1
|
Xi Y, Cai J, Peng Q, Li G, Zhu G. Chloroplastic Aspartyl-tRNA Synthetase Is Required for Chloroplast Development, Photosynthesis and Photorespiratory Metabolism. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39676495 DOI: 10.1111/pce.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO2, but normal growth under elevated CO2 conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase. AspRS3 is localised in both chloroplasts and mitochondria, with the chloroplast being the primary site of its physiological function. The AspRS3 mutation impacts the expression of plastid-encoded and photosynthesis-related genes, leading to decreased levels of chloroplast-encoded proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RBCL) and ferredoxin-dependent glutamate synthase (Fd-GOGAT). Furthermore, we observed an accumulation of photorespiratory intermediates, including glycine and glycerate, and reactive oxygen species (ROS) in asprs3-1. However, under high CO2, the expression of these proteins, the accumulation of photorespiratory intermediates, and ROS levels in asprs3-1 did not significantly differ from those in the wild type. We propose that elevated CO2 mitigates the asprs3-1 phenotype by inhibiting Rubisco oxygenation and photorespiratory metabolism. This study highlights the role of aminoacyl-tRNA synthetases in regulating photorespiration and provides new insights into its metabolic control.
Collapse
Affiliation(s)
- Yue Xi
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiajia Cai
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qiufei Peng
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ganting Li
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Kitashova A, Lehmann M, Schwenkert S, Münch M, Leister D, Nägele T. Insights into physiological roles of flavonoids in plant cold acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2269-2285. [PMID: 39453687 PMCID: PMC11629739 DOI: 10.1111/tpj.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non-aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2-week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Serena Schwenkert
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Maximilian Münch
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Dario Leister
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| |
Collapse
|
3
|
Ciereszko I, Kuźniak E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. Int J Mol Sci 2024; 25:12134. [PMID: 39596201 PMCID: PMC11595106 DOI: 10.3390/ijms252212134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth-defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant-pathogen interactions. Biotic stress strongly affects plant cells' primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic-photorespiratory metabolism for plant defence against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Iwona Ciereszko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
4
|
Yan S, Hou Y, Cui M, Cheng T, Lu S, Liu Z, Deng B, Liu W, Shi M, Lin L, Yu L, Zhao L. Engineering microalgae for robust glycolate biosynthesis: Targeted knockout of hydroxypyruvate reductase 1 combined with optimized culture conditions enhance glycolate production in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2024; 412:131372. [PMID: 39209231 DOI: 10.1016/j.biortech.2024.131372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-based glycolate production through the photorespiratory pathway is considered an environmentally friendly approach. However, the potential for glycolate production is limited by photoautotrophic cultivation with low cell density and existing strains. In this study, a targeted knockout approach was used to disrupt the key photorespiration enzyme, Chlamydomonas reinhardtii hydroxypyruvate reductase 1 (CrHPR1), leading to a significant increase in glycolate production of 280.1 mg/L/OD750. The highest potency yield reached 2.1 g/L under optimized mixotrophic conditions, demonstrating the possibility of synchronizing cell growth with glycolate biosynthesis in microalgae. Furthermore, the hypothesis that the cell wall-deficient mutant facilitates glycolate excretion was proposed and validated by comparing the glycolate accumulation trends of various Chlamydomonas reinhardtii strains. This study will facilitate the development of microalgae-based biotechnology and shed lights on the continuous advancement of green biomanufacturing for industrial application.
Collapse
Affiliation(s)
- Suihao Yan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuyong Hou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Meijie Cui
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tingfeng Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Lu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Bicheng Deng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Weijia Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Menglin Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Liangcai Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
5
|
Gregory LM, Scott KF, Sharpe LA, Roze LV, Schmiege SC, Hammer JM, Way DA, Walker BJ. Rubisco activity and activation state dictate photorespiratory plasticity in Betula papyrifera acclimated to future climate conditions. Sci Rep 2024; 14:26340. [PMID: 39487181 PMCID: PMC11530445 DOI: 10.1038/s41598-024-77049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Plant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be explained through symmorphosis, which would quantitatively match enzymatic capacity to pathway influx. Alternatively, plants could maintain excess enzymatic capacity to manage unpredictable pathway influx. In this study, we use photorespiration as a case study to investigate these two hypotheses in Betula papyrifera. This involves altering photorespiratory influx by manipulating the growth environment, via changes in CO2 concentration and temperature, to determine how photorespiratory capacity acclimates to environmental treatments. Surprisingly, the results from these measurements indicate that there is no plasticity in photorespiratory capacity in B. papyrifera, and that a fixed capacity is maintained under each growth condition. The fixed capacity is likely due to the existence of reserve capacity in the pathway that manages unpredictable photorespiratory influx in dynamic environments. Additionally, we found that B. papyrifera had a constant net carbon assimilation under each growth condition due to an adjustment of functional rubisco activity driven by changes in activation state. These results provide insight into the acclimation ability and limitations of B. papyrifera to future climate scenarios currently predicted in the next century.
Collapse
Affiliation(s)
- Luke M Gregory
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kate F Scott
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luke A Sharpe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ludmila V Roze
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephanie C Schmiege
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Julia M Hammer
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Chalenko E, Lysenko V, Kosolapov A, Usova E, Dmitriev P, Yadronova O, Varduny T, Tarik E, Ignatova M, Aslanyan V, Kirichenko E. Light green leaf sectors of variegated Dracaena fragrans plants show similar rates of oxygenic photosynthesis tо that of normal, dark green leaf sectors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109040. [PMID: 39142012 DOI: 10.1016/j.plaphy.2024.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Adaptation and functional significance of chlorophyll deficit in the light green leaf sectors of variegated plants are little known. Efficiency of photosystem II for dark and light adapted states (Fv/Fm and ΔF/Fm') and fluorescence decrease rates (Rfd) of light green leaf sectors of Dracaena fragrans L. were studied by methods of PAM-fluorometry and video registration. In addition, white light reflectance and transmittance of these leaf sectors were measured using an integrating sphere. Absorption was calculated from reflectance and transmittance. Net CO2 assimilation rates (PN) were measured using a flow chamber and photolytic O2 evolution rates (PAYO2) were studied by a novel method of Fourier photoacoustics which is insensitive to respiration, photorespiration and other processes of O2 uptake. All the photosynthetic parameters (Fv/Fm, ΔF/Fm', PN and PAYO2) were found to be very close between light green and normal green leaf sectors, whereas chlorophyll content and light absorption were 7.5-fold and 1.47-fold different respectively. Contradiction between low chlorophyll absorption and high (as in normal green sectors) rate of oxygenic photosynthesis in light-green sectors was proposed to be a consequence of different contribution of cyclic electron transport around PSII (CET-PSII) and/or around PSI (CET-PSI) in the total photosynthesis occurring in these sectors. Particularly, it cannot be excluded, that some part of CET activity occurring in normal green leaf sectors may be lost in the light green sectors retaining the same linear (non-cyclic) electron transport (LET) activity as in normal green sectors.
