1
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Di Noi A, Caliani I, D'Agostino A, Cai G, Romi M, Campani T, Ferrante F, Baracchi D, Casini S. Assessing the effects of a commercial fungicide and an herbicide, alone and in combination, on Apis mellifera: Insights from biomarkers and cognitive analysis. CHEMOSPHERE 2024; 359:142307. [PMID: 38734252 DOI: 10.1016/j.chemosphere.2024.142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Agrochemicals play a vital role in protecting crops and enhancing agricultural production by reducing threats from pests, pathogens and weeds. The toxicological status of honey bees can be influenced by a number of factors, including pesticides. While extensive research has focused on the lethal and sublethal effects of insecticides on individual bees and colonies, it is important to recognise that fungicides and herbicides can also affect bees' health. Unfortunately, in the field, honey bees are exposed to mixtures of compounds rather than single substances. This study aimed to evaluate the effects of a commercial fungicide and a commercial herbicide, both individually and in combination, on honey bees. Mortality assays, biomarkers and learning and memory tests were performed, and the results were integrated to assess the toxicological status of honey bees. Neurotoxicity (acetylcholinesterase and carboxylesterase activities), detoxification and metabolic processes (glutathione S-transferase and alkaline phosphatase activities), immune system function (lysozyme activity and haemocytes count) and genotoxicity biomarkers (Nuclear Abnormalities assay) were assessed. The fungicide Sakura® was found to activate detoxification enzymes and affect alkaline phosphatase activity. The herbicide Elegant 2FD and the combination of both pesticides showed neurotoxic effects and induced detoxification processes. Exposure to the herbicide/fungicide mixture impaired learning and memory in honey bees. This study represents a significant advance in understanding the toxicological effects of commonly used commercial pesticides in agriculture and contributes to the development of effective strategies to mitigate their adverse effects on non-target insects.
Collapse
Affiliation(s)
- Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy.
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco 7, 53100 Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Federico Ferrante
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 6, Viterbo, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| |
Collapse
|
3
|
Bartling MT, Brandt A, Hollert H, Vilcinskas A. Current Insights into Sublethal Effects of Pesticides on Insects. Int J Mol Sci 2024; 25:6007. [PMID: 38892195 PMCID: PMC11173082 DOI: 10.3390/ijms25116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.
Collapse
Affiliation(s)
- Merle-Theresa Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Annely Brandt
- Bee Institute Kirchhain, Landesbetrieb Landwirtschaft Hessen, Erlenstr. 9, 35274 Kirchhain, Germany;
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany;
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
4
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
5
|
Pecenka JR, Ingwell LL, Krupke CH, Kaplan I. Implementing IPM in crop management simultaneously improves the health of managed bees and enhances the diversity of wild pollinator communities. Sci Rep 2023; 13:11033. [PMID: 37420024 PMCID: PMC10328965 DOI: 10.1038/s41598-023-38053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/02/2023] [Indexed: 07/09/2023] Open
Abstract
Impacts of insecticide use on the health of wild and managed pollinators have been difficult to accurately quantify in the field. Existing designs tend to focus on single crops, even though highly mobile bees routinely forage across crop boundaries. We created fields of pollinator-dependent watermelon surrounded by corn, regionally important crops in the Midwestern US. These fields were paired at multiple sites in 2017-2020 with the only difference being pest management regimes: a standard set of conventional management (CM) practices vs. an integrated pest management (IPM) system that uses scouting and pest thresholds to determine if/when insecticides are used. Between these two systems we compared the performance (e.g., growth, survival) of managed pollinators-honey bees (Apis mellifera), bumble bees (Bombus impatiens)-along with the abundance and diversity of wild pollinators. Compared to CM fields, IPM led to higher growth and lower mortality of managed bees, while also increasing the abundance (+ 147%) and richness (+ 128%) of wild pollinator species, and lower concentrations of neonicotinoids in the hive material of both managed bees. By replicating realistic changes to pest management, this experiment provides one of the first demonstrations whereby tangible improvements to pollinator health and crop visitation result from IPM implementation in agriculture.
