continuum over the past two decades since the re-awakening of interest, with a more concise focus on the last decade's achievements. Such primary advances include understanding the genetic predisposition to RHD, group A Streptococcus (GAS) vaccine development, and improved diagnostic strategies for GAS pharyngitis. Echocardiographic screening for RHD has been a major advance which has unearthed the prevailing high burden of RHD and the recent demonstration of benefit of secondary antibiotic prophylaxis on halting progression of latent RHD is a major step forward. Multiple befitting advances in tertiary management of RHD have also been realized. Finally, we summarize the research gaps and provide illumination on profitable future directions towards global eradication of RHD.
Collapse
Affiliation(s)
- Joselyn Rwebembera
- Department of Adult Cardiology (JR), Uganda Heart Institute, Kampala 37392, Uganda
| | - Bruno Ramos Nascimento
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Neema W. Minja
- Rheumatic Heart Disease Research Collaborative in Uganda, Uganda Heart Institute, Kampala 37392, Uganda;
| | - Sarah de Loizaga
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
| | - Twalib Aliku
- Department of Paediatric Cardiology (TA), Uganda Heart Institute, Kampala 37392, Uganda;
| | - Luiza Pereira Afonso dos Santos
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Bruno Fernandes Galdino
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Luiza Silame Corte
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Vicente Rezende Silva
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Andrew Young Chang
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador 40170-970, BA, Brazil
| | - Maria Carmo Pereira Nunes
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Andrea Zawacki Beaton
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
- Cincinnati Children’s Hospital Medical Center, The Heart Institute, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Wilson ZM, Craster K. Suspected acute rheumatic fever in a young man in England. BMJ Case Rep 2021; 14:e244469. [PMID: 34753720 PMCID: PMC8578939 DOI: 10.1136/bcr-2021-244469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/04/2022] Open
Abstract
A 24-year-old fit and well Caucasian man was referred to acute hospital via his General Practitioner with chest pain, palpitations, shortness of breath and an antecedent sore throat. Investigations revealed pericardial and pleural effusions, pericardial thickening on MRI, mild mitral regurgitation on echocardiogram and a raised Antistreptolysin O (ASO) titre.He was treated as acute rheumatic fever (ARF) with a prolonged course of penicillin, supportive therapy with bisoprolol and colchicine with lansoprazole cover. The patient made a full recovery and subsequent cardiac MRI showed resolution of all changes.
Collapse
Affiliation(s)
| | - Katie Craster
- Acute Medicine, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
13
|
Rafeek RAM, Lobbe CM, Wilkinson EC, Hamlin AS, Andronicos NM, McMillan DJ, Sriprakash KS, Ketheesan N. Group A streptococcal antigen exposed rat model to investigate neurobehavioral and cardiac complications associated with post-streptococcal autoimmune sequelae. Animal Model Exp Med 2021; 4:151-161. [PMID: 34179722 PMCID: PMC8212825 DOI: 10.1002/ame2.12164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background The neuropsychiatric disorders due to post-streptococcal autoimmune complications such as Sydenham's chorea (SC) are associated with acute rheumatic fever and rheumatic heart disease (ARF/RHD). An animal model that exhibits characteristics of both cardiac and neurobehavioral defects in ARF/RHD would be an important adjunct for future studies. Since age, gender, strain differences, and genotypes impact on the development of autoimmunity, we investigated the behavior of male and female Wistar and Lewis rat strains in two age cohorts (<6 weeks and >12 weeks) under normal husbandry conditions and following exposure to group A streptococcus (GAS). Methods Standard behavioral assessments were performed to determine the impairments in fine motor control (food manipulation test), gait and balance (beam walking test), and obsessive-compulsive behavior (grooming and marble burying tests). Furthermore, electrocardiography, histology, and behavioral assessments were performed on male and female Lewis rats injected with GAS antigens. Results For control Lewis rats there were no significant age and gender dependent differences in marble burying, food manipulation, beam walking and grooming behaviors. In contrast significant age-dependent differences were observed in Wistar rats in all the behavioral tests except for food manipulation. Therefore, Lewis rats were selected for further experiments to determine the effect of GAS. After exposure to GAS, Lewis rats demonstrated neurobehavioral abnormalities and cardiac pathology akin to SC and ARF/RHD, respectively. Conclusion We have characterised a new model that provides longitudinal stability of age-dependent behavior, to simultaneously investigate both neurobehavioral and cardiac abnormalities associated with post-streptococcal complications.
