1
|
Cho JS, Kim MH, Jang HA, Choi H, Jeon HW, Lee H, Ko JH. Functional impacts of PtrMYB203 on phenylpropanoid pathway regulation and wood properties in hybrid poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109118. [PMID: 39270565 DOI: 10.1016/j.plaphy.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The phenylpropanoid pathway is vital for plant growth and development, producing lignin and flavonoids. This study investigates PtrMYB203, a homolog of MYB repressors of proanthocyanidin (PA) biosynthesis in Populus trichocarpa, as a transcriptional repressor in the phenylpropanoid pathway of hybrid poplar (Populus alba x P. glandulosa). Overexpression of PtrMYB203 (35S::PtrMYB203) in hybrid poplar detrimentally impacted plant growth and development. Histological analysis revealed irregular xylem vessel formation and decreased lignin content, corroborated by Klason lignin assays. Moreover, 35S::PtrMYB203 transgenic poplars exhibited significant decreases in anthocyanin and PA accumulations in callus tissues, even under high light conditions. Quantitative RT-PCR analysis and protoplast-based transcriptional activation assay confirmed the downregulation of lignin and flavonoid biosynthesis genes. This genetic modification also alters the expression of several MYB transcription factors, essential for phenylpropanoid pathway regulation. Remarkably, saccharification efficiency in the 35S::PtrMYB203 poplar was improved by over 34% following hot water treatment alone. These findings suggest PtrMYB203 as a potential genetic target for enhancing wood properties for bioenergy production, providing valuable insights into the manipulation of metabolite pathways in woody perennials to advance wood biotechnology.
Collapse
Affiliation(s)
- Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Hyun-A Jang
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea; Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea.
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea.
| | - Hyung-Woo Jeon
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea.
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
2
|
Wu L, Xu Y, Qi K, Jiang X, He M, Cui Y, Bao J, Gu C, Zhang S. Self S-RNase reduces the expression of two pollen-specific COBRA genes to inhibit pollen tube growth in pear. MOLECULAR HORTICULTURE 2023; 3:26. [PMID: 38037174 PMCID: PMC10691131 DOI: 10.1186/s43897-023-00074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Due to self-incompatibility (SI) prevents self-fertilization, natural or artificial cross-pollination has been conducted in many orchards to stabilize fruit yield. However, it is still puzzled which routes of self S-RNase arresting pollen tube growth. Herein, 17 COBRA genes were isolated from pear genome. Of these genes, the pollen-specifically expressed PbCOB.A.1 and PbCOB.A.2 positively mediates pollen tube growth. The promoters of PbCOB.A.1 and/or PbCOB.A.2 were bound and activated by PbABF.E.2 (an ABRE-binding factor) and PbC2H2.K16.2 (a C2H2-type zinc finger protein). Notably, the expressions of PbCOB.A.1, PbCOB.A.2, and PbC2H2.K16.2 were repressed by self S-RNase, suggesting that self S-RNase reduces the expression of PbCOB.A.1 and PbCOB.A.2 by decreasing the expression of their upstream factors, such as PbC2H2.K16.2, to arrest pollen tube growth. PbCOB.A.1 or PbCOB.A.2 accelerates the growth of pollen tubes treated by self S-RNase, but can hardly affect level of reactive oxygen species and deploymerization of actin cytoskeleton in pollen tubes and cannot physically interact with any reported proteins involved in SI. These results indicate that PbCOB.A.1 and PbCOB.A.2 may not relieve S-RNase toxicity in incompatible pollen tube. The information provides a new route to elucidate the arresting pollen tube growth during SI reaction.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Xu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanbo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Sajjad M, Ahmad A, Riaz MW, Hussain Q, Yasir M, Lu M. Recent genome resequencing paraded COBRA- Like gene family roles in abiotic stress and wood formation in Poplar. FRONTIERS IN PLANT SCIENCE 2023; 14:1242836. [PMID: 37780503 PMCID: PMC10540467 DOI: 10.3389/fpls.2023.1242836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
A cell wall determines the mechanical properties of a cell, serves as a barrier against plant stresses, and allows cell division and growth processes. The COBRA-Like (COBL) gene family encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that controls cellulose deposition and cell progression in plants by contributing to the microfibril orientation of a cell wall. Despite being studied in different plant species, there is a dearth of the comprehensive global analysis of COBL genes in poplar. Poplar is employed as a model woody plant to study abiotic stresses and biomass production in tree research. Improved genome resequencing has enabled the comprehensive exploration of the evolution and functional capacities of PtrCOBLs (Poplar COBRA-Like genes) in poplar. Phylogeny analysis has discerned and classified PtrCOBLs into two groups resembling the Arabidopsis COBL family, and group I genes possess longer proteins but have fewer exons than group II. Analysis of gene structure and motifs revealed PtrCOBLs maintained a rather stable motif and exon-intron pattern across members of the same group. Synteny and collinearity analyses exhibited that the evolution of the COBL gene family was heavily influenced by gene duplication events. PtrCOBL genes have undergone both segmental duplication and tandem duplication, followed by purifying selection. Promotor analysis flaunted various phytohormone-, growth- and stress-related cis-elements (e.g., MYB, ABA, MeJA, SA, AuxR, and ATBP1). Likewise, 29 Ptr-miRNAs of 20 families were found targeting 11 PtrCOBL genes. PtrCOBLs were found localized at the plasma membrane and extracellular matrix, while gene ontology analysis showed their involvement in plant development, plant growth, stress response, cellulose biosynthesis, and cell wall biogenesis. RNA-seq datasets depicted the bulk of PtrCOBL genes expression being found in plant stem tissues and leaves, rendering mechanical strength and rejoinders to environmental cues. PtrCOBL2, 3, 10, and 11 manifested the highest expression in vasculature and abiotic stress, and resemblant expression trends were upheld by qRT-PCR. Co-expression network analysis identified PtrCOBL2 and PtrCOBL3 as hub genes across all abiotic stresses and wood developing tissues. The current study reports regulating roles of PtrCOBLs in xylem differentiating tissues, tension wood formation, and abiotic stress latency that lay the groundwork for future functional studies of the PtrCOBL genes in poplar breeding.
Collapse
Affiliation(s)
- Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Adeel Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resource Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Meng‐Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
4
|
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun S, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J. Environmental gradients reveal stress hubs pre-dating plant terrestrialization. NATURE PLANTS 2023; 9:1419-1438. [PMID: 37640935 PMCID: PMC10505561 DOI: 10.1038/s41477-023-01491-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.