Collapse
Affiliation(s)
- Jacob R Pecenka
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA.
| | - Laura L Ingwell
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA
| | - Christian H Krupke
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Gao J, Guo Y, Chen J, Diao QY, Wang Q, Dai PL, Zhang L, Li WM, Wu YY. Acute oral toxicity, apoptosis, and immune response in nurse bees ( Apis mellifera) induced by flupyradifurone. Front Physiol 2023; 14:1150340. [PMID: 37057182 PMCID: PMC10086230 DOI: 10.3389/fphys.2023.1150340] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The potential toxicity of flupyradifurone (FPF) to honey bees has been a subject of controversy in recent years. Understanding the effect of pesticides on nurse bees is important because the fitness of nurse bees is critical for in-hive activities, such as larval survival and performing hive maintenance. In order to evaluate the acute oral toxicity of flupyradifurone on nurse bees, flupyradifurone at five different concentrations was selected to feed both larvae and nurse bees. Our results showed that nurse bees were more sensitive to flupyradifurone than larvae (LD50 of the acute oral toxicity of flupyradifurone was 17.72 μg a.i./larva and 3.368 μg a.i./nurse bee). In addition, the apoptotic rates of neurons in mushroom bodies of nurse bees were significantly induced by flupyradifurone at sublethal concentrations (8 mg/L, 20 mg/L, and 50 mg/L) and the median lethal concentration LC50 (125 mg/L). The expression of immune-related genes (Hsp90, Toll-8/Tollo, and defensin) was significantly changed in exposed nurse bees at the field-realistic concentration of flupyradifurone. However, three detoxifying enzyme genes (CYP9Q1, -2, and -3) were not affected by pesticide exposure. Our data suggest that although flupyradifurone had a relatively lower acute oral toxicity than many other common pesticides, exposures to the field-realistic and other sublethal concentrations of flupyradifurone still have cytotoxicity and immune-responsive effects on nurse bees. Therefore, flupyradifurone should be considered for its application in crops.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Min Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Global honeybee health decline factors and potential conservation techniques. Food Secur 2023. [DOI: 10.1007/s12571-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Wang D, Lv L, Gao Z, Zhu YC, Weng H, Yang G, Wang Y. Joint toxic effects of thiamethoxam and flusilazole on the adult worker honey bees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120806. [PMID: 36470454 DOI: 10.1016/j.envpol.2022.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Insect pollinators are routinely exposed to a complex mixture of many pesticides. However, traditional environmental risk assessment is only carried out based on ecotoxicological data of single substances. In this context, we aimed to explore the potential effects when worker honey bees (Apis mellifera L.) were simultaneously challenged by thiamethoxam (TMX) and flusilazole (FSZ). Results displayed that TMX possessed higher toxicity to A. mellifera (96-h LC50 value of 0.11 mg a. i. L-1) than FSZ (96-h LC50 value of 738 mg a. i. L-1). Furthermore, the mixture of TMX and FSZ exhibited an acute synergistic impact on the pollinators. Meanwhile, the activities of SOD, caspase 3, caspase 9, and PPO, as well as the expressions of six genes (abaecin, dorsal-2, defensin-2, vtg, caspase-1, and CYP6AS14) associated with oxidative stress, immune response, lifespan, cell apoptosis, and detoxification metabolism were noteworthily varied in the individual and mixture challenges than at the baseline level. These data revealed that it is imminently essential to investigate the combined toxicity of pesticides since the toxicity evaluation from individual compounds toward honey bees may underestimate the toxicity in realistic conditions. Overall, the present results could help understand the potential contribution of pesticide mixtures to the decline of bee populations.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Zhongwen Gao
- Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China.