Collapse
Affiliation(s)
| | - Catherine M. Lobbe
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | - Ethan C. Wilkinson
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | - Adam S. Hamlin
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | | | - David J. McMillan
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
- School of Science, Technology, Engineering and Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
| | - Kadaba S. Sriprakash
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
- QIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Natkunam Ketheesan
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| |
Collapse
|
14
|
McMillan DJ, Rafeek RAM, Norton RE, Good MF, Sriprakash KS, Ketheesan N. In Search of the Holy Grail: A Specific Diagnostic Test for Rheumatic Fever. Front Cardiovasc Med 2021; 8:674805. [PMID: 34055941 PMCID: PMC8160110 DOI: 10.3389/fcvm.2021.674805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Current diagnosis of Acute Rheumatic Fever and Rheumatic Heart Disease (ARF/RHD) relies on a battery of clinical observations aided by technologically advanced diagnostic tools and non-specific laboratory tests. The laboratory-based assays fall into two categories: those that (1) detect "evidence of preceding streptococcal infections" (ASOT, anti-DNAse B, isolation of the Group A Streptococcus from a throat swab) and (2) those that detect an ongoing inflammatory process (ESR and CRP). These laboratory tests are positive during any streptococcal infection and are non-specific for the diagnosis of ARF/RHD. Over the last few decades, we have accumulated considerable knowledge about streptococcal biology and the immunopathological mechanisms that contribute to the development, progression and exacerbation of ARF/RHD. Although our knowledge is incomplete and many more years will be devoted to understanding the exact molecular and cellular mechanisms involved in the spectrum of clinical manifestations of ARF/RHD, in this commentary we contend that there is sufficient understanding of the disease process that using currently available technologies it is possible to identify pathogen associated peptides and develop a specific test for ARF/RHD. It is our view that with collaboration and sharing of well-characterised serial blood samples from patients with ARF/RHD from different regions, antibody array technology and/or T-cell tetramers could be used to identify streptococcal peptides specific to ARF/RHD. The availability of an appropriate animal model for this uniquely human disease can further facilitate the determination as to whether these peptides are pathognomonic. Identification of such peptides will also facilitate testing of potential anti-streptococcal vaccines for safety and avoid potential candidates that may pre-dispose potential vaccine recipients to adverse outcomes. Such peptides can also be readily incorporated into a universally affordable point of care device for both primary and tertiary care.