Collapse
Affiliation(s)
- Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Denis Krone
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Siqi Sun
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Rasmus Steinkamp
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Henrik Buschmann
- Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Oliver Valerius
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Lorenz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and SAG Culture Collection of Algae, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- Goettingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
| |
Collapse
|
5
|
Qiu C, Chen J, Wu W, Liao B, Zheng X, Li Y, Huang J, Shi J, Hao Z. Genome-Wide Analysis and Abiotic Stress-Responsive Patterns of COBRA-like Gene Family in Liriodendron chinense. PLANTS (BASEL, SWITZERLAND) 2023; 12:1616. [PMID: 37111840 PMCID: PMC10143436 DOI: 10.3390/plants12081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The COBRA gene encodes a plant-specific glycosylphosphatidylinositol (GPI)-anchored protein (GAP), which plays an important role in cell wall cellulose deposition. In this study, a total of 7 COBRA-like (COBL) genes were identified in the genome of the rare and endangered woody plant Liriodendron chinense (L. chinense). Phylogenetic analysis showed that these LcCOBL genes can be divided into two subfamilies, i.e., SF I and II. In the conserved motif analysis of two subfamilies, SF I contained 10 predicted motifs, while SF II contained 4-6 motifs. The tissue-specific expression patterns showed that LcCOBL5 was highly expressed in the phloem and xylem, indicating its potential role in cellulose biosynthesis. In addition, the cis-element analysis and abiotic stress transcriptomes showed that three LcCOBLs, LcCOBL3, LcCOBL4 and LcCOBL5, transcriptionally responded to abiotic stresses, including cold, drought and heat stress. In particular, the quantitative reverse-transcription PCR (qRT-PCR) analysis further confirmed that the LcCOBL3 gene was significantly upregulated in response to cold stress and peaked at 24-48 h, hinting at its potential role in the mechanism of cold resistance in L. chinense. Moreover, GFP-fused LcCOBL2, LcCOBL4 and LcCOBL5 were found to be localized in the cytomembrane. In summary, we expect these results to be beneficial for research on both the functions of LcCOBL genes and resistance breeding in L. chinense.
Collapse
Affiliation(s)
- Chen Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bojun Liao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese Fir at Fujian Yangkou Forest Farm, Nanping 353211, China
| | - Yong Li
- National Germplasm Bank of Chinese Fir at Fujian Yangkou Forest Farm, Nanping 353211, China
| | - Jing Huang
- Jinling Institute of Technology, Nanjing 211169, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of Cicer-Ascochyta Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1034-1047. [PMID: 35939621 DOI: 10.1094/mpmi-06-22-0134-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ritu Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yeshveer Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Zhou K. The regulation of the cell wall by glycosylphosphatidylinositol-anchored proteins in Arabidopsis. Front Cell Dev Biol 2022; 10:904714. [PMID: 36036018 PMCID: PMC9412048 DOI: 10.3389/fcell.2022.904714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharides-based cell wall covers the plant cell, shaping it and protecting it from the harsh environment. Cellulose microfibrils constitute the cell wall backbone and are embedded in a matrix of pectic and hemicellulosic polysaccharides and glycoproteins. Various environmental and developmental cues can regulate the plant cell wall, and diverse glycosylphosphatidylinositol (GPI)-anchored proteins participate in these regulations. GPI is a common lipid modification on eukaryotic proteins, which covalently tethers the proteins to the membrane lipid bilayer. Catalyzed by a series of enzymic complexes, protein precursors are post-translationally modified at their hydrophobic carboxyl-terminus in the endomembrane system and anchored to the lipid bilayer through an oligosaccharidic GPI modification. Ultimately, mature proteins reach the plasma membrane via the secretory pathway facing toward the apoplast and cell wall in plants. In Arabidopsis, more than three hundred GPI-anchored proteins (GPI-APs) have been predicted, and many are reported to be involved in diverse regulations of the cell wall. In this review, we summarize GPI-APs involved in cell wall regulation. GPI-APs are proposed to act as structural components of the cell wall, organize cellulose microfibrils at the cell surface, and during cell wall integrity signaling transduction. Besides regulating protein trafficking, the GPI modification is potentially governed by a GPI shedding system that cleaves and releases the GPI-anchored proteins from the plasma membrane into the cell wall.
Collapse
|
8
|
Zhao Y, Su X, Wang X, Wang M, Feng X, Aamir Manzoor M, Cai Y. Comparative genomic analysis of the COBRA genes in six Rosaceae species and expression analysis in Chinese white pear ( Pyrus bretschneideri). PeerJ 2022; 10:e13723. [PMID: 35873912 PMCID: PMC9306554 DOI: 10.7717/peerj.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023] Open
Abstract
COBRA-Like (COBL) genes encode a glycosylphosphatidylinositol (GPI) anchoring protein unique to plants. In current study, 87 COBRA genes were identified in 6 Rosaceae species, including Pyrus bretschneideri (16 genes), Malus domestica (22 genes), Fragaria vesca (13 genes), Prunus mume (11 genes), Rubus occidentalis (13 genes) and Prunus avium (12 genes). We revealed the evolution of the COBRA gene in six Rosaceae species by phylogeny, gene structure, conservative sequence, hydrophobicity analysis, gene replication events and sliding window analysis. In addition, based on the analysis of expression patterns in pear fruit combined with bioinformatics, we identified PbCOBL12 and PbCOBL13 as potential genes regulating secondary cell wall (SCW) formation during pear stone cell development. This study aimed to understand the evolutionary relationship of the COBRA gene in Rosaceae species, clarify the potential function of COBRA in pear fruit development, and provide essential theoretical basis and gene resources for improving pear fruit quality through genetical modification mechanism.
Collapse
Affiliation(s)
- Yu Zhao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xueqiang Su
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, HeFei, China
| | - Xinya Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Mengna Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiaofeng Feng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Romero-Hernandez G, Martinez M. Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:824422. [PMID: 35599859 PMCID: PMC9116192 DOI: 10.3389/fpls.2022.824422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The success in the response of plants to environmental stressors depends on the regulatory networks that connect plant perception and plant response. In these networks, phosphorylation is a key mechanism to activate or deactivate the proteins involved. Protein kinases are responsible for phosphorylations and play a very relevant role in transmitting the signals. Here, we review the present knowledge on the contribution of protein kinases to herbivore-triggered responses in plants, with a focus on the information related to the regulated kinases accompanying herbivory in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance of several kinase groups directly involved in the perception of the attacker or typically associated with the transmission of stress-related signals. To highlight the importance of these protein kinase families in the response to arthropod herbivores, a compilation of previous knowledge on their members is offered. When available, this information is compared with previous findings on their role against pathogens. Besides, knowledge of their homologous counterparts in other plant-herbivore interactions is provided. Altogether, these observations resemble the complexity of the kinase-related mechanisms involved in the plant response. Understanding how kinase-based pathways coordinate in response to a specific threat remains a major challenge for future research.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Yang Q, Wang S, Chen H, You L, Liu F, Liu Z. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed (Brassica napus L.). PLoS One 2021; 16:e0260268. [PMID: 34818361 PMCID: PMC8612548 DOI: 10.1371/journal.pone.0260268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
The COBRA-like (COBL) genes play key roles in cell anisotropic expansion and the orientation of microfibrils. Mutations in these genes cause the brittle stem and induce pathogen responsive phenotypes in Arabidopsis and several crop plants. In this study, an in silico genome-wide analysis was performed to identify the COBL family members in Brassica. We identified 44, 20 and 23 COBL genes in B. napus and its diploid progenitor species B. rapa and B. oleracea, respectively. All the predicted COBL genes were phylogenetically clustered into two groups: the AtCOB group and the AtCOBL7 group. The conserved chromosome locations of COBLs in Arabidopsis and Brassica, together with clustering, indicated that the expansion of the COBL gene family in B. napus was primarily attributable to whole-genome triplication. Among the BnaCOBLs, 22 contained all the conserved motifs and derived from 9 of 12 subgroups. RNA-seq analysis was used to determine the tissue preferential expression patterns of various subgroups. BnaCOBL9, BnaCOBL35 and BnaCOBL41 were highly expressed in stem with high-breaking resistance, which implies these AtCOB subgroup members may be involved in stem development and stem breaking resistance of rapeseed. Our results of this study may help to elucidate the molecular properties of the COBRA gene family and provide informative clues for high stem-breaking resistance studies.
