1
|
Chandran D, Chakraborty S, Chandran D, Subedi D, Jisha AI, Chopra H, Rabaan AA, Al-Tawfiq JA, Islam MR, Dhama K. Middle East Respiratory Syndrome Coronavirus Could be a Priority Pathogen to Cause Public Health Emergency: Noticeable Features and Counteractive Measures. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271545. [PMID: 39156879 PMCID: PMC11329908 DOI: 10.1177/11786302241271545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Middle East respiratory syndrome (MERS) is caused by a specific strain of the 6 types of human coronaviruses (HCoV). MERS-CoV has spread unchecked since it was first discovered in Saudi Arabia in 2012. The virus most likely spreads through nosocomial and zoonotic channels. Genetic analyses suggest that bats were the initial hosts and that the disease spread to camels. Person-to-person transmission occurs with varying frequency, being most prevalent in clinical settings and the least common among the general population and among close relatives. Due to the severity of the illness, high fatality rate, potential for epidemic spread, and lack of adequate medical countermeasures, the World Health Organization (WHO) continues to list MERS-CoV as a priority pathogen. While no specific antiviral medicines exist, a combination of antivirals has shown promise in recent clinical trials. Vaccines against MERS-CoV are critically needed and are currently being developed. Early diagnosis and implementing appropriate infection control measures are keys to preventing hospital-associated outbreaks. Preventive measures include avoiding raw or undercooked meats and other animal products, ensuring proper hand hygiene in healthcare settings and around dromedaries, educating the public and healthcare personnel about the disease, and adhering to other recommended practices. Countries with a high prevalence of MERS should adhere to regulations designed to limit the transmission of the virus. The recent spread of MERS-CoV highlights the importance of public awareness regarding the significance of reporting symptoms so that appropriate control measures can be adopted. The narrative review discusses the incidence of MERS, its clinical presentation, potential transmission routes, recent reports, preventative and control measures, and current therapeutic options.
Collapse
Affiliation(s)
- Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Kerala, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, India
| | - Diljith Chandran
- KVG Dental College & Hospital, Kurunjibhag, Sullia, Karnataka, India
| | - Deepak Subedi
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ankitha Indu Jisha
- Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Patient Safety Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Diseases Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Infectious Diseases Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Alfaleh MA, Alsulaiman RM, Almahboub SA, Nezamuldeen L, Zawawi A, Aljehani ND, Yasir M, Abdulal RH, Alkhaldi R, Helal A, Alamri SS, Malki J, Alhabbab RY, Abujamel TS, Alhakamy NA, Alnami A, Algaissi A, Hassanain M, Hashem AM. ACE2-Fc and DPP4-Fc decoy receptors against SARS-CoV-2 and MERS-CoV variants: a quick therapeutic option for current and future coronaviruses outbreaks. Antib Ther 2024; 7:53-66. [PMID: 38371953 PMCID: PMC10873275 DOI: 10.1093/abt/tbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Reem M Alsulaiman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Sarah A Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Leena Nezamuldeen
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ayat Zawawi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Najwa D Aljehani
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Muhammad Yasir
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rwaa H Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rami Alkhaldi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Assala Helal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Sawsan S Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Jana Malki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Aisha Alnami
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Abdullah Algaissi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mazen Hassanain
- Department of Surgery, Faculty of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
3
|
