1
|
Ou X, Wang X, Zhao B, Zhao Y, Liu H, Chang Y, Wang Z, Yang W, Zhang X, Yu K. Metabolome and transcriptome signatures shed light on the anti-obesity effect of Polygonatum sibiricum. FRONTIERS IN PLANT SCIENCE 2023; 14:1181861. [PMID: 37143889 PMCID: PMC10151794 DOI: 10.3389/fpls.2023.1181861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Obesity has become one of the major threats to human health across the globe. The rhizomes of Polygonatum sibiricum have shown promising anti-obesity effect. However, the metabolic and genetic basis mediating this beneficial effect are not fully resolved. It is well known that older rhizomes of P. sibiricum exert stronger pharmacological effects. Here, we performed high-resolution metabolome profiling of P. sibiricum rhizomes at different growth stages, and identified that three candidate anti-obesity metabolites, namely phloretin, linoleic acid and α-linolenic acid, accumulated more in adult rhizomes. To elucidate the genetic basis controlling the accumulation of these metabolites, we performed transcriptome profiling of rhizomes from juvenile and adult P. sibiricum. Through third-generation long-read sequencing, we built a high-quality transcript pool of P. sibiricum, and resolved the genetic pathways involved in the biosynthesis and metabolism of phloretin, linoleic acid and α-linolenic acid. Comparative transcriptome analysis revealed altered expression of the genetic pathways in adult rhizomes, which likely lead to higher accumulation of these candidate metabolites. Overall, we identified several metabolic and genetic signatures related to the anti-obesity effect of P. sibiricum. The metabolic and transcriptional datasets generated in this work could also facilitate future research on other beneficial effects of this medicinal plant.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yi Zhao
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Haiqing Liu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiwei Wang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| |
Collapse
|
2
|
The digestion of diacylglycerol isomers by gastric and pancreatic lipases and its impact on the metabolic pathways for TAG re-synthesis in enterocytes. Biochimie 2022; 203:106-117. [PMID: 35041857 DOI: 10.1016/j.biochi.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.
Collapse
|
3
|
Ide T, Origuchi I. An Oil Rich in γ-Linolenic Acid Differently Affects Hepatic Fatty Acid Oxidation in Mice and Rats. Biol Pharm Bull 2021; 43:1382-1392. [PMID: 32879213 DOI: 10.1248/bpb.b20-00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.
Collapse
Affiliation(s)
- Takashi Ide
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University
| | - Izumi Origuchi
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University
| |
Collapse
|
4
|
Todorov H, Kollar B, Bayer F, Brandão I, Mann A, Mohr J, Pontarollo G, Formes H, Stauber R, Kittner JM, Endres K, Watzer B, Nockher WA, Sommer F, Gerber S, Reinhardt C. α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients 2020; 12:nu12030732. [PMID: 32168729 PMCID: PMC7146139 DOI: 10.3390/nu12030732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
α-Linolenic acid (ALA) is well-known for its anti-inflammatory activity. In contrast, the influence of an ALA-rich diet on intestinal microbiota composition and its impact on small intestine morphology are not fully understood. In the current study, we kept adult C57BL/6J mice for 4 weeks on an ALA-rich or control diet. Characterization of the microbial composition of the small intestine revealed that the ALA diet was associated with an enrichment in Prevotella and Parabacteroides. In contrast, taxa belonging to the Firmicutes phylum, including Lactobacillus, Clostridium cluster XIVa, Lachnospiraceae and Streptococcus, had significantly lower abundance compared to control diet. Metagenome prediction indicated an enrichment in functional pathways such as bacterial secretion system in the ALA group, whereas the two-component system and ALA metabolism pathways were downregulated. We also observed increased levels of ALA and its metabolites eicosapentanoic and docosahexanoic acid, but reduced levels of arachidonic acid in the intestinal tissue of ALA-fed mice. Furthermore, intestinal morphology in the ALA group was characterized by elongated villus structures with increased counts of epithelial cells and reduced epithelial proliferation rate. Interestingly, the ALA diet reduced relative goblet and Paneth cell counts. Of note, high-fat Western-type diet feeding resulted in a comparable adaptation of the small intestine. Collectively, our study demonstrates the impact of ALA on the gut microbiome and reveals the nutritional regulation of gut morphology.
Collapse
Affiliation(s)
- Hristo Todorov
- Institute for Developmental Biology and Neurobiology, Faculty of Biology and Center for Computational Sciences in Mainz, Johannes Gutenberg-University Mainz, Staudingerweg 9, 55128 Mainz, Germany; (H.T.); (S.G.)
- Fresenius Kabi Deutschland GmbH, Borkenberg 14, 61440 Oberursel, Germany
| | - Bettina Kollar
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
- Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Rua A, 6000-459 Castelo Branco, Portugal
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Julia Mohr
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Henning Formes
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
| | - Roland Stauber
- Nanobiomedicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Jens M. Kittner
- Medical Department 2 (Gastroenterology, Hepatology, Pneumology, Endocrinology) Klinikum Darmstadt GmbH, Grafenstr. 9, 64283 Darmstadt, Germany;
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Bernhard Watzer
- Metabolomics Core Facility, Philipps-University, 35043 Marburg, Germany;
| | - Wolfgang Andreas Nockher
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps-University, 35043 Marburg, Germany;
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Susanne Gerber
- Institute for Developmental Biology and Neurobiology, Faculty of Biology and Center for Computational Sciences in Mainz, Johannes Gutenberg-University Mainz, Staudingerweg 9, 55128 Mainz, Germany; (H.T.); (S.G.)
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (B.K.); (I.B.); (A.M.); (J.M.); (G.P.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-17-8280
| |
Collapse
|
5
|
Yi WJ, Chen J, Li ZB, Jiang TT, Bi DQ, Liu CM, Yang S, Hu YT, Gan L, Tu HH, Huang H, Li JC. Screening of potential biomarkers for Yin-deficiency-heat syndrome based on UHPLC-MS method and the mechanism of Zhibai Dihuang granule therapeutic effect. Anat Rec (Hoboken) 2020; 303:2095-2108. [PMID: 31909891 DOI: 10.1002/ar.24352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Yin-deficiency-heat (YDH) syndrome is a subhealth state of the individual, mainly manifested as oral ulcers, dry mouth, constipation, and other symptoms. Zhibai Dihuang granule (ZDG), as a classic traditional Chinese medicine, is effective in treating YDH syndrome. We screened the potential biomarkers for diagnosing YDH syndrome, and explored the mechanisms of the therapeutic effect of ZDG. METHODS Plasma samples from the Pinghe (PH, healthy control) group, the Shanghuo (SH, YDH syndrome) group, and the ZDG treated group (therapeutic group) were analyzed by using metabolomics profiling. The data were analyzed by multivariate statistical and bioinformatics analyses. RESULTS We screened four differential metabolites such as, decanoylcarnitine, dodecanoylcarnitine, phosphatidylcholine (PC), and Aspartate (Asp) Arginine (Arg) Proline (Pro) in the SH group and the PH group. The results showed that the combination of above four metabolites could serve as a potential biomarker for the early diagnosis of YDH syndrome. The metabolites decanoylcarnitine and glucose were found to be differentially expressed in the YDH syndrome group and tended to be normalized after ZDG treatment. CONCLUSION The increased levels of four differential metabolites (decanoylcarnitine, dodecanoylcarnitine, PC, and Asp Arg Pro) revealed that individuals with YDH syndrome may have increased energy metabolism in the body, which could lead to disorders of fatty acids β-oxidation and immune function. The levels of two differential metabolites including decanoylcarnitine and glucose returned to normal after ZDG treatment, indicating that ZDG could treat YDH syndrome by regulating glucose metabolism and fatty acids β-oxidation. Our study provides a new method for the diagnosis of YDH syndrome, and may provide theoretical basis for novel therapeutic strategies of YDH syndrome.