| |
Collapse
|
9
|
Harwood GP, Prayugo V, Dolezal AG. Butenolide Insecticide Flupyradifurone Affects Honey Bee Worker Antiviral Immunity and Survival. FRONTIERS IN INSECT SCIENCE 2022; 2:907555. [PMID: 38468795 PMCID: PMC10926552 DOI: 10.3389/finsc.2022.907555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 03/13/2024]
Abstract
Honey bees face many environmental stressors, including exposure to pesticides and pathogens. A novel butenolide pesticide, flupyradifurone, was recently introduced to the US and shown to have a bee-friendly toxicity profile. Like the much-scrutinized neonicotinoids that preceded it, flupyradifurone targets the insect nervous system. Some neonicotinoids have been shown to interfere with antiviral immunity, which raised the concern that similar effects may be observed with flupyradifurone. In this study, we investigated how flupyradifurone and a neonicotinoid, clothianidin, affect the ability of honey bee workers to combat an infection of Israeli acute paralysis virus (IAPV). We exposed workers to field-realistic doses of the pesticides either with or without co-exposure with the virus, and then tracked survival and changes in viral titers. We repeated the experiment in the spring and fall to look for any seasonal effects. We found that flupyradifurone caused elevated mortality in the fall, but it did not lead to increased virus-induced mortality. Flupyradifurone also appeared to affect virus clearance, as bees co-exposed to the pesticide and virus tended to have higher viral titers after 48 hours than those exposed to the virus alone. Clothianidin had no effect on viral titers, and it actually appeared to increase resistance to viral infection in spring bees.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | |
Collapse
|
10
|
Taillebois E, Thany SH. The use of insecticide mixtures containing neonicotinoids as a strategy to limit insect pests: Efficiency and mode of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105126. [PMID: 35715064 DOI: 10.1016/j.pestbp.2022.105126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
11
|
Bouafoura R, Bastarache P, Ouédraogo BC, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Characterization of Insecticide Response-Associated Transcripts in the Colorado Potato Beetle: Relevance of Selected Cytochrome P450s and Clothianidin. INSECTS 2022; 13:insects13060505. [PMID: 35735842 PMCID: PMC9225154 DOI: 10.3390/insects13060505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The Colorado potato beetle is an insect pest that can significantly harm potato crops. Various approaches are available to mitigate its damages including the use of insecticides. Unfortunately, its ability to develop resistance towards these compounds is substantial, and understanding the basis of this process is of utmost importance to design strategies to limit the impact of this insect. This work thus aims at quantifying the expression of key transcripts coding for proteins associated with insecticide resistance in Colorado potato beetles exposed to four insecticides. Significant variations were observed, notably in insects exposed to the insecticide clothianidin. Interestingly, subsequent reduction of endogenous levels of selected targets modulated by clothianidin was associated with increased insect susceptibility to this neonicotinoid. These results further highlight molecular players with potential relevance for insecticide resistance, and introduce novel targets that underlie clothianidin resistance in the Colorado potato beetle. Abstract The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is known for its capacity to cause significant damages to potato crops worldwide. Multiple approaches have been considered to limit its spread including the use of a diverse arsenal of insecticides. Unfortunately, this insect frequently develops resistance towards these compounds. Investigating the molecular bases underlying the response of L. decemlineata against insecticides is of strong interest to ultimately devise novel and targeted approaches aimed at this pest. This work aimed to characterize, via qRT-PCR, the expression status of targets with relevance to insecticide response, including ones coding for cytochrome P450s, glutathione s-transferases, and cuticular proteins, in L. decemlineata exposed to four insecticides; chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Modulation of levels associated with transcripts coding for selected cytochrome P450s was reported in insects treated with three of the four insecticides studied. Clothianidin treatment yielded the most variations in transcript levels, leading to significant changes in transcripts coding for CYP4c1, CYP4g15, CYP6a13, CYP9e2, GST, and GST-1-Like. Injection of dsRNA targeting CYP4c1 and CYP9e2 was associated with a substantial decrease in expression levels and was, in the case of the latter target, linked to a greater susceptibility of L. decemlineata towards this neonicotinoid, supporting a potential role for this target in clothianidin response. Overall, this data further highlights the differential expression of transcripts with potential relevance in insecticide response, as well as generating specific targets that warrant investigation as novel dsRNA-based approaches are developed against this insect pest.
Collapse
Affiliation(s)
- Raed Bouafoura
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Chandra E. Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada; (C.E.M.); (J.L.V.)
| | - Jess L. Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada; (C.E.M.); (J.L.V.)
