1
|
Adams DR, Barbarin AM, Reiskind MH. New report of Haemaphysalis longicornis (Ixodida: Ixodidae) in Mecklenburg County, Virginia from field collections. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1261-1265. [PMID: 39021151 DOI: 10.1093/jme/tjae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Haemaphysalis longicornis (Neumann) was first established in New Jersey and has rapidly spread across most of the eastern United States. This tick has the potential to infest a wide variety of hosts and can reproduce quickly via parthenogenesis, presenting a new threat to animal health. Here we report the first record of a single H. longicornis tick in Mecklenburg County, Virginia, from incidental field collections of ticks. In addition to H. longicornis, we collected 787 Amblyomma americanum, 25 Dermacentor variabilis, 6 Ixodes affinis, 1 Haemaphysalis leporispalustris, and 1 Amblyomma maculatum using standard dragging and flagging techniques. The expansion of H. longicornis will have economic consequences for livestock producers in south-central Virginia, who must now manage this species. Enhanced surveillance is needed to fully understand its growing geographic distribution in the United States and the subsequent consequences of its spread.
Collapse
Affiliation(s)
- Dayvion R Adams
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexis M Barbarin
- Communicable Disease Branch, Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC 27699-2000, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Eleftheriou A, Zeiger B, Jennings J, Pesapane R. Phenology and habitat associations of the invasive Asian longhorned tick from Ohio, USA. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:314-324. [PMID: 38567802 DOI: 10.1111/mve.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/20/2024] [Indexed: 08/07/2024]
Abstract
Geographically expanding and invading ticks are a global concern. The Asian longhorned tick (ALT, Haemaphysalis longicornis) was introduced to the mid-Atlantic US between 2010 and 2017 and recently invaded Ohio, an inland state. To date, ALTs in the US have been associated with livestock exsanguination and transmission of the agent of bovine theileriosis. To inform management, studies describing tick ecology and epidemiology of associated disease agents are critical. In this study, we described phenology, habitat and host associations, and tested for agents of medical and veterinary concern at the site of the first known established ALT population in Ohio, where pesticide treatment was applied in early fall 2021. In spring-fall 2022, we sampled wildlife (small mammals) and collected ticks from forest, edge, and grassland habitats. We also opportunistically sampled harvested white-tailed deer at nearby processing stations and fresh wildlife carcasses found near roads. Field-collected ALTs were tested for five agents using real-time PCR. We found that ALT nymphs emerged in June, followed by adults, and concluded with larvae in the fall. ALTs were detected in all habitats but not in wildlife. We also found a 4.88% (2/41) prevalence of Anaplasma phagocytophilum across ALT adults and nymphs. Host and habitat associations were similar to other studies in the eastern United States, but two potential differences in phenology were identified. Whether ALTs will acquire more endemic disease agents requires further investigations. Our findings provide the first evidence regarding ALT life history from the Midwest region of the United States and can inform exposure risk and guide integrated management.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Zeiger
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Jazmin Jennings
- College of Arts and Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Risa Pesapane
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Fausett E, Kirstein OD, Bellman S, Long A, Roeske I, Cheng C, Piantadosi A, Anderson TK, Vazquez-Prokopec GM. Surveillance and detection of Haemaphysalis longicornis (Acari: Ixodidae) in protected areas from Georgia, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1071-1076. [PMID: 38691675 DOI: 10.1093/jme/tjae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The invasion of the Asian longhorned tick, Haemaphysalis longicornis Neumann, into the United States poses a significant ecological, veterinarian, and public health threat. We conducted a comprehensive tick survey using standard tick flagging protocol for collection over 3 field seasons, March-August, and 56 surveyed sites to identify the presence of H. longicornis in the native ecosystem and prove its establishment according to USDA criteria. Of the total 56 state parks and wildlife management areas (WMA) surveyed, only one was found to be invaded by H. longicornis; detection of H. longicornis occurred at Buck Shoals Wildlife Management area in White County, GA. This site is maintained by the state of Georgia, has no agricultural animals present, and hosts a large white-tailed deer population. After the initial detection of H. longicornis in 2022, an additional field season occurred in 2023, where H. longicornis was confirmed as established based on USDA criteria. The increase in H. longicornis populations from 2021 to 2023 at Buck Shoals WMA points to the rapid spread of this tick within the environment. Our findings provide evidence of the rapid establishment of H. longicornis in the southern edge of suitability for this tick and within the native ecosystem beyond farmlands and private land.
Collapse
Affiliation(s)
- Eleanor Fausett
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Oscar D Kirstein
- Entomology and Parasitology Laboratory, Ministry of Health Israel, Jerusalem, Israel
| | - Stephanie Bellman
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Audrey Long
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Isabella Roeske
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Chun Cheng
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, USA
| | | |
Collapse
|
4
|
Seo JY, Park JS, Lee HI, Ju JW. Molecular Identification of Spotted Fever Group Rickettsiae in Ticks in the Republic of Korea. Pathogens 2024; 13:575. [PMID: 39057802 PMCID: PMC11280320 DOI: 10.3390/pathogens13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The Rickettsia species transmitted by ticks are mostly classified within the spotted fever group rickettsiae (SFGR), which causes tick-borne rickettsiosis. Although efforts have been made to investigate their prevalence in the Republic of Korea (ROK), research has been limited to certain areas. Furthermore, the pooling method for ticks does not fully reflect the exact infection rate. Therefore, we aimed to perform molecular identification of SFGR in ticks to elucidate the current prevalence of tick-borne rickettsiosis in the ROK. The SFGR of ticks was identified using polymerase chain reaction targeting the 17 kDa antigen, ompA, and gltA, followed by sequencing for species identification and phylogenetic analysis. In total, 302 ticks belonging to four species (Haemaphysalis flava, H. longicornis, Ixodes nipponensis, and Amblyomma testudinarium) were collected between April and November 2022. The overall SFGR infection rate was 26.8% (81/302 patients). Both adult and nymphal ticks and the SFGR infection rate increased during April-May, reaching their peaks in June, followed by a marked decline in August and July, respectively. Phylogenetic analysis revealed three species (R. monacensis, R. heilongjiangensis, and Candidatus R. jingxinensis) of SFGR. Thus, our results emphasize the importance of tick surveys for the prevention and management of tick-borne rickettsiosis.
Collapse
Affiliation(s)
| | | | | | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Poh KC, Aguilar M, Capelli-Peixoto J, Davis SK, Ueti MW. Haemaphysalis longicornis (Acari: Ixodidae) does not transmit Babesia bovis, a causative agent of cattle fever. Ticks Tick Borne Dis 2024; 15:102374. [PMID: 38971081 DOI: 10.1016/j.ttbdis.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
The Asian longhorned tick (Haemaphysalis longicornis) was first reported in the United States in 2017 and has since been detected in at least 17 states. This tick infests cattle and can produce large populations quickly due to its parthenogenetic nature, leading to significant livestock mortalities and economic losses. While H. longicornis has not been detected in Texas, species distribution models have identified southern Texas as a possible hospitable region for this tick. Southern Texas is currently home to the southern cattle tick (Rhipicephalus microplus), which can transmit the causative agent of cattle fever (Babesia bovis). With the potential for H. longicornis and B. bovis to overlap in southern Texas and their potential to negatively impact the national and global livestock industry, it is imperative to identify the role H. longicornis may play in the cattle fever disease system. A controlled acquisition and transmission experiment tested whether H. longicornis is a vector for B. bovis, with the R. microplus-B. bovis system used as a positive control. Transstadial (nymphs to adults) and transovarial (adults to larvae) transmission and subsequent transstadial maintenance (nymphs and adults) routes were tested in this study. Acquisition-fed, splenectomized animals were used to increase the probability of tick infection. Acquisition nymphs were macerated whole and acquisition adults were dissected to remove midguts and ovaries at five time points (4, 6, 8, 10, and 12 days post-repletion), with 40 ticks processed per time point and life stage. The greatest percentage of nymphs with detectable B. bovis DNA occurred six days post-repletion (20.0 %). For adults, the percentage of positive midguts and ovaries increased as days post-repletion progressed, with day 12 having the highest percentage of positive samples (67.5 % and 60.0 %, respectively). When egg batches were tested in triplicate, all H. longicornis egg batches were negative for B. bovis, while all R. microplus egg batches were positive for B. bovis. During the transmission phase, the subsequent life stages for transstadial (adults) and transovarial transmission/transstadial maintenance (larvae, nymphs, and adults) were fed on naïve, splenectomized calves. All life stages of H. longicornis ticks tested during transmission were negative for B. bovis. Furthermore, the transmission fed animals were also negative for B. bovis and did not show signs of bovine babesiosis during the 45-day post tick transmission period. Given the lack of successful transstadial or transovarial transmission, it is unlikely that H. longicornis is a vector for B. bovis.
Collapse
Affiliation(s)
- Karen C Poh
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, 3003 Animal Disease and Biotechnology Facility, Pullman, WA 99164, USA.
| | - Mitzi Aguilar
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 Animal Disease and Biotechnology Facility, Pullman, WA 99164, USA
| | - Janaína Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 Animal Disease and Biotechnology Facility, Pullman, WA 99164, USA
| | - Sara K Davis
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, 3003 Animal Disease and Biotechnology Facility, Pullman, WA 99164, USA
| | - Massaro W Ueti
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, 3003 Animal Disease and Biotechnology Facility, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Obellianne C, Norman PD, Esteves E, Hermance ME. Interspecies co-feeding transmission of Powassan virus between a native tick, Ixodes scapularis, and the invasive East Asian tick, Haemaphysalis longicornis. Parasit Vectors 2024; 17:259. [PMID: 38879603 PMCID: PMC11180395 DOI: 10.1186/s13071-024-06335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Powassan virus, a North American tick-borne flavivirus, can cause severe neuroinvasive disease in humans. While Ixodes scapularis are the primary vectors of Powassan virus lineage II (POWV II), also known as deer tick virus, recent laboratory vector competence studies showed that other genera of ticks can horizontally and vertically transmit POWV II. One such tick is the Haemaphysalis longicornis, an invasive species from East Asia that recently established populations in the eastern USA and already shares overlapping geographic range with native vector species such as I. scapularis. Reports of invasive H. longicornis feeding concurrently with native I. scapularis on multiple sampled hosts highlight the potential for interspecies co-feeding transmission of POWV II. Given the absence of a clearly defined vertebrate reservoir host for POWV II, it is possible that this virus is sustained in transmission foci via nonviremic transmission between ticks co-feeding on the same vertebrate host. The objective of this study was to evaluate whether uninfected H. longicornis co-feeding in close proximity to POWV II-infected I. scapularis can acquire POWV independent of host viremia. METHODS Using an in vivo tick transmission model, I. scapularis females infected with POWV II ("donors") were co-fed on mice with uninfected H. longicornis larvae and nymphs ("recipients"). The donor and recipient ticks were infested on mice in various sequences, and mouse infection status was monitored by temporal screening of blood for POWV II RNA via quantitative reverse transcription polymerase chain reaction (q-RT-PCR). RESULTS The prevalence of POWV II RNA was highest in recipient H. longicornis that fed on viremic mice. However, nonviremic mice were also able to support co-feeding transmission of POWV, as demonstrated by the detection of viral RNA in multiple H. longicornis dispersed across different mice. Detection of viral RNA at the skin site of tick feeding but not at distal skin sites indicates that a localized skin infection facilitates transmission of POWV between donor and recipient ticks co-feeding in close proximity. CONCLUSIONS This is the first report examining transmission of POWV between co-feeding ticks. Against the backdrop of multiple unknowns related to POWV ecology, findings from this study provide insight on possible mechanisms by which POWV could be maintained in nature.
