1
|
Zhang J, Chen G, Li Y, Zhang J, Zhong L, Li L, Zhong S, Gu R. Phlomoides rotata adapts to low-nitrogen environments by promoting root growth and increasing root organic acid exudate. BMC PLANT BIOLOGY 2024; 24:1234. [PMID: 39710688 DOI: 10.1186/s12870-024-05962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months. Soil and plant analyzer development (SPAD) values, bioaccumulation, root morphology, root exudate composition, nitrogen metabolism enzyme and antioxidant enzyme activity were evaluated. The results showed that compared with CK (no N fertilizer), N2 (CO(NH2)2 80 mg/kg) and N3 (CO(NH2)2 160 mg/kg) through significantly improved the activities of nitrogen metabolism enzyme nitrite reductase (NiR), glutamate dehydrogenase (GDH) and glutamine synthetase (GS), enhanced the nitrogen metabolism process, and increased the accumulation of plant soluble sugars (SS) and soluble protein (SP), thus improving Phlomoides rotata biomass yield. After 60 days of treatment, low nitrogen (N1, CO(NH2)2 40 mg/kg) increased root length, root volume, root surface area, average root diameter, significantly increased the diversity of organic acids in root exudates, and enhanced the activity of antioxidant enzymes to adapt the nitrogen deficiency environment. This study can provide new ideas for understanding the mechanism of nitrogen tolerance in Phlomoides rotata and developing scientific fertilization management strategies for plateau plants and medicinal plants.
Collapse
Affiliation(s)
- Jielin Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guopeng Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liwen Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shihong Zhong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
2
|
Peng Q, Shrestha A, Zhang Y, Fan J, Yu F, Wang G. How lignin biosynthesis responds to nitrogen in plants: a scoping review. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:881-895. [PMID: 39032003 DOI: 10.1111/plb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 07/22/2024]
Abstract
Nitrogen (N) plays a critical role in the functioning of key amino acids and synthetic enzymes responsible for the various stages of lignin biosynthesis. However, the precise mechanisms through which N influences lignin biosynthesis have not been fully elucidated. This scoping review explores how lignin biosynthesis responds to N in plants. A systematic search of the literature in several databases was conducted using relevant keywords. Only 44 of the 1842 selected studies contained a range of plant species, experimental conditions, and research approaches. Lignin content, structure, and biosynthetic pathways in response to N are discussed, and possible response mechanisms of lignin under low N are proposed. Among the selected studies, 64.52% of the studies reter to lignin content found a negative correlation between N availability and lignin content. Usually, high N decreases the lignin content, delays cell lignification, increases p-hydroxyphenyl propane (H) monomer content, and regulates lignin synthesis through the expression of key genes (PAL, 4CL, CCR, CAD, COMT, LAC, and POD) encoding miRNAs and transcription factors (e.g., MYB, bHLH). N deficiency enhances lignin synthesis through the accumulation of phenylpropanoids, phenolics, and soluble carbohydrates, and indirect changes in phytohormones, secondary metabolites, etc. This review provides new insights and important references for future studies on the regulation of lignin biosynthesis.
Collapse
Affiliation(s)
- Q Peng
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - A Shrestha
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Zhang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J Fan
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - F Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - G Wang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Xue Z, Ferrand M, Gilbault E, Zurfluh O, Clément G, Marmagne A, Huguet S, Jiménez-Gómez JM, Krapp A, Meyer C, Loudet O. Natural variation in response to combined water and nitrogen deficiencies in Arabidopsis. THE PLANT CELL 2024; 36:3378-3398. [PMID: 38916908 PMCID: PMC11371182 DOI: 10.1093/plcell/koae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/24/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Understanding plant responses to individual stresses does not mean that we understand real-world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multiomic description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among 5 genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomic and metabolomic profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a "universal" stress response. The main effect of the W × N interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to W × N interactions are often accession specific. Multiomic analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intraspecific diversity in our descriptions of plant stress response places our findings in perspective.
Collapse
Affiliation(s)
- Zeyun Xue
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Marina Ferrand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Olivier Zurfluh
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - José M Jiménez-Gómez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Christian Meyer
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
4
|
Grewal SK, Gill RK, Virk HK, Bhardwaj RD. Effect of herbicide stress on synchronization of carbon and nitrogen metabolism in lentil (Lens culinaris Medik.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:402-414. [PMID: 36758288 DOI: 10.1016/j.plaphy.2023.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Weed invasion causes significant yield losses in lentil. Imazethapyr (IM), a broad-spectrum herbicide inhibits the biosynthesis of branched chain amino acids necessary for plant growth. Plant growth depends upon translocation of photo-assimilates and their partitioning regulated by carbon and nitrogen metabolism. This study aimed to investigate the impact of imazethapyr spray on carbon and nitrogen metabolism in tolerant (LL1397 and LL1612) and susceptible (FLIP2004-7L and PL07) lentil genotypes during vegetative and reproductive development. Significantly higher activities of invertases and sucrose synthase (cleavage) in leaves and in podwall and seeds during early phase of development in tolerant genotypes were observed as compared to susceptible genotypes under herbicide stress that might be responsible for providing hexoses required for their growth. Activities of sucrose synthesizing enzymes, sucrose phosphate synthase and sucrose synthase (synthesis) increased significantly in podwalls and seeds of LL1397 and LL1612 genotypes during later phase of development towards maturity while the activities decreased in FLIP2004-7L and PL07 genotypes under herbicide stress. Activities of nitrate and nitrite reductase, glutamine 2-oxoglutarate aminotransferase, glutamine synthetase and glutamate dehydrogenase were increased in leaves, podwalls and seeds of LL1397 and LL1612 under herbicide stress. A proper synchronization of carbon and nitrogen metabolism in tolerant lentil genotypes during vegetative and reproductive phase might be one of the mechanisms for their recovery from herbicide stress. This first ever comprehensive information will provide a basis for future studies on the molecular mechanism of source sink relationship in lentil under herbicide stress and will be utilized in breeding programmes.