Mora-Rodríguez JM, Sánchez BG, Bort A, Díaz-Yuste A, Ballester-González R, Arrieta F, Sebastián-Martín A, Díaz-Laviada I. Diabetic individuals with COVID-19 exhibit reduced efficacy of gliptins in inhibiting dipeptidyl peptidase 4 (DPP4). A suggested explanation for increased COVID-19 susceptibility in patients with type 2 diabetes mellitus (T2DM). Life Sci 2024; 336:122292. [PMID: 38030058 DOI: 10.1016/j.lfs.2023.122292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
AIMS Dipeptidyl peptidase 4 (DPP4) has been proposed as a coreceptor for SARS-CoV-2 cellular entry. Considering that type 2 diabetes mellitus (T2DM) has been identified as the most important risk factor for SARS-CoV-2, and that gliptins (DPP4 inhibitors) are a prescribed diabetic treatment, this study aims to unravel the impact of DPP4 in the intersection of T2DM/COVID-19. MATERIALS AND METHODS We analyzed 189 serum human samples, divided into six clinical groups (controls, T2DM, T2DM + gliptins, COVID-19, COVID-19 + T2DM, and COVID-19 + T2DM + gliptins), measuring DPP4 protein concentration and activity by Western blot, ELISA, and commercial activity kits. The obtained results were verified in Huh-7 cellular models. KEY FINDINGS Both DPP4 concentration and activity were decreased in COVID-19 patients, and as in T2DM patients, compared to controls. Despite these lower levels, the ratio of DPP4 activity/concentration in COVID-19 sera was the highest (0.782 ± 0.289 μU/ng vs. 0.547 ± 0.050 μU/ng in controls, p < 0.0001), suggesting a compensating mechanism in these patients. Supernatants of Huh-7 cells incubated with COVID-19 serum showed a consistent and significantly lower DPP4 concentration and activity. Furthermore, COVID-19 + T2DM + gliptins patients showed a higher serum DPP4 concentration and activity than T2DM + gliptin subjects (p < 0.05), indicating that sera from COVID-19 convalescents interfere with gliptins. SIGNIFICANCE Either SARS-CoV-2 or some metabolites present in the sera of COVID-19-convalescent patients interact with soluble DPP4 or even gliptins themselves since the inhibitory effect of gliptins on DPP4 activity is being prevented. The interactions between DPP4, gliptins, and SARS-CoV-2 should be further elucidated to reveal the mechanism of action for these interesting observations.
Collapse
Affiliation(s)
- José María Mora-Rodríguez
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain.
| | - Belén G Sánchez
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain.
| | - Alicia Bort
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain.
| | - Alba Díaz-Yuste
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain.
| | - Rubén Ballester-González
- Immunology Service, Ramón y Cajal Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain.
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain.
| | - Alba Sebastián-Martín
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain.
| | - Inés Díaz-Laviada
- Department of Systems Biology, School of Medicine and Health Sciences, Alcalá University, Alcalá de Henares, Spain; Health Research Institute of Castilla-La Mancha (IDISCAM), Spain; Chemical Research Institute "Andrés M. del Río" (IQAR), Alcalá de Henares, Spain.
| |
Collapse
|
4
|
Dobrowolski P, Buch T, Nagel-Riedasch S. Nomenclature for standardized designation of diploid genotypes in genetically modified laboratory animals. Lab Anim 2023; 57:371-380. [PMID: 37672033 PMCID: PMC10506360 DOI: 10.1177/00236772231175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 09/07/2023]
Abstract
Information about the diploid genotype of a gene-modified or mutant laboratory animal is essential for breeding and experimental planning. It is also required for the exchange of animals between different research groups or for communication with professional genotyping service providers. While there are detailed, standardized rules for creating an allele name of a genome modification or mutation, the notation of the diploid genotype after biopsy and genotyping has not been standardized yet. Therefore, a uniform, generally understandable nomenclature for the diploid genotype of gene-modified laboratory animals is needed. With the here-proposed nomenclature recommendations from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science (GV-SOLAS), we provide a practical, standardized representation of the genotype of gene-modified animals. It is intended to serve as a compact guide for animal care and scientific personnel in animal research facilities and to simplify data exchange between groups and with external service providers.