Collapse
Affiliation(s)
- Clemence Obellianne
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Parker D Norman
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Eliane Esteves
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Meghan E Hermance
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
7
|
Liu ZL, Qiu QG, Cheng TY, Liu GH, Liu L, Duan DY. Composition of the Midgut Microbiota Structure of Haemaphysalis longicornis Tick Parasitizing Tiger and Deer. Animals (Basel) 2024; 14:1557. [PMID: 38891605 PMCID: PMC11171073 DOI: 10.3390/ani14111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Haemaphysalis longicornis is a common tick species that carries several pathogens. There are few reports on the influence of different hosts on the structure of midgut microflora in H. longicornis. In this study, midgut contents of fully engorged female H. longicornis were collected from the surface of tiger (Panthera tigris) and deer (Dama dama). The bacterial genomic DNA of each sample was extracted, and the V3-V4 regions of the bacterial 16S rRNA were sequenced using the Illumina NovaSeq sequencing. The diversity of the bacterial community of the fully engorged female H. longicornis on the surface of tiger was higher than that of deer. In total, 8 phyla and 73 genera of bacteria annotations were detected in the two groups. At the phylum level, the bacterial phyla common to the two groups were Proteobacteria, Firmicutes, and Actinobacteriota. At the genus level, there were 20 common bacterial genera, among which the relative abundances of Coxiella, Morganella, Diplorickettsia, and Acinetobacter were high. The Morganella species was further identified to be Morganella morganii. The alpha diversity index indicated that the bacterial diversity of the tiger group was higher than that of the deer group. Bacteroidota, Patescibacteria, Desulfobacterota, Verrucomicrobiota, and Cyanobacteria were solely detected in the tiger group. A total of 52 bacterial genera were unique in the tiger group, while one bacterial genus was unique in the deer group. This study indicates that there are differences in the structure of the gut bacteria of the same tick species among different hosts. Further culture-based methods are needed to provide a more comprehensive understanding of the tick microbiota parasitizing different hosts.
Collapse
Affiliation(s)
- Zi-Ling Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Qi-Guan Qiu
- Changsha Ecological Zoo, Changsha 410128, China;
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Lei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| |
Collapse
|
8
|
Zhao C, Cai G, Zhang X, Liu X, Wang P, Zheng A. Comparative Analysis of Bisexual and Parthenogenetic Populations in Haemaphysalis Longicornis. Microorganisms 2024; 12:823. [PMID: 38674766 PMCID: PMC11051975 DOI: 10.3390/microorganisms12040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Haemaphysalis longicornis, a three-host tick with a wide host range, is widely distributed in different countries and regions. It stands out among ticks due to its unique feature of having both parthenogenetic and bisexual populations. Despite their morphological resemblance, the characteristics of the parthenogenetic population have been overlooked. In this comprehensive study, we systematically compared the similarities and differences between these two populations. Our investigation revealed that the parthenogenetic H. longicornis, widely distributed in China, was found in ten provinces, surpassing the previously reported distribution. Notably, individuals from the parthenogenetic population exhibited a prolonged blood-feeding duration during the larval and nymph stages compared to their bisexual counterparts. Additionally, the life cycle of the parthenogenetic population was observed to be longer. A flow cytometry analysis indicated a DNA content ratio of approximately 2:3 between the bisexual and parthenogenetic populations. A phylogenetic analysis using whole mitochondrial genome sequences resulted in the separation of the phylogenetic tree into two distinct branches. A molecular analysis unveiled a consistent single T-base deletion at nucleotide 8497 in the parthenogenetic population compared to the bisexual population. Both populations displayed high viral infection capability and significant resistance to ivermectin. Intriguingly, despite these differences, the parthenogenetic population exhibited a similar life cycle to the bisexual population, retaining the ability to transmit pathogens such as Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland Virus (HRTV). These findings contribute to a deeper understanding of the distinct characteristics and similarities between different populations of H. longicornis, laying the foundation for future research in this field.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200437, China; (C.Z.); (G.C.); (X.L.)
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200437, China; (C.Z.); (G.C.); (X.L.)
| | - Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xinyu Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200437, China; (C.Z.); (G.C.); (X.L.)
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200437, China; (C.Z.); (G.C.); (X.L.)
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
9
|
Ferreira FC, González J, Milholland MT, Tung GA, Fonseca DM. Ticks (Acari: Ixodida) on synanthropic small and medium-sized mammals in areas of the northeastern United States infested with the Asian longhorned tick, Haemaphysalis longicornis. Int J Parasitol 2023; 53:809-819. [PMID: 37467875 DOI: 10.1016/j.ijpara.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
The northeastern United States (US) is a hotspot for tick-borne diseases. Adding to an already complex vector landscape, in 2017 large populations of the invasive Haemaphysalis longicornis, the Asian longhorned tick, were detected in New Jersey (NJ) and later found to be widespread from Connecticut to Georgia. In its native range in northeastern Asia, H. longicornis is considered an important vector of deadly pathogens to humans, companion animals, and livestock. To identify the primary hosts of H. longicornis, we surveyed synanthropic small and medium-sized mammals in three different sites in suburban New Brunswick, NJ. Specifically, we collected approximately 9,000 tick specimens belonging to nine species from 11 different species of mammals sampled between May and September 2021. We found that H. longicornis feeds more frequently on rodents than previously thought, and that this invasive tick is likely exposed to important enzootic and zoonotic pathogens. Overall, we obtained detailed information about the seasonal dynamics and feeding patterns of six tick species common in the northeastern US, Haemaphysalis longicornis, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, Ixodes texanus and Ixodes cookei. We found that unlike I. scapularis that feeds on mammals of all sizes, H. longicornis feeds on hosts following the general pattern of A. americanum, favoring larger species such as skunks, groundhogs, and raccoons. However, our survey revealed that unlike A. americanum, H. longicornis reaches high densities on Virginia opossum. Overall, the newly invasive H. longicornis was the most numerous tick species, both on multiple host species and in the environment, raising significant questions regarding its role in the epidemiology of tick-borne pathogens, especially those affecting livestock, companion animals and wildlife. In conclusion, our findings provide valuable insights into the tick species composition on mammalian hosts in NJ and the ongoing national expansion of H. longicornis.
Collapse
Affiliation(s)
- Francisco C Ferreira
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, USA.
| | - Julia González
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, USA. https://twitter.com/JulsGGlez
| | - Matthew T Milholland
- AGNR-Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Grayson A Tung
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, USA
| | - Dina M Fonseca
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Bickerton M, González J, Egizi A, Toledo A. Baseline susceptibility of Haemaphysalis longicornis to organophosphate, carbamate, and pyrethroid acaricides. PEST MANAGEMENT SCIENCE 2023; 79:4328-4334. [PMID: 37366176 DOI: 10.1002/ps.7631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The Asian longhorned tick, Haemaphysalis longicornis, continues to expand its range in North America, and synthetic acaricides are likely to play an increasing role in managing this species. Acaricide resistance is common in some tick species that infest livestock. However, baseline acaricide susceptibility has not previously been examined in this invasive tick. RESULTS We used a standard larval packet test to evaluate the susceptibility of the Asian longhorned tick to acaricides currently or formerly used in tick control: propoxur, carbaryl, bifenthrin, permethrin, and coumaphos. Discriminating concentrations were estimated at 6.5, 27.9, 988, 2242, and 808 ppm, respectively. The half-maximal lethal concentration (LC50 ) values for propoxur, carbaryl, permethrin and coumaphos were compared with data available for other tick species and showed that H. longicornis was more susceptible to propoxur, carbaryl and coumaphos, and had a similar susceptibility to permethrin. CONCLUSIONS The results indicate that resistance to these acaricides is not currently a concern for H. longicornis in the United States. However, responsible integrated management and early detection of resistance can help ensure the long-term efficacy of products used for controlling this tick species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Matthew Bickerton
- Department of Entomology, Rutgers University, Newark, NJ, USA
- Center for Vector Biology, Rutgers University, Newark, NJ, USA
- Bergen County Department of Health Services, Hackensack, NJ, USA
| | - Julia González
- Department of Entomology, Rutgers University, Newark, NJ, USA
- Center for Vector Biology, Rutgers University, Newark, NJ, USA
| | - Andrea Egizi
- Center for Vector Biology, Rutgers University, Newark, NJ, USA
- Monmouth County Mosquito Control Division, Tinton Falls, NJ, USA
| | - Alvaro Toledo
- Department of Entomology, Rutgers University, Newark, NJ, USA
- Center for Vector Biology, Rutgers University, Newark, NJ, USA
| |
Collapse
|
11
|
Jung M, Lee DH. Population dynamics of hard ticks (Acari: Ixodidae) and their harboring rates of Severe Fever with Thrombocytopenia Syndrome (SFTS) virus in four landscapes of Gyeonggi Province, South Korea. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:359-368. [PMID: 37787900 DOI: 10.1007/s10493-023-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Population dynamics of hard ticks and their harboring rates of fatal severe fever with thrombocytopenia syndrome (SFTS) were monitored from 2021 to 2022 in Gyeonggi-do, South Korea. Hard ticks were surveyed monthly using CO2-bait traps in four vegetation types, including grassland, grave, mountain trail, and shrub. From the 2-year monitoring, totals of 5,737 and 14,298 hard ticks were collected in 2021 and 2022, respectively, all of which belonged to the genus Haemaphysalis. Of these collected ticks, 97.9 and 98.3% of adults and nymphs were identified as Haemaphysalis longicornis. Generally, density peaks of H. longicornis nymphs and adults were observed from April to May and from June to July, respectively. For Haemaphysalis flava, adults showed density peaks in September, whereas no obvious seasonal patterns were observed for nymphs. The density peak of Haemaphysalis larvae was observed in August and September, followed by a density peak of adults. There was a large variation in the number of hard ticks collected among the four vegetation types, yielding no significant difference among them over the 2-year monitoring. Half of the collected ticks from each vegetation type were pooled into groups by species and developmental stage and subjected to analysis of SFTS virus harboring rates, which yielded no SFTS positive pool detected over the 2-year monitoring.