Collapse
Affiliation(s)
- Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India.
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harpreet Kaur Virk
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Sun X, Li X, Wang Y, Xu J, Jiang S, Zhang Y. MdMKK9-Mediated the Regulation of Anthocyanin Synthesis in Red-Fleshed Apple in Response to Different Nitrogen Signals. Int J Mol Sci 2022; 23:ijms23147755. [PMID: 35887103 PMCID: PMC9324793 DOI: 10.3390/ijms23147755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is a widely existing signal transduction system in eukaryotes, and plays an important role in the signal transduction processes of plant cells in response to environmental stress. In this study, we screened MdMKK9, a gene in the MAPK family. This gene is directly related to changes in anthocyanin synthesis in the ‘Daihong’ variety of red-fleshed apple (Malus sieversii f neidzwetzkyana (Dieck) Langenf). MdMKK9 expression was up-regulated in ‘Daihong’ tissue culture seedlings cultured at low levels of nitrogen. This change in gene expression up-regulated the expression of genes related to anthocyanin synthesis and nitrogen transport, thus promoting anthocyanin synthesis and causing the tissue culture seedlings to appear red in color. To elucidate the function of MdMKK9, we used the CRISPR/Cas9 system to construct a gene editing vector for MdMKK9 and successfully introduced it into the calli of the ‘Orin’ apple. The MdMKK9 deletion mutants (MUT) calli could not respond to the low level of nitrogen signal, the expression level of anthocyanin synthesis-related genes was down-regulated, and the anthocyanin content was lower than that of the wild type (WT). In contrast, the MdMKK9-overexpressed calli up-regulated the expression level of anthocyanin synthesis-related genes and increased anthocyanin content, and appeared red in conditions of low level of nitrogen or nitrogen deficiency. These results show that MdMKK9 plays a role in the adaptation of red-fleshed apple to low levels of nitrogen by regulating the nitrogen status and anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiaohong Sun
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Jihua Xu
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
6
|
Xu L, Li Z, Zhuang B, Zhou F, Li Z, Pan X, Xi H, Zhao W, Liu H. Enrofloxacin perturbs nitrogen transformation and assimilation in rice seedlings (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149900. [PMID: 34525725 DOI: 10.1016/j.scitotenv.2021.149900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of antibiotics worldwide has led to phytotoxicity and high risks to humans. Although research on the physiological toxicity of antibiotics is extensive, its influence on plant nitrogen uptake and assimilation remains unclear. The effect of enrofloxacin on nitrogen transformation and assimilation in rice (Oryza sativa L.) seedlings was investigated in this study. Enrofloxacin had no significant effect on rice growth, nitrogen assimilation and metabolism at low concentration, while significant changes were observed in high concentration. The growth of rice seedlings was inhibited, nitrate uptake was enhanced and nitrogen content increased significantly in both shoots and roots in enrofloxacin (800 μg L-1) treatment. Furthermore, enrofloxacin promoted the activity of enzymes related to nitrogen assimilation, including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. High enzyme activity resulted in an increase in intermediate products and protein content, suggesting that rice seedlings may detoxify enrofloxacin stress through amino acid binding and nitro-oxidative stress might be one of the reasons of phenotype change. Gas chromatography-mass spectrometry results revealed that different types of metabolites in both shoots and roots increased with enrofloxacin stress. Specifically, glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; alanine, aspartate, and glutamate metabolism; butanoate metabolism; glyoxylate and dicarboxylate metabolism in shoot; and tyrosine metabolism and citrate cycle in root were affected. Moreover, a significant correlation between nitrogen content, nitrogen assimilation enzyme activity, and metabolite content was observed. Collectively, these findings reveal the potential risks of using reclaimed wastewater irrigation and/or antibiotic-containing animal fertilizers on crops.
Collapse
Affiliation(s)
- Linglin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Biyan Zhuang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Fumin Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zejun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xiaoru Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
7
|
Sani MNH, Yong JWH. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. BIOLOGY 2021; 11:biology11010041. [PMID: 35053039 PMCID: PMC8773105 DOI: 10.3390/biology11010041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Demand for organically grown crops has risen globally due to its healthier and safer food products. From a sustainability perspective, organic farming offers an eco-friendly cultivation system that minimizes agrochemicals and producing food with little or no environmental footprint. However, organic agriculture’s biggest drawback is the generally lower and variable yield in contrast to conventional farming. Compatible with organic farming, the selective use of biostimulants can close the apparent yield gap between organic and conventional cultivation systems. A biostimulant is defined as natural microorganisms (bacteria, fungi) or biologically active substances that are able to improve plant growth and yield through several processes. Biostimulants are derived from a range of natural resources including organic materials (composts, seaweeds), manures (earthworms, fish, insects) and extracts derived from microbes, plant, insect or animal origin. The current trend is indicative that a mixture of biostimulants is generally delivering better growth, yield and quality rather than applying biostimulant individually. When used correctly, biostimulants are known to help plants cope with stressful situations like drought, salinity, extreme temperatures and even certain diseases. More research is needed to understand the different biostimulants, key components, and also to adjust the formulations to improve their reliability in the field. Abstract Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported as critical yield-limiting factors in many organic farming systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and growers, and with the objective of integrating these products to enhance nutrient use efficiency (NUE), crop performance, and delivering better stress resilience in organic-related farming. This review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors, and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing purposeful combinations of microbial and non-microbial BSs that would interact synergistically and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably will be pivotal. Understanding these mechanisms will improve the next generation of novel and well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience consistently in organic-related cultivation.