Collapse
Affiliation(s)
- David J. McMillan
- School of Science and Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Rukshan A. M. Rafeek
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Robert E. Norton
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Pathology Queensland, Townsville University Hospital, Douglas, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Michael F. Good
- Laboratory of Vaccines for the Developing World, Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Kadaba S. Sriprakash
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Queensland Institute of Medical Research Berghofer (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
15
|
Rafeek RAM, Sikder S, Hamlin AS, Andronicos NM, McMillan DJ, Sriprakash KS, Ketheesan N. Requirements for a Robust Animal Model to Investigate the Disease Mechanism of Autoimmune Complications Associated With ARF/RHD. Front Cardiovasc Med 2021; 8:675339. [PMID: 34026876 PMCID: PMC8131511 DOI: 10.3389/fcvm.2021.675339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
The pathogenesis of Acute Rheumatic Fever/Rheumatic Heart Disease (ARF/RHD) and associated neurobehavioral complications including Sydenham's chorea (SC) is complex. Disease complications triggered by Group A streptococcal (GAS) infection are confined to human and determining the early events leading to pathology requires a robust animal model that reflects the hallmark features of the disease. However, modeling these conditions in a laboratory animal, of a uniquely human disease is challenging. Animal models including cattle, sheep, pig, dog, cat, guinea pigs rats and mice have been used extensively to dissect molecular mechanisms of the autoimmune inflammatory responses in ARF/RHD. Despite the characteristic limitations of some animal models, several rodent models have significantly contributed to better understanding of the fundamental mechanisms underpinning features of ARF/RHD. In the Lewis rat autoimmune valvulitis model the development of myocarditis and valvulitis with the infiltration of mononuclear cells along with generation of antibodies that cross-react with cardiac tissue proteins following exposure to GAS antigens were found to be similar to ARF/RHD. We have recently shown that Lewis rats injected with recombinant GAS antigens simultaneously developed cardiac and neurobehavioral changes. Since ARF/RHD is multifactorial in origin, an animal model which exhibit the characteristics of several of the cardinal diagnostic criteria observed in ARF/RHD, would be advantageous to determine the early immune responses to facilitate biomarker discovery as well as provide a suitable model to evaluate treatment options, safety and efficacy of vaccine candidates. This review focuses on some of the common small animals and their advantages and limitations.
Collapse
Affiliation(s)
- Rukshan A. M. Rafeek
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Suchandan Sikder
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Adam S. Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | | | - David J. McMillan
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Kadaba S. Sriprakash
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
16
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
17
|
Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sci 2020; 260:118482. [PMID: 32971105 PMCID: PMC7505073 DOI: 10.1016/j.lfs.2020.118482] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) is the most common co-morbidity associated with COVID-19 and the fatality rate in COVID-19 patients with CVD is higher compared to other comorbidities, such as hypertension and diabetes. Preliminary data suggest that COVID-19 may also cause or worsen cardiac injury in infected patients through multiple mechanisms such as 'cytokine storm', endotheliosis, thrombosis, lymphocytopenia etc. Autopsies of COVID-19 patients reveal an infiltration of inflammatory mononuclear cells in the myocardium, confirming the role of the immune system in mediating cardiovascular damage in response to COVID-19 infection and also suggesting potential causal mechanisms for the development of new cardiac pathologies and/or exacerbation of underlying CVDs in infected patients. In this review, we discuss the potential underlying molecular mechanisms that drive COVID-19-mediated cardiac damage, as well as the short term and expected long-term cardiovascular ramifications of COVID-19 infection in patients.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA.
| | | | - Rajendran J C Bose
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Jason R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Maria Irene Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Zhang X, Gu S, You L, Xu Y, Zhou D, Chen Y, Yan R, Jiang H, Li Y, Lv L, Qian W. Gut Microbiome and Metabolome Were Altered and Strongly Associated With Platelet Count in Adult Patients With Primary Immune Thrombocytopenia. Front Microbiol 2020; 11:1550. [PMID: 32733424 PMCID: PMC7360729 DOI: 10.3389/fmicb.2020.01550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been implicated in the pathogenesis of many autoimmune diseases. This is still an area of active research given that the role of gut microbiota on the primary immune thrombocytopenia (ITP) remains unclear. In this study, fecal samples of 30 untreated adult primary ITP patients and 29 healthy controls (HCs) were used to investigate the gut microbial community and metabolite profiles. Our results show that fecal bacteria such as Blautia, Streptococcus, and Lactobacillus are enriched, whereas bacteria such as Bacteroides are depleted in ITP patients. Notably, fecal metabolites such as fatty acyls and glycerophospholipids are enriched and strongly correlate with discrepant gut microbiota. Furthermore, combinations of Weissella and Streptococcus anginosus, or Cer (t18:0/16:0), Cer (d18:1/17:0), and 13-hydroxyoctadecanoic acid could provide good diagnostic markers for ITP. Moreover, a strong negative correlation was found between platelet count and altered gut microbiota such as S. anginosus and gut metabolites such as Cer (t18:0/16:0) in ITP. In conclusion, dysbiosis of both gut microbiota and metabolome develops in ITP patients compared to HCs. Several ITP-altered gut bacteria and metabolites can be diagnostic biomarkers for ITP, and are highly correlated with platelet count, suggesting that they may also play a role in ITP pathogenesis.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - De Zhou
