1
|
Le H, Nguyen M, Manso HECCC, Wang MD, Watford M. Adipocytes Are the Only Site of Glutamine Synthetase Expression Within the Lactating Mouse Mammary Gland. Curr Dev Nutr 2024; 8:102168. [PMID: 38813479 PMCID: PMC11130672 DOI: 10.1016/j.cdnut.2024.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Background Glutamine in milk is believed to play an important role in neonatal intestinal maturation and immune function. For lactating mothers, glutamine utilization is increased to meet the demands of the enlarged intestine and milk production. However, the source of such glutamine during lactation has not been studied. Objectives We aimed to assess the effects of lactation on the expression of glutamine synthetase (GS) in the mammary gland and other tissues of lactating mice. Methods Mouse tissues were sampled at 4 time points: 8-wk-old (virgin, control), post-delivery day 5 (PD5, early lactation), PD15 (peak lactation), and involution (4 days after weaning at PD21). We examined the gene expression and protein concentrations of GS and the first 2 enzymes of branched-chain amino acid catabolism: branched-chain aminotransferase 2 (BCAT2) and branched-chain ketoacid dehydrogenase subunit E1α (BCKDHA). Results The messenger RNA (mRNA) expression and protein concentrations of GS in mammary glands were significantly lower at PD5 and PD15 compared with the control but were restored at involution. Within the mammary gland, GS protein was only detected in adipocytes with no evidence of presence in mammary epithelial cells. Compared with the control, mRNA and protein concentrations of BCAT2 and BCKDHA in mammary glands significantly decreased during lactation and involution. No changes in GS protein concentrations during lactation were found in the liver, skeletal muscle, and lung. In non-mammary adipose tissue, GS protein abundance was higher during lactation compared with the virgin. Conclusions This work shows that, within the mouse mammary gland, GS is only expressed in adipocytes and that the relative GS abundance in mammary gland sections is lower during lactation. This suggests that mammary adipocytes may be a site of glutamine synthesis in the lactating mouse. Identifying the sources of glutamine production during lactation is important for optimizing milk glutamine concentration to enhance neonatal and maternal health.
Collapse
Affiliation(s)
- Huyen Le
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Mai Nguyen
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Helena Emilia CCC Manso
- Universidade Federal Rural de Pernambuco, Departamento de Zootecnia Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE Brazil
| | - Michelle D Wang
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Malcolm Watford
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Torres N, Tobón-Cornejo S, Velazquez-Villegas LA, Noriega LG, Alemán-Escondrillas G, Tovar AR. Amino Acid Catabolism: An Overlooked Area of Metabolism. Nutrients 2023; 15:3378. [PMID: 37571315 PMCID: PMC10421169 DOI: 10.3390/nu15153378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15. Col Belisario Domínguez-Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.T.); (S.T.-C.); (L.A.V.-V.); (L.G.N.); (G.A.-E.)
| |
Collapse
|
3
|
Li Y, Hanigan MD, Lin X, Hu Z, Yan Z, Hou Q, Wang Y, Wang Z. Responses in splanchnic and mammary amino acid metabolism to short-term graded removal of methionine in lactating goats. ANIMAL NUTRITION 2023; 13:116-125. [PMID: 37123619 PMCID: PMC10130335 DOI: 10.1016/j.aninu.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Four multi-catheterized lactating goats were used in a 4 × 4 Latin square experiment to investigate the responses of amino acid metabolism in portal-drained viscera (PDV), liver, and mammary glands to short-term varying supplies of methionine (Met). During the last 45 h in each experimental period, goats were fasted for 12 h and then abomasally infused with an amino acid (AA) mixture plus glucose for 33 h. Treatments consisted of graded removal of Met from an infused AA mixture to achieve Met content in the infusate of 100% (complete), 60%, 30%, or 0% that in casein. Graded Met removal decreased the production of milk, milk protein, lactose, and fat linearly whilst also decreasing arterial Met concentration linearly (P < 0.05). Meanwhile, net PDV uptake and liver removal of Met decreased linearly (P < 0.05) due to decreased Met affinity of PDV and liver (P < 0.05). Net mammary uptake of Met (P > 0.1) was maintained as Met supply declined. This was achieved through increased mammary affinity (P < 0.05) and increased mammary blood flow (P < 0.05) totally offsetting the negative effect of decreased circulating Met concentration. Graded removal of Met from the infusate linearly decreased mammary uptake-to-milk output ratios of Met (P < 0.05) and tended to decrease essential amino acid (EAA) linearly (0.05 < P < 0.1). Treatments also linearly decreased circulating concentration of prolactin and linearly increased insulin concentration (P < 0.05). In conclusion, results of the present study indicated there were several mechanisms used to mitigate a Met deficiency, including reduced catabolism of Met in PDV, liver, and peripheral tissue (including mammary glands) and a linear increase in mammary blood flow. The observed decreases in milk protein production as Met supply decreased appear to be a result of regulatory events which may have been driven by decreased circulating prolactin, rather than as a result of decreased mammary Met uptake.
Collapse
|
4
|
Xie P, Han MX, Chen WX, Wan XP, Xu YG, Gong DQ. The profiling of amino acids in crop milk and plasma and mRNA abundance of amino acid transporters and enzymes related to amino acid synthesis in the crop tissue of male and female pigeons during incubation and chick-rearing periods. Poult Sci 2020; 99:1628-1642. [PMID: 32115035 PMCID: PMC7587674 DOI: 10.1016/j.psj.2019.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023] Open
Abstract
The present study was carried out to investigate the changes in amino acid (AA) contents of crop milk and plasma and mRNA abundance of AA transporters and AA synthesis-related enzymes in the crop tissue of male and female pigeons during incubation and chick-rearing periods. Forty-two pairs of adult White King pigeons with 2 fertile eggs per pair were randomly divided into 7 groups by different breeding stages. The AA content of crop milk decreased from day 1 (R1) to day 25 (R25) of chick rearing (P < 0.05). In both male and female adult pigeons, the contents of Thr, Leu, Val, His, Asp, and Pro in plasma increased to maximum levels on R25. Parental sex effect and interaction between stage and sex were observed in the AA contents of pigeon plasma (P < 0.05). For AA transporters, the mRNA abundances of SNAT2, ASCT1, LAT1, and y+LAT2 in the male crops reached the highest value on day 17 of incubation (I17), and the peak mRNA levels of PAT-1, xCT, b0,+AT, and CAT1 were found on R7 (P < 0.05). In females, the abundances of ASCT1, B0AT1, asc-1, and CAT1 mRNA peaked on R1, whereas the maximum levels of LAT1, PAT-1, b0,+AT, and y+LAT2 were observed on R7. For enzymes involved in AA synthesis, the highest gene expressions of glutamate dehydrogenase 1, acetolactate synthase in both parent pigeons, and L-threonine 3-dehydrogenase in female pigeon crops were attained on I17. The expressions of ornithine-δ-aminotransferase, glutamic-oxal(o)acetic transaminase 1, glutamic-oxal(o)acetic transaminase 2, asparagine synthetase, serine hydroxymethyltransferase 2, and glutamic-pyruvic transaminase 2 in both sexes and argininosuccinate lyase and L-threonine 3-dehydrogenase in males were the highest on R1. In conclusion, AA used for pigeon crop milk formation may originate from plasma and intracellular synthesis. The genes involved in AA transport and synthesis varied significantly with sexual effects, indicating that other factors should be considered in future explorations of the mechanism of protein formation in crop milk.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - M X Han
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - W X Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - X P Wan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Y G Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Webb L, Sadri H, Schuh K, Egert S, Stehle P, Meyer I, Koch C, Dusel G, Sauerwein H. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. J Dairy Sci 2020; 103:2847-2863. [DOI: 10.3168/jds.2019-17147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
|
6
|
Ma C, Liu Y, Liu S, Lévesque CL, Zhao F, Yin J, Dong B. Branched chain amino acids alter fatty acid profile in colostrum of sows fed a high fat diet. J Anim Sci Biotechnol 2020; 11:9. [PMID: 32095236 PMCID: PMC7025410 DOI: 10.1186/s40104-019-0423-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 02/02/2023] Open
Abstract
Background Branched chain amino acids (BCAAs) are important substrates for milk protein synthesis in the mammary gland, and are tightly related to lipid metabolism. No study has been performed examining the role of BCAAs with high fat diets on milk fat synthesis. This study was designed to investigate the effect of dietary BCAAs on growth performance of piglets, progeny body weight, and milk fat composition in sows fed a high fat diet. Four diets (CON = control diet; HF = high fat diet with 8% soybean oil; HF-MB=HF plus 0.39% BCAAs; HF-HB=HF plus 0.78% BCAAs) were fed to sows from late gestation to weaning. Results Compared to HF, BCAAs (HF-MB and HF-HB) increased the litter weight (P < 0.05) and overall litter weight gain (P < 0.05) at weaning and increased colostrum fat content by 27.3–35.8% (P < 0.01). Fatty acid profiles between the two doses of BCAAs were similar. Compared with HF, HF-MB tended to decrease the percentage of C18:3n3 (P = 0.063) and increased the percentage of C18:1n9c (P = 0.03). In addition, BCAAs in HF-MB increased the concentration of total fatty acid by 22.1% in colostrum (P = 0.03) but decreased that in serum at parturition by 53.2% (P = 0.027). The fatty acids in colostrum that increased with BCAAs were C15:0, C17:0, C20:3n6, C20:4n6, C20:5n3 and C22:6n3 (P = 0.00~0.04). Colostrum fatty acids of C20:0, C21:0, C22:0, C16:1, C20:1, C18:1n9c also tended to be increased (0.05 < P < 0.1) with BCAAs. The change in sow serum fatty acid profile due to BCAAs was different from that in colostrum. Conclusions BCAAs in high fat diet of sows altered the fatty acid composition in colostrum and enhanced litter growth. Our study indicated that BCAAs supplementation can enhance mammary fatty acid uptake and mammary fat synthesis and that supplemental BCAAs and fat in late gestation and lactation diets for sows can improve reproductive performance.