Collapse
Affiliation(s)
- Md. Nasir Hossain Sani
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 234 56 Alnarp, Sweden
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| |
Collapse
|
8
|
Seaweed Extract Improves Lagenaria siceraria Young Shoot Production, Mineral Profile and Functional Quality. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vegetable landraces represent the main source of biodiversity in Sicily. Lagenaria siceraria is appreciated by Southern Mediterranean consumers for its immature fruits and young shoots. Plant-based biostimulants supply, such as seaweed extract (SwE), is a contemporary and green agricultural practice applied to ameliorate the yield and quality of vegetables. However, there are no studies concerning the effects of SwE on L. siceraria. The current study evaluated the effects of SwE foliar application (0 or 3 mL L−1) on five L. siceraria landraces (G1, G2, G3, G4 and G5) grown in greenhouses. Growth traits, first female flower emission, fruit yield, young shoot yield, fruit firmness, young shoot nitrogen use efficiency (NUEys) and specific young shoot quality parameters, such as soluble solids content (SSC), mineral profile, ascorbic acid, and polyphenols, were appraised. Plant height and number of leaves at 10, 20 and 30 days after transplant (DAT) were significantly higher in plants treated with SwE as compared with untreated plants. Treating plants with SwE increased marketable fruit yield, fruit mean mass, young shoot yield and number of young shoots by 14.4%, 15.0%, 22.2%, 32.4%, and 32.0%, respectively as compared with untreated plants. Relevant increments were also recorded for NUEys, P, K, Ca, Mg, ascorbic acid and polyphenols concentration. SwE application did not significantly affect total yield and SSC. Furthermore, SwE treated plants produced a lower number of marketable fruits than non-treated plants. The present study showed that SwE at 3 mL L−1 can fruitfully enhance crop performance, young shoot yield and quality of L. siceraria.
Collapse
|
9
|
Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ecklonia maxima is a brown algae seaweed largely harvested over the last years and used to produce alginate, animal feed, fertilizers, and plant biostimulants. Their extracts are commercially available in various forms and have been applied to many crops for their growth-promoting effects which may vary according to the treated species and doses applied. The aim of the study was to characterize the effect of adding an Ecklonia maxima commercial extract (Basfoliar Kelp; 0, 1, 2, and 4 mL L−1) to the nutrient solution of a hydroponic floating system on growth, yield, and quality of leaf lettuce at harvest and during cold storage (21 days at 4 °C). The supplementation of the E. maxima extract through the mineral nutrient solutions, especially between 2 and 4 mL L−1, enhanced plant growth and improved the yield and many morphological and physiological traits (biomass accumulation, leaf expansion, stomatal conductance, water use efficiency, nitrogen use efficiency, etc.). Preharvest treatments with E. maxima extract were effective in delaying leaf senescence and extending the shelf-life of fresh-cut leaf lettuce. The delay in leaf decay of treated samples allowed to retain an overall quality over the threshold of marketability for up to 21 d of cold storage, especially using 2 mL L−1 of extract.
Collapse
|
10
|
Wang M, Hasegawa T, Beier M, Hayashi M, Ohmori Y, Yano K, Teramoto S, Kamiya T, Fujiwara T. Growth and Nitrate Reductase Activity Are Impaired in Rice Osnlp4 Mutants Supplied with Nitrate. PLANT & CELL PHYSIOLOGY 2021; 62:1156-1167. [PMID: 33693871 DOI: 10.1093/pcp/pcab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/27/2021] [Indexed: 05/24/2023]
Abstract
Nitrate is an important nutrient and signaling molecule in plants, which modulates the expression of many genes and regulates plant growth. In paddy-grown rice (Oryza sativa), nitrogen is mostly supplied in the form of ammonium but can also be supplied in the form of nitrate. Several nitrogen transporters and nitrate assimilation enzymes have been identified and functionally characterized in rice. However, little is known regarding the nitrate sensing system in rice, and the regulatory mechanisms of nitrate-related genes remain to be elucidated. In recent years, NIN-like proteins (NLPs) have been described as key transcription factors of nitrogen responses in Arabidopsis thaliana, which implies that OsNLP4 is involved in the regulation of nitrate assimilation and nitrogen use efficiency in rice. Here, we show that OsNLP4 can influence plant growth by affecting nitrate reductase (NR) activity. The growth of OsNLP4 knockdown mutants was reduced when nitrate was supplied, but not when ammonium was supplied. The nitrate concentration was significantly reduced in osnlp4 mutants. Furthermore, the concentrations of iron and molybdenum, essential elements for NR activity, were reduced in OsNLP4 knockdown mutants. We propose that, in addition to the regulation of gene expression within the nitrate signaling pathway, OsNLP4 can affect the NR activity and nitrate-dependent growth of rice. Our results support a working model for the role of OsNLP4 in the nitrate signaling pathway.
Collapse
Affiliation(s)
- Mengyao Wang
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Takahiro Hasegawa
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Marcel Beier
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Kanagawa, 2300045 Japan
| | - Yoshihiro Ohmori
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Kenji Yano
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Shota Teramoto
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Takehiro Kamiya
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Toru Fujiwara
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| |
Collapse
|
11
|
Impact of Ecklonia maxima Seaweed Extract and Mo Foliar Treatments on Biofortification, Spinach Yield, Quality and NUE. PLANTS 2021; 10:plants10061139. [PMID: 34205147 PMCID: PMC8228496 DOI: 10.3390/plants10061139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Seaweed extract (SE) application is a contemporary and sustainable agricultural practice used to improve yield and quality of vegetable crops. Plant biofortification with trace element is recognized as a major tool to prevent mineral malnourishment in humans. Mo deficiency causes numerous dysfunctions, mostly connected to central nervous system and esophageal cancer. The current research was accomplished to appraise the combined effect of Ecklonia maxima brown seaweed extract (SE) and Mo dose (0, 0.5, 2, 4 or 8 µmol L-1) on yield, biometric traits, minerals, nutritional and functional parameters, as well as nitrogen indices of spinach plants grown in a protected environment (tunnel). Head fresh weight (FW), ascorbic acid, polyphenols, N, P, K, Mg and nitrogen use efficiency (NUE) were positively associated with SE treatment. Moreover, head FW, head height (H), stem diameter (SD), ascorbic acid, polyphenols, carotenoids as well as NUE indices were enhanced by Mo-biofortification. A noticeable improvement in number of leaves (N. leaves), head dry matter (DM) and Mo concentration in leaf tissues was observed when SE application was combined with a Mo dosage of 4 or 8 µmol L-1. Overall, our study highlighted that E. maxima SE treatment and Mo supply can improve both spinach production and quality via the key enzyme activity involved in the phytochemical homeostasis of SE and the plant nutritional status modification resulting in an enhanced spinach Mo tolerance.