Collapse
Affiliation(s)
- Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Jing Chen
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Jiang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De-Qing Bi
- Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Yang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Lin Gan
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China.,Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
A 90-day repeated-dose toxicity study of dietary alpha linolenic acid-enriched diacylglycerol oil in rats. Regul Toxicol Pharmacol 2018; 97:33-47. [DOI: 10.1016/j.yrtph.2018.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
|
7
|
Bushita H, Liu S, Ohta T, Ito Y, Saito K, Nukada Y, Ikeda N, Morita O. Effects of dietary alpha-linolenic acid-enriched diacylglycerol oil on embryo/fetal development in rats. Regul Toxicol Pharmacol 2018; 98:108-114. [PMID: 30009862 DOI: 10.1016/j.yrtph.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that diets supplemented with alpha-linolenic acid (ALA)-enriched diacylglycerol (DAG) oil provide potential health benefits in preventing or managing obesity. However, available safety information about reproductive and developmental toxicities of ALA-DAG oil is limited. This study was conducted to clarify the effect, if any, of ALA-DAG oil on embryo-fetal development, following maternal exposure during the critical period of major organogenesis. ALA-DAG oil was administered via gavage to pre-mated female Sprague Dawley rats from gestation day 6 through 19, at dose levels of 0, 1.25, 2.5, and 5.0 mL/kg/day (equivalent to 0, 1149, 2325, and 4715 mg/kg/day, respectively), with total volume adjusted to 5 mL/kg/day with rapeseed oil. All females survived to the scheduled necropsy. There were no treatment-related changes in clinical or internal findings, maternal body weights, feed consumption, intrauterine growth, survival, and number of implantations. No ALA-DAG oil-related fetal malformations or developmental variations were noted. A maternal maximum tolerated dose for ALA-DAG oil could not be achieved in this study. Based on these results, a dose level of 5.0 mL/kg (4715 mg/kg/day), the highest dose tested, was considered as the no-observed-adverse-effect level (NOAEL) for both maternal and developmental toxicity.
Collapse
Affiliation(s)
- Hiroto Bushita
- R&D Safety Science Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan.
| | - Shujie Liu
- R&D Safety Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Takafumi Ohta
- Kumamoto Safety Assessment Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medience Corporation, 1285, Kurisaki-machi, Uto-shi, Kumamoto, 869-0425, Japan
| | - Yuichi Ito
- R&D Safety Science Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Kazutoshi Saito
- R&D Safety Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Yuko Nukada
- R&D Safety Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Naohiro Ikeda
- R&D Safety Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Osamu Morita
- R&D Safety Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|
8
|
Ando Y, Saito S, Miura H, Osaki N, Katsuragi Y. Consumption of alpha-linolenic acid-enriched diacylglycerol induces increase in dietary fat oxidation compared with alpha-linolenic acid-enriched triacylglycerol: A randomized, double-blind trial. Nutr Res 2017; 48:85-92. [PMID: 29246284 DOI: 10.1016/j.nutres.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
Abstract
Fat metabolism is an important consideration in obesity. Alpha-linolenic acid-enriched diacylglycerol (ALA-DAG), which mainly occurs as ALA esterifies to 1,3-diacyl-sn-glycerol (1,3-DAG), has beneficial effects on fat metabolism and body weight compared with triacylglycerol (TAG). Moreover, compared with ALA-TAG, ALA-DAG enhances β-oxidation activity in the small intestine and liver in rodents. We hypothesized that ALA-DAG consumption may increase dietary fat oxidation compared with ALA-TAG in humans. To examine this hypothesis, we conducted a randomized double-blind cross-over trial in 17 normal and moderately obese men and women (BMI: 25.7±2.0 kg/m2, mean±SD). Each participant was assigned to a 4-week intervention period with 2.5 g/day of ALA-DAG or ALA-TAG consumption, followed by a 4-week washout period between consumption of each diet. Dietary fat oxidation, assessed based on the 13CO2 recovery rate in the breath, was significantly increased by ALA-DAG consumption compared with ALA-TAG consumption (17.0±4.5% and 14.1±5.9%, respectively, P<.05). In addition, ALA-DAG consumption significantly decreased the visceral fat area compared with ALA-TAG (102.9±51.9 cm2 and 110.9±51.7 cm2, respectively; P<.05). These results indicate that ALA-DAG consumption may be useful for preventing obesity.
Collapse
Affiliation(s)
- Yasutoshi Ando
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan.
| | - Shinichiro Saito
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Hirona Miura
- Meiseikai Medical Corporation, Higashi-Shinjuku Clinic, 1-11-3, Ookubo, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Noriko Osaki
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Yoshihisa Katsuragi
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| |
Collapse
|
9
|
Saito S, Mori A, Osaki N, Katsuragi Y. Diacylglycerol Enhances the Effects of Alpha-Linolenic Acid Against Visceral Fat: A Double-Blind Randomized Controlled Trial. Obesity (Silver Spring) 2017; 25:1667-1675. [PMID: 28851088 PMCID: PMC5638073 DOI: 10.1002/oby.21938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the effect of alpha-linolenic acid-rich diacylglycerol (ALA-DAG) compared with alpha-linolenic acid-rich triacylglycerol (ALA-TAG) on visceral fat area (VFA) in people with overweight. METHODS Subjects with overweight were recruited to a randomized, double-blind, controlled, parallel-group designed trial and randomly allocated to two groups that consumed either 2.5 g/d ALA-TAG or ALA-DAG for 12 weeks. Two 4-week nontreatment periods were placed before and after the treatment period. One hundred fourteen subjects (n = 57 in the ALA-TAG group, n = 57 in the ALA-DAG group) were enrolled into the analysis set for efficacy evaluation. RESULTS The VFA and BMI were significantly decreased by the ALA-DAG treatment with a treatment-by-time interaction compared with the ALA-TAG treatment (P < 0.05). Additionally, the change from baseline of the fasting serum TAG concentration at week 12 was significantly decreased by ALA-DAG treatment compared with ALA-TAG treatment (P < 0.05). Safety parameters such as urinary measurements, hematologic parameters and blood biochemistry, and the incidence of adverse events did not differ significantly between groups, and no ALA-DAG-associated adverse effects were detected. CONCLUSIONS Incorporation of ALA-DAG in a regular diet for 12 weeks may lead to a reduction in VFA, BMI, and serum TAG in men and women with overweight.