Collapse
Affiliation(s)
- Chang Ma
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yajng Liu
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shaoshuai Liu
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Crystal L Lévesque
- 2Department of Animal Science, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD 57007 USA
| | - Fengqi Zhao
- 3Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405 USA
| | - Jindong Yin
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bing Dong
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
7
|
Nichols K, Dijkstra J, van Laar H, Kim JJM, Cant JP, Bannink A. Expression of genes related to energy metabolism and the unfolded protein response in dairy cow mammary cells is affected differently during dietary supplementation with energy from protein and fat. J Dairy Sci 2019; 102:6603-6613. [PMID: 31103304 DOI: 10.3168/jds.2018-15875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H van Laar
- Trouw Nutrition R&D, PO Box 220, 5830 AE Boxmeer, the Netherlands
| | - J J M Kim
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
8
|
Leucine promotes differentiation of porcine myoblasts through the protein kinase B (Akt)/Forkhead box O1 signalling pathway. Br J Nutr 2019; 119:727-733. [PMID: 29569540 DOI: 10.1017/s0007114518000181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leucine, one of the branched-chain amino acids, is the only amino acid to regulate protein turnover in skeletal muscle. Leucine not only increases muscle protein synthesis, but also decreases muscle protein degradation. It is well documented that leucine plays a positive role in differentiation of murine muscle cells. However, the role of leucine on porcine myoblast differentiation and its mechanism remains unclear. In this study, porcine myoblasts were induced to differentiate with differentiation medium containing different concentrations of leucine, and wortmannin was used to interdict the activity of protein kinase B (Akt). We found that leucine increased the number of myosin heavy chain-positive cells and creatine kinase activity. Moreover, leucine increased the mRNA and protein levels of myogenin and myogenic determining factor (MyoD). In addition, leucine increased the levels of phosphorylated Akt/Akt and phosphorylated Forkhead box O1 (P-FoxO1)/FoxO1, as well as decreased the protein level of FoxO1. However, wortmannin, a specific repressor of PI3K/Akt signalling pathway, attenuated the positive role of leucine on porcine myoblast differentiation. Our results suggest that leucine promotes porcine myoblast differentiation through the Akt/FoxO1 signalling pathway.
Collapse
|
9
|
Leal Yepes FA, Mann S, Overton TR, Ryan CM, Bristol LS, Granados GE, Nydam DV, Wakshlag JJ. Effect of rumen-protected branched-chain amino acid supplementation on production- and energy-related metabolites during the first 35 days in milk in Holstein dairy cows. J Dairy Sci 2019; 102:5657-5672. [PMID: 30928273 DOI: 10.3168/jds.2018-15508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
Essential AA are critical for multiple physiological processes. Branched-chain AA (BCAA) supplementation has beneficial effects on body weight, lipogenesis, and insulin resistance in several species. The BCAA are used for milk and body protein synthesis as well as being oxidized by the tricarboxylic acid cycle to produce ATP during catabolic states. The objective was to evaluate the effect of rumen-protected BCAA (375 g of 27% l-Leu, 85 g of 48% l-Ile, and 91 g of 67% l-Val) with or without propylene glycol (PG) oral administration on milk production, dry matter intake, nonesterified fatty acids, β-hydroxybutyrate, and plasma urea nitrogen during the first 35 d in milk (DIM) in dairy cattle. Multiparous Holstein cows were enrolled in blocks of three 28 d before expected calving and assigned randomly to either the control or 1 of 2 treatments. The control (n = 26) received 200 g/d of dry molasses, the BCAA treatment (n = 23) received BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM, and the BCAA plus PG (BCAAPG) treatment (n = 25) received BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM plus 300 mL of PG once daily from calving until 7 DIM. Postpartum, dry matter intake least squares means (LSM; 95% confidence interval) were 20.7 (19.9, 21.7), 21.3 (20.4, 22.3), and 21.9 (20.9, 22.8) kg for control, BCAA, and BCAAPG, respectively. Milk yield (1-35 DIM) LSM were 41.7 (39.4, 44.0), 42.7 (40.3, 45.0), and 43.7 (41.4, 46.0) kg for control, BCAA, and BCAAPG, respectively. Energy-corrected milk LSM were 50.3 (46.8, 53.7), 52.4 (48.9, 55.8), and 52.9 (49.5, 56.4) kg for control, BCAA, and BCAAPG, respectively. Milk urea nitrogen LSM in milk for control, BCAA, and BCAAPG were 8.60 (8.02, 9.22), 9.70 (9.01, 10.45), and 9.75 (9.08, 10.47) mg/dL. Plasma urea nitrogen concentrations LSM for control, BCAA, and BCAAPG were 8.3 (7.7, 8.9), 10.1 (9.4, 10.9), and 9.6 (9.4, 10.3) mg/dL, respectively. The numbers of plasma samples classified as hyperketonemia were 77, 44, and 57 in control, BCAA, and BCAAPG, respectively. The BCAA supplementation increased plasma urea nitrogen and milk urea nitrogen, free valine concentration in plasma, and decreased hyperketonemia events during the postpartum period.
Collapse
Affiliation(s)
- F A Leal Yepes
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C M Ryan
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - L S Bristol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - G E Granados
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
10
|
Zhang J, He W, Yi D, Zhao D, Song Z, Hou Y, Wu G. Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 2019; 51:717-726. [PMID: 30798466 DOI: 10.1007/s00726-019-02709-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
Abstract
This study was conducted to determine the catabolism of L-valine in porcine mammary epithelial cells (PMECs) and its role in stimulating protein synthesis in these cells. PMECs were incubated with 0.05-, 0.10-, 0.25-, 0.5-, and 1.0-mM L-valine at 37 oC for 2 h. Cell viability and expressions of α-lactalbumin and β-casein were measured after culture with L-valine for 3 days. L-[1-14C]valine was used to study valine catabolism, whereas [3H]phenylalanine was employed as a tracer to determine protein synthesis and degradation in PMECs. The abundances of proteins involved in the mTOR signaling pathway and the mRNA levels for the related key genes were determined using the western blot and RT-PCR techniques, respectively. Cell numbers and the synthesis of proteins (including α-lactalbumin and β-casein) were greater (P < 0.05) in the presence of 0.5-mM L-valine, compared with 0.05- or 0.1-mM L-valine. L-Valine at 0.5 mM also enhanced (P < 0.05) the production of α-lactalbumin by PMECs, in comparison with 0.25 mM L-valine. Increasing the extracellular concentration of L-valine from 0.05 to 0.5 mM stimulated protein synthesis in a concentration-dependent manner without affecting proteolysis. Although L-valine was actively transaminated in PMECs, its α-ketoacid product (α-ketoisovalerate) at 0.05-0.2 mM did not affect protein synthesis or degradation in the cells. Thus, the effect of L-valine on protein synthesis was independent of its metabolism to yield α-ketoisovalerate. At the molecular level, 0.5-mM L-valine increased (P < 0.05) the mRNA levels for Ras, ERK1/2, and p70S6K, and the abundances of mTOR, p-4EBP1, total 4EBP1, p-ERK1/2, and total ERK1/2 proteins. These findings establish the critical role of L-valine in enhancing PMEC growth and milk protein synthesis possibly by regulating the mTOR and Ras/ERK signaling pathways. Further studies are warranted to understand how L-valine regulates gene expression and mTOR activation in PMECs.