Collapse
Affiliation(s)
- Minhyung Jung
- Department of Life Sciences, Gachon University, Seongnam-si, 13120, Gyeonggi-do, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam-si, 13120, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Herb H, González J, Ferreira FC, Fonseca DM. Multiple piroplasm parasites (Apicomplexa: Piroplasmida) in northeastern populations of the invasive Asian longhorned tick, Haemaphysalis longicornis Neumann (Ixodida: Ixodidae), in the United States. Parasitology 2023; 150:1063-1069. [PMID: 37791496 PMCID: PMC10801381 DOI: 10.1017/s0031182023000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Piroplasms, which include the agents of cattle fever and human and dog babesiosis, are a diverse group of blood parasites of significant veterinary and medical importance. The invasive Asian longhorned tick, Haemaphysalis longicornis, is a known vector of piroplasms in its native range in East Asia and invasive range in Australasia. In the USA, H. longicornis has been associated with Theileria orientalis Ikeda outbreaks that caused cattle mortality. To survey invasive populations of H. longicornis for a broad range of piroplasms, 667 questing H. longicornis collected in 2021 from 3 sites in New Jersey, USA, were tested with generalist piroplasm primers targeting the 18S small subunit rRNA (395–515 bp, depending on species) and the cytochrome b oxidase loci (1009 bp). Sequences matching Theileria cervi type F (1 adult, 5 nymphs), an unidentified Theileria species (in 1 nymph), an undescribed Babesia sensu stricto (‘true’ Babesia, 2 adults, 2 nymphs), a Babesia sp. Coco (also a ‘true Babesia’, 1 adult, 1 nymph), as well as Babesia microti S837 (1 adult, 4 nymphs) were recovered. Babesia microti S837 is closely related to the human pathogen B. microti US-type. Additionally, a 132 bp sequence matching the cytochrome b locus of deer, Odocoileus virginanus, was obtained from 2 partially engorged H. longicornis. The diverse assemblage of piroplasms now associated with H. longicornis in the USA spans 3 clades in the piroplasm phylogeny and raises concerns of transmission amplification of veterinary pathogens as well as spillover of pathogens from wildlife to humans.
Collapse
Affiliation(s)
- Heidi Herb
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
| | - Julia González
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Lu Y, Yang S, Zhao Q, Yuan C, Xia Q. Diversity analysis of the endosymbiotic bacterial community in field-collected Haemaphysalis ticks on the tropical Hainan Island, China. Folia Parasitol (Praha) 2023; 70:2023.012. [PMID: 37326358 DOI: 10.14411/fp.2023.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Ticks are important vectors of various pathogens that cause infectious diseases in humans. Endosymbiotic bacteria have been explored as targets for tick and tick-borne disease control. However, the tick bacterial community on Hainan Island, which is the largest tropical island in China and has an environment favourable to ticks, has not yet been studied. In this study, we surveyed the bacterial community of ticks collected from grass in one village in Haikou. A total of 20 ticks were morphologically and molecularly identified as Haemaphysalis spp. The tick bacterial 16S rRNA hypervariable region amplicon libraries were sequenced on an Illumina MiSeq platform. A total of 10 possible bacterial genera were detected, indicating a low-diversity bacterial community profile. The dominant bacterial genus, Massilia, accounted for 97.85% of the population. Some other bacterial genera, including Arsenophonus and Pseudomonas, have been reported to play a role in tick development and tick-borne pathogen transmission in other tick species. Overall, the study highlights the first descriptive understanding of the tick bacterial community on Hainan Island and provides a basis for deciphering the interactions between the tick microbiome and tick-borne pathogens.
Collapse
Affiliation(s)
- Yajun Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Siqi Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiuyu Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
14
|
González J, Fonseca DM, Toledo A. Seasonal Dynamics of Tick Species in the Ecotone of Parks and Recreational Areas in Middlesex County (New Jersey, USA). INSECTS 2023; 14:258. [PMID: 36975943 PMCID: PMC10057079 DOI: 10.3390/insects14030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
People often use parks and other forested areas for outdoor activities such as hiking and walking their dogs. Areas of primary use are paths or grassy meadows on the edges of the forests that constitute transitional areas between different plant communities (aka ecotones). In this study, we monitored the seasonal dynamics of questing ticks in forest/meadow and forest/path ecotones in five areas in Middlesex County, New Jersey (NJ). We found anthropophilic species such as Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis coexisting with Haemaphysalis longicornis, an invasive tick species first detected in NJ in 2017. Surveillance was conducted weekly from March to November 2020, and collected ticks were identified. The most abundant tick species was H. longicornis (83%), followed by A. americanum (9%), I. scapularis (7%), and D. variabilis (<1%). The seasonal dynamics of A. americanum and I. scapularis in the ecotone were similar to previous surveys in forest habitats. The presence of anthropophilic ticks, particularly I. scapularis, suggests the need for specific control approaches to target these habitats. In addition, the extraordinarily high numbers of H. longicornis collected in ecotones (1.70 ticks/m2) and frequent reports of this species on dogs highlight the importance of monitoring its expansion due to its potential as a vector of animal and human diseases.
Collapse
Affiliation(s)
| | - Dina M. Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Rochlin I, Benach JL, Furie MB, Thanassi DG, Kim HK. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis 2023; 14:102088. [PMID: 36436461 PMCID: PMC9898124 DOI: 10.1016/j.ttbdis.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| | - Jorge L Benach
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Martha B Furie
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Hwan Keun Kim
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
16
|
Petersen M, Maree R, Viljoen A, Liebenberg JE, Guerino F. Efficacy of fluralaner chewable tablets (Bravecto ®) against Asian longhorned tick (Haemaphysalis longicornis) infestations of dogs. Parasit Vectors 2023; 16:60. [PMID: 36755268 PMCID: PMC9909906 DOI: 10.1186/s13071-023-05664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The parthenogenic reproductive ability of Haemaphysalis longicornis, facilitating quick life cycle completion and rapid geographic spread and its pathogen vector potential make infestations a risk to human and canine health. Two 90-day studies were initiated to evaluate the efficacy of a single fluralaner administration for the treatment and prevention of H. longicornis infestations on dogs. METHODS Dogs were randomly assigned (10 dogs/group) to either an untreated control group or a group treated once (Day 0) with 13.64% w/w fluralaner chewable tablets (Bravecto®) at the minimum label dose rate of 25 mg/kg. Each dog was infested with approximately 50 H. longicornis ticks on Days -9 or -6 and on Days -2, 28, 58 and 88. A different US tick isolate was used in each study. Tick counts were completed on Days -7 or -4, 2, 30, 60 and 90. The primary efficacy criterion was a 90% reduction in arithmetic mean tick counts between the treated and control groups. For between-group comparisons at any assessment, at least six control dogs were required to retain at least 25% of the infestation dose (13 live ticks). RESULTS Pre-study infestations demonstrated susceptibility of all study dogs to challenge with H. longicornis. At each subsequent assessment in both studies, at least seven untreated control dogs retained ≥ 25% of the challenge, demonstrating adequate infestations for each efficacy calculation. On Days 2, 30, 60 and 90 the mean live tick infestation rate (number of ticks recovered from each dog/infesting challenge of each dog) of untreated control dogs ranged from 27.8 to 60.8%. No live ticks, free or attached, were found on any fluralaner-treated dog in either study. Between-group differences were statistically significant (P ≤ 0.0002) at each assessment. CONCLUSION At the minimum recommended label dose rate of 25 mg/kg, fluralaner chewable tablets were 100% effective in eliminating H. longicornis ticks from dogs infested at the time of treatment. Complete efficacy against both US isolates of this tick was maintained through 90 days following a single treatment. Therefore, fluralaner is a treatment of choice for protecting dogs against this invasive tick species.
Collapse
Affiliation(s)
- Melissa Petersen
- grid.417993.10000 0001 2260 0793Merck Animal Health, De Soto, KS 66018 USA
| | | | - Alta Viljoen
- grid.479269.7Clinvet South Africa, Bloemfontein, 9338 South Africa
| | | | | |
Collapse
|
17
|
Pandey M, Piedmonte NP, Vinci VC, Falco RC, Daniels TJ, Clark JA. First Detection of the Invasive Asian Longhorned Tick (Acari: Ixodidae) on Migratory Passerines in the Americas. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2176-2181. [PMID: 36166571 DOI: 10.1093/jme/tjac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 06/16/2023]
Abstract
The Asian longhorned tick (Haemaphysalis longicornis Neumann), native to East Asia, was first reported in the United States in 2017 and is now established in at least 17 states. Haemaphysalis longicornis feeds on birds in its range outside of the United States, and migratory birds disperse this tick and tick-borne pathogens. However, early studies in the United States did not find H. longicornis on migrating passerine birds. The transport of the parthenogenetic H. longicornis on birds has the potential to greatly expand its range. We report the first discovery of H. longicornis on migratory passerine birds in the Americas.