Collapse
Affiliation(s)
| | | | - Noriko Osaki
- Healthcare Food Research LaboratoriesKao CorporationTokyoJapan
| | | |
Collapse
|
10
|
Effect of α-linolenic acid-rich diacylglycerol oil on protein kinase C activation in the rat digestive tract and lingual mucosa. Food Chem Toxicol 2017; 103:168-173. [DOI: 10.1016/j.fct.2017.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/27/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
11
|
Ando Y, Saito S, Yamanaka N, Suzuki C, Ono T, Osaki N, Katsuragi Y. Alpha Linolenic Acid-enriched Diacylglycerol Consumption Enhances Dietary Fat Oxidation in Healthy Subjects: A Randomized Double-blind Controlled Trial. J Oleo Sci 2017; 66:181-185. [PMID: 28154349 DOI: 10.5650/jos.ess16183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Consumption of alpha linolenic acid-enriched diacylglycerol (ALA-DAG) reduces visceral fat area. In this study, we performed a randomized, placebo-controlled, double-blind, crossover intervention trial to investigate the effect of ALA-DAG on dietary fat oxidation in comparison with control triacylglycerol (TAG). Each subject (n=16) consumed either 2.5 g/d of ALA-DAG or TAG for 14-d, separated by a 21-d washout period. At the end of each consumption period, we assessed dietary fat oxidation. ALA-DAG consumption significantly enhanced dietary fat utilization as energy compared to TAG consumption.
Collapse
|
12
|
Honda H, Fujita Y, Hayashi A, Ikeda N, Ito Y, Morita O. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil. Toxicol Rep 2016; 3:716-722. [PMID: 28959597 PMCID: PMC5616014 DOI: 10.1016/j.toxrep.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/07/2022] Open
Abstract
We evaluated the genotoxicity of ALA-DAG oil using standard tests. Bacterial reverse mutation and in vitro/in vivo micronucleus tests were conducted. No genotoxicity was observed under the testing conditions.
The alpha-linolenic acid (ALA)-diacylglycerol (DAG) oil is an edible oil enriched with DAG (>80%) and ALA (>50%). Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test) and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions.
Collapse
Key Words
- 2AA, 2-aminoanthracene
- 9AA, 9-aminoacridine hydrochloride hydrate
- AF-2, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide
- ALA, alpha-linolenic acid
- Alpha-linolenic acid
- Alpha-linolenic acid-rich diacylglycerol
- B(a)P, benzo(a)pyrene
- CLC, Colchicine
- CP, cyclophosphamide
- DAG, diacylglycerol
- DMSO, dimethyl sulfoxide
- Diacylglycerol
- Fatty acid composition
- Genotoxicity
- ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
- LA, linolenic acid
- MMC, mitomycin C
- MNPCE, micronucleated polychromatic erythrocyte
- NCE, normochromatic erythrocyte
- NaN3, sodium azide
- TAG, triacylglycerol
Collapse
Affiliation(s)
- Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yurika Fujita
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Aya Hayashi
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories Ltd., 2438 Miyanoura, Yoshida, Kagoshima 891-1394, Japan
| | - Naohiro Ikeda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yuichi Ito
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Osamu Morita
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
13
|
Ando Y, Saito S, Oishi S, Yamanaka N, Hibi M, Osaki N, Katsuragi Y. Alpha Linolenic Acid-enriched Diacylglycerol Enhances Postprandial Fat Oxidation in Healthy Subjects: A Randomized Double-blind Controlled Trail. J Oleo Sci 2016; 65:685-91. [PMID: 27430386 DOI: 10.5650/jos.ess16064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha linolenic acid-enriched diacylglycerol (ALA-DAG) reduces visceral fat area and body fat in rodents and humans compared to conventional triacylglycerol (TAG). Although ALA-DAG increases dietary fat utilization as energy in rodents, its effects in humans are not known. The present study was a randomized, placebo-controlled, double-blind, crossover intervention trial performed to clarify the effect of ALA-DAG on postprandial energy metabolism in humans. Nineteen healthy subjects participated in this study, and postprandial energy metabolism was evaluated using indirect calorimetry followed by 14-d repeated pre-consumption of TAG (rapeseed oil) as a control or ALA-DAG. As a primary outcome, ALA-DAG induced significantly higher postprandial fat oxidation than TAG. As a secondary outcome, carbohydrate oxidation tended to be decreased. In addition, postprandial energy expenditure was significantly increased by ALA-DAG compared to TAG. These findings suggest that daily ALA-DAG consumption stimulates dietary fat utilization as energy after a meal, as well as greater diet induced thermogenesis in healthy humans. In conclusion, repeated consumption of ALA-DAG enhanced postprandial fat metabolism after a meal, which may partially explain its visceral fat area-reducing effect.
Collapse
|
14
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 2016; 419:44-59. [PMID: 26433072 DOI: 10.1016/j.mce.2015.09.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed.
Collapse
Affiliation(s)
- Aritz Lopategi
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain.
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Verónica García-Alonso
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain; Department of Physiological Sciences I, University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
16
|
Saito S, Fukuhara I, Osaki N, Nakamura H, Katsuragi Y. Consumption of alpha-Linolenic Acid-enriched Diacylglycerol Reduces Visceral Fat Area in Overweight and Obese Subjects: a Randomized, Double-blind Controlled, Parallel-group Designed Trial. J Oleo Sci 2016; 65:603-11. [DOI: 10.5650/jos.ess16059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Noriko Osaki
- Healthcare Food Research Laboratories, Kao Corporation
| | | | | |
Collapse
|
17
|
Role of adenosine 5'-monophosphate-activated protein kinase in α-linolenic acid-induced intestinal lipid metabolism. Br J Nutr 2015; 114:866-72. [PMID: 26268732 DOI: 10.1017/s0007114515002391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
n-3 Long-chain PUFA up-regulate intestinal lipid metabolism. However, whether these metabolic effects of PUFA on intestine are mediated by AMP-activated protein kinase (AMPK) remains to be elucidated. To determine the effects of α-linolenic acid (ALA) on intestinal fatty acid (FA) metabolism and whether these effects were affected by AMPK deletion, mice deficient in the catalytic subunit of AMPKα1 or AMPKα2 and wild-type (WT) mice were fed either a high-fat diet (HF) or HF supplemented with ALA (HF-A). The results showed that ALA supplementation decreased serum TAG content in WT mice. ALA also increased mRNA expression of genes (carnitine palmitoyltransferase 1a, acyl-CoA oxidase 1, medium-chain acyl-CoA dehydrogenase, cytochrome P450 4A10 and pyruvate dehydrogenase kinase isoenzyme 4a) involved in intestinal lipid oxidation and mRNA expression of TAG synthesis-related genes (monoacylglycerol O-acyltransferase 2, diacylglycerol O-acyltransferases 1 and 2) in WT mice. Consistent with these, expression levels of phosphorylated AMPKα1 and AMPKα2 were also increased in WT mice after ALA addition. However, in the absence of either AMPKα1 or AMPKα2, ALA supplementation failed to increase intestinal lipid oxidation. In addition, no significant effects of either diet (HF and HF-A) or genotype (WT, AMPKα1(-/-) and AMPKα2(-/-)) on FA uptake in the intestine and faecal TAG output were observed. Our results suggest that AMPK is indispensable for the effects of ALA on intestinal lipid oxidation.