Collapse
Affiliation(s)
- Qian Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Shan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Fangying Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
11
|
Julius BT, McCubbin TJ, Mertz RA, Baert N, Knoblauch J, Grant DG, Conner K, Bihmidine S, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski TL, McCann MC, Carpita NC, Knoblauch M, Braun DM. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. THE PLANT CELL 2021; 33:3348-3366. [PMID: 34323976 PMCID: PMC8505866 DOI: 10.1093/plcell/koab193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.
Collapse
Affiliation(s)
- Benjamin T Julius
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Tyler J McCubbin
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Rachel A Mertz
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Present address: Inari Agriculture, West Lafayette, Indiana 47906, USA
| | - Nick Baert
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, USA
| | - Kyle Conner
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Saadia Bihmidine
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Chomet
- NRGene Inc., 8910 University Center Lane, San Diego, California 92122, USA
| | - Ruth Wagner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Jeff Woessner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Karen Grote
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | | | | | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - David M Braun
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Author for correspondence:
| |
Collapse
|
12
|
Menna A, Dora S, Sancho-Andrés G, Kashyap A, Meena MK, Sklodowski K, Gasperini D, Coll NS, Sánchez-Rodríguez C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol 2021; 19:161. [PMID: 34404410 PMCID: PMC8371875 DOI: 10.1186/s12915-021-01100-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.
Collapse
Affiliation(s)
- Alexandra Menna
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Susanne Dora
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | | | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | | | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | | |
Collapse
|
13
|
Xie Y, Ying J, Xu L, Wang Y, Dong J, Chen Y, Tang M, Li C, M'mbone Muleke E, Liu L. Genome-wide sRNA and mRNA transcriptomic profiling insights into dynamic regulation of taproot thickening in radish (Raphanus sativus L.). BMC PLANT BIOLOGY 2020; 20:373. [PMID: 32770962 PMCID: PMC7414755 DOI: 10.1186/s12870-020-02585-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Taproot is the main edible organ and ultimately determines radish yield and quality. However, the precise molecular mechanism underlying taproot thickening awaits further investigation in radish. Here, RNA-seq was performed to identify critical genes involved in radish taproot thickening from three advanced inbred lines with different root size. RESULTS A total of 2606 differentially expressed genes (DEGs) were shared between 'NAU-DY' (large acicular) and 'NAU-YB' (medium obovate), which were significantly enriched in 'phenylpropanoid biosynthesis', 'glucosinolate biosynthesis', and 'starch and sucrose metabolism' pathway. Meanwhile, a total of 16 differentially expressed miRNAs (DEMs) were shared between 'NAU-DY' and 'NAU-YH' (small circular), whereas 12 miRNAs exhibited specific differential expression in 'NAU-DY'. Association analysis indicated that miR393a-bHLH77, miR167c-ARF8, and miR5658-APL might be key factors to biological phenomenon of taproot type variation, and a putative regulatory model of taproot thickening and development was proposed. Furthermore, several critical genes including SUS1, EXPB3, and CDC5 were characterized and profiled by RT-qPCR analysis. CONCLUSION This integrated study on the transcriptional and post-transcriptional profiles could provide new insights into comprehensive understanding of the molecular regulatory mechanism underlying taproot thickening in root vegetable crops.
Collapse
Affiliation(s)
- Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Everlyne M'mbone Muleke
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
14
|
Ye W, Wang T, Wei W, Lou S, Lan F, Zhu S, Li Q, Ji G, Lin C, Wu X, Ma L. The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte. PLANT & CELL PHYSIOLOGY 2020; 61:882-896. [PMID: 32044993 DOI: 10.1093/pcp/pcaa013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 01/31/2020] [Indexed: 05/09/2023]
Abstract
Spartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used Pacific Biosciences (PacBio) full-length single-molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt gradient experiments. High-quality unigenes, transcription factors, non-coding RNA and Spartina-specific transcripts were identified. Co-expression network analysis found that protein kinase-encoding genes (SaOST1, SaCIPK10 and SaLRRs) are hub genes in the salt tolerance regulatory network. High salt stress induced the expression of transcription factors but repressed the expression of long non-coding RNAs. The Spartina transcriptome is closer to rice than Arabidopsis, and a higher proportion of transporter and transcription factor-encoding transcripts have been found in Spartina. Transcriptome analysis showed that high salt stress induced the expression of carbohydrate metabolism, especially cell-wall biosynthesis-related genes in Spartina, and repressed its expression in rice. Compared with rice, high salt stress highly induced the expression of stress response, protein modification and redox-related gene expression and greatly inhibited translation in Spartina. High salt stress also induced alternative splicing in Spartina, while differentially expressed alternative splicing events associated with photosynthesis were overrepresented in Spartina but not in rice. Finally, we built the SAPacBio website for visualizing full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes and alternative splicing events in Spartina. Overall, this study suggests that the salt tolerance mechanism in Spartina is different from rice in many aspects and is far more complex than expected.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Taotao Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuaitong Lou
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Faxiu Lan
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Qinzhen Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Liuyin Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Mielke S, Gasperini D. Interplay between Plant Cell Walls and Jasmonate Production. PLANT & CELL PHYSIOLOGY 2019; 60:2629-2637. [PMID: 31241137 DOI: 10.1093/pcp/pcz119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| |
Collapse
|
16
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
17
|
Zhou K. GPI-anchored SKS proteins regulate root development through controlling cell polar expansion and cell wall synthesis. Biochem Biophys Res Commun 2018; 509:119-124. [PMID: 30578078 DOI: 10.1016/j.bbrc.2018.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins were reported to be involved in many developmental progresses in Arabidopsis. Here I report that, a group of homologous glycosylphosphatidylinositol-anchored proteins from SKU5-Similar family regulate seedling root development of Arabidopsis through controlling cell polar expansion and cell wall synthesis. Due to the irregular expansion of root cells and the defective synthesis of cell walls, their knockout mutants generated shorter roots with irregularly shaped root cells, and thicker cell walls.