Collapse
Affiliation(s)
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Switzerland
| | - Stefan Nagel-Riedasch
- Research Facilities for Experimental Medicine, Charité – Universitätsmedizin Berlin, Germany
| |
Collapse
|
5
|
Chang CC, Algaissi A, Lai CC, Chang CK, Lin JS, Wang YS, Chang BH, Chang YC, Chen WT, Fan YQ, Peng BH, Chao CY, Tzeng SR, Liang PH, Sung WC, Hu AYC, Chang SC, Chang MF. Subunit vaccines with a saponin-based adjuvant boost humoral and cellular immunity to MERS coronavirus. Vaccine 2023; 41:3337-3346. [PMID: 37085450 PMCID: PMC10083212 DOI: 10.1016/j.vaccine.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.
Collapse
Affiliation(s)
- Chi-Chieh Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Disease, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Kai Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Shiang Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bo-Hau Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Wei-Ting Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yong-Qing Fan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bi-Hung Peng
- Department of Neurosciences, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chih-Yu Chao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shin C Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
6
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
7
|
Yap TF, Hsu JC, Liu Z, Rayavara K, Tat V, Tseng CTK, Preston DJ. Efficacy and self-similarity of SARS-CoV-2 thermal decontamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:127709. [PMID: 35086724 PMCID: PMC8572375 DOI: 10.1016/j.jhazmat.2021.127709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Dry heat decontamination has been shown to effectively inactivate viruses without compromising the integrity of delicate personal protective equipment (PPE), allowing safe reuse and helping to alleviate shortages of PPE that have arisen due to COVID-19. Unfortunately, current thermal decontamination guidelines rely on empirical data which are often sparse, limited to a specific virus, and unable to provide fundamental insight into the underlying inactivation reaction. In this work, we experimentally quantified dry heat decontamination of SARS-CoV-2 on disposable masks and validated a model that treats the inactivation reaction as thermal degradation of macromolecules. Furthermore, upon nondimensionalization, all of the experimental data collapse onto a unified curve, revealing that the thermally driven decontamination process exhibits self-similar behavior. Our results show that heating surgical masks to 70 °C for 5 min inactivates over 99.9% of SARS-CoV-2. We also characterized the chemical and physical properties of disposable masks after heat treatment and did not observe degradation. The model presented in this work enables extrapolation of results beyond specific temperatures to provide guidelines for safe PPE decontamination. The modeling framework and self-similar behavior are expected to extend to most viruses-including yet-unencountered novel viruses-while accounting for a range of environmental conditions.
Collapse
Affiliation(s)
- Te Faye Yap
- Department of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jason C Hsu
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Zhen Liu
- Department of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Kempaiah Rayavara
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Vivian Tat
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; Center for Biodefense and Emerging Diseases, Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Daniel J Preston
- Department of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| |
Collapse
|
8
|
Alkharsah KR, Aljaroodi SA, Rahman JU, Alnafie AN, Al Dossary R, Aljindan RY, Alnimr AM, Hussen J. Low levels of soluble DPP4 among Saudis may have constituted a risk factor for MERS endemicity. PLoS One 2022; 17:e0266603. [PMID: 35413090 PMCID: PMC9004781 DOI: 10.1371/journal.pone.0266603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Most of the cases of Middle East respiratory syndrome coronavirus (MERS-CoV) were reported in Saudi Arabia. Dipeptidyl peptidase-4 (DPP4) was identified as the receptor for the virus. The level of soluble DPP4 (sDPP4) was found to be reduced in MERS-CoV infected patients while high levels of sDPP4 were suggested to be protective against MERS-CoV in animal models. We investigated whether the Saudi population has lower levels of sDPP4 which makes them more susceptible to MERS-CoV infection and, therefore, could explain the larger number of cases from the country. Blood samples were collected from 219 Saudi blood donors and 200 blood donors from other ethnic groups. The plasma level of sDPP4 was measured by ELISA and the following SNPs in the DPP4 gene; rs35128070, rs1861978, rs79700168, and rs17574, were genotyped by TaqMan SNP genotyping assay. The average level of plasma sDDP4 was significantly lower in Saudis than other Arabs and non-Arabs (P value 0.0003 and 0.012, respectively). The genotypes AG of rs35128070 and GT of rs1861978 were significantly associated with lower sDPP4 among Saudis (P value 0.002 for each). While both genotypes AA and AG of rs79700168 and rs17574 were associated with significantly lower average sDPP4 level in Saudis compared to other ethnic groups (P value 0.031 and 0.032, and 0.027 and 0.014, respectively). Herein, we report that the Saudi population has lower levels of plasma sDPP4 than other ethnic groups, which is associated with genetic variants in the DPP4 gene. This may have contributed to increase the susceptibility of the Saudi population to MERS-CoV infection and could be a factor in the long-lasting persistence of the virus in the country.