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbin Qian
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Dale JB, Shulman ST. Caution Indicated in Extrapolating Carditis in Rats to Rheumatic Heart Disease in Humans. J Infect Dis 2019; 219:674-675. [PMID: 30247730 DOI: 10.1093/infdis/jiy560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- James B Dale
- University of Tennessee Health Science Center, Memphis
| | - Stanford T Shulman
- Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
20
|
Sikder S, Rush CM, Govan BL, Alim MA, Ketheesan N. Anti-streptococcal antibody and T-cell interactions with vascular endothelial cells initiate the development of rheumatic carditis. J Leukoc Biol 2019; 107:263-271. [PMID: 31617241 DOI: 10.1002/jlb.4ma0919-096rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/12/2023] Open
Abstract
The role of group A streptococcal and Streptococcus dysgalactiae subspecies equisimilis M-protein specific Abs and T-cells in endothelial cell activation was investigated using cultured rat aortic endothelial cells, and in a rat model of autoimmune valvulitis. Heat inactivated serum and mononuclear cells from streptococcal M-protein immunized rats independently induced upregulation of the endothelial cell adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in cultured cells. We also observed T-cell migration across endothelial cell monolayers incubated with serum from M-protein-immunized rats. Furthermore, we observed VCAM-1 and ICAM-1 expression in the myocardium of rats injected with M-protein compared to control animals. These observations support the contention that initial interactions between streptococcal M-protein specific Abs and/or T-cells with the heart endothelium lead to endothelial cell activation followed by transmigration of M-protein specific T-cells into heart tissue leading to an inflammatory process that leads to carditis in rheumatic fever and rheumatic heart disease.
Collapse
Affiliation(s)
- Suchandan Sikder
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Current affiliation: Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh.,Current affiliation: School of Science and Technology, University of New England, Armidale, Australia
| | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Md A Alim
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Current affiliation: Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, Armidale, Australia
| |
Collapse
|
21
|
Kim ML, Martin WJ, Minigo G, Keeble JL, Garnham AL, Pacini G, Smyth GK, Speed TP, Carapetis J, Wicks IP. Dysregulated IL-1β-GM-CSF Axis in Acute Rheumatic Fever That Is Limited by Hydroxychloroquine. Circulation 2019; 138:2648-2661. [PMID: 30571257 DOI: 10.1161/circulationaha.118.033891] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute rheumatic fever (ARF) and rheumatic heart disease are autoimmune consequences of group A streptococcus infection and remain major causes of cardiovascular morbidity and mortality around the world. Improved treatment has been stymied by gaps in understanding key steps in the immunopathogenesis of ARF and rheumatic heart disease. This study aimed to identify (1) effector T cell cytokine(s) that might be dysregulated in the autoimmune response of patients with ARF by group A streptococcus, and (2) an immunomodulatory agent that suppresses this response and could be clinically translatable to high-risk patients with ARF. METHODS The immune response to group A streptococcus was analyzed in peripheral blood mononuclear cells from an Australian Aboriginal ARF cohort by a combination of multiplex cytokine array, flow cytometric analysis, and global gene expression analysis by RNA sequencing. The immunomodulatory drug hydroxychloroquine was tested for effects on this response. RESULTS We found a dysregulated interleukin-1β-granulocyte-macrophage colony-stimulating factor (GM-CSF) cytokine axis in ARF peripheral blood mononuclear cells exposed to group A streptococcus in vitro, whereby persistent interleukin-1β production is coupled to overproduction of GM-CSF and selective expansion of CXCR3+CCR4-CCR6- CD4 T cells. CXCR3+CCR4-CCR6- CD4 T cells are the major source of GM-CSF in human CD4 T cells and CXCL10, a CXCR3 ligand and potent T helper 1 chemoattractant, was elevated in sera from patients with ARF. GM-CSF has recently emerged as a key T cell-derived effector cytokine in numerous autoimmune diseases, including myocarditis, and the production of CXCL10 may explain selective trafficking of these cells to the heart. We provide evidence that interleukin-1β amplifies the expansion of GM-CSF-expressing CD4 T cells, which is effectively suppressed by hydroxychloroquine. RNA sequencing showed shifts in gene expression profiles and differentially expressed genes in peripheral blood mononuclear cells derived from patients at different clinical stages of ARF. CONCLUSIONS Given the safety profile of hydroxychloroquine and its clinical pedigree in treating autoimmune diseases such as rheumatoid arthritis, where GM-CSF plays a pivotal role, we propose that hydroxychloroquine could be repurposed to reduce the risk of rheumatic heart disease after ARF.