Collapse
Affiliation(s)
- Ke Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
19
|
Le PY, Jeon HW, Kim MH, Park EJ, Lee H, Hwang I, Han KH, Ko JH. Gain-of-function mutation of AtDICE1, encoding a putative endoplasmic reticulum-localized membrane protein, causes defects in anisotropic cell elongation by disturbing cell wall integrity in Arabidopsis. ANNALS OF BOTANY 2018; 122:151-164. [PMID: 29659701 PMCID: PMC6025203 DOI: 10.1093/aob/mcy049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 05/30/2023]
Abstract
Background and Aims Anisotropic cell elongation depends on cell wall relaxation and cellulose microfibril arrangement. The aim of this study was to characterize the molecular function of AtDICE1 encoding a novel transmembrane protein involved in anisotropic cell elongation in Arabidopsis. Methods Phenotypic characterizations of transgenic Arabidopsis plants mis-regulating AtDICE1 expression with different pharmacological treatments were made, and biochemical, cell biological and transcriptome analyses were performed. Key Results Upregulation of AtDICE1 in Arabidopsis (35S::AtDICE1) resulted in severe dwarfism, probably caused by defects in anisotropic cell elongation. Epidermal cell swelling was evident in all tissues, and abnormal secondary wall thickenings were observed in pith cells of stems. These phenotypes were reproduced not only by inducible expression of AtDICE1 but also by overexpression of its poplar homologue in Arabidopsis. RNA interference suppression lines of AtDICE1 resulted in no observable phenotypic changes. Interestingly, wild-type plants treated with isoxaben, a cellulose biosynthesis inhibitor, phenocopied the 35S::AtDICE1 plants, suggesting that cellulose biosynthesis was compromised in the 35S::AtDICE1 plants. Indeed, disturbed cortical microtubule arrangements in 35S::AtDICE1/GFP-TuA6 plants were observed, and the cellulose content was significantly reduced in 35S::AtDICE1 plants. A promoter::GUS analysis showed that AtDICE1 is mainly expressed in vascular tissue, and transient expression of GFP:AtDICE1 in tobacco suggests that AtDICE1 is probably localized in the endoplasmic reticulum (ER). In addition, the external N-terminal conserved domain of AtDICE1 was found to be necessary for AtDICE1 function. Whole transcriptome analyses of 35S::AtDICE1 revealed that many genes involved in cell wall modification and stress/defence responses were mis-regulated. Conclusions AtDICE1, a novel ER-localized transmembrane protein, may contribute to anisotropic cell elongation in the formation of vascular tissue by affecting cellulose biosynthesis.
Collapse
Affiliation(s)
- Phi-Yen Le
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon, Republic of Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon, Republic of Korea
| | - Indeok Hwang
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, USA
| | - Kyung-Hwan Han
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
20
|
Teixeira MA, Rajewski A, He J, Castaneda OG, Litt A, Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics 2018; 19:239. [PMID: 29625550 PMCID: PMC5889549 DOI: 10.1186/s12864-018-4606-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Background Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. Results This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. Conclusions This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4606-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella A Teixeira
- Department of Nematology, University of California, Riverside, California, USA
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, California, USA
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA.,Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, California, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, California, USA.
| |
Collapse
|
21
|
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. NATURE PLANTS 2017; 3:17009. [PMID: 28211849 DOI: 10.1038/nplants.2017.9] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/21/2017] [Indexed: 05/03/2023]
Abstract
The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.
Collapse
Affiliation(s)
- Keming Hu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Xia
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinli Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Vilakazi CS, Dubery IA, Piater LA. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:155-165. [PMID: 27936405 DOI: 10.1016/j.plaphy.2016.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 05/24/2023]
Abstract
Lipopolysaccharide (LPS) is an amphiphatic bacterial glycoconjugate found on the external membrane of Gram-negative bacteria. This endotoxin is considered as a microbe-associated molecular pattern (MAMP) molecule and has been shown to elicit defense responses in plants. Here, LPS-interacting proteins from Arabidopsis thaliana plasma membrane (PM)-type fractions were captured and identified in order to investigate those involved in LPS perception and linked to triggering of innate immune responses. A novel proteomics-based affinity-capture strategy coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for the enrichment and identification of LPS-interacting proteins. As such, LPS isolated from Burkholderia cepacia (LPSB.cep.) was immobilized on three independent and distinct affinity-based matrices to serve as bait for interacting proteins from A. thaliana leaf and callus tissue. These were resolved by 1D electrophoresis and identified by mass spectrometry. Proteins specifically bound to LPSB.cep. have been implicated in membrane structure (e.g. COBRA-like and tubulin proteins), membrane trafficking and/or transport (e.g. soluble NSF attachment protein receptor (SNARE) proteins, patellin, aquaporin, PM instrinsic proteins (PIP) and H+-ATPase), signal transduction (receptor-like kinases and calcium-dependent protein kinases) as well as defense/stress responses (e.g. hypersensitive-induced response (HIR) proteins, jacalin-like lectin domain-containing protein and myrosinase-binding proteins). The novel affinity-capture strategy for the enrichment of LPS-interacting proteins proved to be effective, especially in the binding of proteins involved in plant defense responses, and can thus be used to elucidate LPS-mediated molecular recognition and disease mechanism(s).