Collapse
Affiliation(s)
- Junmei Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Dan Yi
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhuan Song
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
11
|
Fujimoto Y, Hashimoto O, Shindo D, Sugiyama M, Tomonaga S, Murakami M, Matsui T, Funaba M. Metabolic changes in adipose tissues in response to β 3 -adrenergic receptor activation in mice. J Cell Biochem 2018; 120:821-835. [PMID: 30191605 DOI: 10.1002/jcb.27443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Brown and beige adipocytes dissipate energy as heat. Thus, the activation of brown adipocytes and the emergence of beige adipocytes in white adipose tissue (WAT) are suggested to be useful for preventing and treating obesity. Although β3 -adrenergic receptor activation is known to stimulate lipolysis and activation of brown and beige adipocytes, fat depot-dependent changes in metabolite concentrations are not fully elucidated. The current study examined the effect of treatment with CL-316,243, a β3 -adrenergic receptor agonist, on the relative abundance of metabolites in interscapular brown adipose tissue (iBAT), inguinal WAT (ingWAT), and epididymal WAT (epiWAT). Intraperitoneal injection of CL-316,243 (1 mg/kg) for 3 consecutive days increased the relative abundance of several glycolysis-related metabolites in all examined fat depots. The cellular concentrations of metabolites involved in the citric acid cycle and of free amino acids were also increased in epiWAT by CL-316,243. CL-316,243 increased the expression levels of several enzymes and transporters related to glucose metabolism and amino acid catabolism in ingWAT and iBAT but not in epiWAT. CL-316,243 also induced the emergence of more beige adipocytes in ingWAT than in epiWAT. Furthermore, adipocytes surrounded by macrophages were detected in the epiWAT of mice given CL-316,243. The current study reveals the fat depot-dependent modulation of cellular metabolites in CL-316,243-treated mice, presumably resulting from differential regulation of cell metabolism in different cell populations.
Collapse
Affiliation(s)
- Yusuke Fujimoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Daichi Shindo
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Sperringer JE, Addington A, Hutson SM. Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res 2017; 42:1697-1709. [DOI: 10.1007/s11064-017-2261-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
|
13
|
Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 2017; 8:10. [PMID: 28127425 PMCID: PMC5260006 DOI: 10.1186/s40104-016-0139-z] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China.,College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science & Technology University, No. 9 Donghua Road, Fengyang, 233100 Anhui Province People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-ResistanceNutrition,Ministry of Education, Sichuan AgriculturalUniversity, Ya'an, Sichuan China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People's Republic of China
| |
Collapse
|
14
|
Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis. J Nutr Biochem 2016; 40:132-140. [PMID: 27886623 DOI: 10.1016/j.jnutbio.2016.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.
Collapse
|
15
|
Wang B, Sun H, Xu N, Zhu K, Liu J. Amino acid utilization of lactating dairy cows when diets are changed from an alfalfa-based diet to cereal straw-based diets. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zobel G, Weary DM, Leslie KE, von Keyserlingk MAG. Invited review: Cessation of lactation: Effects on animal welfare. J Dairy Sci 2015; 98:8263-77. [PMID: 26409963 DOI: 10.3168/jds.2015-9617] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/08/2015] [Indexed: 01/09/2023]
Abstract
The forced cessation of milk production, or dry-off, is a routine management practice in dairy cattle, sheep, and goats. This practice initiates a dry period, during which the animal is not milked. Milking begins again after parturition. Most of the literature on the dry period has focused on how various drying-off strategies affect milk production and disease; little work to date has addressed how dry-off affects the overall welfare of the dairy animal. The first aim of this review was to present an overview of the importance of dry-off and how it is commonly achieved. Our review shows that much scientific progress has been made in improving health status between lactations. The second aim was to identify important gaps in the literature, of which 2 key research disparities have been identified. We find that much of the work to date has focused on cattle and very little research has examined dry-off in dairy sheep and goats. We also find a lack of research addressing how common dry-off methodologies affect animal welfare on more than just a biological level, regardless of species.
Collapse
Affiliation(s)
- G Zobel
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - D M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - K E Leslie
- Department of Population Medicine, University of Guelph, Stewart Building, Guelph, ON, N1G 2W1, Canada
| | - M A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids 2014; 46:2447-62. [DOI: 10.1007/s00726-014-1818-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
|
18
|
Shennan DB, Boyd CAR. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J Mammary Gland Biol Neoplasia 2014; 19:19-33. [PMID: 24158403 DOI: 10.1007/s10911-013-9305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
This review describes the properties and regulation of the membrane transport proteins which supply the mammary gland with aminonitrogen to support metabolism under different physiological conditions (i.e. pregnancy, lactation and involution). Early studies focussed on characterising amino acid and peptide transport pathways with respect to substrate specificity, kinetics and hormonal regulation to allow a broad picture of the systems within the gland to be established. Recent investigations have concentrated on identifying the individual transporters at the molecular level (i.e. mRNA and protein). Many of the latter studies have identified the molecular correlates of the transport systems uncovered in the earlier functional investigations but in turn have also highlighted the need for more amino acid transport studies to be performed. The transporters function as either cotransporters and exchangers (or both) and act in a coordinated and regulated fashion to support the metabolic needs of the gland. However, it is apparent that a physiological role for a number of the transport proteins has yet to be elucidated. This article highlights the many gaps in our knowledge regarding the precise cellular location of a number of amino acid transporters within the gland. We also describe the role of amino acid transport in mammary cell volume regulation. Finally, the important role that individual mammary transport proteins may have in the growth and proliferation of mammary tumours is discussed.