Collapse
Affiliation(s)
- Elizaveta Chalenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia.
| | - Aleksey Kosolapov
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, 344037, Russia
| | - Elena Usova
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, 344037, Russia
| | - Pavel Dmitriev
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Olga Yadronova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Tatyana Varduny
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Ekaterina Tarik
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Maria Ignatova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Veronica Aslanyan
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Evgeniya Kirichenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| |
Collapse
|
7
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
8
|
Lobo AK, Orr DJ, Carmo-Silva E. Regulation of Rubisco activity by interaction with chloroplast metabolites. Biochem J 2024; 481:1043-1056. [PMID: 39093337 PMCID: PMC11346435 DOI: 10.1042/bcj20240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.
Collapse
Affiliation(s)
- Ana K.M. Lobo
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | | |
Collapse
|
9
|
Araguirang GE, Venn B, Kelber NM, Feil R, Lunn J, Kleine T, Leister D, Mühlhaus T, Richter AS. Spliceosomal complex components are critical for adjusting the C:N balance during high-light acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:153-175. [PMID: 38593295 DOI: 10.1111/tpj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.
Collapse
Affiliation(s)
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | | | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Fu ZW, Ding F, Zhang BL, Liu WC, Huang ZH, Fan SH, Feng YR, Lu YT, Hua W. Hydrogen peroxide sulfenylates and inhibits the photorespiratory enzyme PGLP1 to modulate plant thermotolerance. PLANT COMMUNICATIONS 2024; 5:100852. [PMID: 38409783 PMCID: PMC11211548 DOI: 10.1016/j.xplc.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Climate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (H2O2) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified. Here, we report that heat stress promotes H2O2 accumulation in chloroplasts and that H2O2 stimulates sulfenylation of the chloroplast-localized photorespiratory enzyme 2-phosphoglycolate phosphatase 1 (PGLP1) at cysteine 86, inhibiting its activity and promoting the accumulation of the toxic metabolite 2-phosphoglycolate. We also demonstrate that PGLP1 has a positive function in plant thermotolerance, as PGLP1 antisense lines have greater heat sensitivity and PGLP1-overexpressing plants have higher heat-stress tolerance than the wild type. Together, our results demonstrate that heat-induced H2O2 in chloroplasts sulfenylates and inhibits PGLP1 to modulate plant thermotolerance. Furthermore, targeting CATALASE2 to chloroplasts can largely prevent the heat-induced overaccumulation of H2O2 and the sulfenylation of PGLP1, thus conferring thermotolerance without a plant growth penalty. These findings reveal that heat-induced H2O2 in chloroplasts is important for heat-caused plant damage.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bing-Lei Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zi-Hong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shi-Hang Fan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
12
|
Marie TRJG, Leonardos ED, Rana N, Grodzinski B. Tomato and mini-cucumber tolerance to photoperiodic injury involves photorespiration and the engagement of nighttime cyclic electron flow from dynamic LEDs. FRONTIERS IN PLANT SCIENCE 2024; 15:1384518. [PMID: 38841277 PMCID: PMC11150841 DOI: 10.3389/fpls.2024.1384518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Controlled environment agriculture (CEA) is critical for achieving year-round food security in many regions of the world. CEA is a resource-intensive endeavor, with lighting consuming a large fraction of the energy. To lessen the burden on the grid and save costs, an extended photoperiod strategy can take advantage of off-peak time-of-day options from utility suppliers. However, extending the photoperiod limits crop production morphologically and physiologically if pushed too long. Here, we present a continuous-light dynamic light-emitting diode (LED) strategy (involving changes in spectra, intensity, and timing), that overcomes these limitations. We focused on tomato, a well described photoperiodic injury-sensitive species, and mini-cucumber, a photoperiodic injury-tolerant species to first assess morphological responses under control (16-h photoperiod, unchanging spectrum), constant (24-h photoperiod, unchanging spectrum), and two variations of a dynamic LED strategy, dynamic 1 (16-h "day", 3-h "peak", 8-h "night" spectra) and dynamic 2 (20-h "day", 5-h "peak", 4-h "night" spectra). Next, we tested the hypothesis of photorespiration's involvement in photoperiodic injury by using a leaf gas exchange coupled with chlorophyll fluorescence protocol. We further explored Adenosine triphosphate (ATP): Nicotinamide adenine dinucleotide phosphate (NADPH) ratio supply/demand responses by probing photosynthetic electron flow and proton flow with the MultispeQ instrument. We found canopy architecture can be tuned by minor variations of the same dynamic LED strategy, and we highlight dynamic 1 as the optimal choice for both tomato and mini-cucumber as it improved biomass/architecture and first-yield, respectively. A central discovery was that dynamic 1 had a significantly higher level of photorespiration than control, for both species. Unexpectedly, photorespiration was comparable between species under the same treatments, except under constant. However, preliminary data on a fully tolerant tomato genotype grown under constant treatment upregulated photorespiration similar to mini-cucumber. These results suggest that photoperiodic injury tolerance involves a sustained higher level of photorespiration under extended photoperiods. Interestingly, diurnal MultispeQ measurements point to the importance of cyclic electron flow at subjective nighttime that may also partially explain why dynamic LED strategies mitigate photoperiodic injury. We propose an ontology of photoperiodic injury involving photorespiration, triose phosphate utilization, peroxisomal H2O2-catalase balance, and a circadian external coincidence model of sensitivity that initiates programmed cell death.