Collapse
Affiliation(s)
- Medha Pandey
- Louis Calder Center Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Nicholas P Piedmonte
- New York State Department of Health, Empire State Plaza, Corning Tower Albany, NY 12237, USA
- New York State Department of Health, Louis Calder Center, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Vanessa C Vinci
- New York State Department of Health, Louis Calder Center, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Richard C Falco
- New York State Department of Health, Louis Calder Center, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Thomas J Daniels
- Louis Calder Center Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - J Alan Clark
- Louis Calder Center Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| |
Collapse
|
18
|
Stokes JV, Levin ML, Cross CE, Ross AL, Snellgrove AN, Willeford BV, Alugubelly N, Varela‐Stokes AS. Evaluating the Clinical and Immune Responses to Spotted Fever Rickettsioses in the Guinea Pig-Tick-Rickettsia System. Curr Protoc 2022; 2:e584. [PMID: 36383032 PMCID: PMC9828190 DOI: 10.1002/cpz1.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The guinea pig was the original animal model developed for investigating spotted fever rickettsiosis (SFR). This model system has persisted on account of the guinea pig's conduciveness to tick transmission of SFR agents and ability to recapitulate SFR in humans through clinical signs that include fever, unthriftiness, and in some cases the development of an eschar. The guinea pig is the smallest animal model for SFR that allows the collection of multiple blood and skin samples antemortem for longitudinal studies. This unit provides the basic protocols necessary to establish, maintain, and utilize a guinea pig-tick-Rickettsia model for monitoring the course of infection and immune response to an infection by spotted fever group Rickettsia (SFGR) that can be studied at biosafety level 2 (BSL-2) and arthropod containment level 2 (ACL-2); adaptations must be made for BSL-3 agents. The protocols cover methods for tick feeding and colony development, laboratory infection of ticks, tick transmission of Rickettsia to guinea pigs, and monitoring of the course of infection through clinical signs, rickettsial burden, and immune response. It should be feasible to adapt these methods to study other tick-borne pathogens. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tick transmission of SFGR to guinea pigs Support Protocol 1: Laboratory infection of ticks by injection Alternate Protocol 1: Needle inoculation of SFGR to guinea pigs Basic Protocol 2: Monitoring the course of guinea pig rickettsial infection: clinical signs Basic Protocol 3: Monitoring the course of guinea pig rickettsial infection: collection of biological specimens Support Protocol 2: Guinea pig anesthesia Basic Protocol 4: Monitoring rickettsial burden in guinea pigs by multiplex qPCR Basic Protocol 5: Monitoring guinea pig immune response to infection: blood leukocytes by flow cytometry Basic Protocol 6: Monitoring immune response to guinea pig rickettsial infection: leukocyte infiltration of skin at the tick bite site by flow cytometry Basic Protocol 7: Monitoring the immune response to guinea pig rickettsial infection: antibody titer by ELISA Support Protocol 4: Coating ELISA Plates Alternate Protocol 2: Monitoring immune response to guinea pig rickettsial infection: antibody titer by immunofluorescence assay.
Collapse
Affiliation(s)
- John V. Stokes
- Department of Comparative Pathobiology, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - Michael L. Levin
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Claire E. Cross
- Department of Pathology, Microbiology, and ImmunologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Anne‐Marie L. Ross
- Department of Comparative Biomedical SciencesMississippi State UniversityMississippi StateMississippiUSA
| | - Alyssa N. Snellgrove
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Bridget V. Willeford
- Laboratory Animal ResourcesMississippi State UniversityMississippi StateMississippiUSA
| | | | - Andrea S. Varela‐Stokes
- Department of Comparative Pathobiology, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| |
Collapse
|
19
|
Bickerton M, Rochlin I, González J, McSorley K, Toledo A. Field applications of granular and liquid pyrethroids, carbaryl, and IGRs to control the asian longhorned tick (Haemaphysalis longicornis) and impacts on nontarget invertebrates. Ticks Tick Borne Dis 2022; 13:102054. [PMID: 36215766 DOI: 10.1016/j.ttbdis.2022.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Few documented control strategies exist for the invasive tick, Haemaphysalis longicornis, despite its potential to reach extremely high numbers and vector human and animal pathogens. In 2020, we evaluated the effects of single applications of five granular and liquid acaricides on H. longicornis in a public park in northern New Jersey. Acaricides tested included pyrethroids (lambda-cyhalothrin, bifenthrin), a carbamate (carbaryl), and the insect growth regulators (IGRs) pyriproxyfen and novaluron. We also monitored the impact of each treatment on non-target soil and above-ground invertebrate species using pitfall and sticky traps, respectively. We recorded over 70,000 H. longicornis ticks in the study area from July to October 2020. An average of 99% control was achieved with lambda-cyhalothrin spray and 95% with granular bifenthrin. In contrast, granular carbaryl did not significantly reduce any life stages of H. longicornis. The IGR (pyriproxyfen/novaluron) resulted in a significant 45% reduction of the larval stage following treatments in July. No other stages were significantly impacted by pyriproxyfen alone or in combination with novaluron. Analysis of non-target species revealed that the community composition of soil-dwelling arthropods was strongly impacted by pyrethroid treatments and, to a lesser extent, by the carbamate treatment. The granular pyrethroid bifenthrin had more pronounced effects and impacted a broader range of non-target groups in the pitfall traps than the liquid pyrethroid lambda-cyhalothrin. Arthropod groups that were negatively impacted included Isopoda, Formicidae, Coleoptera, Araneae, Acari, and Grylloidea. Collembola numbers, however, were elevated in both pyrethroid treatments. The community composition of arthropods collected on the above-ground sticky traps was strongly impacted only in the liquid lambda-cyhalothrin treatment. The primary groups impacted in the sticky trap analysis were Collembola and Hemiptera. Community composition in traps remained distinct in the pyrethroid treatments through the entire survey period up to 62 days post-treatment. The results of this study indicate that pyrethroid acaricides were highly effective at controlling H. longicornis, while other compounds, including carbaryl and IGRs, did not achieve consistent levels of control. Further research is needed to find effective and environmentally sustainable alternatives. Integrated management programs can include the judicious use of pyrethroids to control H. longicornis.
Collapse
Affiliation(s)
- Matthew Bickerton
- Bergen County Department of Health Services, USA; Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | - Ilia Rochlin
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | - Julia González
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | | | - Alvaro Toledo
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA.
| |
Collapse
|
20
|
Thompson AT, White SA, Doub EE, Sharma P, Frierson K, Dominguez K, Shaw D, Weaver D, Vigil SL, Bonilla DL, Ruder MG, Yabsley MJ. The wild life of ticks: Using passive surveillance to determine the distribution and wildlife host range of ticks and the exotic Haemaphysalis longicornis, 2010-2021. Parasit Vectors 2022; 15:331. [PMID: 36127708 PMCID: PMC9487032 DOI: 10.1186/s13071-022-05425-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exotic Haemaphysalis longicornis and to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts. Methods Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspect H. longicornis were confirmed through molecular techniques. Results In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exotic H. longicornis from nine host species from eight states. Notably, some of the earliest detections of H. longicornis in the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated for Amblyomma americanum, Amblyomma maculatum, Dermacentor albipictus, Dermacentor variabilis, and Ixodes scapularis. Conclusions This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tick H. longicornis; however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports for H. longicornis as well as I. scapularis. Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05425-1.
Collapse
Affiliation(s)
- Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Seth A White
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Emily E Doub
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Prisha Sharma
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA
| | - Kenna Frierson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Kristen Dominguez
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - David Shaw
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Stacey L Vigil
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Denise L Bonilla
- United States Department of Agriculture, Veterinary Services, Fort Collins, CO, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
Price KJ, Witmier BJ, Eckert RA, Boyer CN. Recovery of Partially Engorged Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Active Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1842-1846. [PMID: 35851919 PMCID: PMC9473650 DOI: 10.1093/jme/tjac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The invasive Asian longhorned tick, Haemaphysalis longicornis, has rapidly spread across the northeastern United States and is associated with pathogens of public health and veterinary concern. Despite its importance in pathogen dynamics, H. longicornis blood-feeding behavior in nature, specifically the likelihood of interrupted feeding, remains poorly documented. Here, we report the recovery of partially engorged, questing H. longicornis from active tick surveillance in Pennsylvania. Significantly more engorged H. longicornis nymphs (1.54%) and adults (3.07%) were recovered compared to Ixodes scapularis nymphs (0.22%) and adults (zero). Mean Scutal Index difference between unengorged and engorged nymph specimens was 0.65 and 0.42 for I. scapularis and H. longicornis, respectively, suggesting the questing, engorged H. longicornis also engorged to a comparatively lesser extent. These data are among the first to document recovery of engorged, host-seeking H. longicornis ticks and provide initial evidence for interrupted feeding and repeated successful questing events bearing implications for pathogen transmission and warranting consideration in vector dynamics models.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| | | | - Rebecca A Eckert
- Department of Environmental Studies, Gettysburg College, Gettysburg, PA 17325, USA
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| |
Collapse
|
22
|
Bishop A, Borski J, Wang HH, Donaldson TG, Michalk A, Montgomery A, Heldman S, Mogg M, Derouen Z, Grant WE, Teel PD. Increasing Incidence of Spotted Fever Group Rickettsioses in the United States, 2010-2018. Vector Borne Zoonotic Dis 2022; 22:491-497. [PMID: 36037000 DOI: 10.1089/vbz.2022.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Spotted fever group Rickettsia species are intracellular bacteria transmitted by tick or mite vectors and that cause human diseases referred to as spotted fever group rickettsioses, or spotted fevers. In the United States, the most recognized and commonly reported spotted fevers are Rocky Mountain spotted fever (RMSF) (Rickettsia rickettsii), Rickettsia parkeri rickettsiosis, Pacific Coast tick fever (Rickettsia species 364D), and rickettsialpox (Rickettsia akari). In this study, we summarize and evaluate surveillance data on spotted fever cases reported to the Centers for Disease Control and Prevention (CDC) through the National Notifiable Diseases Surveillance System from 2010 to 2018. During this period, there were 36,632 reported cases of spotted fevers with 95.83% (N = 35,104) reported as meeting the case definition as probable and 4.17% (N = 1528) reported as meeting the case definition as confirmed. The average national incidence of total cases, both probable and confirmed, was 12.77 cases per million persons per year. The highest statewide incidence was in Arkansas, with 256.84 per million per year, whereas the lowest incidence occurred in California, with 0.32 per million per year (note that spotted fevers were not notifiable in Hawaii and Alaska). Cases of spotted fevers were reported more frequently among males by gender, White by race, and non-Hispanic by ethnicity. The incidence of spotted fevers increased significantly from 2010 to 2018, but it is uncertain how many of the reported cases were RMSF and how many developed from more moderate spotted fevers. Improvement of the ability to differentiate between spotted fever group Rickettsia species is needed.
Collapse
Affiliation(s)
- Alexandra Bishop
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Jennifer Borski
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA
| | - Hsiao-Hsuan Wang
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Taylor G Donaldson
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Avery Michalk
- Department of Biomedical Science, Texas A&M University, College Station, Texas, USA
| | - Annie Montgomery
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, USA
| | - Samantha Heldman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Michael Mogg
- Department of Management, and Texas A&M University, College Station, Texas, USA
| | - Zakary Derouen
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA
| | - William E Grant
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Pete D Teel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Xin R, Wang G, Qiu Z, Ma Q, Ahmad S, Yang F, Wang H, He J, Jing X, Sun Y. Screening of essential oils with acaricidal activity against Haemaphysalis longicornis (Acari: Ixodidae) and analysis of active components. Vet Parasitol 2022; 307-308:109712. [DOI: 10.1016/j.vetpar.2022.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
24
|
Characterization and evaluation of a new triosephosphate isomerase homologue from Haemaphysalis longicornis as a candidate vaccine against tick infection. Ticks Tick Borne Dis 2022; 13:101968. [DOI: 10.1016/j.ttbdis.2022.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
25
|
Molaei G, Eisen LM, Price KJ, Eisen RJ. Range Expansion of Native and Invasive Ticks, a Looming Public Health Threat. J Infect Dis 2022; 226:370-373. [PMID: 35732174 DOI: 10.1093/infdis/jiac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Native and invasive tick species pose a serious public health concern in the United States. Range expansion of several medically important tick species has resulted in an increasing number of communities at risk for exposure to ticks and tickborne pathogens.