Collapse
|
18
|
von der Haar D, Stäbler A, Wichmann R, Schweiggert-Weisz U. Enzyme-assisted process for DAG synthesis in edible oils. Food Chem 2015; 176:263-70. [DOI: 10.1016/j.foodchem.2014.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
|
19
|
Perng W, Villamor E, Mora-Plazas M, Marin C, Baylin A. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. Eur J Clin Nutr 2014; 69:167-72. [PMID: 25271016 DOI: 10.1038/ejcn.2014.210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND/OBJECTIVES Studies in adults indicate that dietary polyunsaturated fatty acid (PUFA) composition may play a role in development of adiposity. Because adipocyte quantity is established between late childhood and early adolescence, understanding the impact of PUFAs on weight gain during the school-age years is crucial to developing effective interventions. SUBJECTS/METHODS We quantified N-3 and N-6 PUFAs in serum samples of 668 Colombian schoolchildren aged 5-12 years at the time of recruitment into a cohort study, using gas-liquid chromatography. Serum concentrations of N-3 (alpha-linolenic acid (ALA), eicosapentaenoic acid, docosahexaenoic acid) and N-6 PUFAs (linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, arachidonic acid) were determined as percentage total fatty acids. Children's anthropometry was measured annually for a median of 30 months. We used mixed-effects models with restricted cubic splines to construct population body mass index-for-age z-score (BAZ) growth curves for age- and sex-specific quartiles of each PUFA. RESULTS N-3 ALA was inversely related to BAZ gain after adjustment for sex, baseline age and weight status, as well as household socioeconomic level. Estimated BAZ change between 6 and 14 years among children in the highest quartile of ALA compared with those in the lowest quartile was 0.45 (95% confidence interval: 0.07, 0.83) lower (P-trend=0.006). CONCLUSIONS N-3 ALA may be protective against weight gain in school-age children. Whether improvement in PUFA status reduces adiposity in pediatric populations deserves evaluation in randomized trials.
Collapse
Affiliation(s)
- W Perng
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - E Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - M Mora-Plazas
- Fundación para Investigación en Nutrición y Salud, FINUSAD, Bogotá, Colombia
| | - C Marin
- Fundación para Investigación en Nutrición y Salud, FINUSAD, Bogotá, Colombia
| | - A Baylin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Tang T, Beh B, Alitheen NBM, Lo S, Lee Y, Lai O. Suppression of visceral adipose tissue by palm kernel and soy‐canola diacylglycerol in C57BL/6N mice. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Teck‐Kim Tang
- Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
| | - Boon‐Kee Beh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra Malaysia43400SerdangMalaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
| | - Seong‐Koon Lo
- Sime Darby Research Sdn. Bhd.R&D Centre‐DownstreamPulau CareySelangorMalaysia
| | - Yee‐Ying Lee
- Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
| | - Oi‐Ming Lai
- Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra Malaysia43400SerdangMalaysia
| |
Collapse
|
21
|
Substitution of TAG oil with diacylglycerol oil in food items improves the predicted 10 years cardiovascular risk score in healthy, overweight subjects. J Nutr Sci 2012; 1:e17. [PMID: 25191546 PMCID: PMC4153080 DOI: 10.1017/jns.2012.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 08/24/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
Dietary fat is normally in TAG form, but diacylglycerol (DAG) is a natural component of
edible oils. Studies have shown that consumption of DAG results in metabolic
characteristics that are distinct from those of TAG, which may be beneficial in preventing
and managing obesity. The objective of the present study was to investigate if food items
in which part of the TAG oil is replaced with DAG oil combined with high α-linolenic acid
(ALA) content would influence metabolic markers. A 12-week double-blinded randomised
controlled parallel-design study was conducted. The participants (n 23)
were healthy, overweight men and women, aged 37–67 years, BMI 27–35 kg/m2, with
waist circumference >94 cm (men) and >88 cm (women). The two groups received
20 g margarine, 11 g mayonnaise and 12 g oil per d, containing either high ALA and
sn-1,3-DAG or high ALA and TAG. Substitution of TAG oil with DAG oil in
food items for 12 weeks led to an improvement of the predicted 10 years cardiovascular
risk score in overweight subjects by non-significantly improving markers of health such as
total body fat percentage, trunk fat mass, alanine aminotransferase, systolic blood
pressure, γ-glutamyl transferase, alkaline phosphatase and total fat-free mass. This may
suggest that replacing TAG oil with DAG oil in healthy, overweight individuals may have
beneficial metabolic effects.
Collapse
Key Words
- ALA, α-linolenic acid
- ALAT, alanine aminotransferase
- ALP, alkaline phosphatase
- ASAT, aspartame aminotransferase
- CRP, C-reactive protein
- DAG, diacylglycerol
- Diacylglycerol
- FFM, fat-free mass
- HOMA-IR, homeostatic model assessment for insulin resistance
- Liver markers
- Overweight human subjects
- TAG
- hsCRP, high-sensitivity CRP
- γ-GT, γ-glutamyl transferase
Collapse
|
22
|
Choi JS, Koh IU, Song J. Genistein reduced insulin resistance index through modulating lipid metabolism in ovariectomized rats. Nutr Res 2012; 32:844-55. [PMID: 23176795 DOI: 10.1016/j.nutres.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/16/2022]
Abstract
Postmenopausal women are at higher risk for obesity and insulin resistance due to the decline of estrogen, but genistein, a phytoestrogen, may reduce the risks of these diet-related diseases. In this study, we hypothesized that supplemental genistein has beneficial effects on insulin resistance in an ovariectomized rat model by modulating lipid metabolism. Three weeks after a sham surgery (sham) or an ovariectomy (OVX), ovariectomized Sprague-Dawley rats were placed on a diet containing 0 (OVX group) or 0.1% genistein for 4 weeks. The sham rats were fed a high-fat diet containing 0% genistein and served as the control group (sham group). The ovariectomized rats showed increases in body weight and insulin resistance index, but genistein reduced insulin resistance index and the activity of hepatic fatty acid synthetase. Genistein was also associated with increased activity of succinate dehydrogenase and carnitine palmitoyltransferase and the rate of β-oxidation in the fat tissue of rats. The ovariectomized rats given genistein had smaller-sized adipocytes. Using gene-set enrichment analysis (GSEA) of microarray data, we found that a number of gene sets of fatty acid metabolism, insulin resistance, and oxidative stress were differentially expressed by OVX and reversed by genistein. This systemic approach of GSEA enables the identification of such consensus between the gene expression changes and phenotypic changes caused by OVX and genistein supplementation. Genistein treatment could help reduce insulin resistance through the amelioration of OVX-induced metabolic dysfunction, and the GSEA approach may be useful in proposing putative targets related to insulin resistance.
Collapse
Affiliation(s)
- Joo Sun Choi
- Division of Metabolic Disease, Center for Biomedical Sciencope, Korea National Institutes of Health, Chungcheongbuk-do, South Korea
| | | | | |
Collapse
|
23
|
Rudkowska I, Roynette CE, Demonty I, Vanstone CA, Jew S, Jones PJH. Diacylglycerol: Efficacy and Mechanism of Action of an Anti-Obesity Agent. ACTA ACUST UNITED AC 2012; 13:1864-76. [PMID: 16339116 DOI: 10.1038/oby.2005.229] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is at the forefront of global health issues and directly contributes to many chronic illnesses. Several dietary components show promise in the treatment of obesity, one of which is oil rich in diacylglycerols (DAGs). Present objectives are to examine scientific knowledge concerning DAG to assess evidence supporting the effects on substrate oxidation rates, body weight and fat mass, and blood lipids, and to assess safety, as well as elucidate potential mechanisms of action. DAG can be synthesized by an enzymatic process to produce mainly 1,3-isoform DAG. This 1,3-DAG oil is believed to have the ability to increase beta-oxidation, to enhance body weight loss, to suppress body fat accumulation, and to lower serum triacylglycerol levels postprandially. While certain animal and human studies indicate that consumption of 1,3-DAG has positive physiological effects, others report no effect. The mechanisms of action of DAG are suggested to decrease the resynthesis of chylomicrons as well as shunting them directly to the liver through the portal vein, where they are oxidized. This increased fat oxidation may influence control of food intake by increasing satiety. Further study into the precise mechanism is required to understand its effects. Safety studies show no risks in consuming a diet rich in DAG oil. Overall, consumption of oils with higher amounts of DAG, specifically 1,3-DAG, may be useful in the battle against obesity.