Collapse
|
13
|
de Souza MA, de Andrade LIF, Gago J, Pereira EG. Photoprotective mechanisms and higher photorespiration are key points for iron stress tolerance under heatwaves in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112031. [PMID: 38346562 DOI: 10.1016/j.plantsci.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Considering the current climate change scenario, the development of heat-tolerant rice cultivars (Oryza sativa L.) is paramount for cultivation in waterlogged systems affected by iron (Fe) excess. The objective of this work was to investigate the physiological basis of tolerance to excess Fe in rice cultivars that would maintain photosynthetic efficiency at higher temperatures. In an experimental approach, two rice cultivars (IRGA424 - tolerant and IRGA417- susceptible to Fe toxicity) were exposed to two concentrations of FeSO4-EDTA, control (0.019 mM) and excess Fe (7 mM) and subsequent exposition to heatwaves at different temperatures (25 °C - control, 35, 40, 45, 50, and 55 °C). The increase in temperatures resulted in a higher Fe concentration in shoots accompanied by a lower Rubisco carboxylation rate in both cultivars, but with lower damage in the tolerant one. Stomatal limitation only occurred as a late response to Fe toxicity, especially in the sensitive cultivar. The activation of photorespiration as electron sink under Fe excess with increasing temperature during heatwaves appear as a major mechanism to alleviate oxidative stress in cultivars tolerant to excess Fe. The tolerance to iron toxicity and heat stress is associated with increased photoprotective mechanisms driving non-photochemical dissipation.
Collapse
Affiliation(s)
- Moises Alves de Souza
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | | | - Jorge Gago
- Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Universitat deles Illes Balears, Palma de Mallorca, Spain
| | - Eduardo Gusmão Pereira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rodovia LMG 818, km 06, Campus UFV-Florestal, Florestal, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Zhao L, Cai Z, Li Y, Zhang Y. Engineering Rubisco to enhance CO 2 utilization. Synth Syst Biotechnol 2024; 9:55-68. [PMID: 38273863 PMCID: PMC10809010 DOI: 10.1016/j.synbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a pivotal enzyme that mediates the fixation of CO2. As the most abundant protein on earth, Rubisco has a significant impact on global carbon, water, and nitrogen cycles. However, the significantly low carboxylation activity and competing oxygenase activity of Rubisco greatly impede high carbon fixation efficiency. This review first summarizes the current efforts in directly or indirectly modifying plant Rubisco, which has been challenging due to its high conservation and limitations in chloroplast transformation techniques. However, recent advancements in understanding Rubisco biogenesis with the assistance of chaperones have enabled successful heterologous expression of all Rubisco forms, including plant Rubisco, in microorganisms. This breakthrough facilitates the acquisition and evaluation of modified proteins, streamlining the measurement of their activity. Moreover, the establishment of a screening system in E. coli opens up possibilities for obtaining high-performance mutant enzymes through directed evolution. Finally, this review emphasizes the utilization of Rubisco in microorganisms, not only expanding their carbon-fixing capabilities but also holding significant potential for enhancing biotransformation processes.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Zhao HM, Huang HB, Zhan ZX, Ye YY, Cheng JL, Xiang L, Li YW, Cai QY, Xie Y, Mo CH. Insights into the molecular network underlying phytotoxicity and phytoaccumulation of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169392. [PMID: 38104812 DOI: 10.1016/j.scitotenv.2023.169392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Ciprofloxacin (CIP) is frequently detected in agricultural soils and can be accumulated by crops, causing phytotoxicities and food safety concerns. However, the molecular basis of its phytotoxicity and phytoaccumulation is hardly known. Here, we analyzed physiological and molecular responses of choysum (Brassica parachinensis) to CIP stress by comparing low CIP accumulation variety (LAV) and high accumulation variety (HAV). Results showed that the LAV suffered more severe inhibition of growth and photosynthesis than the HAV, exhibiting a lower tolerance to CIP toxicity. Integrated transcriptome and proteome analyses suggested that more differentially expressed genes/proteins (DEGs/DEPs) involved in basic metabolic processes were downregulated to a larger extent in the LAV, explaining its lower CIP tolerance at molecular level. By contrast, more DEGs/DEPs involved in defense responses were upregulated to a larger extent in the HAV, showing the molecular basis of its stronger CIP tolerance. Further, a CIP phytotoxicity-responsive molecular network was constructed for the two varieties to better understand the molecular mechanisms underlying the variety-specific CIP tolerance and accumulation. The results present the first comprehensive molecular profile of plant response to CIP stress for molecular-assisted breeding to improve CIP tolerance and minimize CIP accumulation in crops.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen-Xuan Zhan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yao-Yao Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Dellero Y, Berardocco S, Bouchereau A. U- 13C-glucose incorporation into source leaves of Brassica napus highlights light-dependent regulations of metabolic fluxes within central carbon metabolism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154162. [PMID: 38103478 DOI: 10.1016/j.jplph.2023.154162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Plant central carbon metabolism comprises several important metabolic pathways acting together to support plant growth and yield establishment. Despite the emergence of 13C-based dynamic approaches, the regulation of metabolic fluxes between light and dark conditions has not yet received sufficient attention for agronomically relevant plants. Here, we investigated the impact of light/dark conditions on carbon allocation processes within central carbon metabolism of Brassica napus after U-13C-glucose incorporation into leaf discs. Leaf gas-exchanges and metabolite contents were weakly impacted by the leaf disc method and the incorporation of glucose. 13C-analysis by GC-MS showed that U-13C-glucose was converted to fructose for de novo biosynthesis of sucrose at similar rates in both light and dark conditions. However, light conditions led to a reduced commitment of glycolytic carbons towards respiratory substrates (pyruvate, alanine, malate) and TCA cycle intermediates compared to dark conditions. Analysis of 13C-enrichment at the isotopologue level and metabolic pathway isotopic tracing reconstructions identified the contribution of multiple pathways to serine biosynthesis in light and dark conditions. However, the direct contribution of the glucose-6-phosphate shunt to serine biosynthesis was not observed. Our results also provided isotopic evidences for an active metabolic connection between the TCA cycle, glycolysis and photorespiration in light conditions through a rapid reallocation of TCA cycle decarboxylations back to the TCA cycle through photorespiration and glycolysis. Altogether, these results suggest the active coordination of core metabolic pathways across multiple compartments to reorganize C-flux modes.