Collapse
Affiliation(s)
- Man Lyang Kim
- Divisions of Inflammation (M.L.K., W.J.M., J.L.K., I.P.W.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Medical Biology (M.L.K., W.J.M., J.L.K., A.L.G., I.P.W.), University of Melbourne, Parkville, Victoria, Australia
| | - William J Martin
- Divisions of Inflammation (M.L.K., W.J.M., J.L.K., I.P.W.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Medical Biology (M.L.K., W.J.M., J.L.K., A.L.G., I.P.W.), University of Melbourne, Parkville, Victoria, Australia
| | - Gabriela Minigo
- Menzies School of Health Research and Charles Darwin University, Casuarina, Northern Territory, Australia (G.M.)
| | - Joanne L Keeble
- Divisions of Inflammation (M.L.K., W.J.M., J.L.K., I.P.W.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Medical Biology (M.L.K., W.J.M., J.L.K., A.L.G., I.P.W.), University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Bioinformatics (A.L.G., G.P., G.K.S., T.P.S.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Medical Biology (M.L.K., W.J.M., J.L.K., A.L.G., I.P.W.), University of Melbourne, Parkville, Victoria, Australia
| | - Guido Pacini
- Bioinformatics (A.L.G., G.P., G.K.S., T.P.S.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gordon K Smyth
- Bioinformatics (A.L.G., G.P., G.K.S., T.P.S.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Mathematics and Statistics (G.K.S., T.P.S.), University of Melbourne, Parkville, Victoria, Australia
| | - Terence P Speed
- Bioinformatics (A.L.G., G.P., G.K.S., T.P.S.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Mathematics and Statistics (G.K.S., T.P.S.), University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan Carapetis
- Telethon Kids Institute, University of Western Australia, Princess Margaret Hospital for Children, Perth, Western Australia (J.C.)
| | - Ian P Wicks
- Divisions of Inflammation (M.L.K., W.J.M., J.L.K., I.P.W.), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Medical Biology (M.L.K., W.J.M., J.L.K., A.L.G., I.P.W.), University of Melbourne, Parkville, Victoria, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia (I.P.W.)
| |
Collapse
|
22
|
Postol E, Sá-Rocha LC, Sampaio RO, Demarchi LMMF, Alencar RE, Abduch MCD, Kalil J, Guilherme L. Group A Streptococcus Adsorbed Vaccine: Repeated Intramuscular Dose Toxicity Test in Minipigs. Sci Rep 2019; 9:9733. [PMID: 31278336 PMCID: PMC6611820 DOI: 10.1038/s41598-019-46244-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes infection continues to be a worldwide public health problem causing various diseases in humans and plays an important role in the pathogenesis of rheumatic fever and rheumatic heart disease. We developed a vaccine candidate to prevent S. pyogenes infections, identified as StreptInCor, that presented promising results in mouse models. A certified and independent laboratory conducted two repeated intramuscular dose toxicity tests (28 days, four weekly injections). The first test, composed of four experimental groups treated with 0 (vehicle), 50, 100 or 200 µg/500 µL StreptInCor, did not show significant alterations in clinical, hematological, biochemical or anatomopathological parameters related to the administration of StreptInCor. In addition to the parameters mentioned above, we evaluated the cardiac function and valves of animals by echocardiography before and after administration of 200 µg/500 µL StreptInCor versus placebo. We did not observe any changes related to StreptInCor administration, including changes in cardiac function and valves in animals, after receiving the highest dose of this vaccine candidate. The results obtained in the two repeated intramuscular dose toxicity tests showed that this vaccine formulation did not induce harmful effects to the tissues and organs studied, indicating that the candidate vaccine is well tolerated in minipigs.