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
- Correspondence:
| |
Collapse
|
12
|
Graham KK, Milbrath MO, Zhang Y, Baert N, McArt S, Isaacs R. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Sci Rep 2022; 12:7189. [PMID: 35504929 PMCID: PMC9065077 DOI: 10.1038/s41598-022-11156-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
When managed bee colonies are brought to farms for crop pollination, they can be exposed to pesticide residues. Quantifying the risk posed by these exposures can indicate which pesticides are of the greatest concern and helps focus efforts to reduce the most harmful exposures. To estimate the risk from pesticides to bees while they are pollinating blueberry fields, we sampled blueberry flowers, foraging bees, pollen collected by returning honey bee and bumble bee foragers at colonies, and wax from honey bee hives in blooming blueberry farms in southwest Michigan. We screened the samples for 261 active ingredients using a modified QuEChERS method. The most abundant pesticides were those applied by blueberry growers during blueberry bloom (e.g., fenbuconazole and methoxyfenozide). However, we also detected highly toxic pesticides not used in this crop during bloom (or other times of the season) including the insecticides chlorpyrifos, clothianidin, avermectin, thiamethoxam, and imidacloprid. Using LD50 values for contact and oral exposure to honey bees and bumble bees, we calculated the Risk Quotient (RQ) for each individual pesticide and the average sample RQ for each farm. RQ values were considered in relation to the U.S. Environmental Protection Agency acute contact level of concern (LOC, 0.4), the European Food Safety Authority (EFSA) acute contact LOC (0.2) and the EFSA chronic oral LOC (0.03). Pollen samples were most likely to exceed LOC values, with the percent of samples above EFSA's chronic oral LOC being 0% for flowers, 3.4% for whole honey bees, 0% for whole bumble bees, 72.4% for honey bee pollen in 2018, 45.4% of honey bee pollen in 2019, 46.7% of bumble bee pollen in 2019, and 3.5% of honey bee wax samples. Average pollen sample RQ values were above the EFSA chronic LOC in 92.9% of farms in 2018 and 42.9% of farms in 2019 for honey bee collected pollen, and 46.7% of farms for bumble bee collected pollen in 2019. Landscape analyses indicated that sample RQ was positively correlated with the abundance of apple and cherry orchards located within the flight range of the bees, though this varied between bee species and landscape scale. There was no correlation with abundance of blueberry production. Our results highlight the need to mitigate pesticide risk to bees across agricultural landscapes, in addition to focusing on the impact of applications on the farms where they are applied.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA.
- Pollinating Insect - Biology, Management, Systematics Research Unit, U.S. Department of Agriculture - Agricultural Research Service, 1410 N 800 E, Logan, UT, 84341, USA.
| | - Meghan O Milbrath
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Yajun Zhang
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Nicolas Baert
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Schuhmann A, Schmid AP, Manzer S, Schulte J, Scheiner R. Interaction of Insecticides and Fungicides in Bees. FRONTIERS IN INSECT SCIENCE 2022; 1:808335. [PMID: 38468891 PMCID: PMC10926390 DOI: 10.3389/finsc.2021.808335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 03/13/2024]
Abstract
Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Anna Paulina Schmid
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Sarah Manzer
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Janna Schulte
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Prouty C, Barriga P, Davis AK, Krischik V, Altizer S. Host Plant Species Mediates Impact of Neonicotinoid Exposure to Monarch Butterflies. INSECTS 2021; 12:insects12110999. [PMID: 34821799 PMCID: PMC8623494 DOI: 10.3390/insects12110999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Neonicotinoids are the most widely used insecticides in North America and many studies document the negative effects of neonicotinoids on bees. Monarch butterflies are famous for their long-distance migrations, and for their ability to sequester toxins from their milkweed host plants. The neonicotinoids imidacloprid and clothianidin were suggested to correlate with declines in North American monarchs. We examined how monarch development, survival, and flight were affected by exposure to neonicotinoids, and how these effects depend on milkweed host plant species that differ in their cardenolide toxins. Monarch survival and flight were unaffected by low and intermediate neonicotinoid doses. At the highest dose, neonicotinoids negatively affected monarch pupation and survival, for caterpillars that fed on the least toxic milkweed. Monarchs fed milkweed of intermediate toxicity experienced moderate negative effects of high insecticide doses. Monarchs fed the most toxic milkweed species had no negative consequences associated with neonicotinoid treatment. Our work shows that monarchs tolerate low neonicotinoid doses, but experience detrimental effects at higher doses, depending on milkweed species. To our knowledge, this is the first study to show that host plant species potentially reduce the residue of neonicotinoid insecticides on the leaf surface, and this phenomenon warrants further investigation. Abstract Neonicotinoids are the most widely used insecticides in North America. Numerous studies document the negative effects of neonicotinoids on bees, and it remains crucial to demonstrate if neonicotinoids affect other non-target insects, such as butterflies. Here we examine how two neonicotinoids (imidacloprid and clothianidin) affect the development, survival, and flight of monarch butterflies, and how these chemicals interact with the monarch’s milkweed host plant. We first fed caterpillars field-relevant low doses (0.075 and 0.225 ng/g) of neonicotinoids applied to milkweed leaves (Asclepias incarnata), and found no significant reductions