Collapse
Affiliation(s)
- Younès Dellero
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France.
| | - Solenne Berardocco
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France
| | - Alain Bouchereau
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France
| |
Collapse
|
17
|
Saini D, Rao DE, Bapatla RB, Aswani V, Raghavendra AS. Measurement of Photorespiratory Cycle Enzyme Activities in Leaves Exposed to Abiotic Stress. Methods Mol Biol 2024; 2832:145-161. [PMID: 38869793 DOI: 10.1007/978-1-0716-3973-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Duvvarapu Easwar Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ramesh Babu Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
18
|
Timm S, Jahnke K, Cosse M, Selinski J. Mitochondrial Dihydrolipoamide Dehydrogenase (mtLPD1): Expression, Purification, Activity, and Redox Regulation. Methods Mol Biol 2024; 2792:51-75. [PMID: 38861078 DOI: 10.1007/978-1-0716-3802-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mitochondrial dihydrolipoamide dehydrogenase (mtLPD1) is a central enzyme in primary carbon metabolism, since its function is required to drive four multienzymes involved in photorespiration, the tricarboxylic acid (TCA) cycle, and the degradation of branched-chain amino acids. However, in illuminated, photosynthesizing tissue a vast amount of mtLPD1 is necessary for glycine decarboxylase (GDC), the key enzyme of photorespiration. In light of the shared role, the functional characterization of mtLPD1 is necessary to understand how the three pathways might interact under different environmental scenarios. This includes the determination of the biochemical properties and all potential regulatory mechanisms, respectively. With regards to the latter, regulation can occur through multiple levels including effector molecules, cofactor availability, or posttranslational modifications (PTM), which in turn decrease or increase the activity of each enzymatic reaction. Gaining a comprehensive overview on all these aspects would ultimately facilitate the interpretation of the metabolic interplay of the pathways within the whole subcellular network or even function as a proof of concept for genetic engineering approaches. Here, we describe the typical workflow how to clone, express, and purify plant mtLPD1 for biochemical characterization and how to analyze potential redox regulatory mechanisms in vitro and in planta.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany.
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany.
| |
Collapse
|
19
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Antifungal triazoles affect key non-target metabolic pathways in Solanum lycopersicum L. plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115729. [PMID: 38000304 DOI: 10.1016/j.ecoenv.2023.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14ɑ-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.
Collapse
Affiliation(s)
- Veronika Hýsková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague-Suchdol, Czech Republic
| | - Jana Jaklová Dytrtová
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Daniel Kavan
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Tomáš Křížek
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Alice Šimonová
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Marie Vašková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Ishak Kovač
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Antoniana Račko Žufić
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic.
| |
Collapse
|
20
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
21
|
Saini D, Bharath P, Gahir S, Raghavendra AS. Suppression of photorespiratory metabolism by low O 2 and presence of aminooxyacetic acid induces oxidative stress in Arabidopsis thaliana leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1851-1861. [PMID: 38222271 PMCID: PMC10784248 DOI: 10.1007/s12298-023-01388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was expected to mitigate oxidative stress by reducing ROS levels. However, it was unclear if ROS levels would increase when photorespiration was lowered. Our goal was to examine the redox status in leaves when photorespiratory metabolism was restricted under low O2 (medium flushed with N2 gas) or by adding aminooxyacetic acid (AOA), a photorespiratory inhibitor. We examined the impact of low O2 and AOA in leaves of Arabidopsis thaliana under dark, moderate, or high light. Downregulation of typical photorespiratory enzymes, including catalase (CAT), glycolate oxidase (GO), and phosphoglycolate phosphatase (PGLP) under low O2 or with AOA confirmed the lowering of photorespiratory metabolism. A marked increase in ROS levels (superoxide and H2O2) indicated the induction of oxidative stress. Thus, our results demonstrated for the first time that restricted photorespiratory conditions increased the extent of oxidative stress. We propose that photorespiration is essential to sustain normal ROS levels and optimize metabolism in cellular compartments of Arabidopsis leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01388-4.
Collapse
Affiliation(s)
- Deepak Saini
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Pulimamidi Bharath
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Shashibhushan Gahir
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Agepati S. Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
22
|
Timm S, Eisenhut M. Four plus one: vacuoles serve in photorespiration. TRENDS IN PLANT SCIENCE 2023; 28:1340-1343. [PMID: 37635005 DOI: 10.1016/j.tplants.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Photorespiration is inevitable for oxygenic photosynthesis. It has fascinated researchers over decades because of its multicompartmental organization. Recently, Lin and Tsay identified a vacuole glycerate transporter contributing to photorespiratory metabolism under short-term nitrogen depletion. This key finding adds a fifth interacting subcellular compartment and extends the photorespiratory metabolic repair module.