Collapse
Affiliation(s)
- Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- * E-mail:
| | - Salma Ali Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Awatif N. Alnafie
- Department of Pathology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem Y. Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Amani M. Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, Fan H. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front Pharmacol 2021; 12:731453. [PMID: 34955820 PMCID: PMC8696080 DOI: 10.3389/fphar.2021.731453] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
CD26/Dipeptidyl peptidase 4 (DPP4) is a type II transmembrane glycoprotein that is widely expressed in various organs and cells. It can also exist in body fluids in a soluble form. DPP4 participates in various physiological and pathological processes by regulating energy metabolism, inflammation, and immune function. DPP4 inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of type 2 diabetes mellitus. More evidence has shown the role of DPP4 in the pathogenesis of lung diseases, since it is highly expressed in the lung parenchyma and the surface of the epithelium, vascular endothelium, and fibroblasts of human bronchi. It is a potential biomarker and therapeutic target for various lung diseases. During the coronavirus disease-19 (COVID-19) global pandemic, DPP4 was found to be an important marker that may play a significant role in disease progression. Some clinical trials on DPP4 inhibitors in COVID-19 are ongoing. DPP4 also affects other infectious respiratory diseases such as Middle East respiratory syndrome and non-infectious lung diseases such as pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), and asthma. This review aims to summarize the roles of DPP4 and its inhibitors in infectious lung diseases and non-infectious diseases to provide new insights for clinical physicians.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Jiang Y, Chen Y, Sun H, Zhang X, He L, Li J, Zhao G, Sun S. MERS-CoV infection causes brain damage in human DPP4-transgenic mice through complement-mediated inflammation. J Gen Virol 2021; 102. [PMID: 34704923 PMCID: PMC8604193 DOI: 10.1099/jgv.0.001667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.
Collapse
Affiliation(s)
- Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, PR China
| | - Xiaolu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
11
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
DPP4 Inhibitors and COVID-19-Holy Grail or Another Dead End? Arch Immunol Ther Exp (Warsz) 2021; 69:1. [PMID: 33527308 PMCID: PMC7850901 DOI: 10.1007/s00005-020-00602-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
A novel coronavirus disease, COVID-19, has emerged as a global public health issue. Clinical course of disease significantly correlates with the occurrence of some comorbidities, among them type 2 diabetes. According to recent structural studies the dipeptidyl peptidase 4, a key molecule in the pathophysiology of diabetes, may influence the course of COVID-19. Since DPP4 inhibitors, gliptins, are widely used in diabetes patients, the exact role of DPP4 modulation in SARS-CoV-2 infection, at least in that group, urgently needs to be clarified. In this short review, we discuss this issue with more detail.
Collapse
|
14
|
Sun B, Huang S, Zhou J. Perspectives of Antidiabetic Drugs in Diabetes With Coronavirus Infections. Front Pharmacol 2021; 11:592439. [PMID: 33584268 PMCID: PMC7878391 DOI: 10.3389/fphar.2020.592439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of viral infections especially during the period of poor glycemic controls. Emerging evidence has reported that DM is one of the most common comorbidities in the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection, also referred to as COVID-19. Moreover, the management and therapy are complex for individuals with diabetes who are acutely unwell with suspected or confirmed COVID-19. Here, we review the role of antidiabetic agents, mainly including insulin, metformin, pioglitazone, dipeptidyl peptidase-4 (DPP4) inhibitors, sodium-glucose cotransporter 2 (SGLT2) inhibitors, and glucagon-like peptide 1 (GLP-1) receptor agonists in DM patients with coronavirus infection, addressing the clinical therapeutic choices for these subjects.