Collapse
|
12
|
Wang Q, Liu C, Huang D, Dong Q, Li P, Ma F. High-efficient utilization and uptake of N contribute to higher NUE of 'Qinguan' apple under drought and N-deficient conditions compared with 'Honeycrisp'. TREE PHYSIOLOGY 2019; 39:1880-1895. [PMID: 31711215 DOI: 10.1093/treephys/tpz093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 05/19/2023]
Abstract
Drought and nitrogen (N) deficiency are common factors that limit apple production in the Loess Plateau region of China. Different apple cultivars respond to drought and low N differently; however, the mechanism that underlies the difference in nitrogen-use efficiency (NUE) under drought conditions is not well understood. In this study, by comparing the physiological responses of two apple (Malus domestica Borkh.) cultivars with contrasting NUE, 'Qinguan' (higher NUE) and 'Honeycrisp' (lower NUE), under low N and drought conditions, we discovered that, 'Qinguan' had larger stomatal apertures, higher chlorophyll fluorescence levels, more active N metabolism and antioxidant enzymes, higher abscisic acid and auxin concentrations, larger root size and more efficient N uptake mediated by higher expression of MdNRT2.4 in rootstock than that of 'Honeycrisp'. Additionally, we experimentally confirmed that MdNRT2.4 enhanced low N and osmotic stress tolerance in Arabidopsis when being overexpressed. Taken together, our findings shed light on the mechanism that underlies the difference in NUE of apple under drought and N-deficient conditionss and provide MdNRT2.4 as a candidate gene for future genetic engineering.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
13
|
Transgenerational Response to Nitrogen Deprivation in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20225587. [PMID: 31717351 PMCID: PMC6888700 DOI: 10.3390/ijms20225587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Nitrogen (N) deficiency is one of the major stresses that crops are exposed to. It is plausible to suppose that a stress condition can induce a memory in plants that might prime the following generations. Here, an experimental setup that considered four successive generations of N-sufficient and N-limited Arabidopsis was used to evaluate the existence of a transgenerational memory. The results demonstrated that the ability to take up high amounts of nitrate is induced more quickly as a result of multigenerational stress exposure. This behavior was paralleled by changes in the expression of nitrate responsive genes. RNAseq analyses revealed the enduring modulation of genes in downstream generations, despite the lack of stress stimulus in these plants. The modulation of signaling and transcription factors, such as NIGTs, NFYA and CIPK23 might indicate that there is a complex network operating to maintain the expression of N-responsive genes, such as NRT2.1, NIA1 and NIR. This behavior indicates a rapid acclimation of plants to changes in N availability. Indeed, when fourth generation plants were exposed to N limitation, they showed a rapid induction of N-deficiency responses. This suggests the possible involvement of a transgenerational memory in Arabidopsis that allows plants to adapt efficiently to the environment and this gives an edge to the next generation that presumably will grow in similar stressful conditions.
Collapse
|
14
|
Imran M, Sun X, Hussain S, Ali U, Rana MS, Rasul F, Saleem MH, Moussa MG, Bhantana P, Afzal J, Elyamine AM, Hu CX. Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat ( Triticum aestivum L.) Under Different Nitrogen Sources. Int J Mol Sci 2019; 20:ijms20123009. [PMID: 31226753 PMCID: PMC6627063 DOI: 10.3390/ijms20123009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a hydroponic study was carried out to investigate these effects on two winter wheat cultivars (‘97003’ and ‘97014’) as Mo-efficient and Mo-inefficient, respectively, under different N sources (NO3−, NH4NO3, and NH4+). The results revealed that the activities of nitrate reductase (NR) and nitrite reductase (NiR) followed the order of NH4NO3 > NO3− > NH4+ sources, while glutamine synthetase (GS) and glutamate synthase (GOGAT) followed the order of NH4+ > NH4NO3 > NO3− in both the wheat cultivars. However, Mo-induced effects in the activities and expressions of N metabolism enzymes under different N sources followed the order of NH4NO3 > NO3− > NH4+ sources, indicating that Mo has more complementary effects towards nitrate nutrition than the sole ammonium source in winter wheat. Interestingly, under −Mo-deprived conditions, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application increased the proteins, amino acids, ammonium, and nitrite contents while concomitantly decreasing the nitrate contents in the same order of NH4NO3 > NO3− > NH4+ sources that coincides with the Mo-induced N enzymes activities and expressions. The findings of the present study indicated that Mo plays a key role in regulating the N metabolism enzymes and assimilatory products under all the three N sources; however, the extent of complementation exists in the order of NH4NO3 > NO3− > NH4+ sources in winter wheat. In addition, it was revealed that mineral elements profiles were mainly affected by different N sources, while Mo application generally had no significant effects on the mineral elements contents in the winter wheat leaves under different N sources.