Collapse
Affiliation(s)
- Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, 18059 Rostock, Germany.
| | - Marion Eisenhut
- Bielefeld University, Faculty of Biology, Computational Biology, CeBiTec, Universitätsstraße 27, D-33615 Bielefeld, Germany.
| |
Collapse
|
23
|
Mariyam, Shafiq M, Sadiq S, Ali Q, Haider MS, Habib U, Ali D, Shahid MA. Identification and characterization of Glycolate oxidase gene family in garden lettuce (Lactuca sativa cv. 'Salinas') and its response under various biotic, abiotic, and developmental stresses. Sci Rep 2023; 13:19686. [PMID: 37952078 PMCID: PMC10640638 DOI: 10.1038/s41598-023-47180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Glycolate oxidase (GLO) is an FMN-containing enzyme localized in peroxisomes and performs in various molecular and biochemical mechanisms. It is a key player in plant glycolate and glyoxylate accumulation pathways. The role of GLO in disease and stress resistance is well-documented in various plant species. Although studies have been conducted regarding the role of GLO genes from spinach on a microbial level, the direct response of GLO genes to various stresses in short-season and leafy plants like lettuce has not been published yet. The genome of Lactuca sativa cultivar 'Salinas' (v8) was used to identify GLO gene members in lettuce by performing various computational analysis. Dual synteny, protein-protein interactions, and targeted miRNA analyses were conducted to understand the function of GLO genes. The identified GLO genes showed further clustering into two groups i.e., glycolate oxidase (GOX) and hydroxyacid oxidase (HAOX). Genes were observed to be distributed unevenly on three chromosomes, and syntenic analysis revealed that segmental duplication was prevalent. Thus, it might be the main reason for GLO gene diversity in lettuce. Almost all LsGLO genes showed syntenic blocks in respective plant genomes under study. Protein-protein interactions of LsGLO genes revealed various functional enrichments, mainly photorespiration, and lactate oxidation, and among biological processes oxidative photosynthetic carbon pathway was highly significant. Results of in-depth analyses disclosed the interaction of GLO genes with other members of the glycolate pathway and the activity of GLO genes in various organs and developmental stages in lettuce. The extensive genome evaluation of GLO gene family in garden lettuce is believed to be a reference for cloning and studying functional analyses of GLO genes and characterizing other members of glycolate/glyoxylate biosynthesis pathway in various plant species.
Collapse
Affiliation(s)
- Mariyam
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, University of the Punjab, Lahore, Pakistan.
| | - Saleha Sadiq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | | | - Umer Habib
- Department of Horticulture, PMAS Arid Agriculture University, Murree Road, Rawalpindi, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Muhammad Adnan Shahid
- Horticultural Sciences Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| |
Collapse
|
24
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
25
|
Aroca A, García-Díaz I, García-Calderón M, Gotor C, Márquez AJ, Betti M. Photorespiration: regulation and new insights on the potential role of persulfidation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6023-6039. [PMID: 37486799 PMCID: PMC10575701 DOI: 10.1093/jxb/erad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada García-Díaz
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
26
|
Zamolo F, Wüst M. 3-Alkyl-2-Methoxypyrazines: Overview of Their Occurrence, Biosynthesis and Distribution in Edible Plants. Chembiochem 2023; 24:e202300362. [PMID: 37435783 DOI: 10.1002/cbic.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Pyrazines are ubiquitous in nature - biosynthesized by microorganisms, insects, and plants. Due to their great structural diversity, they own manifold biological functions. Alkyl- and alkoxypyrazines for instance play a key role as semiochemicals, but also as important aroma compounds in foods. Especially 3-alkyl-2-methoxypyrazines (MPs) have been of great research interest. MPs are associated with green and earthy attributes. They are responsible for the distinctive aroma properties of numerous vegetables. Moreover, they have a strong influence on the aroma of wines, in which they are primarily grape-derived. Over the years various methods have been developed and implemented to analyse the distribution of MPs in plants. In addition, the biosynthetic pathway of MPs has always been of particular interest. Different pathways and precursors have been proposed and controversially discussed in the literature. While the identification of genes encoding O-methyltransferases gave important insights into the last step of MP-biosynthesis, earlier biosynthetic steps and precursors remained unknown. It was not until 2022 that in vivo feeding experiments with stable isotope labeled compounds revealed l-leucine and l-serine as important precursors for IBMP. This discovery gave evidence for a metabolic interface between the MP-biosynthesis and photorespiration.
Collapse
Affiliation(s)
- Francesca Zamolo
- University of Bonn, Institute of Nutritional and Food Sciences Chair of Food Chemistry, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences Chair of Food Chemistry, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| |
Collapse
|
27
|
Xu Z, Guo W, Mo B, Pan Q, Lu J, Wang Z, Peng X, Zhang Z. Mitogen-activated protein kinase 2 specifically regulates photorespiration in rice. PLANT PHYSIOLOGY 2023; 193:1381-1394. [PMID: 37437116 DOI: 10.1093/plphys/kiad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weidong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Benqi Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiatian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Souza PVL, Hou LY, Sun H, Poeker L, Lehman M, Bahadar H, Domingues-Junior AP, Dard A, Bariat L, Reichheld JP, Silveira JAG, Fernie AR, Timm S, Geigenberger P, Daloso DM. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO 2. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267089 DOI: 10.1111/pce.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Collapse
Affiliation(s)
- Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Hu Sun
- University of Rostock, Rostock, Germany
| | - Louis Poeker
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Lehman
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Humaira Bahadar
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
29
|
Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153950. [PMID: 36889102 DOI: 10.1016/j.jplph.2023.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Daimu Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan; Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaru Kono
- Graduate School of Science, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
30
|
Dellero Y, Filangi O, Bouchereau A. Evaluation of GC/MS-Based 13C-Positional Approaches for TMS Derivatives of Organic and Amino Acids and Application to Plant 13C-Labeled Experiments. Metabolites 2023; 13:metabo13040466. [PMID: 37110124 PMCID: PMC10142191 DOI: 10.3390/metabo13040466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Analysis of plant metabolite 13C-enrichments with gas-chromatography mass spectrometry (GC/MS) has gained interest recently. By combining multiple fragments of a trimethylsilyl (TMS) derivative, 13C-positional enrichments can be calculated. However, this new approach may suffer from analytical biases depending on the fragments selected for calculation leading to significant errors in the final results. The goal of this study was to provide a framework for the validation of 13C-positional approaches and their application to plants based on some key metabolites (glycine, serine, glutamate, proline, α-alanine and malate). For this purpose, we used tailor-made 13C-PT standards, harboring known carbon isotopologue distributions and 13C-positional enrichments, to evaluate the reliability of GC-MS measurements and positional calculations. Overall, we showed that some mass fragments of proline_2TMS, glutamate_3TMS, malate_3TMS and α-alanine_2TMS had important biases for 13C measurements resulting in significant errors in the computational estimation of 13C-positional enrichments. Nevertheless, we validated a GC/MS-based 13C-positional approach for the following atomic positions: (i) C1 and C2 of glycine_3TMS, (ii) C1, C2 and C3 of serine_3TMS, and (iii) C1 of malate_3TMS and glutamate_3TMS. We successfully applied this approach to plant 13C-labeled experiments for investigating key metabolic fluxes of plant primary metabolism (photorespiration, tricarboxylic acid cycle and phosphoenolpyruvate carboxylase activity).