in larval development rate, pre-adult survival, or adult flight performance. We next fed larvae higher neonicotinoid doses (4–70 ng/g) and reared them on milkweed species known to produce low, moderate, or high levels of secondary toxins (cardenolides). Monarchs exposed to the highest dose of clothianidin (51–70 ng/g) experienced pupal deformity, low survival to eclosion, smaller body size, and weaker adult grip strength. This effect was most evident for monarchs reared on the lowest cardenolide milkweed (A. incarnata), whereas monarchs reared on the high-cardenolide A. curassavica showed no significant reductions in any variable measured. Our results indicate that monarchs are tolerant to low doses of neonicotinoid, and that negative impacts of neonicotinoids depend on host plant type. Plant toxins may confer protective effects or leaf physical properties may affect chemical retention. Although neonicotinoid residues are ubiquitous on milkweeds in agricultural and ornamental settings, commonly encountered doses below 50 ng/g are unlikely to cause substantial declines in monarch survival or migratory performance.
Collapse
Affiliation(s)
- Cody Prouty
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA; (P.B.); (A.K.D.); (S.A.)
- Correspondence:
| | - Paola Barriga
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA; (P.B.); (A.K.D.); (S.A.)
| | - Andrew K. Davis
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA; (P.B.); (A.K.D.); (S.A.)
| | - Vera Krischik
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA; (P.B.); (A.K.D.); (S.A.)
| |
Collapse
|
15
|
Wang Y, Zhu YC, Li W, Yao J, Reddy GVP, Lv L. Binary and ternary toxicological interactions of clothianidin and eight commonly used pesticides on honey bees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112563. [PMID: 34343900 DOI: 10.1016/j.ecoenv.2021.112563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 μg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 μg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 μg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 μg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA.
| | - Wenhong Li
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Jianxiu Yao
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA; Kansas State University, Manhattan, KS 66506, USA
| | - Gadi V P Reddy
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| |
Collapse
|
16
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Giovanetti L, Di Noi A, Casini S. First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47418-47428. [PMID: 33891238 PMCID: PMC8384815 DOI: 10.1007/s11356-021-14037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 05/05/2023]
Abstract
Understanding the effects of environmental contaminants on honeybees is essential to minimize their impacts on these important pollinating insects. The aim of this study was to assess the ecotoxicological status of honeybees in environments undergoing different anthropic pressure: a wood (reference site), an orchard, an agricultural area, and an urban site, using a multi-biomarker approach. To synthetically represent the ecotoxicological status of the honeybees, the responses of the single biomarkers were integrated by the Integrated Biological Response (IBRv2) index. Overall, the strongest alteration of the ecotoxicological status (IBRv2 = 7.52) was detected in the bees from the orchard due to the alteration of metabolic and genotoxicity biomarkers indicating the presence of pesticides, metals, and lipophilic compounds. Honeybees from the cultivated area (IBRv2 = 7.18) revealed an alteration especially in neurotoxicity, metabolic, and genotoxicity biomarkers probably related to the presence of pesticides, especially fungicides. Finally, in the urban area (IBRv2 = 6.60), the biomarker results (GST, lysozyme, and hemocytes) indicated immunosuppression in the honeybees and the effects of the presence of lipophilic compounds and metals in the environment.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132, Napoli, Italy
| | - Laura Giovanetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
17
|
Sun Q, Chen X, Lin T, Cheng X. Evaluation of Beta-Cyfluthrin Resistance of Cigarette Beetle (Coleoptera: Anobiidae) from Cigarette Manufacturing Factories of China and Underlying Metabolic Mechanisms Responsible for Resistance. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1779-1788. [PMID: 34002794 DOI: 10.1093/jee/toab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Beta-cyfluthrin, as a synthetic pyrethroid, has been widely used in cigarette manufacturing factories in China to control Lasioderma serricorne (F.) (Coleoptera: Anobiidae). In this study, spray toxicity bioassays and filter paper residual contact toxicity bioassays were conducted to investigate the beta-cyfluthrin sensitivity level of five field strains of L. serricorne collected from cigarette manufacturing factories in China. Bioassay results indicated that five field strains had developed different levels of resistance to beta-cyfluthrin with RR50 of 3.51-10.20 at 2 hr after application and 4.05-49.50 at 24 hr after application in spray toxicity bioassays, and RR50 of 4.74-14.47 at 2 hr exposure in filter paper residual contact bioassays. In addition, we examined CarE, GST, and CYP450 enzyme activity and content of L. serricorne adults and larvae. Enzyme-linked immunosorbent assay results suggested that there was no significant difference in GST, CYP450, and CarE content of L. serricorne adults between field strains and reference sensitive strain. Biochemical assay results indicated that CYP450 activity of L. serricorne adults and larvae of five field strains was significantly higher than that of reference sensitive strain, with increased CYP450 activity of 1.08-1.82-fold in adults and 1.08-2.12-fold in larvae. The results implied that elevated CYP450 activity may contribute to metabolic resistance of L. serricorne to pyrethroid. Our study indicated that there was no clear evidence that the enhanced CarE and GST activity was associated with pyrethroid resistance of L. serricorne.