Collapse
Affiliation(s)
- D B Shennan
- Brasenose College, 39 Caerlaverock Road, Prestwick, UK,
| | | |
Collapse
|
19
|
Matsumoto T, Nakamura E, Nakamura H, Hirota M, San Gabriel A, Nakamura KI, Chotechuang N, Wu G, Uneyama H, Torii K. Production of free glutamate in milk requires the leucine transporter LAT1. Am J Physiol Cell Physiol 2013; 305:C623-31. [PMID: 23804198 DOI: 10.1152/ajpcell.00291.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentration of free glutamate (Glu) in rat's milk is ∼10 times higher than that in plasma. Previous work has shown that mammary tissue actively transports circulatory leucine (Leu), which is transaminated to synthesize other amino acids such as Glu and aspartate (Asp). To investigate the molecular basis of Leu transport and its conversion into Glu in the mammary gland, we characterized the expression of Leu transporters and [(3)H]Leu uptake in rat mammary cells. Gene expression analysis indicated that mammary cells express two Leu transporters, LAT1 and LAT2, with LAT1 being more abundant than LAT2. This transport system is sodium independent and transports large neutral amino acids. The Leu transport system in isolated rat mammary cells could be specifically blocked by the LAT1 inhibitors 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH) and triiodothyronine (T3). In organ cultures, Glu secretion was markedly inhibited by these LAT1 inhibitors. Furthermore, the profiles of Leu uptake inhibition by amino acids in mammary cells were similar to those reported for LAT1. In vivo, concentrations of free Glu and Asp increased in milk by oral gavage with Leu at 6, 12, and 18 days of lactation. These results indicate that the main Leu transporter in mammary tissue is LAT1 and the transport of Leu is a limiting factor for the synthesis and release of Glu and Asp into milk. Our studies provide the bases for the molecular mechanism of Leu transport in mammary tissue by LAT1 and its active role on free Glu secretion in milk, which confer umami taste in suckling pups.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Corporation, Kawasaki-ku, Kawasaki-shi, Japan; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids 2012; 45:531-41. [PMID: 22707151 DOI: 10.1007/s00726-012-1332-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 01/24/2023]
Abstract
Branched-chain amino acids (BCAA) are actively taken up and catabolized by the mammary gland during lactation for syntheses of glutamate, glutamine and aspartate. Available evidence shows that the onset of lactation is associated with increases in circulating levels of cortisol, prolactin and glucagon, but decreases in insulin and growth hormone. This study determined the effects of physiological concentrations of these hormones on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 3 mM D-glucose, 0.5 mM L-leucine, L-[1-14C]leucine or L-[U-14C]leucine, and 0-50 μU/mL insulin, 0-20 ng/mL growth hormone 0-200 ng/mL prolactin, 0-150 nM cortisol or 0-300 pg/mL glucagon. Increasing extracellular concentrations of insulin did not affect leucine transamination or oxidative decarboxylation, but decreased the rate of oxidation of leucine carbons 2-6. Elevated levels of growth hormone dose dependently inhibited leucine catabolism, α-ketoisocaproate (KIC) production and the syntheses of glutamate plus glutamine. In contrast, cortisol and glucagon increased leucine transamination, leucine oxidative decarboxylation, KIC production, the oxidation of leucine 2-6 carbons and the syntheses of glutamate plus glutamine. Prolactin did not affect leucine catabolism in the cells. The changes in leucine degradation were consistent with alterations in abundances of BCAA transaminase and phosphorylated levels of branched-chain α-ketoacid dehydrogenase. Reductions in insulin and growth hormone but increases in cortisol and glucagon with lactation act in concert to stimulate BCAA catabolism for glutamate and glutamine syntheses. These coordinated changes in hormones may facilitate milk production in lactating mammals.
Collapse
|
21
|
Leucine and methionine deficiency impairs immunity to gastrointestinal parasites during lactation. Br J Nutr 2012; 109:273-82. [PMID: 22571601 DOI: 10.1017/s0007114512000931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactating rats reinfected with Nippostrongylus brasiliensis fed low-crude protein (CP) foods show reduced lactational performance and less resistance to parasites compared with their high-CP counterparts. Here, we hypothesised that feeding high-CP foods deficient in specific essential amino acids (AA) would result in similar penalties. Second-parity lactating rats, immunised with 1600 N. brasiliensis infective larvae before mating, were fed foods with either 250 (high protein; HP) or 150 (low protein; LP) g CP/kg, or were HP deficient in either leucine (HP-Leu) or methionine (HP-Met). On day 1 of lactation, litter size was standardised at twelve pups. On day 2, dams were either reinfected with 1600 N. brasiliensis larvae or sham-infected with PBS. Dams and litters were weighed daily until either day 8 or 11, when worm burdens, and inflammatory cells and systemic levels of N. brasiliensis-specific Ig isotypes were assessed. Data from five out of sixteen HP-Met rats were omitted due to very high levels of food refusals from parturition onwards. Relative to feeding HP foods, feeding LP, HP-Met and HP-Leu foods reduced dam weight gain and, to a lesser extent, litter weight gain, and increased the number of worm eggs in the colon, indicative of a reduction in resistance to parasites. However, only feeding LP and HP-Leu foods resulted in increased worm numbers, while none of the feeding treatments affected systemic Ig, mast and goblet cells, and eosinophil numbers. The present results support the view that resistance to parasites during lactation may be sensitive to specific essential AA scarcity.
Collapse
|
22
|
Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 2012; 43:2179-89. [PMID: 22543725 DOI: 10.1007/s00726-012-1302-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/14/2012] [Indexed: 12/14/2022]
Abstract
Lactation is associated with elevated catabolism of branched-chain amino acids (BCAA) in mammary glands to produce glutamate, glutamine, alanine, aspartate, and asparagine. This study determined effects of metabolic fuels on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 0.5 mM L-leucine and either L-[1-(14)C]leucine or L-[U-(14)C]leucine. The medium also contained 0-5 mM D-glucose, 0-2 mM L-glutamine, 0-4 mM DL-β-hydroxybutyrate, or 0-2 mM oleic acid. Rates of leucine decarboxylation were 60 % lower, but rates of α-ketoisocaproate production were 34 % higher, in the presence of 2 mM glucose than in its absence. All variables of leucine catabolism did not differ between 2 and 5 mM glucose or between 0 and 4 mM DL-β-hydroxybutyrate. Compared with 0-0.25 mM glutamine, 0.5 and 2 mM L-glutamine reduced leucine transport, transamination, and decarboxylation. In contrast, increasing the concentration of oleic acid from 0 to 2 mM dose-dependently stimulated leucine transamination, decarboxylation, and oxidation of carbons 2-6. Oleic acid also enhanced the abundance of cytosolic BCAA transaminase, while reducing the phosphorylated level (inactive state) of the E1α subunit of the mitochondrial branched-chain α-ketoacid dehydrogenase complex. Thus, hypoglycemia or ketosis in early lactation does not likely affect BCAA metabolism in mammary epithelial cells. Increasing circulating levels of BCAA and oleic acid may have great potential to increase the syntheses of glutamate, glutamine, aspartate, alanine, and asparagine by lactating mammary glands, thereby leading to enhanced production of milk for suckling neonates.
Collapse
|
23
|
Çelebi B, Elçin AE, Elçin YM. Proteome analysis of rat bone marrow mesenchymal stem cell differentiation. J Proteome Res 2010; 9:5217-27. [PMID: 20681633 DOI: 10.1021/pr100506u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow multipotent stromal cells (or mesenchymal stem cells; MSCs) have the capacity for renewal and the potential to differentiate in culture into several cell types including osteoblasts, chondrocytes, adipocytes, cardiomyocytes, and neurons. This study was designed to investigate the protein expression profiles of rat bone marrow MSCs during differentiation into adipogenic (by dexamethasone, isobutylmethylxanthine, insulin, and indomethacin), cardiomyogenic (by 5-azacytidine), chondrogenic (by ascorbic acid, insulin-transferrin-selenous acid, and transforming growth factor-β1), and osteogenic (by dexamethasone, β-glycerophosphate, and ascorbic acid) lineages by well-known differentiation inducers. Proteins extracted from differentiated MSCs were separated using two-dimensional gel electrophoresis (2-DE) and protein spots were detected using Sypro Ruby dye. Protein spots that were determined to be up- or down-regulated when the expression of corresponding spots (between weeks 1 and 2, 1 and 3, 1 and 4) showed an increase (≥2-fold) or decrease (≤0.5-fold) were successfully identified by MALDI-TOF-MS. In summary, 23 new proteins were identified either up- or down-regulated during differentiation experiments.