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| | - Olivier Filangi
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| |
Collapse
|
31
|
Jiang L, Liu CY, Cui G, Huang LT, Yu XL, Sun YF, Tong HY, Zhou GW, Yuan XC, Hu YS, Zhou WL, Aranda M, Qian PY, Huang H. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation. Mol Ecol 2023; 32:1098-1116. [PMID: 36528869 DOI: 10.1111/mec.16826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guoxin Cui
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - You-Fang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hao-Ya Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guo-Wei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Yi-Si Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wen-Liang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
32
|
Ishikawa K, Kobayashi M, Kusano M, Numata K, Kodama Y. Using the organelle glue technique to engineer the plant cell metabolome. PLANT CELL REPORTS 2023; 42:599-607. [PMID: 36705704 DOI: 10.1007/s00299-023-02982-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
By using the organelle glue technique, we artificially manipulated organelle interactions and controlled the plant metabolome at the pathway level. Plant cell metabolic activity changes with fluctuating environmental conditions, in part via adjustments in the arrangement and interaction of organelles. This hints at the potential for designing plants with desirable metabolic activities for food and pharmaceutical industries by artificially controlling the interaction of organelles through genetic modification. We previously developed a method called the organelle glue technique, in which chloroplast-chloroplast adhesion is induced in plant cells using the multimerization properties of split fluorescent proteins. Here, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants in which chloroplasts adhere to each other and performed metabolome analysis to examine the metabolic changes in these lines. In plant cells expressing a construct encoding the red fluorescent protein mCherry targeted to the chloroplast outer envelope by fusion with a signal sequence (cTP-mCherry), chloroplasts adhered to each other and formed chloroplast aggregations. Mitochondria and peroxisomes were embedded in the aggregates, suggesting that normal interactions between chloroplasts and these organelles were also affected. Metabolome analysis of the cTP-mCherry-expressing Arabidopsis shoots revealed significantly higher levels of glycine, serine, and glycerate compared to control plants. Notably, these are photorespiratory metabolites that are normally transported between chloroplasts, mitochondria, and peroxisomes. Together, our data indicate that chloroplast-chloroplast adhesion alters organellar interactions with mitochondria and peroxisomes and disrupts photorespiratory metabolite transport. These results highlight the possibility of controlling plant metabolism at the pathway level by manipulating organelle interactions.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan.
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
33
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
35
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
36
|
Nogués I, Sekula B, Angelaccio S, Grzechowiak M, Tramonti A, Contestabile R, Ruszkowski M. Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:37-49. [PMID: 35947902 DOI: 10.1016/j.plaphy.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Serine hydroxymethyltransferase (SHM) is one of the hallmarks of one-carbon metabolism. In plants, isoforms of SHM participate in photorespiration and/or transfer the one-carbon unit from L-serine to tetrahydrofolate (THF), hence producing 5,10-CH2-THF that is needed, e.g., for biosynthesis of methionine, thymidylate, and purines. These links highlight the importance of SHM activity in DNA biogenesis, its epigenetic methylations, and in stress responses. Plant genomes encode several SHM isoforms that localize to cytosol, mitochondria, plastids, and nucleus. In this work, we present a thorough functional and structural characterization of all seven SHM isoforms from Arabidopsis thaliana (AtSHM1-7). In particular, we analyzed tissue-specific expression profiles of the AtSHM genes. We also compared catalytic properties of the active AtSHM1-4 in terms of catalytic efficiency in both directions and inhibition by the THF substrate. Despite numerous attempts to rescue the SHM activity of AtSHM5-7, we failed, which points towards different physiological functions of these isoforms. Comparative analysis of experimental and predicted three-dimensional structures of AtSHM1-7 proteins indicated differences in regions that surround the entrance to the active site cavity.
Collapse
Affiliation(s)
- Isabel Nogués
- Research Institute on Terrestrial Ecosystems, Italian National Research Council, Monterotondo Scalo, Rome, Italy
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Sebastiana Angelaccio
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA; Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
37
|
Liu JY, He ZD, Leung DWM, Zeng SS, Cui LL, Peng XX. Molecular, biochemical and enzymatic characterization of photorespiratory 2-phosphoglycolate phosphatase (PGLP1) in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:510-516. [PMID: 35083835 DOI: 10.1111/plb.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Phosphoglycolate phosphatase (PGLP, EC3.1.3.18) is a key enzyme in photorespiration. However, genes encoding the rice photorespiratory PGLP have not yet been identified or characterized. Here, PGLP for photorespiration in rice was identified and its enzymatic properties were investigated. In order to define the function of PGLP homologs, rice PGLP mutants were constructed using CRISPR/Cas9, the transcriptional expressions were analyzed by RT-qPCR, and subcellular localizations were detected via rice protoplast transient expression analysis. Based on sequence alignment, proteins encoded by genes OsPGLP1, OsPGLP2, and OsPGLP3 in the rice genome were predicted to have PGLP activity. Subsequent experimentation showed that OsPGLP1 and OsPGLP3 are chloroplast proteins, while OsPGLP2 is localized in the cytoplasm. In rice leaves, levels of PGLP1 transcript were substantially higher than those of PGLP2 and PGLP3, whereas in roots, levels of PGLP2 transcript were higher than those of PGLP1 and PGLP3. There was no detectable PGLP activity in leaves of the OsPGLP1 mutant, which was non-viable in ambient air condition (400 ppm CO2 ) and high CO2 (4000 ppm) was unable to restore normal growth. In contrast, mutations of PGLP2 or PGLP3 did not result in visible phenotypes and the leaf PGLP activities were also unaffected It is suggested that PGLP1, encoded by Os04g0490800, is responsible for photorespiration. Furthermore, PGLP1 is a dimer with an apparent molecular mass of ca.65 kDa, and its Km is 272 μM, with a higher broad optimum pH (7.5 to 10.0) for PGLP activity than that in other higher plants.