Collapse
Affiliation(s)
- Iwona Rudkowska
- School of Dietetics and Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Yanai H, Tomono Y, Ito K, Hirowatari Y, Yoshida H, Tada N. A molecular mechanism for diacylglycerol-mediated promotion of negative caloric balance. Diabetes Metab Syndr Obes 2009; 3:1-6. [PMID: 21437070 PMCID: PMC3047988 DOI: 10.2147/dmso.s8481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIMS A substitution of diacylglycerol (DAG) oil for triacylglycerol (TAG) oil in diet has been reported to reduce body fat and body weight, possibly by increasing postprandial energy expenditure (EE). We have previously studied plasma serotonin, which increases EE and exists in the small intestine, in individuals who ingested TAG and DAG oil, and found that DAG ingestion elevates plasma serotonin levels by about 50% compared with TAG ingestion. We studied the molecular mechanisms for DAG-mediated increase in serotonin and EE. METHODS We studied effects of 1-monoacylglycerol and 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells (the human intestinal cell line, n = 8). Further, we studied effects of 1- and 2-monoacylglycerol, and serotonin on expression of mRNA associated with β-oxidation, FA metabolism, and thermogenesis, in the Caco-2 cells (n = 5). RESULTS 1-monoacylglycerol (100 μM 1-monooleyl glycerol [1-MOG]) significantly increased serotonin release from the Caco-2 cells compared with 2-monoacylglycerol (100 μM 2-MOG) by 36.6%. Expression of mRNA of acyl-CoA oxidase (ACO), fatty acid translocase (FAT), and uncoupling protein-2 (UCP-2) were significantly higher in 100 μM 1-MOG-treated Caco-2 cells than 100 μM 2-MOG-treated cells by 12.8%, 23.7%, and 35.1%, respectively. Further, expression of mRNA of ACO, medium-chain acyl-CoA dehydrogenase, FAT, and UCP-2 were significantly elevated in serotonin (400 nM)-treated Caco-2 cells compared with cells incubated without serotonin by 28.7%, 30.1%, and 39.2%, respectively. CONCLUSIONS Our study demonstrated that 1-monoacylglycerol, a digestive product of DAG, increases serotonin release from the Caco-2 cells, and enhances expression of genes associated with β-oxidation, FA metabolism, and thermogenesis, and that serotonin increases expression of these genes, proposing a novel molecular mechanism for DAG-mediated promotion of negative caloric balance.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Internal Medicine, Jikei University School of Medicine, Chiba, Japan
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba, Japan
- Correspondence: Hidekatsu Yanai, Division of General Medicine, Department of Internal Medicine, Kashiwa Hospital, The Jikei University, School of Medicine, 163-1, Kashiwashita, Kashiwa, Chiba 277-8567, Japan, Tel +81 4 7164 1111, Email
| | - Yoshiharu Tomono
- Department of Nutrition, Jikei University School of Medicine, Chiba, Japan
| | - Kumie Ito
- Department of Internal Medicine, Jikei University School of Medicine, Chiba, Japan
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba, Japan
| | | | - Hiroshi Yoshida
- Department of Internal Medicine, Jikei University School of Medicine, Chiba, Japan
- Department of Laboratory Medicine, Jikei University School of Medicine, Chiba, Japan
| | - Norio Tada
- Department of Internal Medicine, Jikei University School of Medicine, Chiba, Japan
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba, Japan
| |
Collapse
|
25
|
Mitsuhashi Y, Bauer JE. Dietary management of obesity in companion animals via alteration of lipid metabolism. J Am Vet Med Assoc 2009; 235:1292-300. [PMID: 19951097 DOI: 10.2460/javma.235.11.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuka Mitsuhashi
- Department of Small Animal Clinical Sciences, Companion Animal Nutrition Research Laboratory, College of Veterinary Medicine and Biomedical Sciences, Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
26
|
Nagata J, Yamada K. Effects of simultaneous intake of soybean protein and diacylglycerol on lipid profiles and body fat accumulation in rats. Biosci Biotechnol Biochem 2009; 73:1328-32. [PMID: 19502738 DOI: 10.1271/bbb.80893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Soybean protein (SPI) and diacylglycerol (DAG) are functional components with benefits for lipid metabolism. Since simultaneous intake of such components is expected to exert effects additively and/or synergistically in lifestyle-related diseases, we examined the effects of simultaneous intake of SPI and DAG on lipid profiles. Five-week-old male Wistar rats were fed experimental diets with and without cholesterol for 28 d. In the rats fed cholesterol-free diets, significant interactions between dietary oil and protein were observed in the serum triacylglycerol (TG), hepatic cholesterol, and TG concentrations, whereas in the rats fed cholesterol diets, the serum and hepatic lipid concentrations were significantly lower in rats fed SPI than in those fed casein. Although our results suggest that simultaneous intake of SPI and DAG has slightly ameliorating effects on lipid profiles in rats, simultaneous intake of foods or foods components with similar functions are not necessarily effective.
Collapse
Affiliation(s)
- Junichi Nagata
- Food Function and Labeling Program, Incorporated Administrative Agency, National Institute of Health and Nutrition, Tokyo, Japan.
| | | |
Collapse
|
27
|
van Schothorst EM, Flachs P, Franssen-van Hal NLW, Kuda O, Bunschoten A, Molthoff J, Vink C, Hooiveld GJEJ, Kopecky J, Keijer J. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genomics 2009; 10:110. [PMID: 19284886 PMCID: PMC2662879 DOI: 10.1186/1471-2164-10-110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/16/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process. RESULTS The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -- in a second animal experiment -- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon. CONCLUSION We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.
Collapse
Affiliation(s)
- Evert M van Schothorst
- Food Bioactives Group, RIKILT Institute of Food Safety, Wageningen UR, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Angell R, Mitsuhashi Y, Bigley K, Bauer JE. Plasma LCAT activity and lipid subfraction composition in obese beagles undergoing weight loss. Lipids 2009; 44:415-24. [PMID: 19255797 DOI: 10.1007/s11745-009-3290-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
The relationship between lecithin:cholesterol acyltransferase (LCAT) activity and weight loss in dogs was investigated. Four experimental weight-loss diets were fed to 12 obese female beagles for 56 days in a partial crossover design (n = 6). High- (HGI) or low- (LGI) glycemic index starch and diacylglycerol or triacylglycerol oils were combined to compose experimental diets with similar fatty acid profiles. Food intake and body weights were measured daily and weekly, respectively. Fasted blood samples were drawn at day 0, day 28, and day 56 to measure plasma LCAT activity and total (TC), unesterified (UC), and esterified (EC) cholesterol concentrations, and for fatty acid analysis of the phospholipid (PL) and EC fractions. The LGI groups lost more weight than the HGI groups due to starch digestibility differences. An HGI starch effect on TC and UC concentrations was observed but was unrelated to weight loss. LCAT activities increased over time but were not different after controlling for percentage weight loss. However, a positive linear correlation was found between LCAT and UC concentrations in all groups. Plasma PL fatty acid profiles reflected the diets fed, but increases in 16 and 18 carbon saturated and monounsaturated fatty acids in all groups appeared to be an effect of fatty acid mobilization from storage sites. Both plasma PL and EC fatty acid profiles were similar with both acylglycerol types and EC fatty acids reflected linoleic acid specificity with minimal diet or time effects.