Collapse
Affiliation(s)
- Betül Çelebi
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University, Faculty of Science, Biotechnology Institute, Stem Cell Institute, Ankara, Turkey
| | | | | |
Collapse
|
24
|
Bequette B, Douglass L. The frequency of unilateral milking alters leucine metabolism and amino acid removal by the mammary gland of lactating goats. J Dairy Sci 2010; 93:162-9. [DOI: 10.3168/jds.2009-2459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/23/2009] [Indexed: 01/23/2023]
|
25
|
Matsumoto H, Akita K, Sakai R, Shimomura Y. Analysis of branched-chain alpha-keto acid dehydrogenase complex activity in rat tissues using alpha-keto[1-13C]isocaproate as substrate. Anal Biochem 2009; 399:1-6. [PMID: 20018161 DOI: 10.1016/j.ab.2009.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 11/26/2022]
Abstract
We have developed a highly sensitive nonradioisotope method for the measurement of branched-chain alpha-keto acid dehydrogenase complex (BCKDC) activity using alpha-keto[1-(13)C]isocaproate ([1-(13)C]KIC) as substrate. The enzyme reaction was performed in a 10-ml test tube. After incubation of the reaction mixture (1 ml), the reaction was terminated by acidification, followed by the addition of internal standard (3.5 micromol K(2)CO(3)) for calculation of (13)CO(2). The (13)CO(2) released to the gas phase in the test tube was calculated from the molar ratio of (13)CO(2)/(12)CO(2) assayed by gas chromatography isotope ratio mass spectrometry. A distinct linear relationship between (13)CO(2) production rate and BCKDC activity was obtained when using purified BCKDC. The detection limit of (13)CO(2) in the assay method was at least 0.167 nmol, which is similar to that in the previously reported radiochemical method. The enzyme assay was found to be linear with respect to reaction time and quantity of enzyme used up to approximately 60 nmol (13)CO(2) produced. We measured BCKDC activities in several rat tissues, including skeletal muscle. The activities of BCKDC obtained are comparable to those reported previously. These results suggest that the novel BCKDC assay method using [1-(13)C]KIC is useful for measurement in tissues with low BCKDC activity such as skeletal muscle.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Amino Acid Basic and Applied Research Group, Institute of Life Sciences, Ajinomoto Company, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | |
Collapse
|
26
|
Li P, Knabe DA, Kim SW, Lynch CJ, Hutson SM, Wu G. Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 2009; 139:1502-9. [PMID: 19549750 PMCID: PMC3151199 DOI: 10.3945/jn.109.105957] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The uptake of branched-chain amino acids (BCAA) from plasma by lactating porcine mammary gland substantially exceeds their output in milk, whereas glutamine output is 125% greater than its uptake from plasma. In this study, we tested the hypothesis that BCAA are catabolized for glutamine synthesis in mammary tissue. Mammary tissue slices from sows on d 28 of lactation were incubated at 37 degrees C for 1 h in Krebs buffer containing 0.5 or 2 mmol/L l-[1-(14)C]- or l-[U-(14)C]-labeled leucine, isoleucine, or valine. Rates of BCAA transport and degradation in mammary tissue were high, with approximately 60% of transaminated BCAA undergoing oxidative decarboxylation and the remainder being released as branched-chain alpha-ketoacids (BCKA). Most ( approximately 70%) of the decarboxylated BCAA were oxidized to CO(2). Rates of net BCAA transamination were similar to rates of glutamate, glutamine, aspartate, asparagine, and alanine synthesis. Consistent with the metabolic data, mammary tissue expressed BCAA aminotransferase (BCAT), BCKA decarboxylase, glutamine synthetase (GS), glutamate-oxaloacetate aminotransferase, glutamate-pyruvate aminotransferase, and asparagine synthetase, but no phosphate-activated glutaminase, activity. Western blot analysis indicated relatively high levels of mitochondrial and cytosolic isoforms of BCAT, as well as BCKA dehydrogenase and GS proteins in mammary tissue. Our results demonstrate that glutamine and aspartate (abundant amino acids in milk protein) were the major nitrogenous products of BCAA catabolism in lactating porcine mammary tissue and provide a biochemical basis to explain an enrichment of glutamine and aspartate in sow milk.
Collapse
Affiliation(s)
- Peng Li
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Darrell A. Knabe
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Sung Woo Kim
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Christopher J. Lynch
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Susan M. Hutson
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843; Department of Animal Science, North Carolina State University, Raleigh, NC, 27695; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Alemán G, López A, Ordaz G, Torres N, Tovar AR. Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy, lactation, and weaning. Metabolism 2009; 58:594-601. [PMID: 19375580 DOI: 10.1016/j.metabol.2008.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 12/01/2008] [Indexed: 11/18/2022]
Abstract
During lactation, the mammary gland increases the needs for nutrients to fulfill the milk production requirements. Among these nutrients, amino acids play an important role for the synthesis of milk proteins. Amino acids are supplied to the mammary gland through amino acid transporters, although some are synthesized in situ. The purpose of this study was to establish the pattern of changes in messenger RNA abundance of the amino acid transporters ASC, system L, EAAC1, GLAST, CAT-1, and Tau in the mammary gland of the rat during different stages of pregnancy and lactation. Rats were fed during pregnancy and lactation a 20% casein diet. Food intake increased significantly during the lactation period. Amino acid transporter ASC expression increased during the first days of pregnancy about 2-fold, and it was increased in a lesser extent again during the peak of lactation. The expression of system L (LAT-1) and CAT-1 transporters was increased only during the lactation period. On the other hand, the expression of the transporters for anionic amino acids EAAC1 and GLAST was low during both stages. Finally, taurine transporter expression decreased during pregnancy; and it was significantly lower during lactation. These results showed that amino acid transporters were not expressed similarly in the mammary gland during pregnancy and lactation, indicating that the expression of these transporters did not respond only to the metabolic needs of the gland but depended on the dietary protein supply and possibly the specific hormonal changes that occur during pregnancy and lactation.
Collapse
Affiliation(s)
- Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF 14000, México
| | | | | | | | | |
Collapse
|
28
|
Menzies KK, Lefèvre C, Macmillan KL, Nicholas KR. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct Integr Genomics 2008; 9:197-217. [PMID: 19107532 DOI: 10.1007/s10142-008-0103-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 01/24/2023]
Abstract
The role of insulin in milk protein synthesis is unresolved in the bovine mammary gland. This study examined the potential role of insulin in the presence of two lactogenic hormones, hydrocortisone and prolactin, in milk protein synthesis. Insulin was shown to stimulate milk protein gene expression, casein synthesis and (14)C-lysine uptake in mammary explants from late pregnant cows. A global assessment of changes in gene expression in mammary explants in response to insulin was undertaken using Affymetrix microarray. The resulting data provided insight into the molecular mechanisms stimulated by insulin and showed that the hormone stimulated the expression of 28 genes directly involved in protein synthesis. These genes included the milk protein transcription factor, ELF5, translation factors, the folate metabolism genes, FOLR1 and MTHFR, as well as several genes encoding enzymes involved in catabolism of essential amino acids and biosynthesis of non-essential amino acids. These data show that insulin is not only essential for milk protein gene expression, but stimulates milk protein synthesis at multiple levels within bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Karensa K Menzies
- Department of Zoology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
29
|
Lapierre H, Berthiaume R, Raggio G, Thivierge MC, Doepel L, Pacheco D, Dubreuil P, Lobley GE. The route of absorbed nitrogen into milk protein. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/asc41330011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractA database reviewing the metabolism of nitrogen (N) compounds from absorption to milk has been compiled from 14 published and unpublished studies (33 treatments) that measured the net flux of N compounds across the splanchnic tissues in dairy cows. Apparent N digestibility averaged 0·65, with this then partitioned between 0·34 excreted in urine and 0·31 secreted as milk.Nitrogen metabolites are absorbed from the lumen of the gut into the portal vein, mainly as free amino acids (AA) and ammonia; these represented 0·58 and 0·57 of digested N, respectively. All of the ammonia absorbed was removed by the liver with, as a result, a net splanchnic flux of zero. Detoxification of ammonia by the liver and catabolism of AA results in production of urea as an end-product. Hepatic ureagenesis is a major cross-road in terms of whole body N exchange, being the equivalent of 0·81 of digested N. Therefore, salvage of a considerable part of this ureagenesis is needed to support milk protein synthesis. This salvage occurs via transfer of urea from the blood circulation into the lumen of the gut. On average, 0·47 of hepatic ureagenesis was returned to the gut via the portal-drained viscera (equivalent to 0·34 of digested N) with 0·56 of this then used for anabolic purposes e.g. as precursor N for microbial protein synthesis. On average, 0·65 of estimated digestible AA was recovered in the portal vein. This loss (0·35) is due to oxidation of certain AA across the gut wall and non-absorption of endogenous secretions. The magnitude of this loss is not uniform among AA and varies between less than 0·05 for histidine to more than 0·90 for some non-essential AA, such as glutamine.A second database (six studies, 14 treatments) was constructed to further examine the subsequent fate of absorbed essential AA. When all AA are aggregated, the liver removed, on average, 0·45 of portal absorption but this value hides the considerable variation between individual AA. Simplistically, the AA behave as two major groups: one group undergoes very little hepatic removal and includes the branched-chain AA and lysine. For the second group, removal varies between 0·35 and 0·50 of portal absorption, and includes histidine, methionine and phenylalanine. For both groups, however, the efficiency of transfer of absorbed AA into milk protein decreases with increasing supply of protein. This loss of efficiency is linked directly with increased hepatic removal of AA from the second group and, probably, increased catabolism by peripheral tissues, including the mammary gland, of AA from the first group. Therefore, we must stop using fixed factors of conversion of digestible AA to milk in our predictive schemes and acknowledge that metabolism of AA between delivery from the duodenum and conversion to milk protein will vary with nutrient supply. New information evolving from re-analysis of the literature and recent studies will allow better models to be devised for the prediction of nutrient-based responses by the lactating cow. Consideration of biological efficiency, rather than maximal milk yield, will lead to systems that are economically more sensible for the farmer and that have better environmental impacts.