Collapse
Affiliation(s)
- J-Y Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Z-D He
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - D W M Leung
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - S-S Zeng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - L-L Cui
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - X-X Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Hammond M, Dorrell RG, Speijer D, Lukeš J. Eukaryotic cellular intricacies shape mitochondrial proteomic complexity. Bioessays 2022; 44:e2100258. [PMID: 35318703 DOI: 10.1002/bies.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Mitochondria have been fundamental to the eco-physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We explore how the mitochondrial complexity of the LECA has been remodelled in specific groups to support subsequent evolutionary transitions, such as the acquisition of chloroplasts in photosynthetic species and the emergence of multicellularity. We highlight the versatile and crucial roles played by mitochondria during eukaryotic evolution, extending from its huge contribution to the development of the LECA itself to the dynamic evolution of individual eukaryote groups, reflecting both their current ecologies and evolutionary histories.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dave Speijer
- Medical Biochemistry, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
39
|
Balancing Damage via Non-Photochemical Quenching, Phenolic Compounds and Photorespiration in Ulva prolifera Induced by Low-Dose and Short-Term UV-B Radiation. Int J Mol Sci 2022; 23:ijms23052693. [PMID: 35269845 PMCID: PMC8911146 DOI: 10.3390/ijms23052693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
The Yellow Sea green tide (YSGT) is the world’s largest transregional macroalgal blooms, and the causative species Ulva prolifera (U. prolifera) suffers from ultraviolet-b radiation (UVBR) during the floating migration process. Previous study confirmed that U. prolifera displayed a wide variety of physiological responses characterized as acclimation to UVBR, while the response mechanisms against low-dose and short-term radiation (LDSTR) are not clear. A study with photosynthetically active radiation (PAR) and UVBR was designed: normal light (NL: 72 μmol photons m−2 s−1), NL+0.3 (UVBR: 0.3 W·m−2), and NL+1.6 (UVBR: 1.6 W·m−2). The results showed that high-dose UVBR inhibited photosynthesis in thalli, especially under long-term exposure, while a variety of physiological responses were observed under LDSTR. The inhibition of photosynthesis appeared to be ameliorated by the algae under LDSTR. Further analysis showed that U. prolifera achieved balancing damage by means of non-photochemical quenching (NPQ), accumulation of phenolic compounds coupled with the ASA-GSH cycle involved in the antioxidant process and enhanced photorespiratory metabolism under LDSTR. This study provides new insights into the balancing damage mechanisms of U. prolifera under LDSTR, enabling the thalli to adapt to the light conditions during the long duration and distance involved in floating migration.
Collapse
|
40
|
Arab L, Hoshika Y, Müller H, Cotrozzi L, Nali C, Tonelli M, Ache P, Paoletti E, Alfarraj S, Albasher G, Hedrich R, Rennenberg H. Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150563. [PMID: 34601178 DOI: 10.1016/j.scitotenv.2021.150563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency.
Collapse
Affiliation(s)
- L Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany.
| | - Y Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - H Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - L Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Tonelli
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - P Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - E Paoletti
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - S Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - G Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - R Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
41
|
Ribeiro C, Stitt M, Hotta CT. How Stress Affects Your Budget-Stress Impacts on Starch Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:774060. [PMID: 35222460 PMCID: PMC8874198 DOI: 10.3389/fpls.2022.774060] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/12/2022] [Indexed: 05/16/2023]
Abstract
Starch is a polysaccharide that is stored to be used in different timescales. Transitory starch is used during nighttime when photosynthesis is unavailable. Long-term starch is stored to support vegetative or reproductive growth, reproduction, or stress responses. Starch is not just a reserve of energy for most plants but also has many other roles, such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants, scavengers of free radicals and signals, and reverting embolised vessels. Biotic and abiotic stress vary according to their nature, strength, duration, developmental stage of the plant, time of the day, and how gradually they develop. The impact of stress on starch metabolism depends on many factors: how the stress impacts the rate of photosynthesis, the affected organs, how the stress impacts carbon allocation, and the energy requirements involved in response to stress. Under abiotic stresses, starch degradation is usually activated, but starch accumulation may also be observed when growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually accumulated, but the molecular mechanisms involved are largely unknown. In this mini-review, we explore what has been learned about starch metabolism and plant stress responses and discuss the current obstacles to fully understanding their interactions.