Collapse
Affiliation(s)
- Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Luiz C Sá-Rocha
- Neuroimmunology Laboratory School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Roney O Sampaio
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lea M M F Demarchi
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel E Alencar
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Maria C D Abduch
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
- Clinical Immunology and Allergy Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection: The Cross-Reactive Antigens of Group A Streptococci and their Sequelae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0045-2018. [PMID: 31373269 PMCID: PMC6684244 DOI: 10.1128/microbiolspec.gpp3-0045-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
The group A streptococci are associated with a group of diseases affecting the heart, brain, and joints that are collectively referred to as acute rheumatic fever. The streptococcal immune-mediated sequelae, including acute rheumatic fever, are due to antibody and cellular immune responses that target antigens in the heart and brain as well as the group A streptococcal cross-reactive antigens as reviewed in this article. The pathogenesis of acute rheumatic fever, rheumatic heart disease, Sydenham chorea, and other autoimmune sequelae is related to autoantibodies that are characteristic of autoimmune diseases and result from the immune responses against group A streptococcal infection by the host. The sharing of host and streptococcal epitopes leads to molecular mimicry between the streptococcal and host antigens that are recognized by the autoantibodies during the host response. This article elaborates on the discoveries that led to a better understanding of the pathogenesis of disease and provides an overview of the history and the most current thought about the immune responses against the host and streptococcal cross-reactive antigens in group A streptococcal sequelae.
Collapse
Affiliation(s)
- Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| |
Collapse
|
24
|
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1482-1494. [PMID: 31108102 DOI: 10.1016/j.ajpath.2019.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) has been traditionally viewed as a disease of the cardiac muscle associated with systemic inflammation. Burgeoning evidence implicates immune effector mechanisms that include immune cell activation and trafficking to the heart. Immune cell infiltration in the myocardium can have adverse effects in the heart and contribute to the pathogenesis of HF. Both innate and adaptive immunity operate sequentially, and the specificity of these responses depends on the initial trigger sensed by the heart. Although the role of the immune system in the initial inflammatory response to infection and injury is well studied, what sets the trajectory to HF from different etiologies and the role of immunity once HF has been established is less understood. Herein, we review experimental and clinical knowledge of cardiac inflammation induced by different triggers that often result in HF from different etiologies. We focus on the mechanisms of immune cell activation systemically and on the pathways immune cells use to traffic to the heart.
Collapse
Affiliation(s)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
25
|
Sikder S, Price G, Alim MA, Gautam A, Scott Simpson R, Margaret Rush C, Lee Govan B, Ketheesan N. Group A streptococcal M-protein specific antibodies and T-cells drive the pathology observed in the rat autoimmune valvulitis model. Autoimmunity 2019; 52:78-87. [PMID: 31062619 DOI: 10.1080/08916934.2019.1605356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are autoimmune mediated diseases triggered by group A streptococcal (GAS) infections. Molecular mimicry between GAS M-proteins and host tissue proteins has been proposed as the mechanism that initiates autoreactive immune responses in ARF/RHD. However, the individual role of antibodies and T-cells specific for GAS M-proteins in the pathogenesis of autoimmune carditis remains under-explored. The current study investigated the role of antibodies and T-cells in the development of carditis in the Lewis rat autoimmune valvultis (RAV) model by transferring serum and/or splenic T-cells from rats previously injected with GAS recombinant M5 protein. Here we report that serum antibodies alone and serum plus in vitro expanded rM5-specific T-cells from hyperimmune rats were capable of transferring carditis to naïve syngeneic animals. Moreover, the rats that received combined serum and T-cells developed more severe carditis. Recipient rats developed mitral valvulitis and myocarditis and showed prolongation of P-R intervals in electrocardiography. GAS M5 protein-specific IgG reactivity and T-cell recall response were also demonstrated in recipient rats indicating long-term persistence of antibodies and T-cells following transfer. The results suggest that both anti-GAS M5 antibodies and T-cells have differential propensity to induce autoimmune mediated carditis in syngeneic rats following transfer. The results highlight that antibodies and effector T-cells generated by GAS M protein injection can also independently home into cardiac tissue to cross-react with tissue proteins causing autoimmune mediated immunopathology.