Collapse
Affiliation(s)
- Muhammad Imran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan.
| | - Usman Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Shoaib Rana
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mohamed G Moussa
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl 13759, Egypt.
| | - Parashuram Bhantana
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Javaria Afzal
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ali Mohamed Elyamine
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
- Faculty of Science and Technology, Department of Life Science, University of Comoros, Moroni 269, Comoros.
| | - Cheng Xiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Chrysargyris A, Xylia P, Anastasiou M, Pantelides I, Tzortzakis N. Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5861-5872. [PMID: 29797323 DOI: 10.1002/jsfa.9139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Potassium (K) deficiency in leafy vegetables such as lettuce is a major concern regarding quality. Seaweed (SW) extracts, as biostimulants, are biodegradable materials and have become increasingly popular as they are reported to enhance crop growth and yield. RESULTS In order to overcome K deficiencies (i.e. 375 vs 125 mg L-1 ), alternative foliar applications with extracts of Ascophyllum nodosum SW or K were examined using lettuce plants which were grown hydroponically. Potassium deficiency (at 125 mg L-1 ) reduced plant biomass, photosynthetic rate, leaf stomatal conductance, lettuce potassium content and tissue antioxidant capacity as compared with the higher K level (375 mg L-1 ). Application of SW increased the relative growth of lettuce in the low-K treatment. The K level and/or SW application altered the plant's enzyme protective activity (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD) against oxidative stress and hydrogen peroxide (H2 O2 ) production. Spray applications of SW mitigated the effects of K deficiency on indicators of enzyme activity and plant damage, back to levels of high K content (375 mg L-1 ). The high K level, but also SW application, increased the antioxidant activity of the processed lettuce before storage. Foliar application of the SW extract increased the quality of cut lettuce grown in 125 mg L-1 K conditions by reducing the rate of respiration and increasing consumer preference. CONCLUSION The SW application could alter the detrimental effects of K deficiency during lettuce growth and storage of processed products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Myria Anastasiou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Iakovos Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
16
|
Chen H, Xu N, Wu Q, Yu B, Chu Y, Li X, Huang J, Jin L. OsMADS27 regulates the root development in a NO 3--Dependent manner and modulates the salt tolerance in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:20-32. [PMID: 30466586 DOI: 10.1016/j.plantsci.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
OsMADS27 is one of the ANR1-like homologues in rice, whreas its functions in plant growth and development as well as the abiotic stress responses remain unclear. Here we investigated the roles of OsMADS27 in the root development in response to NO3- availability. Constitutive expression of OsMADS27 significantly inhibited the elongation of primary root (PR), but enhanced lateral root (LR) formation in a NO3--dependent manner. Furthermore, OsMADS27 overexpression promoted NO3- accumulation as well as the expression of NO3- transporter genes. ABA is reported to play an important role in mediating the effects of NO3- on the root development, thus it is supposed that OsMADS27 might regulate the root growth and development by ABA pathway. The root growth and development in OsMADS27 overexpression lines was shown to be more sensitive to exogenous ABA than wild type. Moreover, under NO3- conditions, higher levels of ABA accumulates in OsMADS27 overexpression plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that OsMADS27 physically interacts with ABA-INSENSITIVE5 (OsABI5) via DELLA protein OsSLR1. More importantly, OsMADS27 overexpression could enhance the salt tolerance. Taken together, our findings suggested that OsMADS27 is an important regulator controlling the root system development and adaption to osmotic stress in rice.
Collapse
Affiliation(s)
- Hongli Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.
| |
Collapse
|
17
|
Nitrate Accumulation and Expression Patterns of Genes Involved in Nitrate Transport and Assimilation in Spinach. Molecules 2018; 23:molecules23092231. [PMID: 30200523 PMCID: PMC6225323 DOI: 10.3390/molecules23092231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Excessive accumulation of nitrate in spinach is not only harmful to human beings, but also limits the efficiency of nitrogen usage. However, the underlying mechanism of nitrate accumulation in plants remains unclear. This study analyzed the physiological and molecular characteristics of nitrate uptake and assimilation in the spinach varieties with high or low nitrate accumulation. Our results showed that the variety of spinach with a high nitrate content (So18) had higher nitrate uptake compared to the variety with a low nitrate content (So10). However, the nitrate reductase activities of both varieties were similar, which suggests that the differential capacity to uptake and transport nitrate may account for the differences in nitrate accumulation. The quantitative PCR analysis showed that there was a higher level of expression of spinach nitrate transporter (SoNRT) genes in So18 compared to those in So10. Based on the function of Arabidopsis homologs AtNRTs, the role of spinach SoNRTs in nitrate accumulation is discussed. It is concluded that further work focusing on the expression of SoNRTs (especially for SoNRT1.4, SoNRT1.5 and SoNRT1.3) may help us to elucidate the molecular mechanism of nitrate accumulation in spinach.
Collapse
|
18
|
Coskun D, Britto DT, Kronzucker HJ. The nitrogen-potassium intersection: membranes, metabolism, and mechanism. PLANT, CELL & ENVIRONMENT 2017; 40:2029-2041. [PMID: 26524711 DOI: 10.1111/pce.12671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) and potassium (K) are the two most abundantly acquired mineral elements by plants, and their acquisition pathways interact in complex ways. Here, we review pivotal interactions with respect to root acquisition, storage, translocation and metabolism, between the K+ ion and the two major N sources, ammonium (NH4+ ) and nitrate (NO3- ). The intersections between N and K physiology are explored at a number of organizational levels, from molecular-genetic processes, to compartmentation, to whole plant physiology, and discussed in the context of both N-K cooperation and antagonism. Nutritional regulation and optimization of plant growth, yield, metabolism and water-use efficiency are also discussed.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Dev T Britto
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Herbert J Kronzucker
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| |
Collapse
|
19
|
Alt DS, Doyle JW, Malladi A. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:79-87. [PMID: 28578080 DOI: 10.1016/j.jplph.2017.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Blueberry (Vaccinium sp.) is thought to display a preference for the ammonium (NH4+) form over the nitrate (NO3-) form of inorganic nitrogen (N). This N-source preference has been associated with a generally low capacity to assimilate the NO3- form of N, especially within the shoot tissues. Nitrate assimilation is mediated by nitrate reductase (NR), a rate limiting enzyme that converts NO3- to nitrite (NO2-). We investigated potential limitations of NO3- assimilation in two blueberry species, rabbiteye (Vaccinium ashei) and southern highbush (Vaccinium corymbosum) by supplying NO3- to the roots, leaf surface, or through the cut stem. Both species displayed relatively low but similar root uptake rates for both forms of inorganic N. Nitrate uptake through the roots transiently increased NR activity by up to 3.3-fold and root NR gene expression by up to 4-fold. However, supplying NO3- to the roots did not increase its transport in the xylem, nor did it increase NR activity in the leaves, indicating that the acquired N was largely assimilated or stored within the roots. Foliar application of NO3- increased leaf NR activity by up to 3.5-fold, but did not alter NO3- metabolism-related gene expression, suggesting that blueberries are capable of post translational regulation of NR activity in the shoots. Additionally, supplying NO3- to the cut ends of stems resulted in around a 5-fold increase in NR activity, a 10-fold increase in NR transcript accumulation, and up to a 195-fold increase in transcript accumulation of NITRITE REDUCTASE (NiR1) which codes for the enzyme catalyzing the conversion of NO2- to NH4+. These data indicate that blueberry shoots are capable of assimilating NO3- when it is directly supplied to these tissues. Together, these data suggest that limitations in the uptake and translocation of NO3- to the shoots may limit overall NO3- assimilation capacity in blueberry.