Collapse
Affiliation(s)
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Takeshi Hotta,
| |
Collapse
|
42
|
Dellero Y, Berardocco S, Berges C, Filangi O, Bouchereau A. Validation of carbon isotopologue distribution measurements by GC-MS and application to 13C-metabolic flux analysis of the tricarboxylic acid cycle in Brassica napus leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:885051. [PMID: 36704152 PMCID: PMC9871494 DOI: 10.3389/fpls.2022.885051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/28/2022] [Indexed: 05/14/2023]
Abstract
The estimation of metabolic fluxes in photosynthetic organisms represents an important challenge that has gained interest over the last decade with the development of 13C-Metabolic Flux Analysis at isotopically non-stationary steady-state. This approach requires a high level of accuracy for the measurement of Carbon Isotopologue Distribution in plant metabolites. But this accuracy has still not been evaluated at the isotopologue level for GC-MS, leading to uncertainties for the metabolic fluxes calculated based on these fragments. Here, we developed a workflow to validate the measurements of CIDs from plant metabolites with GC-MS by producing tailor-made E. coli standard extracts harboring a predictable binomial CID for some organic and amino acids. Overall, most of our TMS-derivatives mass fragments were validated with these standards and at natural isotope abundance in plant matrices. Then, we applied this validated MS method to investigate the light/dark regulation of plant TCA cycle by incorporating U-13C-pyruvate to Brassica napus leaf discs. We took advantage of pathway-specific isotopologues/isotopomers observed between two and six hours of labeling to show that the TCA cycle can operate in a cyclic manner under both light and dark conditions. Interestingly, this forward cyclic flux mode has a nearly four-fold higher contribution for pyruvate-to-citrate and pyruvate-to-malate fluxes than the phosphoenolpyruvate carboxylase (PEPc) flux reassimilating carbon derived from some mitochondrial enzymes. The contribution of stored citrate to the mitochondrial TCA cycle activity was also questioned based on dynamics of 13C-enrichment in citrate, glutamate and succinate and variations of citrate total amounts under light and dark conditions. Interestingly, there was a light-dependent 13C-incorporation into glycine and serine showing that decarboxylations from pyruvate dehydrogenase complex and TCA cycle enzymes were actively reassimilated and could represent up to 5% to net photosynthesis.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- *Correspondence: Younès Dellero,
| | - Solenne Berardocco
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
| | - Cécilia Berges
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute, Université de Toulouse, National center for Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), National Institute of Applied Sciences (INSA), Toulouse, France
| | - Olivier Filangi
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| |
Collapse
|
43
|
Del-Saz NF, Douthe C, Carriquí M, Ortíz J, Sanhueza C, Rivas-Medina A, McDonald A, Fernie AR, Ribas-Carbo M, Gago J, Florez-Sarasa I, Flexas J. Different Metabolic Roles for Alternative Oxidase in Leaves of Palustrine and Terrestrial Species. FRONTIERS IN PLANT SCIENCE 2021; 12:752795. [PMID: 34804092 PMCID: PMC8600120 DOI: 10.3389/fpls.2021.752795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
Collapse
Affiliation(s)
- Nestor Fernandez Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jose Ortíz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alicia Rivas-Medina
- Departamento de Ingeniería Topográfica y Cartografía, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
| | - Allison McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jorge Gago
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| |
Collapse
|
44
|
Dang Z, Jia Y, Tian Y, Li J, Zhang Y, Huang L, Liang C, Lockhart PJ, Matthew C, Li FY. Transcriptome-Wide Gene Expression Plasticity in Stipa grandis in Response to Grazing Intensity Differences. Int J Mol Sci 2021; 22:ijms222111882. [PMID: 34769324 PMCID: PMC8611654 DOI: 10.3390/ijms222111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is a representative species for studying the grazing effect on typical steppe plants in the Inner Mongolia Plateau. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Here, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. As a result, a total of 2357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified in RNA-Seq and qRT-PCR analyses that indicated the modulation of the Calvin–Benson cycle and photorespiration metabolic pathways. The key gene expression profiles encoding various proteins (e.g., ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase, etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection and identifying important questions to address in future transcriptome studies.
Collapse
Affiliation(s)
- Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
- Correspondence: ; Tel.: +86-1514-802-6396
| | - Yuanyuan Jia
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Jiabin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| | - Yanan Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| | - Lei Huang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| | - Peter J. Lockhart
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand;
| | - Cory Matthew
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand;
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Y.J.); (J.L.); (Y.Z.); (L.H.); (C.L.); (F.Y.L.)
| |
Collapse
|
45
|
Iñiguez C, Aguiló-Nicolau P, Galmés J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem Soc Trans 2021; 49:2007-2019. [PMID: 34623388 DOI: 10.1042/bst20201056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
46
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
47
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
48
|
Dellero Y, Mauve C, Jossier M, Hodges M. The Impact of Photorespiratory Glycolate Oxidase Activity on Arabidopsis thaliana Leaf Soluble Amino Acid Pool Sizes during Acclimation to Low Atmospheric CO 2 Concentrations. Metabolites 2021; 11:metabo11080501. [PMID: 34436442 PMCID: PMC8399254 DOI: 10.3390/metabo11080501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Photorespiration is a metabolic process that removes toxic 2-phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. It is essential for plant growth under ambient air, and it can play an important role under stress conditions that reduce CO2 entry into the leaf thus enhancing photorespiration. The aim of the study was to determine the impact of photorespiration on Arabidopsis thaliana leaf amino acid metabolism under low atmospheric CO2 concentrations. To achieve this, wild-type plants and photorespiratory glycolate oxidase (gox) mutants were given either short-term (4 h) or long-term (1 to 8 d) low atmospheric CO2 concentration treatments and leaf amino acid levels were measured and analyzed. Low CO2 treatments rapidly decreased net CO2 assimilation rate and triggered a broad reconfiguration of soluble amino acids. The most significant changes involved photorespiratory Gly and Ser, aromatic and branched-chain amino acids as well as Ala, Asp, Asn, Arg, GABA and homoSer. While the Gly/Ser ratio increased in all Arabidopsis lines between air and low CO2 conditions, low CO2 conditions led to a higher increase in both Gly and Ser contents in gox1 and gox2.2 mutants when compared to wild-type and gox2.1 plants. Results are discussed with respect to potential limiting enzymatic steps with a special emphasis on photorespiratory aminotransferase activities and the complexity of photorespiration.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Institute for Research for Agriculture, Food and Environment (INRAE), Institut Agro, Univ Rennes, 35653 Le Rheu, France
- Correspondence: (Y.D.); (M.H.)
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
| | - Mathieu Jossier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
- Correspondence: (Y.D.); (M.H.)
| |
Collapse
|
49
|
Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X. Glycolate oxidase-dependent H 2O 2 production regulates IAA biosynthesis in rice. BMC PLANT BIOLOGY 2021; 21:326. [PMID: 34229625 PMCID: PMC8261990 DOI: 10.1186/s12870-021-03112-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase β (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zhanqiao Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, No.1, Nongda Road, Changsha, 410128, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China.
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
50
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|