Collapse
|
30
|
Lapierre H, Pacheco D, Berthiaume R, Ouellet DR, Schwab CG, Dubreuil P, Holtrop G, Lobley GE. What is the True Supply of Amino Acids for a Dairy Cow? J Dairy Sci 2006; 89 Suppl 1:E1-14. [PMID: 16527873 DOI: 10.3168/jds.s0022-0302(06)72359-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Improving the prediction of milk protein yield relies on knowledge of both protein supply and requirement. Definition of protein/amino acid supply in ruminants is a challenging task, due to feedstuff variety and variability and to the remodeling of nutrient intake by the rumen microflora. The questions arise, therefore, how and where should we measure the real supply of AA in the dairy cow? This review will follow the downstream flow of AA from duodenum to peripheral tissue delivery, with a glance at the efficiency of transfer into milk protein. Duodenal AA flow comprises rumen undegradable feed, microbial protein, and endogenous secretions. Most attention has been directed toward definition of the first two contributions but the latter fraction can represent as much as 20% of duodenal flow. More information is needed on what factors affect its magnitude and overall impact. Once digested, AA are absorbed into the portal vein. The ratio of portal absorption to small intestinal apparent digestion varies among essential AA, from 0.43 (threonine) to 0.76 (phenylalanine), due to the contributions of preduodenal endogenous secretions to the digestive flow, non-reabsorption of endogenous secretions and gut oxidation of AA. Few data are available on these phenomena in dairy cows but the evidence indicates that they alter the profile of AA available for anabolic purposes. Recent comparisons of estimated duodenal flux and measured portal flux have prompted a revisit of the NRC (2001) approach to estimate AA flows at the duodenum. Changes to the model are proposed that yield predictions that better fit the current knowledge of AA metabolism across the gut. After absorption, AA flow first to the liver where substantial and differential net removal occurs, varying from zero for the branched-chain AA to 50% of portal absorption for phenylalanine. This process alters the pattern of net supply to the mammary gland. Overall, intermediary metabolism of AA between the duodenum and the mammary gland biologically explains the decreased efficiency of the transfer of absorbed AA into milk protein as maximal yield is approached. Therefore, variable, rather than fixed, factors for transfer efficiencies must be incorporated into future predictive models.
Collapse
Affiliation(s)
- H Lapierre
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Lennoxville, Quebec, J1M 1Z3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guan X, Pettigrew JE, Ku PK, Ames NK, Bequette BJ, Trottier NL. Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland1. J Anim Sci 2004; 82:2953-63. [PMID: 15484947 DOI: 10.2527/2004.82102953x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine whether the porcine mammary gland responds to increasing dietary CP concentration through changes in AA arteriovenous difference (a-v). Sixteen Landrace x Yorkshire lactating sows were provided ad libitum access to one of four isocaloric diets varying in CP concentration (7.8, 13.0, 18.2, and 23.5 %; as-fed basis). Litters were adjusted to 11 pigs within 48 h of birth. Sows were fitted with catheters in the carotid artery and main mammary vein on d 4. On d 10, 14, 18, and 22 of lactation, arterial and venous blood samples were obtained every 30 min over 6 h. Milk yield was estimated on d 11 and 21 using the D2O dilution technique. Final litter sizes on d 21 were 10.3, 11, 9.5, and 11 piglets for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. Piglet ADG tended (P = 0.088) to increase with increasing dietary CP concentration and were 186, 221, 220, and 202 g for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diet, respectively. Daily total milk yield on d 21 (kg milk/d) tended (P = 0.099) to increase, and average milk yield per nursed piglet (kg of milk-pig(-1)d(-1)) increased (P < 0.05) with increasing CP concentration and were, on a per-piglet basis, 0.95, 1.19, 1.14 and 1.13 kg of milk/d for the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. As dietary CP increased from 7.8 to 23.5%, isoleucine and leucine a-v increased linearly only (linear, P < 0.01); all other AA a-v increased, reached a maximum in sows fed 18.2% CP, and decreased thereafter in sows fed 23.5% CP (quadratic, from P = 0.10 to P < 0.05). Amino acid uptake by the entire udder and by each gland increased (linear, P < 0.05) with increasing dietary CP. Arteriovenous differences response to increasing day of lactation varied among AA, from no change for histidine, isoleucine, lysine, methionine, tryptophan, and valine, to a linear trend increase for arginine (P = 0.055), leucine (P = 0.064), phenylalanine (P = 0.101), and threonine (P = 0.057). In summary, for the majority of AA, a-v increased with increasing dietary CP concentration from 7.8 to 18.2%, but decreased when CP concentration exceeded 18.2%. In contrast, mammary AA uptake, piglet ADG and milk yield per pig increased linearly with increasing dietary CP, suggesting a coordinated regulation between AA delivery and transport to meet the demand for milk yield.
Collapse
Affiliation(s)
- X Guan
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | |
Collapse
|
32
|
Raggio G, Pacheco D, Berthiaume R, Lobley GE, Pellerin D, Allard G, Dubreuil P, Lapierre H. Effect of Level of Metabolizable Protein on Splanchnic Flux of Amino Acids in Lactating Dairy Cows. J Dairy Sci 2004; 87:3461-72. [PMID: 15377624 DOI: 10.3168/jds.s0022-0302(04)73481-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The response of splanchnic tissue metabolism to different levels of metabolizable protein (MP) was measured in 6 catheterized multiparous lactating Holstein cows. Three diets, balanced to provide similar energy intakes and increasing amounts of MP (g/d)-1922 (low), 2264 (medium), and 2517 (high)-were fed during 21-d experimental periods according to a replicated Latin square. On d 18, 19, or 20, six hourly blood samples were collected simultaneously from the portal and hepatic veins plus an artery to determine net fluxes of nutrients across the portal-drained viscera and the liver. Yields of milk and protein increased, as did urinary N excretion with increasing MP. Portal absorption of essential amino acids (EAA) increased linearly with increasing MP supply, as did liver removal of His, Met, and Phe. In contrast, liver removal of the branched-chain AA (BCAA) and lysine was unaffected by diets. With increasing MP, the ratio of milk output to postliver supply of BCAA, Thr, and Lys decreased linearly, indicating oxidation of these AA in the peripheral tissues. Concomitant to a decreased catabolism of EAA in the liver (His, Met, Phe, and Thr) and/or in peripheral tissues (BCAA, Lys, and Thr), the efficiency of transfer of absorbed EAA into milk protein decreases markedly as protein supply increases. The efficiency of transfer of absorbed AA into milk also varies greatly between AA. These 2 important factors should be taken into account when building predictive schemes for milk protein output.
Collapse
Affiliation(s)
- G Raggio
- Département des Sciences Animales, Université Laval, Ste-Foy, QC, Canada, G1K 7P4
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Guan X, Bequette BJ, Ku PK, Tempelman RJ, Trottier NL. The amino acid need for milk synthesis is defined by the maximal uptake of plasma amino acids by porcine mammary glands. J Nutr 2004; 134:2182-90. [PMID: 15333702 DOI: 10.1093/jn/134.9.2182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To define dietary indispensable amino acid (IAA) needs for milk synthesis by the mammary glands (MG), 16 lactating sows were fed 1 of 4 isocaloric diets varying in protein concentrations (from 78 to 235 g/kg) with an ideal amino acid (AA) pattern. On d 9, 13, 17, and 21 of lactation, blood samples were obtained simultaneously from a carotid artery and the main mammary vein every 30 min over 6 h. A quadratic regression model of the log mammary arteriovenous difference (AVD) of plasma IAA (ŷ) against daily intake of dietary IAA (X) was established. First, the reverse log intercept, defined as the mammary AVD at zero dietary AA supply, was used to quantify the contribution of endogenous IAA. The quantification was validated by body N balance coupled with AA composition analysis. Then, the estimated vertex (ŷ(max), X(i)) was used in 2 aspects: 1) The maximal mammary uptake of plasma IAA, quantified by multiplying the maximal mammary AVD and plasma flow rate, was considered the physiological IAA need for milk synthesis. 2) Corresponding to the ŷ(max), dietary IAA intake (X(i)) would represent the total dietary IAA requirement, i.e., the sum of maintenance need and milk synthesis need after adjustment for body weight loss. Thus, dietary IAA needs for milk synthesis were derived. Moreover, the estimate of lysine need for milk synthesis in this study was identical to an estimate obtained from multiple regression analysis of feeding trial data. We conclude that dietary IAA needs for milk synthesis can be quantified by the maximal uptakes of plasma IAA by porcine MG.