Collapse
Affiliation(s)
- Douglas S Alt
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - John W Doyle
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
20
|
Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 242:183-217. [PMID: 27734212 DOI: 10.1007/398_2016_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.
Collapse
Affiliation(s)
- Khalid Rehman Hakeem
- Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, UPM 43400, Malaysia.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Munir Ozturk
- Botany Department & Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001, Uttar Pradesh, India
| | - Faridah Hanum Ibrahim
- Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, UPM 43400, Malaysia
| |
Collapse
|
21
|
Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G. Plant nitrate transporters: from gene function to application. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2463-2475. [PMID: 28158856 DOI: 10.1093/jxb/erx011] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We summarize nitrate transporters and discuss their potential in breeding for improved nitrogen use efficiency and yield.
Collapse
Affiliation(s)
- Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony J Miller
- Metabolic Biology Department, John Innes Centre, Norwich Research Park , Norwich NR4 7UH, UK
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, Liu Z, Yang H, Yang C, Wang H, Li Y, Liu G. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci Rep 2017; 7:45933. [PMID: 28378825 PMCID: PMC5380993 DOI: 10.1038/srep45933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra.
Collapse
Affiliation(s)
- Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanbo Hu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yan Sun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhongye Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Han Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongwei Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
23
|
Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. PLANT MOLECULAR BIOLOGY 2017; 93:61-77. [PMID: 27766460 DOI: 10.1007/s11103-016-0547-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K+-Na+/H+ antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Glenn B Gregorio
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- East-West Seed Company (EWS), Km. 54 Cagayan Valley Road, San Rafael, 3008, Bulacan, Philippines
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
24
|
Zheng S, Jiang J, He M, Zou S, Wang C. Effect of Kelp Waste Extracts on the Growth and Development of Pakchoi (Brassica chinensis L.). Sci Rep 2016; 6:38683. [PMID: 27934911 PMCID: PMC5146658 DOI: 10.1038/srep38683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022] Open
Abstract
To explore the effects of kelp waste extracts (KWE) on the growth and development of Brassia chinensis L., germination and greenhouse experiments were carried out under different concentrations of KWE. The results showed that a higher germination percentage (95%), associated with high germination index (8.70), germination energy (71.67%) and seedling vigor index (734.67), was obtained under a lower KWE concentration (2%) compared with the control. The radicle length (4.97 cm), fresh weight (0.32 g/10 seedlings) and dry weight (0.015 g/10 seedlings) were significantly increased in the treatment of 2% KWE. KWE also could enhance the root growth, the maximum leaf length × width and the fresh weight of plants, the optimal value of which increased by 8.37 cm, 58.14 cm2 and 7.76 g under the treatment of 10% KWE compared with the control respectively. Meanwhile, the contents of vitamin C and soluble sugars in pakchoi leaf were improved by 19.6 mg/100 g and 1.44 mg/g compared with the control, and the nitrate content was decreased by 212.27 mg/kg. Briefly, KWE could markedly stimulate the pakchoi seeds germination at a lower concentration (2%) and enhance the plant growth and quality at a higher concentration (10%).
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jiang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanmei Zou
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Abstract
Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.
Collapse
|
26
|
Razgallah N, Abid G, Chikh-Rouhou H, Hassen A, M’hamdi M. Nitrate Content and Expression of Putative Nitrate Transporter Genes in Lettuce Fertilized with Nitrogen Fertilizers. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/19315260.2016.1227891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- N. Razgallah
- University of Sousse, Higher Agronomic Institute of Chott Mariem, Laboratory of Vegetable Crops, Chott Mariem, Sousse, Tunisia
| | - G. Abid
- University of Tunis El Manar, Center of Biotechnology of Borj Cedria, Laboratory of Legumes, Hammam-Lif, Tunisia
| | - H. Chikh-Rouhou
- University of Sousse, Regional Research Center of Horticulture and Organic Agriculture, Laboratory of Horticulture, Chott Mariem, Tunisia
| | - A. Hassen
- Center of Research and Water Technologies, Laboratory of Wastewater Treatment, Soliman, Tunisia
| | - M. M’hamdi
- University of Sousse, Higher Agronomic Institute of Chott Mariem, Laboratory of Vegetable Crops, Chott Mariem, Sousse, Tunisia
| |
Collapse
|
27
|
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA Signatures of Drought Signaling in Rice Root. PLoS One 2016; 11:e0156814. [PMID: 27276090 PMCID: PMC4898717 DOI: 10.1371/journal.pone.0156814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.
Collapse
Affiliation(s)
- Behnam Bakhshi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Mohseni Fard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nava Nikpay
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
28
|
O'Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA. Nitrate Transport, Sensing, and Responses in Plants. MOLECULAR PLANT 2016; 9:837-56. [PMID: 27212387 DOI: 10.1016/j.molp.2016.05.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture.