Collapse
Affiliation(s)
- Rebecca Angell
- Companion Animal Nutrition Lab, Department of Veterinary Small Animal and Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | | | | | | |
Collapse
|
29
|
de Vogel-van den Bosch HM, Bünger M, de Groot PJ, Bosch-Vermeulen H, Hooiveld GJEJ, Müller M. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genomics 2008; 9:231. [PMID: 18489776 PMCID: PMC2408604 DOI: 10.1186/1471-2164-9-231] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 05/19/2008] [Indexed: 12/31/2022] Open
Abstract
Background The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called 'intestinal barrier proteins'. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPARα), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPARα on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPARα-null mice. Treatment with the synthetic PPARα agonist WY14643 served as reference. Results We identified 74 barrier genes that were PPARα-dependently regulated 6 hours after activation with WY14643. For eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and oleic acid (OA) these numbers were 46, 41, and 19, respectively. The overlap between EPA-, DHA-, and WY14643-regulated genes was considerable, whereas OA treatment showed limited overlap. Functional implications inferred form our data suggested that nutrient-activated PPARα regulated transporters and phase I/II metabolic enzymes were involved in a) fatty acid oxidation, b) cholesterol, glucose, and amino acid transport and metabolism, c) intestinal motility, and d) oxidative stress defense. Conclusion We identified intestinal barrier genes that were PPARα-dependently regulated after acute activation by fatty acids. This knowledge provides a better understanding of the impact dietary fat has on the barrier function of the gut, identifies PPARα as an important factor controlling this key function, and underscores the importance of PPARα for nutrient-mediated gene regulation in intestine.
Collapse
Affiliation(s)
- Heleen M de Vogel-van den Bosch
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, PO Box 8129, NL-6700EV, Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Li D, Xu T, Takase H, Tokimitsu I, Zhang P, Wang Q, Yu X, Zhang A. Diacylglycerol-induced improvement of whole-body insulin sensitivity in type 2 diabetes mellitus: a long-term randomized, double-blind controlled study. Clin Nutr 2008; 27:203-11. [PMID: 18314230 DOI: 10.1016/j.clnu.2008.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 01/13/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Diacylglycerol oil has been shown to lower postprandial and fasting serum triacylglycerol levels and reduce body fat. The aim of this study was to investigate the effect of diacylglycerol oil on risk factors of type 2 diabetes mellitus (DM) and cardiovascular disease in type 2 DM patients. METHODS This was a double-blind controlled parallel study with 127 type 2 DM patients (aged 40-65) recruited in Hangzhou, China. All subjects consumed triacylglycerol oil in the lead-in period (14 days), then they were randomly divided into two groups and consumed diacylglycerol or triacylglycerol oil with a similar fatty acid composition (25 g/day) for 120 days. Blood samples were collected on days 0, 60 and 120 and risk factors of type 2 DM and cardiovascular disease and biochemical parameters were measured by standard methods. RESULTS There were a total of 112 subjects who completed the study. Diet intake did not differ significantly between groups. Body weight, BMI, waist circumference, HOMA-IR, serum insulin and leptin levels were significantly reduced from baseline in the diacylglycerol oil group but not in the triacylglycerol oil group. Serum glucose was also significantly improved in patients with higher glucose levels at baseline (>7.00 mmol/L) in the diacylglycerol oil group. Parameters of liver and kidney functions and essential fatty acids in serum phospholipids did not differ between groups. CONCLUSIONS Diacylglycerol oil consumption improved biomarkers and anthropometric parameters of type 2 DM compared with triacylglycerol oil. No adverse reactions were observed with diacylglycerol oil consumption for type 2 DM patients. Diacylglycerol oil has an equivalent bioavailability as triacylglycerol oil in relation to providing essential fatty acids.
Collapse
Affiliation(s)
- Duo Li
- Department of Food Science and Nutrition, Zhejiang University, 268 Kaixuan Road, Hangzhou, Zhejiang 310029, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Nagao K, Yanagita T. Bioactive lipids in metabolic syndrome. Prog Lipid Res 2008; 47:127-46. [DOI: 10.1016/j.plipres.2007.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 02/06/2023]
|
33
|
Yanai H, Yoshida H, Tomono Y, Hirowatari Y, Kurosawa H, Matsumoto A, Tada N. Effects of diacylglycerol on glucose, lipid metabolism, and plasma serotonin levels in lean Japanese. Obesity (Silver Spring) 2008; 16:47-51. [PMID: 18223611 DOI: 10.1038/oby.2007.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Diacylglycerol (DAG)-rich oil has been suggested to suppress postprandial hyperlipidemia and promote negative caloric balance by increasing energy expenditure (EE), due to small intestine physiochemical dynamics that differ from triacylglycerol (TAG). We studied the effect of DAG on postprandial glucose/insulin metabolism by loading of carbohydrate with oil. Further, to reveal the mechanism for increased EE by DAG, we measured plasma serotonin, which is mostly present in the small intestine and mediates peripheral sympathetic thermogenesis. METHODS AND PROCEDURES Randomized crossover study with 2-week wash-out interval between differing fat ingestion. Seven male, lean, Japanese students ingested DAG or TAG oil with 40 g of carbohydrate. Measurements of metabolic parameters were performed before and at 2, 4, and 6 h after fat ingestion. Plasma serotonin levels and cholesterol concentration in each lipoprotein were measured using high-performance liquid chromatography (HPLC). RESULTS The substitution of DAG for TAG decreased very-low-density lipoprotein-cholesterol (VLDL-C) by 45.6% at 2 h, and decreased serum insulin by 41.3% at 4 h after ingestion. The incremental area under the curve (IAUC) for VLDL-C was positively correlated with the IAUC for insulin. Concurrently, DAG elevated plasma serotonin levels by 47.3% at 2 h, while TAG did not influence. DISCUSSION This study indicates that the substitution of DAG for TAG suppresses the postprandial increase in serum VLDL-C and insulin. This study also demonstrates that DAG ingestion increases plasma serotonin, proposing a possible mechanism for a postprandial increase in EE by DAG.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Internal Medicine, The Jikei University School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yanai H, Tomono Y, Ito K, Furutani N, Yoshida H, Tada N. Diacylglycerol oil for the metabolic syndrome. Nutr J 2007; 6:43. [PMID: 18072966 PMCID: PMC2235882 DOI: 10.1186/1475-2891-6-43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022] Open
Abstract