Collapse
Affiliation(s)
- Cornelius S Vilakazi
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, PO. Box 524, Auckland Park, 2006, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, PO. Box 524, Auckland Park, 2006, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, PO. Box 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
23
|
Ibrahim M, Yasmeen S, Zaman G, Bin L, Al-Qurainy F, Athar HUR, Shah KH, Khurshid M, Ashraf M. Protein profiling analysis of Gossypium hirsutum (Malvales: Malvaceae) leaves infested by cotton whitefly Bemisia tabaci (Homoptera: Aleyrodidae). APPLIED ENTOMOLOGY AND ZOOLOGY 2016; 51:599-607. [PMID: 0 DOI: 10.1007/s13355-016-0436-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
24
|
Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, Savino VN, Martelli GP, Saldarelli P. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genomics 2016; 17:475. [PMID: 27350531 PMCID: PMC4924284 DOI: 10.1186/s12864-016-2833-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv. Leccino show much milder symptoms, than the more widely grown and highly susceptible cv. Ogliarola salentina. To determine whether these field observations underlie a tolerant condition of cv. Leccino, which could be exploited for lessening the economic impact of the disease on the local olive industry, transcriptional changes occurring in plants of the two cultivars affected by Xfp were investigated. RESULTS A global quantitative transcriptome profiling comparing susceptible (Ogliarola salentina) and tolerant (Leccino) olive cultivars, infected or not by Xfp, was done on messenger RNA (mRNAs) extracted from xylem tissues. The study revealed that 659 and 447 genes were differentially regulated in cvs Leccino and Ogliarola upon Xfp infection, respectively, whereas 512 genes were altered when the transcriptome of both infected cultivars was compared. Analysis of these differentially expressed genes (DEGs) shows that the presence of Xfp is perceived by the plants of both cultivars, in which it triggers a differential response strongly involving the cell wall. Up-regulation of genes encoding receptor-like kinases (RLK) and receptor-like proteins (RLP) is the predominant response of cv. Leccino, which is missing in cv. Ogliarola salentina. Moreover, both cultivars react with a strong re-modelling of cell wall proteins. These data suggest that Xfp elicits a different transcriptome response in the two cultivars, which determines a lower pathogen concentration in cv. Leccino and indicates that this cultivar may harbor genetic constituents and/or regulatory elements which counteract Xfp infection. CONCLUSIONS Collectively these findings suggest that cv. Leccino is endowed with an intrinsic tolerance to Xfp, which makes it eligible for further studies aiming at investigating molecular basis and pathways modulating its different defense response.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- />Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, Bari, Italy
| | - Massimiliano Morelli
- />Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, SS Bari, via Amendola 122/D, Bari, Italy
| | - Maria Saponari
- />Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, SS Bari, via Amendola 122/D, Bari, Italy
| | - Giuliana Loconsole
- />Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, Bari, Italy
| | - Michela Chiumenti
- />Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, SS Bari, via Amendola 122/D, Bari, Italy
| | - Donato Boscia
- />Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, SS Bari, via Amendola 122/D, Bari, Italy
| | - Vito N. Savino
- />Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, Bari, Italy
| | - Giovanni P. Martelli
- />Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, Bari, Italy
| | - Pasquale Saldarelli
- />Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, SS Bari, via Amendola 122/D, Bari, Italy
| |
Collapse
|
25
|
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci U S A 2015; 112:16048-53. [PMID: 26655738 DOI: 10.1073/pnas.1521675112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We performed a screen for genetic suppressors of cobra, an Arabidopsis mutant with defects in cellulose formation and an increased ratio of unesterified/esterified pectin. We identified a suppressor named mongoose1 (mon1) that suppressed the growth defects of cobra, partially restored cellulose levels, and restored the esterification ratio of pectin to wild-type levels. mon1 was mapped to the MEDIATOR16 (MED16) locus, a tail mediator subunit, also known as SENSITIVE TO FREEZING6 (SFR6). When separated from the cobra mutation, mutations in MED16 caused resistance to cellulose biosynthesis inhibitors, consistent with their ability to suppress the cobra cellulose deficiency. Transcriptome analysis revealed that a number of cell wall genes are misregulated in med16 mutants. Two of these genes encode pectin methylesterase inhibitors, which, when ectopically expressed, partially suppressed the cobra phenotype. This suggests that cellulose biosynthesis can be affected by the esterification levels of pectin, possibly through modifying cell wall integrity or the interaction of pectin and cellulose.
Collapse
|
26
|
Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS. New candidate genes for the fine regulation of the colour of grapes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4427-40. [PMID: 26071528 PMCID: PMC4507754 DOI: 10.1093/jxb/erv159] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last decade, great progress has been made in clarifying the main determinants of anthocyanin accumulation in grape berry skin. However, the molecular details of the fine variation among cultivars, which ultimately contributes to wine typicity, are still not completely understood. To shed light on this issue, the grapes of 170 F1 progeny from the cross 'Syrah'×'Pinot Noir' were characterized at the mature stage for the content of 15 anthocyanins during four growing seasons. This huge data set was used in combination with a dense genetic map to detect genomic regions controlling the anthocyanin pathway both at key enzymatic points and at particular branches. Genes putatively involved in fine tuning the global regulation of anthocyanin biosynthesis were identified by exploring the gene predictions in the QTL (quantitative trait locus) confidence intervals and their expression profile during berry development in offspring with contrasting anthocyanin accumulation. New information on some aspects which had scarcely been investigated so far, such as anthocyanin transport into the vacuole, or completely neglected, such as acylation, is provided. These genes represent a valuable resource in grapevine molecular-based breeding programmes to improve both fruit and wine quality and to tailor wine sensory properties according to consumer demand.
Collapse
Affiliation(s)
- Laura Costantini
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Silvia Lorenzi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| |
Collapse
|
27
|
Bhattacharjee S, Noor JJ, Gohain B, Gulabani H, Dnyaneshwar IK, Singla A. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story. IUBMB Life 2015; 67:524-32. [PMID: 26177826 DOI: 10.1002/iub.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
In its lifetime a plant is exposed to pathogens of diverse types. Although methods of surveillance are broadly pathogen-individualized, immune signaling ultimately connect to common core networks maintained by key protein hubs. Defense elicitations modulate these hubs to re-allocate energy from central metabolic pathway into processes that execute immunity. Because unregulated defenses severely decrease growth and productivity of the host, signaling regulators within the networks function to achieve cellular equilibrium once the threat is minimized. Protein modifications by post-translational processes regulate the molecular switches and crosstalks between interconnected pathways spatially and temporally. Covalent modification of host targets connected to hubs are strategies used by most virulent effectors and result in re-routing signals to suppress host defenses. Resistance is a result of activation of specialized classes of receptors that short-circuit effector activities by co-localizing via post-translational modifications (PTMs) with effector targets. Despite advancement in proteome methodologies, our understanding of how PTMs regulate plant defenses remains elusive. This review presents protein-modifications as forefront regulators of plant innate immunity.
Collapse
Affiliation(s)
- Saikat Bhattacharjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bornali Gohain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hitika Gulabani
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | | | - Ankit Singla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
28
|
Taurino M, Abelenda JA, Río-Alvarez I, Navarro C, Vicedo B, Farmaki T, Jiménez P, García-Agustín P, López-Solanilla E, Prat S, Rojo E, Sánchez-Serrano JJ, Sanmartín M. Jasmonate-dependent modifications of the pectin matrix during potato development function as a defense mechanism targeted by Dickeya dadantii virulence factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:418-29. [PMID: 24286390 DOI: 10.1111/tpj.12393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.
Collapse
Affiliation(s)
- Marco Taurino
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. THE ARABIDOPSIS BOOK 2014; 12:e0169. [PMID: 24465174 PMCID: PMC3894906 DOI: 10.1199/tab.0169] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Shundai Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Logan Bashline
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to
| |
Collapse
|
30
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
31
|
Carrier G, Huang YF, Le Cunff L, Fournier-Level A, Vialet S, Souquet JM, Cheynier V, Terrier N, This P. Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:87-95. [PMID: 23684499 DOI: 10.1016/j.plaphy.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/19/2013] [Indexed: 05/02/2023]
Abstract
Proanthocyanidins (PA) play a major role in plant protection against biotic and abiotic stresses. Moreover these molecules are known to be beneficial for human health and are responsible for astringency of foods and beverages such as wine and thus have a great impact on the final quality of the product. Genes playing a role in the PA pathway are only partially known. The amount of available transcriptomic and genetic data to select candidate genes without a priori knowledge from orthologous function increases every day. However, the methods used so far generate so many candidate genes that it is impossible to validate all of them. In this study, we used an integrative strategy based on different screening methods to select a reduced list of candidate genes. We have crossed results from different screening methods including QTL mapping and three transcriptomic studies to select 20 candidate genes, located in QTL intervals and fulfilling at least two transcriptomic screenings. This list includes three glucosyltransferases, already suspected to have a role in the PA biosynthetic pathway. Among the 17 remaining genes, we selected three genes to perform further analysis by association genetic studies. For each of these genes, we found a polymorphism linked to PA variation. The three genes (VvMybC2-L1, VvGAT-like and VvCob-like), not previously known to play a role in PA synthesis, are promising candidates for further molecular physiology studies.