Collapse
Affiliation(s)
- Qian Sun
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chen
- College of Agriculture, Anhui Agricultural University, Hefei, 230036, China
| | - Tao Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xinsheng Cheng
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Wilmart O, Legrève A, Scippo ML, Reybroeck W, Urbain B, de Graaf DC, Spanoghe P, Delahaut P, Saegerman C. Honey bee exposure scenarios to selected residues through contaminated beeswax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145533. [PMID: 33770874 DOI: 10.1016/j.scitotenv.2021.145533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/11/2023]
Abstract
Twenty-two pesticides and veterinary drugs of which residues were detected in beeswax in Europe were selected according to different criteria. The risk to honey bee health posed by the presence of these residues in wax was assessed based on three exposure scenarios. The first one corresponds to the exposure of larvae following their close contact with wax constituting the cells in which they develop. The second one corresponds to the exposure of larvae following consumption of the larval food that was contaminated from contact with contaminated wax. The third one corresponds to the exposure of adult honey bees following wax chewing when building cells and based on a theoretical worst-case scenario (= intake of contaminants from wax). Following these three scenarios, maximum concentrations which should not be exceeded in beeswax in order to protect honey bee health were calculated for each selected substance. Based on these values, provisional action limits were proposed. Beeswax exceeding these limits should not be put on the market.
Collapse
Affiliation(s)
- Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium.
| | - Anne Legrève
- Université catholique de Louvain (UCL), Faculty of Bioscience Engineering, Earth & Life Institute (ELI), 2 bte L7.05.03 Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Marie-Louise Scippo
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; University of Liège (ULiège), Faculty of Veterinary Medicine, Department of Food Sciences - Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH) Center, 10 Avenue de Cureghem, B43bis, B-4000 Liège, Sart-Tilman, Belgium
| | - Wim Reybroeck
- Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, 370 Brusselsesteenweg, B-9090 Melle, Belgium
| | - Bruno Urbain
- Federal Agency for Medicines and Health Products (FAMHP), Eurostation II, 40/40 Place Victor Horta, B-1060 Brussels, Belgium
| | - Dirk C de Graaf
- Ghent University (UGent), Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, 281 S2 Krijgslaan, B-9000 Ghent, Belgium
| | - Pieter Spanoghe
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; Ghent University (UGent), Faculty of Bioscience Engineering, Department of Plants and Crops, 653 Coupure links, B-9000 Ghent, Belgium
| | - Philippe Delahaut
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; Centre d'Economie Rurale (CER), Département Santé, 8 Rue de la Science, B-6900 Aye, Belgium
| | - Claude Saegerman
- Scientific Committee, Federal Agency for the Safety of the Food Chain, 55 Boulevard du Jardin Botanique, B-1000 Brussels, Belgium; University of Liège (ULiège), Faculty of Veterinary Medicine, Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Quartier Vallée 2, 7A Avenue de Cureghem, B42, B-4000 Liège, Sart-Tilman, Belgium
| |
Collapse
|
19
|
Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO 2 concentration. Sci Rep 2021; 11:4364. [PMID: 33623125 PMCID: PMC7902615 DOI: 10.1038/s41598-021-83958-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
The effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.