Collapse
Affiliation(s)
- Xinfu Guan
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
34
|
Thivierge MC, Petitclerc D, Bernier JF, Couture Y, Lapierre HD. Variations in mammary protein metabolism during the natural filling of the udder with milk over a 12-h period between two milkings: leucine kinetics. J Dairy Sci 2002; 85:2974-85. [PMID: 12487463 DOI: 10.3168/jds.s0022-0302(02)74383-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To define the temporal variations of whole body and mammary leucine kinetics over a 12-h period between two milkings, we used two groups of four Holstein cows, one in their second and the other in their third or fourth lactation. Cows were infused with L-[1-13C]leucine during the 12-h interval between two milkings. Blood was sampled every 30 min during that period from arterial and mammary sources. Timeafter milking did not affect whole body irreversible loss rate of leucine but affected whole body leucine oxidation, which broadly followed variations in arterial plasma leucine concentration. Similarly, mammary leucine irreversible loss rate and leucine used for protein synthesis were not affected by time after milking. Leucine oxidation by the mammary gland was, however, affected by time after milking. It increased by 15% from the first 2-h period to the following 4-h period and then decreased by 13% over the following 2-h period. A 21% increase in leucine oxidation was observed from 8 to 10 h after milking, and then it decreased by 26% over the last 2-h period. Protein degradation expressed as percentage of mammary leucine flux followed a similar temporal pattern. Leucine used for protein synthesis by the mammary gland was unaltered over time after milking, suggesting that the increased availability of leucine resulting from mammary protein breakdown would increase intracellular concentrations of leucine, which would have favored its catabolism. Overall, these results confirm the high metabolic activity of the mammary gland, as protein synthesis by the mammary gland averaged 43% of whole body protein synthesis.
Collapse
Affiliation(s)
- M C Thivierge
- Dpartement des sciences animales, Pavillon Paul-Comtols, Université Laval, Sainte-Foy, QC, Canada, G1K 7P4
| | | | | | | | | |
Collapse
|
35
|
Lynch CJ, Hutson SM, Patson BJ, Vaval A, Vary TC. Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 2002; 283:E824-35. [PMID: 12217901 DOI: 10.1152/ajpendo.00085.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute administration of leucine and norleucine activates the mammalian target of rapamycin (mTOR) cell-signaling pathway and increases rates of protein synthesis in a number of tissues in fasted rats. Although persistent stimulation of mTOR signaling is thought to increase protein synthetic capacity, little information is available concerning the effects of chronic administration of these agonists on protein synthesis, mTOR signal transduction, or leucine metabolism. Hence, we developed a model of chronic leucine/norleucine supplementation via drinking water and examined the effects of chronic (12 days) supplementation on protein synthesis in adipose tissue, kidney, heart, liver, and skeletal muscle from ad libitum-fed rats. The relative concentration of proteins involved in mTOR signaling and the two initial steps in leucine oxidation were also examined. Leucine or norleucine supplementation was accompanied by increased rates of protein synthesis in adipose tissue, liver, and skeletal muscle, but not in heart or kidney. Supplementation was not associated with increases in the anabolic hormones insulin or insulin-like growth factor I. Chronic supplementation did not cause apparent adaptation in either components of the mTOR cell-signaling pathway that respond to leucine (mTOR, ribosomal protein S6 kinase, and eukaryotic initiation factor 4E-binding protein-1) or the first two steps in leucine metabolism (the mitochondrial isoform of branched-chain amino acid transaminase, branched-chain keto acid dehydrogenase, and branched-chain keto acid dehydrogenase kinase), which may be involved in terminating the signal from leucine. These results suggest that provision of leucine or norleucine supplementation via the drinking water results in stimulation of postprandial protein synthesis in adipose tissue, skeletal muscle, and liver without notable adaptive changes in signaling proteins or metabolic enzymes.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
36
|
Elango R, Pencharz PB, Ball RO. The branched-chain amino acid requirement of parenterally fed neonatal piglets is less than the enteral requirement. J Nutr 2002; 132:3123-9. [PMID: 12368405 DOI: 10.1093/jn/131.10.3123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The requirements for branched-chain amino acids (BCAA), isoleucine, leucine and valine, in neonates have not been determined previously. Furthermore, the BCAA are considered to be catabolized primarily in the muscle and their metabolism in the small intestine has received little attention. In this study, the parenteral and enteral BCAA requirements were determined by the indicator amino acid oxidation (IAAO) technique. Male Yorkshire piglets (n = 32) received amino acid-based diets containing adequate nutrients for 5 d. On d 6 and 8, the piglets were randomly assigned to one of the test diets containing a fixed ratio of BCAA (1:1.8:1.2; isoleucine/leucine/valine). Diets were infused continuously via intravenous catheters for parenterally fed piglets or via gastric catheters for enterally fed piglets. Phenylalanine kinetics and oxidation were determined from a 4-h primed, constant infusion of L-[1-(14)C]phenylalanine. Phenylalanine oxidation (% of dose) decreased linearly (P < 0.05) as the BCAA intake increased from 0.2 to 1.53 g/(kg. d) and from 0.2 to 2.64 g/(kg. d) for parenterally and enterally fed piglets, respectively, after which the phenylalanine oxidation was low and the slope was not different from zero. Using breakpoint analysis, the mean total BCAA requirements were determined to be 1.53 and 2.64 g/(kg. d) for parenterally and enterally fed piglets, respectively. Thus, the parenteral requirement for total BCAA is 56% of the enteral requirement, suggesting that 44% of total BCAA is extracted by first-pass splanchnic metabolism.
Collapse
Affiliation(s)
- Rajavel Elango
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | |
Collapse
|
37
|
Nielsen TT, Trottier NL, Stein HH, Bellaver C, Easter RA. The effect of litter size and day of lactation on amino acid uptake by the porcine mammary glands123. J Anim Sci 2002. [DOI: 10.1093/ansci/80.9.2402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Shennan DB, Calvert DT, Travers MT, Kudo Y, Boyd CAR. A study of L-leucine, L-phenylalanine and L-alanine transport in the perfused rat mammary gland: possible involvement of LAT1 and LAT2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:133-9. [PMID: 12101005 DOI: 10.1016/s0005-2736(02)00410-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transport of L-leucine, L-phenylalanine and L-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of L-leucine was inhibited by BCH (65%) and D-leucine (58%) but not by L-proline. The inhibition of L-leucine clearance by BCH and D-leucine was not additive. L-leucine inhibited the peak clearance of radiolabelled L-leucine by 78%. BCH also inhibited the peak clearance of L-phenylalanine (66%) and L-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that L-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.