Collapse
Affiliation(s)
- Grégory Carrier
- UMR AGAP, INRA-Montpellier SupAgro-CIRAD, 2 Place Pierre Viala, F-34060 Montpellier, France; UMT Geno-Vigne, 2 Place Viala, F-34060 Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:486-97. [PMID: 23384085 DOI: 10.1111/tpj.12139] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/29/2013] [Accepted: 01/31/2012] [Indexed: 05/06/2023]
Abstract
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)-anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C-terminal hydrophobic residues. GPI-anchored proteins are widespread cell sensors in mammals, especially during egg-sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell-cell communications in plants.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
T-DNA insertion mutants have been widely used to define gene functions in Arabidopsis and in other plants. Here, we report an unexpected phenomenon of epigenetic suppression of T-DNA insertion mutants in Arabidopsis. When the two T-DNA insertion mutants, yuc1-1 and ag-TD, were crossed together, the defects in all of the ag-TD plants in the F2 population were partially suppressed regardless of the presence of yuc1-1. Conversion of ag-TD to the suppressed ag-TD (named as ag-TD*) did not follow the laws of Mendelian genetics. The ag-TD* could be stably transmitted for many generations without reverting to ag-TD, and ag-TD* had the capacity to convert ag-TD to ag-TD*. We show that epigenetic suppression of T-DNA mutants is not a rare event, but certain structural features in the T-DNA mutants are needed in order for the suppression to take place. The suppressed T-DNA mutants we observed were all intronic T-DNA mutants and the T-DNA fragments in both the trigger T-DNA as well as in the suppressed T-DNA shared stretches of identical sequences. We demonstrate that the suppression of intronic T-DNA mutants is mediated by trans-interactions between two T-DNA insertions. This work shows that caution is needed when intronic T-DNA mutants are used.
Collapse
Affiliation(s)
| | - Yunde Zhao
- To whom correspondence should be addressed. E-mail , tel. 858-822-2670, fax 858-534-7108
| |
Collapse
|
34
|
Xue W, Ruprecht C, Street N, Hematy K, Chang C, Frommer WB, Persson S, Niittylä T. Paramutation-like interaction of T-DNA loci in Arabidopsis. PLoS One 2012; 7:e51651. [PMID: 23272131 PMCID: PMC3522736 DOI: 10.1371/journal.pone.0051651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022] Open
Abstract
In paramutation, epigenetic information is transferred from one allele to another to create a gene expression state which is stably inherited over generations. Typically, paramutation describes a phenomenon where one allele of a gene down-regulates the expression of another allele. Paramutation has been described in several eukaryotes and is best understood in plants. Here we describe an unexpected paramutation-like trans SALK T-DNA interaction in Arabidopsis. Unlike most of the previously described paramutations, which led to gene silencing, the trans SALK T-DNA interaction caused an increase in the transcript levels of the endogenous gene (COBRA) where the T-DNA was inserted. This increased COBRA expression state was stably inherited for several generations and led to the partial suppression of the cobra phenotype. DNA methylation was implicated in this trans SALK T-DNA interaction since mutation of the DNA methyltransferase 1 in the suppressed cobra caused a reversal of the suppression. In addition, null mutants of the DNA demethylase ROS1 caused a similar COBRA transcript increase in the cobra SALK T-DNA mutant as the trans T-DNA interaction. Our results provide a new example of a paramutation-like trans T-DNA interaction in Arabidopsis, and establish a convenient hypocotyl elongation assay to study this phenomenon. The results also alert to the possibility of unexpected endogenous transcript increase when two T-DNAs are combined in the same genetic background.
Collapse
Affiliation(s)
- Weiya Xue
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Colin Ruprecht
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Nathaniel Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Kian Hematy
- Institut Jean-Pierre Bourgin, INRA-AgroParisTech, Versailles, France
| | - Christine Chang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Staffan Persson
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 2010; 10:3001-19. [PMID: 20645384 DOI: 10.1002/pmic.201000054] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Global mean temperatures are expected to rise by 2-4.5 degrees C by 2100, accompanied by an increase in frequency and amplitude of extreme temperature events. Greater climatic extremes and an expanded range of cultivation will expose rice to increasing stress in the future. Understanding gene expression in disparate thermal regimes is important for the engineering of cultivars with tolerance to nonoptimal temperatures. Our study investigated the proteomic responses of rice cell suspension cultures to sudden temperature changes. Cell cultures grown at 28 degrees C were subjected to 3-day exposure to 12 or 20 degrees C for low-temperature stress, and 36 or 44 degrees C for high-temperature stress. Quantitative label-free shotgun proteomic analysis was performed on biological triplicates of each treatment. Over 1900 proteins were expressed in one or more temperature treatments, and, of these, more than 850 were found to be responsive to either of the temperature extremes. These temperature-responsive proteins included more than 300 proteins which were uniquely expressed at either 12 or 44 degrees C. Our study also identified 40 novel stress-response proteins and observed that switching between the classical and the alternative pathways of sucrose metabolism occurs in response to extremes of temperature.
Collapse
|
36
|
Zhu X, Pattathil S, Mazumder K, Brehm A, Hahn MG, Dinesh-Kumar SP, Joshi CP. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation. MOLECULAR PLANT 2010; 3:818-33. [PMID: 20522525 DOI: 10.1093/mp/ssq023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 2010; 9:1076-87. [PMID: 19954254 DOI: 10.1021/pr900975t] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST database-assisted MS/MS analysis, 81 differentially expressed proteins assigned to different functional categories were identified from Li(1) fibers, of which 54 were down-regulated and 27 were up-regulated. Several novel aspects regarding cotton fiber elongation can be illustrated from our data. First, over half of the down-regulated proteins were newly identified at the protein level, which is mainly involved in protein folding and stabilization, nucleocytoplasmic transport, signal transduction, and vesicular-mediated transport. Second, a number of cytoskeleton-related proteins showed a remarkable decrease in protein abundance in the Li(1) fibers. Accordingly, the architecture of actin cytoskeleton was severely deformed and the microtubule organization was moderately altered, accompanied with dramatic disruption of vesicle trafficking. Third, the expression of several proteins involved in unfolded protein response (UPR) was activated in Li(1) fibers, indicating that the deficiency of fiber cell elongation was related to ER stress. Collectively, these findings significantly advanced our understanding of the mechanisms associated with cotton fiber elongation.