Collapse
|
20
|
Review on Sublethal Effects of Environmental Contaminants in Honey Bees ( Apis mellifera), Knowledge Gaps and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041863. [PMID: 33672936 PMCID: PMC7918799 DOI: 10.3390/ijerph18041863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Honey bees and the pollination services they provide are fundamental for agriculture and biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and polycyclic aromatic hydrocarbons, contribute to the general decline of bees' populations. For this reason, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting information about regions, methodological approaches, the type of contaminants, and honey bees' life stages. Europe and North America are the regions in which A. mellifera biological responses were mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more in the laboratory than in field conditions. Through the observation of the different responses examined, we found that there were several knowledge gaps that should be addressed, particularly within enzymatic and molecular responses, such as those regarding the immune system and genotoxicity. The importance of developing an integrated approach that combines responses at different levels, from molecular to organism and population, needs to be highlighted in order to evaluate the impact of anthropogenic contamination on this pollinator species.
Collapse
|
21
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Ammendola A, Di Noi A, Gori A, Casini S. Multi-biomarker approach and IBR index to evaluate the effects of different contaminants on the ecotoxicological status of Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111486. [PMID: 33130481 DOI: 10.1016/j.ecoenv.2020.111486] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/21/2023]
Abstract
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), a keystone pollinator of wild plant species and agricultural crops, is disappearing globally due to parasites and diseases, habitat loss, genetic constraints, beekeeper management issues and to the widespread use of pesticides. Besides insecticides, widely studied in this species, honeybees are also exposed to herbicides and fungicides and heavy metals whose lethal and sublethal effects need to be investigated. In this context, our study aimed to evaluate the effects of fungicides and of heavy metals on honeybees and to develop and apply a multi-biomarker approach that include an Integrated Biological Index (IBRv2) to assess the toxicological status of this species. Biomarkers of neurotoxicity (AChE and CaE), metabolic alteration (ALP, and GST) and immune system (LYS, granulocytes) were measured, following honeybees' exposure to cadmium or to a crop fungicide, using the genotoxic compound EMS as positive control. A biomarker of genotoxicity (NA assay) was developed and applied for the first time in honeybees. At the doses tested, all the contaminants showed sublethal toxicity to the bees, highlighting in particular genotoxic effects. The data collected were analyzed by an IBRv2 index, which integrated the seven biomarkers used in this study. IBRv2 index increased with increasing cadmium or fungicide concentrations. The IBRv2 represents a simple tool for a general description of honeybees ecotoxicological health status. Results highlight the need for more in-depth investigations on the effects of fungicides on non-target organisms, such as honeybees, using sensitive methods for the determination of sublethal effects. This study contributes to the development of a multi-biomarker approach to be used for a more accurate ecotoxicological environmental monitoring of these animals.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132 Napoli, Italy
| | - Anna Ammendola
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Alessandro Gori
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
22
|
Zhu YC, Caren J, Reddy GVP, Li W, Yao J. Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108844. [PMID: 32777468 DOI: 10.1016/j.cbpc.2020.108844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023]
Abstract
Honey bee is an economically important insect for honey production and pollination. Frequent exposure to toxic pesticides is one of the major risk factors causing the pollinator population decline. However, age effects of honey bees on pesticide susceptibility have been largely ignored and many researchers use bees of unknown age for assessing the risk of pesticides. Honey bee workers are known to go through physiological and behavioral changes in order to differentiate different phenotypes to perform specific duties over their natural lifetime of 6 weeks or longer. In this study, we provide multi-parameter evidences of unignorable age effects of honey bee workers and suggest using a standard bee age to produce reliable and comparable data when assessing variable and realistic situations of in-hive and field exposures to pesticides. Using honey bee workers aged 4- to 42-days old, we examined susceptibility of the bees to five different insecticides from five different classes and measured enzymatic activities of three major detoxification enzymes and an invertase involved in honey production. Results showed gradual increase of natural mortality and decrease of soluble protein content in bees over the age span from 4 days to 42 days. Significant increases of mortality after separate treatments of five different insecticides confirmed drastic age effects of bees over the assessed age span. As they aged, honey bees also showed a gradual increase of cytochrome P450 oxidase activity while still maintaining constant levels of two other detoxification enzymes (esterase and glutathione S-transferase) and an invertase responsible for honey production.