Collapse
Affiliation(s)
- Goudarz Molaei
- Center for Vector Biology & Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-borne Diseases, the Connecticut Agricultural Experiment Station. New Haven, Connecticut, USA.,Yale University School of Public Health, New Haven, Connecticut, USA
| | - Lars M Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Keith J Price
- Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
26
|
Kim HG, Jung M, Lee DH. Seasonal activity of Haemaphysalis longicornis and Haemaphysalis flava (Acari: Ixodida), vectors of severe fever with thrombocytopenia syndrome (SFTS) virus, and their SFTS virus harboring rates in Gyeonggi Province, South Korea. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:97-108. [PMID: 35767159 DOI: 10.1007/s10493-022-00722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seasonal activity of ticks, including disease vectors of fatal severe fever with thrombocytopenia syndrome (SFTS) virus, was monitored using CO2-bait traps from April to November in 2019 and 2020 in a rural area in Gyeonggi-do, South Korea. Traps were deployed for 24 h once a month in four vegetation types: grassland, grave, mountain trail, and shrubs. A total of 4516 ticks were caught, all of which belong to the genus Haemaphysalis; larvae, nymphs, and adults were 41.9, 39.5, and 18.6%, respectively. The nymphs and adults belonged to two tick species, H. longicornis and H. flava, and H. longicornis was dominant, comprising 97.9% of the two stages collected. Larvae were identified only to the genus level due to difficulty of morphological distinction between species. For H. longicornis, nymph numbers peaked between April and June, followed by adults between June and July. Haemaphysalis larvae showed clear peaks in August. In general, H. longicornis nymphs and adults were most abundant in grassland, whereas larvae were so in the grave area. Collected ticks were pooled and subjected to PCR analysis to estimate SFTS virus harboring rate. In 2019, only one SFTS virus-positive sample was detected in June. However, a total of 18 SFTS-virus positive samples were detected from August to October in 2020.
Collapse
Affiliation(s)
- Hong Geun Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang-gun, Gyeongsangbuk-do, 36531, South Korea
| | - Minhyung Jung
- Department of Life Sciences, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
27
|
Pathogen Spillover to an Invasive Tick Species: First Detection of Bourbon Virus in Haemaphysalis longicornis in the United States. Pathogens 2022; 11:pathogens11040454. [PMID: 35456129 PMCID: PMC9030182 DOI: 10.3390/pathogens11040454] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Haemaphysalis longicornis (Neumann, 1901) (Acari: Ixodidae), the Asian longhorned tick, is an invasive tick species present in the USA since at least 2017 and has been detected in one-third of Virginia counties. While this species is associated with the transmission of multiple pathogens in its native geographical range of eastern Asia, little is known about its ability to acquire and transmit pathogens in the USA, specifically those that are transmissible to humans, although from an animal health perspective, it has already been shown to vector Theileria orientalis Ikeda strains. Emerging tick-borne viruses such as Bourbon virus (genus: Thogotovirus) are of concern, as these newly discovered pathogenic agents have caused fatal clinical cases, and little is known about their distribution or enzootic maintenance. This study examined H. longicornis collected within Virginia (from ten counties) for Bourbon and Heartland viruses using PCR methods. All ticks tested negative for Heartland virus via qRT-PCR (S segment target). Bourbon-virus-positive samples were confirmed on two different gene targets and with Sanger sequencing of the PB2 (segment 1) gene. Bourbon virus RNA was detected in one nymphal stage H. longicornis from Patrick County, one nymph from Staunton City, and one larval pool and one adult female tick from Wythe County, Virginia. An additional 100 Amblyomma americanum (Linnaeus 1758; lone star tick) collected at the same Patrick County site revealed one positive nymphal pool, suggesting that Bourbon virus may have spilled over from the native vector, potentially by co-feeding on a shared Bourbon-virus-infected vertebrate host. Blood tested from local harvested deer revealed a 11.1% antibody seroprevalence against Bourbon virus, exposure which further corroborates that this tick-borne virus is circulating in the southwest Virginia region. Through these results, it can be concluded that H. longicornis can carry Bourbon virus and that pathogen spillover may occur from native to invasive tick species.
Collapse
|
28
|
The current strategies and underlying mechanisms in the control of the vector tick, Haemaphysalis longicornis: Implications for future integrated management. Ticks Tick Borne Dis 2022; 13:101905. [DOI: 10.1016/j.ttbdis.2022.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
|
29
|
Duncan KT, Grant A, Johnson B, Sundstrom KD, Saleh MN, Little SE. Identification of Rickettsia spp. and Babesia conradae in Dermacentor spp. Collected from Dogs and Cats Across the United States. Vector Borne Zoonotic Dis 2021; 21:911-920. [PMID: 34958266 PMCID: PMC8742288 DOI: 10.1089/vbz.2021.0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the United States, Dermacentor variabilis and Dermacentor andersoni are considered key vectors for Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever. Through regional surveillance, a wide diversity of Rickettsia spp. have been documented in D. variabilis, and Dermacentor spp. has been suggested as potential vectors for various other pathogens, including Babesia spp. and Ehrlichia canis. To better define the prevalence and diversity of pathogens in Dermacentor spp. across the United States, 848 ticks collected from dogs and cats in 44/50 states in 2018–2019 were tested by PCR for Rickettsia spp.-specific 17 kDa and ompA gene fragments; a subset of Dermacentor spp. was also tested with PCR, targeting fragments of the 18S and large subunit region rRNA genes of Babesia spp. and 16S rRNA genes of E. canis. Rickettsia spp. was identified in 12.5% (106/848) of ticks. Species detected include Rickettsia montanensis (n = 64 ticks), Rickettsia bellii (n = 15 ticks), Rickettsia rhipicephali (n = 13 ticks), Rickettsia peacockii (n = 8 ticks), Rickettsia amblyommatis (n = 3 ticks), Rickettsia cooleyi (n = 1 tick), and unclassified Rickettsia spp. (n = 2 ticks). Ticks with R. montanensis and R. bellii were submitted from every U.S. region; R. rhipicephali was predominantly detected in ticks from the southern half of the United States, and all R. peacockii-positive ticks were D. andersoni that originated from the Rocky Mountain states. Ehrlichia canis was not detected in any Dermacentor spp., and Babesia conradae was detected in two Dermacentor albipictus. Because most ticks had fed on dogs or cats before submission, these findings do not implicate a given Dermacentor sp. as a primary vector of these agents, but in regard to Rickettsia spp., the data do support other published work showing D. variabilis harbors a diversity of Rickettsia species with unknown implications for animal and human health.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amber Grant
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Britny Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA.,Rickettsial Zoonoses Branch, Division of Vector-Borne Disease, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kellee D Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
30
|
Sherpa P, Harrington LC, Piedmonte NP, Wunderlin K, Falco RC. Optimal Collection Methods for Asian Longhorned Ticks (Ixodida: Ixodidae) in the Northeast United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2255-2263. [PMID: 34080012 DOI: 10.1093/jme/tjab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The Asian longhorned tick, Haemaphysalis longicornis Neumann, is an invasive species in the United States. Since its earliest recorded presence in West Virginia in 2010, H. longicornis has been reported from 15 states. While its public health significance in the United States is unclear, globally it transmits pathogens that infect livestock and humans, causing economic losses and substantial morbidity. Management and control of H. longicornis requires knowledge of its biology, ecology, and distribution. Here, we address the need for effective collection methods for host-seeking H. longicornis as an important step for accurately assessing tick abundance and potential disease risk. The number of H. longicornis collected were compared across three collection methods (dragging, sweeping, CO2 traps) and three tick check distances (5 m, 10 m, and 20 m) were compared for dragging and sweeping. Field collections were conducted from June through August 2019 in Westchester County, New York, and ticks were grouped by life stage to assess collection method efficiency. Results indicated that implementing shorter (5 m) tick check distance was ideal for adult and nymphal collections. The dragging method proved better than sweeping for adult collections; however, there was no significant difference between the methods for nymphal collections, at any tick check distance evaluated. CO2 traps attracted H. longicornis, but additional research is necessary to devise an effective tick retaining method before the traps can be implemented in the field. The results are presented to inform and support H. longicornis surveillance and control programs across the nation.
Collapse
Affiliation(s)
| | | | - Nicholas P Piedmonte
- New York State Department of Health, Louis Calder Center, Fordham University, Armonk, NY 10504, USA
| | - Kathryn Wunderlin
- New York State Department of Health, Louis Calder Center, Fordham University, Armonk, NY 10504, USA
| | - Richard C Falco
- New York State Department of Health, Louis Calder Center, Fordham University, Armonk, NY 10504, USA
| |
Collapse
|
31
|
Lohmeyer KH. Highlights in Veterinary Entomology, 2020: The Importance of the Contributions of Government Scientists to Research in Veterinary Entomology. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2016-2020. [PMID: 34342346 DOI: 10.1093/jme/tjab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/13/2023]
Abstract
The field of veterinary entomology is primarily associated with the study of arthropods that impact the health of animals. Papers featured in the compilation of highlighted research from 2020 focused on studies conducted by scientists from the federal government that sought to understand and manage arthropods associated with wild and domesticated animals. The topics of these articles included research from the basic tenets of veterinary entomology: 1) biology and ecology of economically important pests, 2) novel control tactics and resistance management, 3) genomics, and 4) pathogen transmission. Key findings of the highlighted papers are presented and discussed to serve as a presentation record.
Collapse
Affiliation(s)
- Kimberly H Lohmeyer
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| |
Collapse
|
32
|
Stone CM. Highlights of Medical Entomology, 2020. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2006-2011. [PMID: 34342359 PMCID: PMC8385844 DOI: 10.1093/jme/tjab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Medical Entomology as a field is inherently global - thriving on international and interdisciplinary collaborations and affected dramatically by arthropod and pathogen invasions and introductions. This past year also will be remembered as the year in which the SARS-CoV-2 COVID-19 pandemic affected every part of our lives and professional activities and impacted (or changed, sometimes in good ways) our ability to collaborate and detect or respond to invasions. This incredible year is the backdrop for the 2020 Highlights in Medical Entomology. This article highlights the broad scope of approaches and disciplines represented in the 2020 published literature, ranging from sensory and chemical ecology, population genetics, impacts of human-mediated environmental change on vector ecology, life history and the evolution of vector behaviors, to the latest developments in vector surveillance and control.