Excess adiposity has been shown to play a crucial role in the development of the metabolic syndrome. The elevated fasting and postprandial triglyceride-rich lipoprotein levels is the central lipid abnormality observed in the metabolic syndrome. Recent studies have indicated that diacylglycerol (DAG) is effective for fasting and postprandial hyperlipidemia and preventing excess adiposity by increasing postprandial energy expenditure. We will here discuss the mechanisms of DAG-mediated improvements in hyperlipidemia and in postprandial energy expenditure, and effects of DAG oil on lipid/glucose metabolism and on body fat. Further, the therapeutic application of DAG for the metabolic syndrome will be considered.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Internal Medicine, The Jikei University School of Medicine, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Shimizu J, Ozawa M, Mano H, Okayasu S, Wada M. Evaluation of Effect of Dietary Intake of Crude Rice Glycosphingolipids in Mice Using DNA Microarray Technology. J JPN SOC FOOD SCI 2007. [DOI: 10.3136/nskkk.54.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Tamai T, Murota I, Maruyama K, Baba T, Toyama T, Watanabe N, Kudo N, Kawashima Y. Effects of Supplemented Diacylglycerol Rich in Docosahexaenoic Acid on Serum Triacylglycerol in a Diet-Induced Hyperlipidemic Model of Rats Are Essentially Equivalent to Those of Triacylglycerol Rich in Docosahexaenoic Acid. Biol Pharm Bull 2007; 30:2381-8. [DOI: 10.1248/bpb.30.2381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Nami Watanabe
- Faculty of Pharmaceutical Sciences, Josai University
| | - Naomi Kudo
- Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
37
|
Kondo H, Minegishi Y, Komine Y, Mori T, Matsumoto I, Abe K, Tokimitsu I, Hase T, Murase T. Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice. Am J Physiol Endocrinol Metab 2006; 291:E1092-9. [PMID: 16822957 DOI: 10.1152/ajpendo.00583.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of high-fat (HF) feeding on gene expression in the small intestine were examined using obesity-resistant A/J mice and obesity-prone C57BL/6J (B6) mice. Both strains of mice were maintained on low-fat (LF; 5% fat) or HF (30% fat) diets for 2 wk. Quantitative reverse transcription-PCR analysis revealed that lipid metabolism-related genes, including carnitine palmitoyltransferase (CPT) I, liver fatty acid binding protein, pyruvate dehydrogenase kinase-4, and NADP(+)-dependent cytosolic malic enzyme, were upregulated by HF feeding in both strains of mice. The upregulated gene expression levels were higher in A/J mice than in B6 mice, suggesting more active lipid metabolism in the small intestine of A/J mice. The prominent upregulation of the lipid metabolism-related genes were specific to the small intestine; the expression levels were little or unchanged in the liver, muscle, and white adipose tissue. The increase by HF feeding and predominant expression of the intestinal lipid metabolism-related genes in A/J mice were reflected in the enzyme activities; malic enzyme, CPT, and beta-oxidation activities were increased by HF feeding, and the upregulated malic enzyme and CPT activities were significantly higher in obesity-resistant A/J mice compared with those in obesity-prone B6 mice. These findings suggest that intestinal lipid metabolism is associated with susceptibility to obesity.
Collapse
Affiliation(s)
- Hidehiko Kondo
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
German JB, Dillard CJ. Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 2006; 46:57-92. [PMID: 16403683 DOI: 10.1080/10408690590957098] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Milkfat is a remarkable source of energy, fat-soluble nutrients and bioactive lipids for mammals. The composition and content of lipids in milkfat vary widely among mammalian species. Milkfat is not only a source of bioactive lipid components, it also serves as an important delivery medium for nutrients, including the fat-soluble vitamins. Bioactive lipids in milk include triacylglycerides, diacylglycerides, saturated and polyunsaturated fatty acids, and phospholipids. Beneficial activities of milk lipids include anticancer, antimicrobial, anti-inflammatory, and immunosuppression properties. The major mammalian milk that is consumed by humans as a food commodity is that from bovine whose milkfat composition is distinct due to their diet and the presence of a rumen. As a result of these factors bovine milkfat is lower in polyunsaturated fatty acids and higher in saturated fatty acids than human milk, and the consequences of these differences are still being researched. The physical properties of bovine milkfat that result from its composition including its plasticity, make it a highly desirable commodity (butter) and food ingredient. Among the 12 major milk fatty acids, only three (lauric, myristic, and palmitic) have been associated with raising total cholesterol levels in plasma, but their individual effects are variable-both towards raising low-density lipoproteins and raising the level of beneficial high-density lipoproteins. The cholesterol-modifying response of individuals to consuming saturated fats is also variable, and therefore the composition, functions and biological properties of milkfat will need to be re-evaluated as the food marketplace moves increasingly towards more personalized diets.
Collapse
Affiliation(s)
- J Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| | | |
Collapse
|
39
|
Abstract
The scale of the obesity epidemic creates a pressing consumer need as well as an enormous business opportunity for successful development and marketing of food products with added benefits for weight control. A number of proposed functional food ingredients have been shown to act post-absorptively to influence substrate utilization or thermogenesis. Characteristics and supporting data on conjugated linoleic acid, diglycerides, medium-chain triglycerides, green tea, ephedrine, caffeine, capsaicin and calcium, are reviewed here, giving examples of how these could act to alter energy expenditure or appetite control. Consideration is also given to other factors, in addition to efficacy, which must be satisfied to get such ingredients into foods. We conclude that, for each of the safe, putatively metabolically active agents, there remain gaps in clinical evidence or knowledge of mechanisms, which need to be addressed in order to specify the dietary conditions and food product compositions where these ingredients could be of most benefit for weight control.
Collapse
Affiliation(s)
- E M R Kovacs
- Unilever Health Institute, Unilever R&D Vlaardingen, Vlaardingen, the Netherlands.
| | | |
Collapse
|
40
|
DeMar JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47:172-80. [PMID: 16210728 DOI: 10.1194/jlr.m500362-jlr200] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Male rat pups at weaning (21 days of age) were subjected to a diet deficient or adequate in n-3 polyunsaturated fatty acids (n-3 PUFAs) for 15 weeks. Performance on tests of locomotor activity, depression, and aggression was measured in that order during the ensuing 3 weeks, after which brain lipid composition was determined. In the n-3 PUFA-deprived rats, compared with n-3 PUFA-adequate rats, docosahexaenoic acid (22:6n-3) in brain phospholipid was reduced by 36% and docosapentaenoic acid (22:5n-6) was elevated by 90%, whereas brain phospholipid concentrations were unchanged. N-3 PUFA-deprived rats had a significantly increased (P = 0.03) score on the Porsolt forced-swim test for depression, and increased blocking time (P = 0.03) and blocking number (P = 0.04) scores (uncorrected for multiple comparisons) on the isolation-induced resident-intruder test for aggression. Large effect sizes (d > 0.8) were found on the depression score and on the blocking time score of the aggression test. Scores on the open-field test for locomotor activity did not differ significantly between groups, and had only small to medium effect sizes. This single-generational n-3 PUFA-deprived rat model, which demonstrated significant changes in brain lipid composition and in test scores for depression and aggression, may be useful for elucidating the contribution of disturbed brain PUFA metabolism to human depression, aggression, and bipolar disorder.