Collapse
Affiliation(s)
- Yu Cheng Zhu
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA.
| | - Joel Caren
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| | - Gadi V P Reddy
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| | - Wenhong Li
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA; Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jianxiu Yao
- USDA-ARS-JWDSRC, Southern Insect Management Research Unit, Stoneville, MS 38776, USA; Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Zhao GP, Yang FW, Li JW, Xing HZ, Ren FZ, Pang GF, Li YX. Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1884-1893. [PMID: 32936472 DOI: 10.1002/etc.4842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are a widely used class of pesticides. Co-exposure to neonicotinoids and other classes of pesticides can exert potentiating or synergistic effects, and these mixtures have been detected in human bodily fluids. The present review summarizes studies into the effects of neonicotinoid-containing pesticide mixtures on humans and other nontarget organisms. Exposure to these mixtures has been reported to result in reproductive and hormonal toxicity, genotoxicity, neurotoxicity, hepatotoxicity, and immunotoxicity in vertebrates. Mortality of pollinators and toxicity in other organisms has also been reported. The underlying mechanism of pesticide mixture toxicity may be associated with impairment of cytochrome 450 enzymes, which are involved in metabolizing pesticides. However, a comprehensive explanation of the adverse effects of neonicotinoid-containing pesticide mixtures is still required so that effective prevention and control measures can be formulated. Environ Toxicol Chem 2020;39:1884-1893. © 2020 SETAC.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han-Zhu Xing
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Walsh EM, Sweet S, Knap A, Ing N, Rangel J. Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2810-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Carnesecchi E, Svendsen C, Lasagni S, Grech A, Quignot N, Amzal B, Toma C, Tosi S, Rortais A, Cortinas-Abrahantes J, Capri E, Kramer N, Benfenati E, Spurgeon D, Guillot G, Dorne JLCM. Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. ENVIRONMENT INTERNATIONAL 2019; 133:105256. [PMID: 31683157 DOI: 10.1016/j.envint.2019.105256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
Bees are exposed to a wide range of multiple chemicals "chemical mixtures" from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDR > 1.25) and 11% (MDR < 0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed.
Collapse
Affiliation(s)
- Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands; Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | | | | | | | | | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Simone Tosi
- Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Agnes Rortais
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Jose Cortinas-Abrahantes
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Ettore Capri
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile (DiSTAS), Piacenza, Italy
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Gilles Guillot
- International Prevention Research Institute, Lyon, France
| | - Jean Lou Christian Michel Dorne
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy; School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
26
|
Tosi S, Nieh JC. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto ®), on honeybees. Proc Biol Sci 2019; 286:20190433. [PMID: 30966981 PMCID: PMC6501679 DOI: 10.1098/rspb.2019.0433] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
The honeybee ( Apis mellifera L.) is an important pollinator and a model for pesticide effects on insect pollinators. The effects of agricultural pesticides on honeybee health have therefore raised concern. Bees can be exposed to multiple pesticides that may interact synergistically, amplifying their side effects. Attention has focused on neonicotinoid pesticides, but flupyradifurone (FPF) is a novel butenolide insecticide that is also systemic and a nicotinic acetylcholine receptor (nAChR) agonist. We therefore tested the lethal and sublethal toxic effects of FPF over different seasons and worker types, and the interaction of FPF with a common SBI fungicide, propiconazole. We provide the first demonstration of adverse synergistic effects on bee survival and behaviour (poor coordination, hyperactivity, apathy) even at FPF field-realistic doses (worst-case scenarios). Pesticide effects were significantly influenced by worker type and season. Foragers were consistently more susceptible to the pesticides (4-fold greater effect) than in-hive bees, and both worker types were more strongly affected by FPF in summer as compared with spring. Because risk assessment (RA) requires relatively limited tests that only marginally address bee behaviour and do not consider the influence of bee age and season, our results raise concerns about the safety of approved pesticides, including FPF. We suggest that pesticide RA also test for common chemical mixture synergies on behaviour and survival.
Collapse
Affiliation(s)
- S. Tosi
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, CA, USA
- Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, ANSES (French Agency for Food, Environmental and Occupational Health and Safety) Animal Health Laboratory, Maisons-Alfort, France
| | - J. C. Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, CA, USA
| |
Collapse
|