Collapse
Affiliation(s)
- Pi-Ming Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xie B, Wang X, Hong Z. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. PLANTA 2010; 231:809-23. [PMID: 20039178 DOI: 10.1007/s00425-009-1091-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/14/2009] [Indexed: 05/22/2023]
Abstract
Pollination is essential for seed reproduction and for exchanges of genetic information between individual plants. In angiosperms, mature pollen grains released from dehisced anthers are transferred to the stigma where they become hydrated and begin to germinate. Pollen grains of wild-type Arabidopsis thaliana do not germinate inside the anther under normal growth conditions. We report two Arabidopsis lines that produced pollen grains able to in situ precociously germinate inside the anther. One of them was a callose synthase 9 (cs9) knockout mutant with a T-DNA insertion in the Callose Synthase 9 gene (CalS9). Male gametophytes carrying a cs9 mutant allele were defective and no homozygous progeny could be produced. Heterozygous mutant plants (cs9/+) produced approximately 50% defective pollen grains with an altered male germ unit (MGU) and aberrant callose deposition in bicellular pollen. Bicellular pollen grains germinated precociously inside the anther. Another line, a transgenic plant expressing callose synthase 5 (CalS5) under the CaMV 35S promoter, also contained abnormal callose deposition during microsporogenesis and displaced MGUs in pollen grains. We also observed that precocious pollen germination could be induced in wild-type plants by incubation with medium containing sucrose and calcium ion and by wounding in the anther. These results demonstrate that precocious pollen germination in Arabidopsis could be triggered by a genetic alteration and a physiological condition.
Collapse
Affiliation(s)
- Bo Xie
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
39
|
Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP, Wilkinson JR, Luthe DS. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 2010; 36:179-91. [PMID: 20148356 DOI: 10.1007/s10886-010-9752-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/03/2010] [Accepted: 01/15/2010] [Indexed: 12/20/2022]
Abstract
This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.
Collapse
Affiliation(s)
- Renuka Shivaji
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
You MK, Shin HY, Kim YJ, Ok SH, Cho SK, Jeung JU, Yoo SD, Kim JK, Shin JS. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1015-29. [PMID: 20018603 PMCID: PMC2815893 DOI: 10.1104/pp.109.147645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/08/2009] [Indexed: 05/23/2023]
Abstract
Screening of the expressed sequence tag library of the wild rice species Oryza minuta revealed an unknown gene that was rapidly and strongly induced in response to attack by a rice fungal pathogen (Magnaporthe oryzae) and an insect (Nilaparvata lugens) and by wounding, abscisic acid (ABA), and methyl jasmonate treatments. Its recombinant protein was identified as a bifunctional nuclease with both RNase and DNase activities in vitro. This gene was designated OmBBD (for O. minuta bifunctional nuclease in basal defense response). Overexpression of OmBBD in an Arabidopsis (Arabidopsis thaliana) model system caused the constitutive expression of the PDF1.2, ABA1, and AtSAC1 genes, which are involved in priming ABA-mediated callose deposition. This activation of defense responses led to an increased resistance against Botrytis cinerea. atbbd1, the knockout mutant of the Arabidopsis ortholog AtBBD1, was susceptible to attack by B. cinerea and had deficient callose deposition. Overexpression of either OmBBD or AtBBD1 in atbbd1 plants complemented the susceptible phenotype of atbbd1 against B. cinerea as well as the deficiency of callose deposition. We suggest that OmBBD and AtBBD1 have a novel regulatory role in ABA-mediated callose deposition.
Collapse
|
41
|
Gutjahr C, Paszkowski U. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:763-72. [PMID: 19522558 DOI: 10.1094/mpmi-22-7-0763] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Department of Plant Molecular Biology, University of Lausanne, Switzerland.
| | | |
Collapse
|
42
|
Körner E, von Dahl CC, Bonaventure G, Baldwin IT. Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2631-40. [PMID: 19380422 PMCID: PMC2692009 DOI: 10.1093/jxb/erp106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/04/2009] [Accepted: 03/13/2009] [Indexed: 05/21/2023]
Abstract
Pectin methylesterases (PMEs) catalyse the demethylation of pectin within plant cell walls, releasing methanol (MeOH) in the process. Thus far, PMEs have been found to be involved in diverse processes such as plant growth and development and defence responses against pathogens. Herbivore attack increases PME expression and activity and MeOH emissions in several plant species. To gain further insights into the role of PMEs in defence responses against herbivores, the expression of a Manduca sexta oral secretion (OS)-inducible PME in Nicotiana attenuata (NaPME1) was silenced by RNA interference (RNAi)-mediated gene silencing. Silenced lines (ir-pme) showed 50% reduced PME activity in leaves and 70% reduced MeOH emissions after OS elicitation compared with the wild type (WT), demonstrating that the herbivore-induced MeOH emissions originate from the demethylation of pectin by PME. In the initial phase of the OS-induced jasmonic acid (JA) burst (first 30 min), ir-pme lines produced WT levels of this hormone and of jasmonyl-isoleucine (JA-Ile); however, these levels were significantly reduced in the later phase (60-120 min) of the burst. Similarly, suppressed levels of the salicylic acid (SA) burst induced by OS elicitation were observed in ir-pme lines even though wounded ir-pme leaves contained slightly increased amounts of SA. This genotype also presented reduced levels of OS-induced trypsin proteinase inhibitor activity in leaves and consistently increased M. sexta larvae performance compared with WT plants. These latter responses could not be recovered by application of exogenous MeOH. Together, these results indicated that PME contributes, probably indirectly by affecting cell wall properties, to the induction of anti-herbivore responses.
Collapse
Affiliation(s)
| | | | | | - Ian T. Baldwin
- Max-Planck-Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
43
|
Frank J, Kaulfürst-Soboll H, Rips S, Koiwa H, von Schaewen A. Comparative analyses of Arabidopsis complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a. PLANT PHYSIOLOGY 2008; 148:1354-67. [PMID: 18768906 PMCID: PMC2577240 DOI: 10.1104/pp.108.127027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/24/2008] [Indexed: 05/18/2023]
Abstract
We compare three Arabidopsis (Arabidopsis thaliana) complex glycan1 (cgl1) alleles and report on genetic interaction with staurosporin and temperature sensitive3a (stt3a). STT3a encodes a subunit of oligosaccharyltransferase that affects efficiency of N-glycan transfer to nascent secretory proteins in the endoplasmic reticulum; cgl1 mutants lack N-acetyl-glucosaminyltransferase I activity and are unable to form complex N-glycans in the Golgi apparatus. By studying CGL1-green fluorescent protein fusions in transient assays, we show that the extra N-glycosylation site created by a point mutation in cgl1 C5 is used in planta and interferes with folding of full-length membrane-anchored polypeptides in the endoplasmic reticulum. Tunicamycin treatment or expression in the stt3a-2 mutant relieved the folding block, and migration to Golgi stacks resumed. Complementation tests with C5-green fluorescent protein and other N-glycosylation variants of CGL1 demonstrated that suppression of aberrant N-glycosylation restores activity. Interestingly, CGL1 seems to be functional also as nonglycosylated enzyme. Two other cgl1 alleles showed splicing defects of their transcripts. In cgl1 C6, a point mutation affects the 3' splice site of intron 14, resulting in frame shifts; in cgl1-T, intron 11 fails to splice due to insertion of a T-DNA copy. Introgression of stt3a-2 did not restore complex glycan formation in cgl1 C6 or cgl1-T but suppressed the N-acetyl-glucosaminyltransferase I defect in cgl1 C5. Root growth assays revealed synergistic effects in double mutants cgl1 C6 stt3a-2 and cgl1-T stt3a-2 only. Besides demonstrating the conditional nature of cgl1 C5 in planta, our observations with loss-of-function alleles cgl1 C6 and cgl1-T in the stt3a-2 underglycosylation background prove that correct N-glycosylation is important for normal root growth and morphology in Arabidopsis.