Collapse
Affiliation(s)
- James C DeMar
- Brain Physiology and Metabolism Section, National Institute on Aging, and Child Psychiatry Branch, National Institutes of Health Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
41
|
Murase T, Aoki M, Tokimitsu I. Supplementation with alpha-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of beta-oxidation in Zucker fatty rats. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:224-31. [PMID: 15863369 DOI: 10.1016/j.bbalip.2004.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 12/03/2004] [Accepted: 12/28/2004] [Indexed: 11/15/2022]
Abstract
Insulin resistance-related obesity and diabetes mellitus are the predominant causes of fatty liver disease. Here we examine the effects of dietary diacylglycerol (DG), which is a minor component of plant oils, on lipid accumulation and the expression of genes involved in lipid metabolism in the liver. The animals were fed diets containing either 10% triacylglycerol (TG), 10% TG + 4% alpha-linolenic acid-rich TG (ALATG) or 10% TG + 4% alpha-linolenic acid-rich diacylglycerol (ALADG) for a period of 1 month. Supplementation with ALADG significantly inhibited hepatic triglyceride accumulation; this was accompanied by the up-regulation of beta-oxidation activity, and acyl-CoA oxidase (ACO) and medium-chain acyl-CoA dehydrogenase (MCAD) mRNA levels. By contrast, no significant changes were observed in the levels of peroxisome proliferator-activated receptor-alpha (PPARalpha) and sterol regulatory element-binding protein-1 (SREBP-1) mRNAs. These results indicate that ALADG might be useful in the prevention of fatty liver formation; this effect could be closely related to the stimulation of lipid catabolism in the liver. In addition, our findings suggest that both acylglycerol structure (that is, the structural difference between TG and DG) and fatty-acid species affect the nutritional behaviour of dietary lipids.
Collapse
Affiliation(s)
- Takatoshi Murase
- Biological Science Laboratories, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi, Japan.
| | | | | |
Collapse
|
42
|
Petzke KJ, Friedrich M, Metges CC, Klaus S. Long–term dietary high protein intake up–regulates tissue specific gene expression of uncoupling proteins 1 and 2 in rats. Eur J Nutr 2004; 44:414-21. [PMID: 15602629 DOI: 10.1007/s00394-004-0545-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/04/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND The consequences of chronic high protein (HP) diets are discussed controversially and are not well understood. Rats adapted to HP exposure show an increased amino acid and fat oxidation and lower feed energy efficiency. We hypothesized that the dietary protein level can affect gene expression of uncoupling protein (UCP) homologues which is suggested to be involved in thermogenesis, substrate oxidation, and energy expenditure. AIM OF THE STUDY To assess the mRNA expression of UCP homologues in various tissues of rats fed HP diets and to relate UCP gene expression to various parameters of substrate and energy metabolism. To obtain further indications for the possible involvement of UCP in reducing feed energy efficiency under conditions of HP exposure. METHODS Adult rats were adapted to casein based diets containing either 13.8% (adequate, AP), 25.7% (medium, MP), or 51.3 % (high, HP) crude protein. Rats were fed for 8 wk and killed in the postabsorptive state. Energy expenditure and mRNA expression were measured using indirect calorimetry and Northern blot analysis, respectively. Pearson correlation coefficients were calculated to determine relationships between UCP mRNA expression and metabolic parameters. RESULTS Hepatic UCP2 mRNA expression was increased by MP and HP diets compared to AP diet. In skeletal muscle UCP2 mRNA expression was lowest under MP conditions. UCP1 mRNA expression in brown adipose tissue (BAT) was significantly increased by HP exposure. The values were inversely associated with feed energy efficiency and positively with energy expenditure and oxygen consumption in the dark period. Skeletal muscle UCP2 and -3 mRNA expression strongly correlated with the plasma free fatty acid concentration, whereas BAT UCP1 and hepatic UCP2 gene expression did not. CONCLUSIONS Our results indicate that hepatic UCP2 and BAT UCP1 mRNA expression is related to the level of dietary protein intake. This suggests a role of UCPs in substrate oxidation and in thermogenesis under conditions of HP exposure.
Collapse
Affiliation(s)
- Klaus J Petzke
- German Institute of Human Nutrition, Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany.
| | | | | | | |
Collapse
|
43
|
Meng X, Zou D, Shi Z, Duan Z, Mao Z. Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 2004; 39:37-41. [PMID: 15055233 DOI: 10.1007/s11745-004-1199-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory effects of 1,3-diacylglycerol (DAG) on diet-induced lipid accumulation in liver and abdominal adipose tissue of rats were investigated in the present study. Male Sprague-Dawley rats were given free access to diets containing 7 wt% TAG (low TAG), 20 wt% TAG (high TAG), or 20 wt% DAG (high DAG), respectively, for 8 wk. The body weight of rats in the 20% high-TAG group increased significantly, and the weights of their abdominal adipose tissue and liver also showed a significant increase compared with rats in the low-TAG group. However, the high-DAG diet resulted in both a significant reduction in body weight gain (with a decrease of 70.5%) and an increase in the ratio of abdominal fat to body weight (by 127%) compared with the high-TAG diet. As well, the liver TAG and serum TAG levels of the high-DAG group were significantly lower than those of the high-TAG group. These effects were associated with up-regulation of acyl-CoA carnitine acyltransferase (ACAT) and down-regulation of acyl-CoA DAG acyltransferase (DGAT) in the liver. However, no significant difference was observed in the activities of alanine aminotransferase and aspartate aminotransferase among the groups (P > 0.05). The present results indicate that dietary DAG reduced fat accumulation in viscera and body, and these effects may be involved with up-regulation of ACAT and down-regulation of DGAT in the liver.
Collapse
Affiliation(s)
- Xianghe Meng
- School of Biotechnology, Southern Yangtze University, Wuxi, 214036, P.R. China
| | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Recent developments in molecular biology have led to the recognition of food-derived lipids and their metabolites, including cholesterol, fatty acids, bile acids and litocholic acids, as ligands of each corresponding nuclear receptor and regulators of key physiological events. Intake of diacylglycerol, which comprises up to 10% of glycerides in plant-derived edible fats and oils and contains 70% of the unusual 1,3-species, has been shown to affect lipid and glucose metabolism. Effects include lowering of plasma triacylglycerol, decreasing postprandial hyperlipidemia and hemoglobin A1c, increasing energy expenditure, and reducing diet-induced obesity compared with triacylglycerol, which has a similar fatty acid composition. This review summarizes recent research into the metabolic effects and possible mechanisms of diacylglycerol outcome. RECENT FINDINGS Reacylation to triacylglycerol in small intestinal cells was found to be slower with diacylglycerol feeding than triacylglycerol feeding. Expression of mRNA of beta-oxidative and uncoupling proteins 2 was also increased in liver and/or intestinal cells on feeding diacylglycerol compared with triacylglycerol. Because the energy value and absorptive and digestive properties are similar, the different effects of diacylglycerol compared with triacylglycerol are due to their structural differences. SUMMARY The stimulation of enzyme activities responsible for beta-oxidation and regulation of lipid metabolism-related gene expression in the small intestine may contribute to reduced postprandial hyperlipidemia as well as to increased energy expenditure, which result in suppression of diet-induced obesity. Further analysis is required to elucidate the chemical and biological properties of diacylglycerol, especially of 1,3-diacylglycerol, on digestion, absorption and metabolic processes that may provide new insights for managing a lifestyle-related chronic disease such as the metabolic syndrome.
Collapse
Affiliation(s)
- Norio Tada
- Department of General Medicine, Kashiwa Hospital, Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan.
| |
Collapse
|