Collapse
Affiliation(s)
- D B Shennan
- Hannah Research Institute, Ayr Scotland, UK.
| | | | | | | | | |
Collapse
|
39
|
DeSantiago S, Torres N, Hutson S, Tovar AR. Induction of expression of branched-chain aminotransferase and alpha-keto acid dehydrogenase in rat tissues during lactation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 501:93-9. [PMID: 11787736 DOI: 10.1007/978-1-4615-1371-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This study was designed to determine the effect of lactation and weaning on the gene expression of branched-chain aminotransaminase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD) in different tissues of the lactating rat. BCAT activity increased in mammary tissue during lactation and was 6-fold higher than in virgin rats. This increase was associated with an increase in protein levels measured by immunoblot analysis, and with an increase in BCAT mitochondrial (BCATm) mRNA concentration. Twenty-four hours after weaning, BCAT activity, protein concentration, and mRNA levels in the dam decreased. BCAT activity, protein enzyme levels, and BCATm mRNA concentration in muscle were higher in weaning rats than in lactating rats. BCAT cytosolic (BCATc) mRNA was not expressed in mammary tissue, and there was no BCATc enzyme detected by Western blot in any physiological state. Mammary tissue BCKD activity increased and was active (dephosphorylated) during the lactation period. The level of enzyme also increased and the mRNA level for the E2 subunit in mammary tissue was 10-fold higher than the virgin values. Hepatic enzyme activity increased during weaning, and this was associated with the protein level and with the mRNA level of the E2 subunit. Muscle BCKD activity and protein content were the lowest of all tissues, and the E2 subunit mRNA level was barely detected by Northern blot analysis. The results suggest gene regulation of the two main catabolic enzymes of the branched-chain amino acid metabolism during lactation.
Collapse
Affiliation(s)
- S DeSantiago
- Department of Nutritional Physiology, Salvador Zubirán National Institute of Nutrition, Mexico DF, Mexico
| | | | | | | |
Collapse
|
40
|
Bequette BJ, Kyle CE, Crompton LA, Anderson SE, Hanigan MD. Protein metabolism in lactating goats subjected to the insulin clamp. J Dairy Sci 2002; 85:1546-55. [PMID: 12146487 DOI: 10.3168/jds.s0022-0302(02)74224-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A model of Leu and protein metabolism by the mammary gland and hind leg of lactating goats was constructed and evaluated from data collected by using [15N, 1-13C]Leu kinetics measured during amino acid (AA) infusion and a hyperinsulinemic-euglycemic clamp (IC). Goats were given continuous intravenous infusions of either saline or AA (65 g/d) for 7.5 d and from d 5 to 7.5 goats were subjected to IC. Arteriovenous kinetics were monitored on d 4 and 8 by continuous infusion (8 h) of [15N, 1-13C]Leu. Milk protein yield was increased by IC (+10%) and IC +AA (+21%), whereas AA infusion had no effect. The data were used to construct model equations that describe rates of protein synthesis and degradation, and from these equations, milk and muscle net protein synthesis were described. The model was unable to describe the observed responses in milk protein synthesis. Similar to observations in the literature, net protein gain by the hind leg increased with AA, IC, and IC + AA infusion, primarily through stimulation of protein synthesis by AA. For both tissues, IC depressed Leu oxidation, but only in the absence of AA infusion. Although the IC appears to regulate the ability of the mammary gland to coordinate blood flow and Leu catabolism in support of protein synthesis, our ability to construct a precise model describing mammary protein anabolism is still limited. In contrast, the response in protein anabolism of the hind-leg tissues of these midlactation goats was predicted well by the model, which indicate that the leg tissues were more sensitive to AA supply than the mammary gland.
Collapse
Affiliation(s)
- B J Bequette
- Rowett Research Institute, Bucksburn, Aberdeen, Scotland.
| | | | | | | | | |
Collapse
|
41
|
Torres N, Vargas C, Hernández-Pando R, Orozco H, Hutson SM, Tovar AR. Ontogeny and subcellular localization of rat liver mitochondrial branched chain amino-acid aminotransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6132-9. [PMID: 11733007 DOI: 10.1046/j.0014-2956.2001.02563.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Branched chain amino-acid aminotransferase (BCAT) activity is present in fetal liver but the developmental pattern of mitochondrial BCAT (BCATm) expression in rat liver has not been studied. The aim of this study was to determine the activity, protein and mRNA concentration of BCATm in fetal and postnatal rat liver, and to localize this enzyme at the cellular and subcellular levels at both developmental stages. Maximal BCAT activity and BCATm mRNA expression occurred at 17 days' gestation in fetal rat liver and then declined significantly immediately after birth. This pattern was observed only in liver; rat heart showed a different developmental pattern. Fetal liver showed intense immunostaining to BCATm in the nuclei and mitochondria of hepatic cells and blood cell precursors; in contrast, adult liver showed mild immunoreactivity located only in the mitochondria of hepatocytes. BCAT activity in isolated fetal liver nuclei was 0.64 mU x mg(-1) protein whereas it was undetectable in adult liver nuclei. By Western blot analysis the BCATm antibody recognized a 41-kDa protein in fetal liver nuclei, and proteins of 41 and 43 kDa in fetal liver supernatant. In adult rat liver supernatant, the BCATm antibody recognized only a 43-kDa protein; however, neither protein was detected in adult rat liver nuclei. The appearance of the 41-kDa protein was associated with the presence of the highly active form of BCATm. These results suggest the existence of active and inactive forms of BCAT in rat liver.
Collapse
Affiliation(s)
- N Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Faure M, Glomot F, Papet I. Branched-chain amino acid aminotransferase activity decreases during development in skeletal muscles of sheep. J Nutr 2001; 131:1528-34. [PMID: 11340111 DOI: 10.1093/jn/131.5.1528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The catabolism of branched-chain amino acid (BCAA) differs between sheep and monogastric animals. The transamination of BCAA seems to be affected by development of the sheep. We studied the developmental changes in the activity and expression of the BCAA aminotransferase (BCAT) isoenzymes in skeletal muscle of sheep. Five muscles were taken from fetus, newborn, preruminant and ruminant lambs. BCAT specific activity and the contribution of each BCAT isoenzyme [mitochondrial and cytosolic (BCATm and BCATc, respectively)] were quantified using radioenzymatic and immunoprecipitation assays. BCATm and BCATc mRNAs were assessed by real-time reverse transcription-polymerase chain reaction. BCAT specific activities were 62% (diaphragma) to 83% (longissimus dorsi) lower in the ruminant lamb than in the fetal sheep. BCATm and BCATc were both expressed in sheep skeletal muscle at all developmental stages. BCATc was mainly responsible for the developmental decrease in BCAT specific activity. BCATc specific activities were 77% (diaphragma) to 92% (longissimus dorsi) lower in the ruminant lamb than in the fetal sheep, whereas BCATm specific activities were only 36% (semimembranosus) to 56% (longissimus dorsi) lower. BCATc and BCATm mRNAs in the longissimus dorsi were not affected by development of the sheep. The developmental decrease in BCATc activity, and to a lesser extent in BCATm activity, probably involves posttranscriptional mechanisms in sheep. The present results are consistent with lower in vivo metabolism of BCAA in ruminant than in the fetal sheep.
Collapse
Affiliation(s)
- M Faure
- Unité d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand-Theix, France
| | | | | |
Collapse
|
44
|
Tovar AR, Becerril E, Hernández-Pando R, López G, Suryawan A, Desantiago S, Hutson SM, Torres N. Localization and expression of BCAT during pregnancy and lactation in the rat mammary gland. Am J Physiol Endocrinol Metab 2001; 280:E480-8. [PMID: 11171603 DOI: 10.1152/ajpendo.2001.280.3.e480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During lactation, branched-chain aminotransferase (BCAT) gene expression increases in the mammary gland. To determine the cell type and whether this induction is present only during lactation, female rats were randomly assigned to one of three experimental groups: pregnancy, lactation, or postweaning. Mammary gland BCAT activity during the first days of pregnancy was similar to that of virgin rats, increasing significantly from day 16 to the last day of pregnancy. Maximal BCAT activity occurred on day 12 of lactation. During postweaning, BCAT activity decreased rapidly to values close to those observed in virgin rats. Analyses by Western and Northern blot revealed that changes in enzyme activity were accompanied by parallel changes in the amount of enzyme and its mRNA. Immunohistochemical studies of the mammary gland showed a progressive increase in mitochondrial BCAT (mBCAT)-specific staining of the epithelial acinar cells during lactation, reaching high levels by day 12. Immunoreactivity decreased rapidly after weaning. There was a significant correlation between total BCAT activity and milk production. These results indicate that the pattern of mBCAT gene expression follows lactogenesis stages I and II and is restricted to the milk-producing epithelial acinar cells. Furthermore, BCAT activity is associated with milk production in the mammary gland during lactation.
Collapse
Affiliation(s)
- A R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14000 Mexico
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|