Collapse
Affiliation(s)
- Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
15
|
Tomo S, Kumar KP, Roy D, Sankanagoudar S, Purohit P, Yadav D, Banerjee M, Sharma P, Misra S. Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol 2021; 14:155-173. [PMID: 33480807 DOI: 10.1080/17474086.2021.1875813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 has similarities to the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, as severe patients and non-survivors have frequently shown abnormal coagulation profiles. Immune-mediated pathology is a key player in this disease; hence, the role of the complement system needs assessment. The complement system and the coagulation cascade share an intricate network, where multiple mediators maintain a balance between both pathways. Coagulopathy in COVID-19, showing mixed features of complement-mediated and consumption coagulopathy, creates a dilemma in diagnosis and management. AREAS COVERED Pathophysiology of coagulopathy in COVID-19 patients, with a particular focus on D-dimer and its role in predicting the severity of COVID-19 has been discussed. A comprehensive search of the medical literature on PubMed was done till May 30th, 2020 with the keywords 'COVID-19', 'SARS-CoV-2', 'Coronavirus', 'Coagulopathy', and 'D-dimer'. Twenty-two studies were taken for weighted pooled analysis of D-dimer. EXPERT OPINION A tailored anticoagulant regimen, including intensification of standard prophylactic regimens with low-molecular-weight heparin is advisable for COVID-19 patients. Atypical manifestations and varying D-dimer levels seen in different populations bring forth the futility of uniform recommendations for anticoagulant therapy. Further, direct thrombin inhibitors and platelet inhibitors in a patient-specific manner should also be considered.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Kiran Pvsn Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dipayan Roy
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | | | - Purvi Purohit
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Mithu Banerjee
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
16
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
17
|
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127:104362. [PMID: 32305883 PMCID: PMC7195278 DOI: 10.1016/j.jcv.2020.104362] [Citation(s) in RCA: 625] [Impact Index Per Article: 156.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus strain disease, has recently emerged in China and rapidly spread worldwide. This novel strain is highly transmittable and severe disease has been reported in up to 16% of hospitalized cases. More than 600,000 cases have been confirmed and the number of deaths is constantly increasing. COVID-19 hospitalized patients, especially those suffering from severe respiratory or systemic manifestations, fall under the spectrum of the acutely ill medical population, which is at increased venous thromboembolism risk. Thrombotic complications seem to emerge as an important issue in patients infected with COVID-19. Preliminary reports on COVID-19 patients' clinical and laboratory findings include thrombocytopenia, elevated D-dimer, prolonged prothrombin time, and disseminated intravascular coagulation. As the pandemic is spreading and the whole picture is yet unknown, we highlight the importance of coagulation disorders in COVID-19 infected patients and review relevant data of previous coronavirus epidemics caused by the severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East Respiratory Syndrome coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; Surgery Working Group, Society of Junior Doctors, Athens, Greece.
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece; Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany.
| |
Collapse
|
18
|
Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020; 41:5820492. [PMID: 32294179 PMCID: PMC7184382 DOI: 10.1210/endrev/bnaa011] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
Collapse
Affiliation(s)
- Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
19
|
Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020; 209:107503. [PMID: 32061923 PMCID: PMC7102585 DOI: 10.1016/j.pharmthera.2020.107503] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4is) are oral anti-diabetic drugs (OADs) for the treatment of type 2 diabetes mellitus (T2DM) through inhibiting the degradation of incretin peptides. Numerous investigations have been focused on the effects of DPP4is on glucose homeostasis. However, there are limited evidences demonstrating their Potential modulatory functions in the immune system. DPP4, originally known as the lymphocyte cell surface protein CD26, is widely expressed in many types of immune cells including CD4(+) and CD8(+) T cells, B cells, NK cells, dendritic cells, and macrophages; and regulate the functions of these cells. In addition, DPP4 is capable of modulating plenty of cytokines, chemokines and peptide hormones. Accordingly, DPP4/CD26 is speculated to be involved in various immune/inflammatory diseases and DPP4is may become a new drug class applied in these diseases. This review focuses on the regulatory effects of DPP4is on immune functions and their possible underlying mechanisms. Further clinical studies will be necessitated to fully evaluate the administration of DPP4is in diabetic patients with or without immune diseases.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - QinQin Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China.