Collapse
Affiliation(s)
- José A O'Brien
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 8331150, Chile; Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Andrea Vega
- Departamento de Ciencias Vegetales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Eléonore Bouguyon
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Alain Gojon
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Gloria Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
29
|
Lu S, Yao S, Wang G, Guo L, Zhou Y, Hong Y, Wang X. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:926-37. [PMID: 26260942 PMCID: PMC11388816 DOI: 10.1111/pbi.12446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 05/05/2023]
Abstract
Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuaibing Yao
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biology, University of Missouri, St. Louis, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
30
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.). PLoS One 2015; 10:e0145532. [PMID: 26714321 PMCID: PMC4694716 DOI: 10.1371/journal.pone.0145532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen maturation, especially sporopollenin biosynthetic process, and pollen exine formation. Moreover, we observed higher expression levels of the co-expressed DEGs in HN vs HH compared to NN vs NH. These included the six downregulated genes (one pollen maturation and five pollen exine formation genes), as well as the four upregulated DEGs in response to heat. This suggests that high-nitrogen treatment may enhance the gene expression levels to mitigate aspects of heat-stress. The spikelet genes identified in this study may play important roles in response to the combined effects of high temperature and high nitrogen, and may serve as candidates for crop improvement.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
- * E-mail:
| |
Collapse
|
31
|
Sun J, Zheng N. Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Front Physiol 2015; 6:386. [PMID: 26733879 PMCID: PMC4683204 DOI: 10.3389/fphys.2015.00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Nitrate ([Formula: see text]) is one of the most important sources of mineral nitrogen, which also serves as a key signaling molecule for plant growth and development. To cope with nitrate fluctuation in soil that varies by up to four orders of magnitude, plants have evolved high- and low-affinity nitrate transporter systems, consisting of distinct families of transporters. Interestingly, the first cloned nitrate transporter in Arabidopsis, NRT1.1 functions as a dual-affinity transporter, which can change its affinity for nitrate in response to substrate availability. Phosphorylation of a threonine residue, Thr101, switches NRT1.1 from low- to high-affinity state. Recent structural studies have unveiled that the unmodified NRT1.1 transporter works as homodimers with Thr101 located in close proximity to the dimer interface. Modification on the Thr101 residue is shown to not only decouple the dimer configuration, but also increase structural flexibility, thereby, altering the substrate affinity of NRT1.1. The structure of NRT1.1 helps establish a novel paradigm in which protein oligomerzation and posttranslational modification can synergistically expand the functional capacity of the major facilitator superfamily (MFS) transporters.
Collapse
Affiliation(s)
- Ji Sun
- Department of Pharmacology, University of Washington Seattle, WA, USA
| | - Ning Zheng
- Department of Pharmacology, University of WashingtonSeattle, WA, USA; Howard Hughes Medical Institute, University of WashingtonSeattle, WA, USA
| |
Collapse
|
32
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 2015; 16:959. [PMID: 26576634 PMCID: PMC4650392 DOI: 10.1186/s12864-015-2141-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world’s population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Results Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha−1) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha−1) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen germination, especially sporopollenin biosynthetic process, and pollen exine formation were mainly down-regulated under high temperature. Moreover, the expression levels of co-expressed DEGs including 5 sporopollenin biosynthetic process and 7 pollen exine formation genes of NN-vs-NH were lower than that of HN-vs-HH. Therefore, these spikelet genes may play important roles in response to high temperature with high nitrogen and may be good candidates for crop improvement. Conclusions This RNA-seq study will help elucidate the molecular mechanisms of rice spikelet defense response to high temperature interacting with high nitrogen level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| |
Collapse
|
33
|
Fernández-Crespo E, Scalschi L, Llorens E, García-Agustín P, Camañes G. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6777-90. [PMID: 26246613 PMCID: PMC4623687 DOI: 10.1093/jxb/erv382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection.
Collapse
Affiliation(s)
- Emma Fernández-Crespo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
34
|
Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. Seaweed extracts as biostimulants in horticulture. SCIENTIA HORTICULTURAE 2015. [PMID: 0 DOI: 10.1016/j.scienta.2015.09.012] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
35
|
Vidal EA, Álvarez JM, Moyano TC, Gutiérrez RA. Transcriptional networks in the nitrate response of Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:125-32. [PMID: 26247122 DOI: 10.1016/j.pbi.2015.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 05/22/2023]
Abstract
Nitrogen is an essential macronutrient for plants and its availability is a key determinant of plant growth and development and crop yield. Besides their nutritional role, N nutrients and metabolites are signals that activate signaling pathways that modulate many plant processes. Because the most abundant inorganic N source for plants in agronomic soils is nitrate, much of the work to understand plant N-signaling has focused on this nutrient. Over the last years, several studies defined a comprehensive catalog of nitrate-responsive genes, involved in nitrate transport, metabolism and a variety of other processes. Despite significant progress in recent years, primarily using Arabidopsis thaliana as a model system, the molecular mechanisms by which nitrate elicits changes in transcript abundance are still not fully understood. Here we highlight recent advancements in identifying key transcription factors and transcriptional mechanisms that orchestrate the gene expression response to changes in nitrate availability in A. thaliana.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - José M Álvarez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Tomás C Moyano
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
36
|
Obertello M, Shrivastava S, Katari MS, Coruzzi GM. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice. PLANT PHYSIOLOGY 2015; 168:1830-43. [PMID: 26045464 PMCID: PMC4528727 DOI: 10.1104/pp.114.255877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/01/2015] [Indexed: 05/04/2023]
Abstract
In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated an N-regulatory network based solely on rice transcriptome and gene interaction data. Next, we enhanced the network knowledge in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to N use (e.g. N assimilation) and to other shared biological processes indirectly related to N. This cross-species network approach was validated with members of two TF families in the supernode network, BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTOR1-TGA and HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING1 (HRS1)/HRS1 Homolog family, which have recently been experimentally validated to mediate the N response in Arabidopsis.
Collapse
Affiliation(s)
- Mariana Obertello
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003 (M.O., S.S., M.S.K., G.M.C.); andInstituto de Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina (M.O.)
| | - Stuti Shrivastava
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003 (M.O., S.S., M.S.K., G.M.C.); andInstituto de Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina (M.O.)
| | - Manpreet S Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003 (M.O., S.S., M.S.K., G.M.C.); andInstituto de Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina (M.O.)