Collapse
Affiliation(s)
- Julia Frank
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, 48149 Munster, Germany
| | | | | | | | | |
Collapse
|
44
|
Wang G, Gao Y, Yang L, Shi J. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization. Genome 2008; 50:1141-55. [PMID: 18059541 DOI: 10.1139/g07-091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Wood is an important raw material for global industries with rapidly increasing demand. To isolate the genes differentially expressed during xylogenesis of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), we used a novel system. Forward and reverse subtracted cDNA libraries were constructed using the suppression subtractive hybridization method; for the forward library we used cDNA from the mutant Dugansha as the tester and cDNA from the wild-type clone Jurong 0 as the driver, and for the reverse library we used Jurong 0 cDNA as the tester and Dugansha cDNA as the driver. Transcriptional profiling was performed using a macroarray with 4 digoxigenin-labeled probes. We obtained 618 and 409 clones from the forward and the reverse subtracted library, respectively. A total of 405 unique expressed sequence tags (ESTs) were obtained. Forty percent of the ESTs exhibited homologies with proteins of known function and fell into 4 major classes: metabolism, cell wall biogenesis and remodeling, signal transduction, and stress. Real-time PCR was performed to confirm the results. The expression levels of 11 selected ESTs were consistent with both macroarray and real-time PCR results. The systematic analysis of genes involved in wood formation in Chinese fir provides valuable insights into the molecular mechanisms involved in xylem differentiation and is an important resource for forest research that can be directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
Collapse
Affiliation(s)
- Guifeng Wang
- National Forestry Bureau, Key Laboratory of Forest Genetics and Gene Engineering, and College of Forest Resources and Environment, Nanjing Forestry University, Longpan Road No. 159, Nanjing, Jiangsu Province, 210037, People's Republic of China
| | | | | | | |
Collapse
|
45
|
Mashiguchi K, Urakami E, Hasegawa M, Sanmiya K, Matsumoto I, Yamaguchi I, Asami T, Suzuki Y. Defense-related signaling by interaction of arabinogalactan proteins and beta-glucosyl Yariv reagent inhibits gibberellin signaling in barley aleurone cells. PLANT & CELL PHYSIOLOGY 2008; 49:178-190. [PMID: 18156132 DOI: 10.1093/pcp/pcm175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.
Collapse
Affiliation(s)
- Kiyoshi Mashiguchi
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mylona P, Owatworakit A, Papadopoulou K, Jenner H, Qin B, Findlay K, Hill L, Qi X, Bakht S, Melton R, Osbourn A. Sad3 and sad4 are required for saponin biosynthesis and root development in oat. THE PLANT CELL 2008; 20:201-12. [PMID: 18203919 PMCID: PMC2254932 DOI: 10.1105/tpc.107.056531] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/20/2007] [Accepted: 01/03/2008] [Indexed: 05/18/2023]
Abstract
Avenacins are antimicrobial triterpene glycosides that are produced by oat (Avena) roots. These compounds confer broad-spectrum resistance to soil pathogens. Avenacin A-1, the major avenacin produced by oats, is strongly UV fluorescent and accumulates in root epidermal cells. We previously defined nine loci required for avenacin synthesis, eight of which are clustered. Mutants affected at seven of these (including Saponin-deficient1 [Sad1], the gene for the first committed enzyme in the pathway) have normal root morphology but reduced root fluorescence. In this study, we focus on mutations at the other two loci, Sad3 (also within the gene cluster) and Sad4 (unlinked), which result in stunted root growth, membrane trafficking defects in the root epidermis, and root hair deficiency. While sad3 and sad4 mutants both accumulate the same intermediate, monodeglucosyl avenacin A-1, the effect on avenacin A-1 glucosylation in sad4 mutants is only partial. sad1/sad1 sad3/sad3 and sad1/sad1 sad4/sad4 double mutants have normal root morphology, implying that the accumulation of incompletely glucosylated avenacin A-1 disrupts membrane trafficking and causes degeneration of the epidermis, with consequential effects on root hair formation. Various lines of evidence indicate that these effects are dosage-dependent. The significance of these data for the evolution and maintenance of the avenacin gene cluster is discussed.
Collapse
|
47
|
Bonaventure G, Gfeller A, Rodríguez VM, Armand F, Farmer EE. The fou2 gain-of-function allele and the wild-type allele of Two Pore Channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1775-1789. [PMID: 17981874 DOI: 10.1093/pcp/pcm151] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Gene Expression Laboratory, Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Hardham AR, Jones DA, Takemoto D. Cytoskeleton and cell wall function in penetration resistance. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:342-8. [PMID: 17627866 DOI: 10.1016/j.pbi.2007.05.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/06/2007] [Accepted: 05/17/2007] [Indexed: 05/16/2023]
Abstract
Plants successfully repel the vast majority of potential pathogens that arrive on their surface, with most microorganisms failing to breach the outer epidermal wall. Resistance to penetration at the epidermis is a key component of basal defence against disease and critically depends on fortification of the cell wall at the site of attempted penetration through the development of specialised cell wall appositions rich in antimicrobial compounds. Formation of cell wall appositions is achieved by rapid reorganisation of actin microfilaments, actin-dependent transport of secretory products to the infection site and local activation of callose synthesis. Plants are finely tuned to detect the presence of pathogens on their surface, perceiving both chemical and physical signals of pathogen origin. In the on-going evolution of interaction strategies, plants must continually monitor and out manoeuvre pathogen avoidance or suppression of plant defences in order to preserve the effectiveness of penetration resistance.
Collapse
Affiliation(s)
- Adrienne R Hardham
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.
| | | | | |
Collapse
|
49
|
Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE. A downstream mediator in the growth repression limb of the jasmonate pathway. THE PLANT CELL 2007; 19:2470-83. [PMID: 17675405 PMCID: PMC2002611 DOI: 10.1105/tpc.107.050708] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Collapse
Affiliation(s)
- Yuanxin Yan
- Department of Plant Molecular Biology, University of Lausane, Biophore, CH-1015 Lausane, Switzerland
| | | | | | | | | | | | | |
Collapse
|