Collapse
Affiliation(s)
- Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak Drive, Champaign, IL 61820, USA
| |
Collapse
|
33
|
Tufts DM, Diuk-Wasser MA. First hemispheric report of invasive tick species Haemaphysalis punctata, first state report of Haemaphysalis longicornis, and range expansion of native tick species in Rhode Island, USA. Parasit Vectors 2021; 14:394. [PMID: 34376221 PMCID: PMC8353422 DOI: 10.1186/s13071-021-04887-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive arthropod vectors and the range expansions of native vectors can lead to public and veterinary health concerns, as these vectors may introduce novel pathogens or spread endemic pathogens to new locations. Recent tick invasions and range expansion in the USA has been attributed to climate and land use change, an increase in global travel, and importations of exotic animals. METHODS A 10-year surveillance study was conducted on Block Island, Rhode Island, from 2010 to 2020 including sampling ticks from small mammal and avian hosts. RESULTS We report the discovery and establishment of the red sheep tick (Haemaphysalis punctata) for the first time in the western hemisphere and in the US. This invasive species was first collected in 2010 on Block Island, was collected continuously throughout the study, and was collected from an avian host. We document the first report of the invasive Asian longhorned tick (Haemaphysalis longicornis) in the state of Rhode Island, first observed at our sites in 2018. Finally, we present data on the range expansion and establishment of two native tick species, the lone star tick and the rabbit tick, on Block Island. CONCLUSION This study emphasized the importance of long-term surveillance to detect changes in tick host communities, including invasive and expanding native vectors of potential significance to humans and wildlife.
Collapse
Affiliation(s)
- Danielle M. Tufts
- Infectious Diseases and Microbiology Department, University of Pittsburgh, 2119 Public Health, 130 De Soto St, Pittsburgh, PA USA
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY USA
| | - Maria A. Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY USA
| |
Collapse
|
34
|
Nwanade CF, Wang M, Wang T, Zhang X, Wang C, Yu Z, Liu J. Acaricidal activity of Cinnamomum cassia (Chinese cinnamon) against the tick Haemaphysalis longicornis is linked to its content of (E)-cinnamaldehyde. Parasit Vectors 2021; 14:330. [PMID: 34158107 PMCID: PMC8220678 DOI: 10.1186/s13071-021-04830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background The tick Haemaphysalis longicornis (Neumann) is a well-known vector of numerous pathogens of veterinary and medical importance. Various control strategies, including the use of synthetic pesticides, have been developed to control this tick species. However, demand for effective and safe alternative pesticides is increasing due to the adverse effects associated with the intensive and injudicious use of synthetic pesticides, which include undesirable effects on non-target species and environmental pollution. Hence, the acaricidal activity of the extract and the essential oil of Cinnamomum cassia (Chinese cinnamon) and their major components, and the underlying mechanisms of this activity, were evaluated against unfed larvae and nymphs of H. longicornis. Methods The components of the extract and essential oil of C. cassia were determined by gas chromatography-mass spectrometry, and their larvicidal and nymphicidal activity were evaluated using the larval and nymphal packet test. The underlying detoxification mechanism was elucidated by targeting in vivo esterase and monooxygenase activity, and the toxicological effect was assessed on non-target Tenebrio molitor and Harmonia axyridis by topical application in open Petri dishes. Results (E)-cinnamaldehyde was the predominant component of the extract (50.79%) and essential oil (89.95%). The 50% lethal concentration (LC50) for larvae and nymphs treated with the extract was 11.56 and 49.18 mg/mL, respectively. The essential oil, (E)-cinnamaldehyde and fenvalerate exhibited acaricidal activity, with LC50 values of 3.81, 3.15, and 0.14 mg/mL, respectively, against the larvae, and 21.31, 16.93, and 1.89 mg/mL, respectively, against the nymphs. (E)-cinnamaldehyde significantly increased esterase and monooxygenase activity in both larvae and nymphs. Unlike fenvalerate, C. cassia essential oil and (E)-cinnamaldehyde did not cause mortality of T. molitor or H. axyridis adults. Conclusions This study demonstrates that C. cassia essential oil and (E)-cinnamaldehyde have the potential to be developed into botanical-based larvicidal and nymphicidal agents for tick control. Graphical abstract ![]()
Collapse
Affiliation(s)
- Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Department of Biochemistry and Biology, Basic Medical College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaoyu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
35
|
Unpacking the intricacies of Rickettsia-vector interactions. Trends Parasitol 2021; 37:734-746. [PMID: 34162522 DOI: 10.1016/j.pt.2021.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Although Rickettsia species are molecularly detected among a wide range of arthropods, vector competence becomes an imperative aspect of understanding the ecoepidemiology of these vector-borne diseases. The synergy between vector homeostasis and rickettsial invasion, replication, and release initiated within hours (insects) and days (ticks) permits successful transmission of rickettsiae. Uncovering the molecular interplay between rickettsiae and their vectors necessitates examining the multifaceted nature of rickettsial virulence and vector infection tolerance. Here, we highlight the biological differences between tick- and insect-borne rickettsiae and the factors facilitating the incidence of rickettsioses. Untangling the complex relationship between rickettsial genetics, vector biology, and microbial interactions is crucial in understanding the intricate association between rickettsiae and their vectors.
Collapse
|
36
|
Duncan KT, Saleh MN, Sundstrom KD, Little SE. Dermacentor variabilis is the Predominant Dermacentor spp. (Acari: Ixodidae) Feeding on Dogs and Cats Throughout the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1241-1247. [PMID: 33615364 PMCID: PMC8122232 DOI: 10.1093/jme/tjab007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 05/26/2023]
Abstract
Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK
| | - Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK
| | - Kellee D Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK
| |
Collapse
|
37
|
Price KJ, Witmier BJ, Eckert RA, Boyer CN, Helwig MW, Kyle AD. Distribution and Density of Haemaphysalis longicornis (Acari: Ixodidae) on Public Lands in Pennsylvania, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1433-1438. [PMID: 33367745 DOI: 10.1093/jme/tjaa274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Since the recent introduction of the Asian longhorned tick (Haemaphysalis longicornis Neumann) in the United States, quantitative surveillance information remains lacking, which hinders accurate estimates of population structure and entomological risk. We conducted statewide, active tick surveillance from May to August 2019 and report data on H. longicornis geographical distribution and population density in Pennsylvania. In total, 615 H. longicornis were collected from four counties. Across samples recovering H. longicornis, mean density of H. longicornis was 9.2/100 m2, comparably greater than Ixodes scapularis Say (8.5/100 m2). Density of H. longicornis was also significantly greater in August, largely driven by larvae, and greater in recreational habitat types (12.6/100 m2) and in Bucks County (11.7/100 m2), situated adjacent to the location of the first U.S. discovery of intense infestations. These data are among the first to document H. longicornis from statewide tick surveillance and provide initial measures of population density enabling more quantitative characterizations of distributional patterns.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA
| | - Bryn J Witmier
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA
| | - Rebecca A Eckert
- Department of Entomology, University of Maryland, College Park, MD
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA
| | - Matt W Helwig
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA
| | - Andrew D Kyle
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA
| |
Collapse
|
38
|
Cull B. Potential for online crowdsourced biological recording data to complement surveillance for arthropod vectors. PLoS One 2021; 16:e0250382. [PMID: 33930066 PMCID: PMC8087023 DOI: 10.1371/journal.pone.0250382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Voluntary contributions by citizen scientists can gather large datasets covering wide geographical areas, and are increasingly utilized by researchers for multiple applications, including arthropod vector surveillance. Online platforms such as iNaturalist accumulate crowdsourced biological observations from around the world and these data could also be useful for monitoring vectors. The aim of this study was to explore the availability of observations of important vector taxa on the iNaturalist platform and examine the utility of these data to complement existing vector surveillance activities. Of ten vector taxa investigated, records were most numerous for mosquitoes (Culicidae; 23,018 records, 222 species) and ticks (Ixodida; 16,214 records, 87 species), with most data from 2019–2020. Case studies were performed to assess whether images associated with records were of sufficient quality to identify species and compare iNaturalist observations of vector species to the known situation at the state, national and regional level based on existing published data. Firstly, tick data collected at the national (United Kingdom) or state (Minnesota, USA) level were sufficient to determine seasonal occurrence and distribution patterns of important tick species, and were able to corroborate and complement known trends in tick distribution. Importantly, tick species with expanding distributions (Haemaphysalis punctata in the UK, and Amblyomma americanum in Minnesota) were also detected. Secondly, using iNaturalist data to monitor expanding tick species in Europe (Hyalomma spp.) and the USA (Haemaphysalis longicornis), and invasive Aedes mosquitoes in Europe, showed potential for tracking these species within their known range as well as identifying possible areas of expansion. Despite known limitations associated with crowdsourced data, this study shows that iNaturalist can be a valuable source of information on vector distribution and seasonality that could be used to supplement existing vector surveillance data, especially at a time when many surveillance programs may have been interrupted by COVID-19 restrictions.
Collapse
Affiliation(s)
- Benjamin Cull
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Didelphis spp. opossums and their parasites in the Americas: A One Health perspective. Parasitol Res 2021; 120:4091-4111. [PMID: 33788021 PMCID: PMC8599228 DOI: 10.1007/s00436-021-07072-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Medium sized opossums (Didelphis spp.) are among the most fascinating mammals of the Americas, playing important ecological roles (e.g., dispersal of seeds and control of insect populations) in the environment they inhabit. Nevertheless, as synanthropic animals, they are well adapted to human dwellings, occupying shelters within the cities, peripheral areas, and rural settings. These marsupials can harbor numerous pathogens, which may affect people, pets, and livestock. Among those, some protozoa (e.g., Leishmania infantum, Trypanosoma cruzi, Toxoplasma gondii), helminths (e.g., Ancylostoma caninum, Trichinella spiralis, Alaria marcianae, Paragonimus spp.) and arthropods (e.g., ticks, fleas) present substantial public health and veterinary importance, due to their capacity to cause disease in humans, domestic animals, and wildlife. Here, we reviewed the role played by opossums on the spreading of zoonotic parasites, vectors, and vector-borne pathogens, highlighting the risks of pathogens transmission due to the direct and indirect interaction of humans and domestic animals with Didelphis spp. in the Americas.