Collapse
Affiliation(s)
- Suchandan Sikder
- a College of Public Health Medical and Veterinary Sciences , Australian Institute of Tropical Health and Medicine, James Cook University , Townsville , Australia.,b Department of Medicine and Surgery , Chittagong Veterinary and Animal Sciences University , Chittagong , Bangladesh
| | - Georgina Price
- a College of Public Health Medical and Veterinary Sciences , Australian Institute of Tropical Health and Medicine, James Cook University , Townsville , Australia
| | - Md Abdul Alim
- a College of Public Health Medical and Veterinary Sciences , Australian Institute of Tropical Health and Medicine, James Cook University , Townsville , Australia.,c Department of Pathology and Parasitology , Chittagong Veterinary and Animal Sciences University , Chittagong , Bangladesh
| | - Anil Gautam
- d The Townsville Hospital , Townsville , Australia
| | | | - Catherine Margaret Rush
- a College of Public Health Medical and Veterinary Sciences , Australian Institute of Tropical Health and Medicine, James Cook University , Townsville , Australia
| | - Brenda Lee Govan
- a College of Public Health Medical and Veterinary Sciences , Australian Institute of Tropical Health and Medicine, James Cook University , Townsville , Australia
| | - Natkunam Ketheesan
- f School of Science & Technology , University of New England , Armidale , Australia
| |
Collapse
|
26
|
Circulating cytokines predict severity of rheumatic heart disease. Int J Cardiol 2019; 289:107-109. [PMID: 31079974 DOI: 10.1016/j.ijcard.2019.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 04/19/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Rheumatic heart disease (RHD) is associated with inflammation that damages cardiac valves, often requiring surgical interventions. The underlying mechanisms involved in the disease progression are not completely understood. This study aimed to evaluate cytokine plasma levels in patients with RHD as possible markers of disease severity. METHODS AND RESULTS Eighty-nine patients with RHD, age of 41 years ±11.5 years, were prospectively enrolled. RHD severity was defined as valve dysfunction that required invasive intervention, either valve repair or replacement. Peripheral blood samples were collected from all patients for cytokine measurements. The patients were followed up to look at adverse clinical events defined as either the need for valve intervention or death. At baseline, 64 (71.9%) patients had previously undergone valve intervention, whereas 25 patients had stable clinical presentation. Patients with severe RHD displayed higher levels of inflammatory cytokines than patients with stable disease. Cluster analysis showed segregation of severe and stable RHD based on IL-6/TNF-α and IL-6/IL-17A, respectively. IL-6 and TNF-α expression were positively correlated in severe but not in stable RHD patients. During a median follow-up of 23 months, 16 patients (18%) had an adverse outcome. IL-10 at baseline (HR 1.24, 95% CI 1.08-1.43, p = 0.003), and IL-4 (HR 1.12, 95% CI 1.01-1.24, p = 0.041) were predictors of events during the follow-up. CONCLUSIONS High levels of cytokines are associated with severity of RHD. The co-regulated expression of IL-6 and TNF-α is associated with severe valve dysfunction, whereas high IL-10 and IL-4 levels predicted subsequently adverse outcome.