| |
Collapse
|
20
|
Pitocco D, Tartaglione L, Viti L, Di Leo M, Pontecorvi A, Caputo S. SARS-CoV-2 and DPP4 inhibition: Is it time to pray for Janus Bifrons? Diabetes Res Clin Pract 2020; 163:108162. [PMID: 32335097 PMCID: PMC7179491 DOI: 10.1016/j.diabres.2020.108162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetes could be a risk factor for severity and mortality in patients with coronavirus disease 2019 COVID-19. It has been hypothesized that DPP4 inhibition, a therapy currently available for type 2 diabetes, might represent a target for decreasing the risk of the acute respiratory complications of the COVID-19 infection but (1) lack of demonstration of SARS-CoV2 binding to DPP4 (2) possible protective role of sDPP4 in Middle East respiratory Syndrome (MERS-CoV) (3) demonstrated inhibition and downregulation of DPP4 by HIV1 and MERS-CoV and (4) not exclusive role of the receptor binding in tropism of the Coronavirus family, support that DPP4 inhibition at present doesn't represent a plausible approach to mitigate COVID-19.
Collapse
Affiliation(s)
- Dario Pitocco
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.
| | - Linda Tartaglione
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Luca Viti
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Caputo
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
21
|
Hao X, Lv Q, Li F, Xu Y, Gao H. The characteristics of hDPP4 transgenic mice subjected to aerosol MERS coronavirus infection via an animal nose-only exposure device. Animal Model Exp Med 2019; 2:269-281. [PMID: 31942559 PMCID: PMC6930991 DOI: 10.1002/ame2.12088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health. METHODS To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues. RESULTS MERS-CoV aerosol-infected mice with an incubation period of 5-7 days showed weight loss on days 7-11, obvious lung lesions on day 7, high viral loads in the lungs on days 3-9 and in the brain on days 7-9, and 60% survival. MERS-CoV instillation-inoculated mice exhibited clinical signs on day 1, obvious lung lesions on days 3-5, continuous weight loss, 0% survival by day 5, and high viral loads in the lungs and brain on days 3-5. Viral antigen and high levels of proinflammatory cytokines and chemokines were detected in the aerosol and instillation groups. Disease, lung lesion, and viral replication progressions were slower in the MERS-CoV aerosol-infected mice than in the MERS-CoV instillation-inoculated mice. CONCLUSION hDPP4 transgenic mice were successfully infected with MERS-CoV aerosols via an animal nose-only exposure device, and aerosol- and instillation-infected mice simulated the clinical symptoms of moderate diffuse interstitial pneumonia. However, the transgenic mice exposed to aerosol MERS-CoV developed disease and lung pathology progressions that more closely resembled those observed in humans.
Collapse
Affiliation(s)
- Xin‐yan Hao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Qi Lv
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Feng‐di Li
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Yan‐feng Xu
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Hong Gao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| |
Collapse
|
22
|
Leist SR, Cockrell AS. Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome. Methods Mol Biol 2019; 2099:137-159. [PMID: 31883094 PMCID: PMC7123801 DOI: 10.1007/978-1-0716-0211-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
23
|
Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 2019; 11:E280. [PMID: 30893947 PMCID: PMC6466079 DOI: 10.3390/v11030280] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis-such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | - Gadissa B Hundie
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|