Collapse
|
40
|
Piedmonte NP, Vinci VC, Daniels TJ, Backenson BP, Falco RC. Seasonal Activity of Haemaphysalis longicornis (Acari: Ixodidae) in Southern New York State. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:676-681. [PMID: 33051658 DOI: 10.1093/jme/tjaa203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 06/11/2023]
Abstract
The Asian longhorned tick, Haemaphysalis longicornis Neumann, is a species native to eastern Asia that has recently been discovered in the United States. In its native range, H. longicornis transmits pathogens that cause disease in humans and livestock. It is currently unknown whether H. longicornis will act as a vector in the United States. Understanding its seasonal activity patterns will be important in identifying which times of the year represent greatest potential risk to humans and livestock should this species become a threat to animal or public health. A study site was established in Yonkers, NY near the residence associated with the first reported human bite from H. longicornis in the United States. Ticks were collected once each week from July 2018 to November 2019. Haemaphysalis longicornis larvae were most active from August to November, nymphs from April to July, and adult females from June to September. This pattern of activity suggests that H. longicornis is capable of completing a generation within a single year and matches the patterns observed in its other ranges in the northern hemisphere. The data presented here contribute to a growing database for H. longicornis phenology in the northeastern United States. Potential implications of the short life cycle for the tick's vectorial capacity are discussed.
Collapse
Affiliation(s)
| | - Vanessa C Vinci
- New York State Department of Health, Louis Calder Center, Armonk, NY
| | | | - Bryon P Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Empire State Plaza, Albany, NY
| | - Richard C Falco
- New York State Department of Health, Louis Calder Center, Armonk, NY
| |
Collapse
|
41
|
Saleh MN, Allen KE, Lineberry MW, Little SE, Reichard MV. Ticks infesting dogs and cats in North America: Biology, geographic distribution, and pathogen transmission. Vet Parasitol 2021; 294:109392. [PMID: 33971481 PMCID: PMC9235321 DOI: 10.1016/j.vetpar.2021.109392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
A diverse array of ixodid and argasid ticks infest dogs and cats in North America, resulting in skin lesions, blood loss, and disease. The ticks most commonly found on pets in this region are hard ticks of the genera Amblyomma, Dermacentor, Ixodes, and Rhipicephalus, as well as the more recently established Haemaphysalis longicornis. Soft tick genera, especially Otobius and Ornithodoros, are also reported from pets in some regions. In this review, we provide a summary of the complex and diverse life histories, distinct morphologies, and questing and feeding behaviors of the more common ticks of dogs and cats in North America with a focus on recent changes in geographic distribution. We also review pathogens of dogs and cats associated with the different tick species, some of which can cause serious, potentially fatal disease, and describe the zoonotic risk posed by ticks of pets. Understanding the natural history of ticks and the maintenance cycles responsible for providing an ongoing source of tick-borne infections is critical to effectively combatting the challenges ticks pose to the health of pets and people.
Collapse
Affiliation(s)
- Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Kelly E Allen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States.
| | - Megan W Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| |
Collapse
|
42
|
St John HK, Masuoka P, Jiang J, Takhampunya R, Klein TA, Kim HC, Chong ST, Song JW, Kim YJ, Farris CM, Richards AL. Geographic distribution and modeling of ticks in the Republic of Korea and the application of tick models towards understanding the distribution of associated pathogenic agents. Ticks Tick Borne Dis 2021; 12:101686. [PMID: 33667830 DOI: 10.1016/j.ttbdis.2021.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Encounters with ticks harboring pathogenic agents have demonstrated increasing public health implications. Tick surveillance in the Republic of Korea (ROK) is essential for determining tick distributions and the potential regions where tick-borne pathogens may be found. Extensive tick collections (tick drags and tick flagging) were previously performed by Force Health Protection & Preventive Medicine (FHP&PM), Medical Activity-Korea (MEDDAC-K)/65th Medical Brigade (MED BDE) personnel, in collaboration with the Public Health Activity-Korea in the ROK. A total of 144,131 ticks were collected from 2,019 locations during 2004 to 2016. The associated location data (GPS coordinates) for each of the collection sites were incorporated into distribution maps using ArcGIS and combined with environmental data in the Maxent ecological niche modeling program (n = 733 geographical unique locations from 1,429 presence records/collection locations) to produce estimates of tick distributions for each species. The predominant tick species found and modeled were, in order of prevalence: Haemaphysalis longicornis, H. flava, Ixodes nipponensis, H. phasiana, I. turdus, Amblyomma testudinarium, H. japonica, and I. persulcatus. Haemaphysalis longicornis, H. flava, and I. nipponensis were the most widely distributed and most commonly collected species of ticks. The maps and models of suitable habitat regions produced in this study provide a better understanding of where there are potential risks of encountering a particular tick species, and which, as demonstrated herein with rickettsiae, can be used to study tick-pathogen dynamics of diseases. Knowledge of the distribution of ticks is important in the ROK because of the presence of tick-borne diseases, such as severe fever with thrombocytopenia syndrome, tick-borne encephalitis, rickettsioses, and borrelioses.
Collapse
Affiliation(s)
- Heidi K St John
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA; Henry Jackson Foundation, Bethesda, MD, 20817, USA.
| | - Penny Masuoka
- Henry Jackson Foundation, Bethesda, MD, 20817, USA; Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA; Henry Jackson Foundation, Bethesda, MD, 20817, USA
| | - Ratree Takhampunya
- Department of Entomology, United States Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Terry A Klein
- Force Health Protection & Preventive Medicine, MEDDAC-K/65(th) Medical Brigade, Unit 15281, APO AP 96271-5281, USA
| | - Heung-Chul Kim
- Force Health Protection & Preventive Medicine, MEDDAC-K/65(th) Medical Brigade, Unit 15281, APO AP 96271-5281, USA
| | - Sung-Tae Chong
- Force Health Protection & Preventive Medicine, MEDDAC-K/65(th) Medical Brigade, Unit 15281, APO AP 96271-5281, USA
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yu-Jin Kim
- Armed Forces Medical Command, Seongnam, 13590, Republic of Korea
| | - Christina M Farris
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA; Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
43
|
Tufts DM, Goodman LB, Benedict MC, Davis AD, VanAcker MC, Diuk-Wasser M. Association of the invasive Haemaphysalis longicornis tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City, USA. Int J Parasitol 2021; 51:149-157. [PMID: 33130214 PMCID: PMC10029828 DOI: 10.1016/j.ijpara.2020.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/24/2023]
Abstract
Haemaphysalis longicornis, the Asian longhorned tick, is an invasive ixodid tick that has rapidly spread across the northeastern and southeastern regions of the United States since first reported in 2017. The emergence of H. longicornis presents a potential threat for livestock, wildlife, and human health as the host associations and vector potential of this invasive pest in the United States are poorly understood. Previous field data from the United States has shown that H. longicornis was not associated with natural populations of small mammals or birds, but they show a preference for medium sized mammals in laboratory experiments. Therefore, medium and large sized mammals were sampled on Staten Island, New York, United States, to determine H. longicornis host associations and vector potential for a range of human and veterinary pathogens. A total of 97 hosts were sampled and five species of tick (Amblyomma americanum, Dermacentor variabilis, H. longicornis, Ixodes scapularis, Ixodes cookei) were found feeding concurrently on these hosts. Haemaphysalis longicornis was found in the highest proportions compared with other native tick species on raccoons (55.4%), Virginia opossums (28.9%), and white-tailed deer (11.5%). Tissue, blood, and engorged larvae were tested for 17 different pathogens using a nanoscale PCR platform. Infection with five pathogens (Borrelia burgdorferi, Anaplasma phagocytophilum, Rickettsia spp., Mycoplasma haemocanis, and Bartonella spp.) was detected in host samples, but no pathogens were found in any larval samples. These results suggest that although large and medium sized mammals feed large numbers of H. longicornis ticks in the environment, there is presently a low potential for H. longicornis to acquire pathogens from these wildlife hosts.
Collapse
Affiliation(s)
- Danielle M Tufts
- Columbia University, Ecology, Evolution, and Environmental Biology Department, New York, NY 10027, USA.
| | - Laura B Goodman
- Cornell University, Department of Population Medicine and Diagnostic Sciences, Ithaca, NY 14853, USA
| | - Meghan C Benedict
- Cornell University, Department of Population Medicine and Diagnostic Sciences, Ithaca, NY 14853, USA
| | - April D Davis
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Meredith C VanAcker
- Columbia University, Ecology, Evolution, and Environmental Biology Department, New York, NY 10027, USA
| | - Maria Diuk-Wasser
- Columbia University, Ecology, Evolution, and Environmental Biology Department, New York, NY 10027, USA
| |
Collapse
|
44
|
Alugubelly N, Stokes JV, Cross CE, Ross AML, Crawford AE, Fiihr GF, Varela-Stokes AS. Beyond the IFA: Revisiting the ELISA as a More Sensitive, Objective, and Quantitative Evaluation of Spotted Fever Group Rickettsia Exposure. Pathogens 2021; 10:pathogens10020088. [PMID: 33498380 PMCID: PMC7909427 DOI: 10.3390/pathogens10020088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/04/2022] Open
Abstract
Based on limited serological studies, at least 10% of the US population has been exposed to spotted fever group Rickettsia (SFGR) species. The immunofluorescence antibody assay (IFA) has been the gold standard for the serodiagnosis of rickettsial infections such as spotted fever rickettsiosis (SFR). However, the IFA is semi-quantitative and subjective, requiring a high level of expertise to interpret it correctly. Here, we developed an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of Rickettsia parkeri infection in the guinea pig. Our ELISA is an objective, quantitative, and high-throughput assay that shows greater sensitivity and resolution in observed titers than the IFA. We methodically optimized relevant parameters in sequence for optimal signal-to-noise ratio and low coefficient of variation% values. We used a guinea pig model as it is a part of our overall research efforts to understand the immunological and clinical response to SFGR species after tick transmission. Guinea pigs are a useful model to study SFR and show clinical signs of SFR, such as fever and eschars. We anticipate that this assay will be easily adapted to other hosts, including humans and other SFGR species.