Collapse
|
27
|
Sikder S, Rush CM, Govan BL, Norton RE, Cunningham MW, McMillan DJ, Sriprakash KS, Ketheesan N. Reply to Dale and Shulman. J Infect Dis 2019; 219:675-676. [PMID: 30247617 DOI: 10.1093/infdis/jiy561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Suchandan Sikder
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - David J McMillan
- Inflammation and Healing Biomedical Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | | | | |
Collapse
|
28
|
Murciano M, Biancone DM, Capata G, Tristano I, Martucci V, Guido CA, Anaclerio S, Loffredo L, Zicari AM, Duse M, Spalice A. Focus on Cardiologic Findings in 30 Children With PANS/PANDAS: An Italian Single-Center Observational Study. Front Pediatr 2019; 7:395. [PMID: 31632938 PMCID: PMC6779699 DOI: 10.3389/fped.2019.00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: Cardiac involvement in PANS has not been clarified relying on the scientific literature available until today. It is known that streptococcal infections play a role in the etiology of a great number of diseases including Sydenham chorea and rheumatic fever, among others. Based on the suspected pathogenesis of PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infections) reported in the medical literature, we decided to investigate the cardiologic involvement in children with a recent PANS/PANDAS diagnosis. Methods: The study population satisfies PANS (1) and PANDAS (2) criteria of diagnoses. Cardiologic assessment was performed through clinical examination, electrocardiography, and echocardiography. Results: In the selected pediatric population, a significant number of children presented mitral valve involvement, systolic murmurs and electrocardiographic abnormalities. High ASLOT levels did not seem to be associated to a cardiac involvement. Conclusions: Often PANS is difficult to diagnose because it is little known by physicians and most of the cardiologic findings described in this study are common among the healthy pediatric population. Also, ASLOT levels seems not to be predictive of cardiac involvement. Furthermore, the existence of PANDAS as a clinical entity is associated with a group of anti-neuronal autoantibodies found in Sydenham chorea is still controversial. We recommend a complete cardiologic evaluation in those children who meet the PANS/PANDAS diagnostic criteria.
Collapse
Affiliation(s)
- Manuel Murciano
- Child Neurology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Davide Maria Biancone
- Child Neurology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Capata
- Child Immunology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Isabella Tristano
- Child Neurology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Vanessa Martucci
- Child Immunology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Cristiana Alessia Guido
- Child Neurology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Anaclerio
- Child Cardiology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Internal Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Child Immunology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Marzia Duse
- Child Immunology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Alberto Spalice
- Child Neurology Division, Department of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
29
|
Ogura K, Okumura K, Shimizu Y, Kirikae T, Miyoshi-Akiyama T. Pathogenicity Induced by Invasive Infection of Streptococcus dysgalactiae subsp. equisimilis in a Mouse Model of Diabetes. Front Microbiol 2018; 9:2128. [PMID: 30298057 PMCID: PMC6160533 DOI: 10.3389/fmicb.2018.02128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes severe invasive diseases such as streptococcal toxic shock syndrome, similar to that caused by S. pyogenes (GAS). Invasive SDSE infections are increasing, particularly among patients with diabetes mellitus. Here we investigate the association between the pathogenicity of SDSE and diabetes mellitus in a mouse model, using GAS infection for comparison. Intraperitoneal injection of highly hemolytic SDSE-167 into C57BL6/J mice induced a rapid rise in blood glucose concentrations within 4 h, which was otherwise seen only in mice injected with high doses of hypervirulent GAS mutants. The survival rates of mice injected with SDSE-167 were significantly lower in mice (db/db) with type 2 diabetes than in nondiabetic mice. Injection of db/db mice with SDSE-167 increased the concentrations of cytokines and chemokines, particularly those of interleukin 6 and monocyte chemotactic protein-1. Microarray data indicate that multiple pathways are involved in the pathogenicity of SDSE-167 in db/db mice. These data reveal that the mechanisms underlying streptococcal infection differ between SDSE and GAS.
Collapse
Affiliation(s)
- Kohei Ogura
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Ishikawa, Japan
| | - Kayo Okumura
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|