Collapse
|
45
|
Tully BG, Huntley JF. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens 2020; 9:pathogens9121037. [PMID: 33321814 PMCID: PMC7764610 DOI: 10.3390/pathogens9121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly 100 years after the first report of tick-borne tularemia, questions remain about the tick vector(s) that pose the greatest risk for transmitting Francisella tularensis (Ft), the causative agent of tularemia. Additionally, few studies have identified genes/proteins required for Ft to infect, persist, and replicate in ticks. To answer questions about vector competence and Ft transmission by ticks, we infected Dermacentor variabilis (Dv),Amblyomma americanum (Aa), and Haemaphysalis longicornis (Hl; invasive species from Asia) ticks with Ft, finding that although Aa ticks initially become infected with 1 order of magnitude higher Ft, Ft replicated more robustly in Dv ticks, and did not persist in Hl ticks. In transmission studies, both Dv and Aa ticks efficiently transmitted Ft to naïve mice, causing disease in 57% and 46% of mice, respectively. Of four putative Ft chitinases, FTL1793 is the most conserved among Francisella sp. We generated a ΔFTL1793 mutant and found that ΔFTL1793 was deficient for infection, persistence, and replication in ticks. Recombinant FTL1793 exhibited chitinase activity in vitro, suggesting that FTL1793 may provide an alternative energy source for Ft in ticks. Taken together, Dv ticks appear to pose a greater risk for harboring and transmitting tularemia and FTL1793 plays a major role in promoting tick infections by Ft.
Collapse
|
46
|
Namgyal J, Couloigner I, Lysyk TJ, Dergousoff SJ, Cork SC. Comparison of Habitat Suitability Models for Haemaphysalis longicornis Neumann in North America to Determine Its Potential Geographic Range. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218285. [PMID: 33182472 PMCID: PMC7665130 DOI: 10.3390/ijerph17218285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Haemaphysalis longicornis Neumann, 1901 is a vector of many pathogens of public and veterinary health importance in its native range in East Asia and introduced range in Oceania. In North America, this tick was first detected in New Jersey in 2017. Currently, this tick has been reported from 15 states of the United States. In this study, we modeled the habitat suitability of H. longicornis using the MaxEnt modeling approach. We separated occurrence records from the published literature from four different geographical regions in the world and developed MaxEnt models using relevant environmental variables to describe the potential habitat suitability of this tick in North America. The predictive accuracy of the models was assessed using the U.S. county locations where this tick species has been reported. Our best model predicted that the most suitable North American areas for geographic expansion of H. longicornis are from Arkansas–South Carolina to the south of Quebec–Nova Scotia in the east, and from California to the coast of British Columbia in the west. Enhanced surveillance and further investigation are required to gain a better understanding of the role that this tick might play in the transmission of diseases to humans and animals in North America.
Collapse
Affiliation(s)
- Jamyang Namgyal
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (I.C.); (T.J.L.); (S.C.C.)
- Correspondence:
| | - Isabelle Couloigner
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (I.C.); (T.J.L.); (S.C.C.)
- Department of Geography, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tim J. Lysyk
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (I.C.); (T.J.L.); (S.C.C.)
| | - Shaun J. Dergousoff
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, AB T1J 4B1, Canada;
| | - Susan C. Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (I.C.); (T.J.L.); (S.C.C.)
| |
Collapse
|
47
|
Stokes JV, Walker DH, Varela-Stokes AS. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks Tick Borne Dis 2020; 11:101538. [PMID: 32993947 PMCID: PMC7530330 DOI: 10.1016/j.ttbdis.2020.101538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The guinea pig (Cavia porcellus) has an established track record as an animal model, with its utility in rickettsial research documented as early as the turn of the 20th century. From identifying Rickettsia rickettsii as the agent of Rocky Mountain spotted fever and ticks as the natural transmission route to evaluating protective immunity and treatment for tick-borne rickettsiae, guinea pigs have been essential for advances in our understanding of spotted fever rickettsioses (SFR). Tick feeding on guinea pigs is feasible and results in transmission of tick-borne rickettsiae. The resulting infection leads to the recapitulation of SFR as defined by clinical signs that include fever, unthrift, and in the case of transmission by a Rickettsia parkeri-infected Amblyomma maculatum tick, a characteristic eschar at the site of the bite. No other small animal model recapitulates SFR, is large enough to collect multiple blood and skin samples for longitudinal studies, and has an immune system as similar to the human immune system. In the 1980s, the use of the guinea pig was significantly reduced due to advances made to the more reproductively prolific and inexpensive murine model. These advances included the development of genetically modified murine strains, which resulted in the expansion of murine-specific reagents and assays. Still, the advantages of the guinea pig as a model for SFR persist, novel assays are being developed to better monitor guinea pig immune responses, and tools, like CRISPR/Cas9, are now available. These technical advances allow guinea pigs to again contribute to our understanding of SFR. Importantly, returning to the guinea pig model with enhanced tools will enable rickettsial researchers to corroborate and potentially refine results acquired using mice. This minireview summarizes Cavia porcellus as an animal model for human tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- John V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Andrea S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
48
|
Bickerton M, McSorley K, Toledo A. A life stage-targeted acaricide application approach for the control of Haemaphysalis longicornis. Ticks Tick Borne Dis 2020; 12:101581. [PMID: 33075730 DOI: 10.1016/j.ttbdis.2020.101581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022]
Abstract
Haemaphysalis longicornis Neumann is an invasive tick species that has recently been detected in the eastern United States. We designed field studies to monitor the population dynamics of H. longicornis over a year (2019) in New Jersey, and to assess the efficacy of a pyrethroid acaricide (lambda-cyhalothrin) in controlling this tick using a stage-treatment approach. Nymphs were the most abundant life stage found host-seeking from May through early July, followed by a brief period of high adult activity in mid-July, and a very high larval peak extending from late July through October. Overall, 542 adults, 1910 nymphs, and 69,238 larvae were recorded during the sampling. In the present study, the efficacy of acaricide treatments to suppress host-seeking ticks was assessed by applying lambda-cyhalothrin once during each of the three periods of activity for nymphs (June), adults (July), and larvae (August), or sequentially during all three months. Control plots were left untreated and used for phenology studies. Applications in June and July provided 100 % control of all life stages, including the dominant nymphal and adult stages for 42 and 35 d, respectively. Ticks re-established at normal or reduced levels following applications in June or July, respectively, compared to untreated controls. The application in August provided 100 % control for 49 d, and a high level of suppression (>99 % control) remained through the end of the tick season in October. This study therefore supports that single pyrethroid applications can provide 100 % control of H. longicornis for up to 7 wk, and a single late-summer application towards the end of host-seeking adult activity can provide near complete control of the larval population. An evaluation of single applications over the course of the season revealed that treatments in July or August did not lead to significant reductions in the nymphal population. However, multiple sequential treatments targeting all life stages provided 66 %, 97 %, and >99 % control of adults, nymphs, and larvae, respectively through the season of H. longicornis activity.
Collapse
Affiliation(s)
- Matthew Bickerton
- Department of Entomology, Rutgers University, United States; Bergen County Department of Health Services, United States; Center for Vector Biology, Rutgers University, United States
| | | | - Alvaro Toledo
- Department of Entomology, Rutgers University, United States; Center for Vector Biology, Rutgers University, United States.
| |
Collapse
|
49
|
Zhao L, Li J, Cui X, Jia N, Wei J, Xia L, Wang H, Zhou Y, Wang Q, Liu X, Yin C, Pan Y, Wen H, Wang Q, Xue F, Sun Y, Jiang J, Li S, Cao W. Distribution of Haemaphysalis longicornis and associated pathogens: analysis of pooled data from a China field survey and global published data. Lancet Planet Health 2020; 4:e320-e329. [PMID: 32800150 DOI: 10.1016/s2542-5196(20)30145-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Haemaphysalis longicornis, a vector of various pathogens with medical and veterinary importance, is native to eastern Asia, and recently reached the USA as an emerging disease threat. In this study, we aimed to identify the geographical distribution, hosts, and associated pathogens of H longicornis. METHODS Data were collected from multiple sources, including a field survey, reference book, literature review, and related websites. The thematic maps showing geographical distribution of H longicornis and associated pathogens were produced by ArcGIS. Hosts of H longicornis and positive rates for H longicornis-associated pathogens were estimated by meta-analysis. Ecological niche modelling was used to predict potential global distribution of H longicornis. FINDINGS H longicornis was found to be present in ten countries, predominantly in eastern Asia, the USA, Australia, and New Zealand. The tick was known to feed on a variety of domestic and wild animals, and humans. At least 30 human pathogens were associated with H longicornis, including seven species of spotted fever group rickettsiae, seven species in the family of Anaplasmataceae, four genospecies in the complex Borrelia burgdorferi sensu lato, two Babesia species, six species of virus, and Francisella, Bartonella, Coxiella, and Toxoplasma, which were mainly reported in eastern Asia. The predictive modelling revealed that H longicornis might affect more extensive regions, including Europe, South America, and Africa, where the tick has never been recorded before. INTERPRETATION H longicornis is relatively common in the world, and is associated with various human and animal pathogens. Authorities and health-care workers should be aware of the threat of the tick species to public health and veterinary medicine. Surveillance and further investigations should be enhanced globally. FUNDING National Natural Science Foundation of China and National Key Research and Development Program of China.
Collapse
Affiliation(s)
- Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiate Wei
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Luoyuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haitao Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuhao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qian Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueyuan Liu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chaonan Yin
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yusheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongling Wen
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Wang
- Institute for Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Institute for Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shixue Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wuchun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
50
|
Thompson AT, White S, Shaw D, Egizi A, Lahmers K, Ruder MG, Yabsley MJ. Theileria orientalis Ikeda in host-seeking Haemaphysalis longicornis in Virginia, U.S.A. Ticks Tick Borne Dis 2020; 11:101450. [PMID: 32723633 DOI: 10.1016/j.ttbdis.2020.101450] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
The Asian longhorned tick, Haemaphysalis longicornis, has recently become established in the United States. In East Asia, Australia, and New Zealand, the native and previously introduced ranges, this tick is a vector of an important pathogen of cattle, Theileria orientalis. In 2017, the pathogenic Ikeda genotype of T. orientalis was associated with cattle mortalities in Virginia and in 2018 the exotic H. longicornis was detected at this same site. To investigate the possible role of this exotic tick in the epidemiology of theileriosis in Virginia, we tested host-seeking H. longicornis for piroplasm infections. We document the detection of exotic Theileria orientalis Ikeda genotype in 12.7 % (15/118) environmentally collected H. longicornis using both the 18S rRNA and major piroplasm surface protein (MPSP) gene targets. This is the first detection of a pathogen in H. longicornis in its introduced range in the United States and offers new insight into the animal health risks associated with the introduction of this exotic tick species to North America.
Collapse
Affiliation(s)
- Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Seth White
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - David Shaw
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrea Egizi
- Monmouth County Mosquito Control Division, Tinton Falls, NJ, USA; Rutgers University, New Brunswick, NJ, USA
| | - Kevin Lahmers
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|