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003 (M.O., S.S., M.S.K., G.M.C.); andInstituto de Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina (M.O.)
| |
Collapse
|
37
|
Gallmetzer A, Silvestrini L, Schinko T, Gesslbauer B, Hortschansky P, Dattenböck C, Muro-Pastor MI, Kungl A, Brakhage AA, Scazzocchio C, Strauss J. Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA. PLoS Genet 2015; 11:e1005297. [PMID: 26132230 PMCID: PMC4488483 DOI: 10.1371/journal.pgen.1005297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/25/2015] [Indexed: 01/02/2023] Open
Abstract
The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169). This oxidation depends on FmoB, a flavin-containing monooxygenase which in vitro uses methionine and cysteine, but not glutathione, as oxidation substrates. The function of FmoB cannot be replaced by alternative Fmo proteins present in A. nidulans. Exposure of A. nidulans cells to nitrate led to rapid reduction of NirA-Metox169 to Met169; this reduction being independent from thioredoxin and classical methionine sulfoxide reductases. Replacement of Met169 by isoleucine, a sterically similar but not oxidizable residue, led to partial loss of NirA activity and insensitivity to FmoB-mediated nuclear export. In contrast, replacement of Met169 by alanine transformed the protein into a permanently nuclear and active transcription factor. Co-immunoprecipitation analysis of NirA-KapK interactions and subcellular localization studies of NirA mutants lacking different parts of the protein provided evidence that Met169 oxidation leads to a change in NirA conformation. Based on these results we propose that in the presence of nitrate the activation domain is exposed, but the NES is masked by a central portion of the protein (termed nitrate responsive domain, NiRD), thus restricting active NirA molecules to the nucleus. In the absence of nitrate, Met169 in the NES is oxidized by an FmoB-dependent process leading to loss of protection by the NiRD, NES exposure, and relocation of the inactive NirA to the cytosol.
Collapse
Affiliation(s)
- Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU—University of Natural Resources and Life Science, Vienna, Vienna, Austria
| | - Lucia Silvestrini
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU—University of Natural Resources and Life Science, Vienna, Vienna, Austria
| | - Thorsten Schinko
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU—University of Natural Resources and Life Science, Vienna, Vienna, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Graz, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
- Department of Microbiology and Molecular Biology, Friedrich Schiller University Jena, Jena, Germany
| | - Christoph Dattenböck
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU—University of Natural Resources and Life Science, Vienna, Vienna, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH—AIT, University and Research Center Tulln, Tulln an der Donau, Austria
| | | | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Graz, Austria
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
- Department of Microbiology and Molecular Biology, Friedrich Schiller University Jena, Jena, Germany
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, United Kingdom, and Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU—University of Natural Resources and Life Science, Vienna, Vienna, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH—AIT, University and Research Center Tulln, Tulln an der Donau, Austria
| |
Collapse
|
38
|
Balotf S, Kavoosi G, Kholdebarin B. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Biotechnol Appl Biochem 2015; 63:220-9. [DOI: 10.1002/bab.1362] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/05/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Sadegh Balotf
- Institute of Biotechnology; Shiraz University; Shiraz Iran
| | | | - Bahman Kholdebarin
- Department of Biology; Faculty of Sciences; Shiraz University; Shiraz Iran
| |
Collapse
|
39
|
Kudoyarova GR, Dodd IC, Veselov DS, Rothwell SA, Veselov SY. Common and specific responses to availability of mineral nutrients and water. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2133-44. [PMID: 25697793 PMCID: PMC4986719 DOI: 10.1093/jxb/erv017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.
Collapse
Affiliation(s)
- Guzel R Kudoyarova
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Dmitry S Veselov
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Shane A Rothwell
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | | |
Collapse
|
40
|
Sanz-Luque E, Ocaña-Calahorro F, de Montaigu A, Chamizo-Ampudia A, Llamas Á, Galván A, Fernández E. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:467-79. [PMID: 25494936 DOI: 10.1111/tpj.12744] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Hemoglobins are ubiquitous proteins that sense, store and transport oxygen, but the physiological processes in which they are implicated is currently expanding. Recent examples of previously unknown hemoglobin functions, which include scavenging of the signaling molecule nitric oxide (NO), illustrate how the implication of hemoglobins in different cell signaling processes is only starting to be unraveled. The extent and diversity of the hemoglobin protein family suggest that hemoglobins have diverged and have potentially evolved specialized functions in certain organisms. A unique model organism to study this functional diversity at the cellular level is the green alga Chlamydomonas reinhardtii because, among other reasons, it contains an unusually high number of a particular type of hemoglobins known as truncated hemoglobins (THB1-THB12). Here, we reveal a cell signaling function for a truncated hemoglobin of Chlamydomonas that affects the nitrogen assimilation pathway by simultaneously modulating NO levels and nitrate reductase (NR) activity. First, we found that THB1 and THB2 expression is modulated by the nitrogen source and depends on NIT2, a transcription factor required for nitrate assimilation genes expression. Furthermore, THB1 is highly expressed in the presence of NO and is able to convert NO into nitrate in vitro. Finally, THB1 is maintained on its active and reduced form by NR, and in vivo lower expression of THB1 results in increased NR activity. Thus, THB1 plays a dual role in NO detoxification and in the modulation of NR activity. This mechanism can partly explain how NO inhibits NR post-translationally.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero RM, Martínez V. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. PHYSIOLOGIA PLANTARUM 2014; 152:558-70. [PMID: 24716623 DOI: 10.1111/ppl.12205] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 05/27/2023]
Abstract
The high-affinity K(+) transporter HAK5 is a key system for root K(+) uptake and, under very low external K(+), the only one capable of supplying K(+) to the plant. Functional HAK5-mediated K(+) uptake should be tightly regulated for plant adaptation to different environmental conditions. Thus, it has been described that the gene encoding the transporter is transcriptionally regulated, being highly induced under K(+) limitation. Here we show that environmental conditions, such as the lack of K(+), NO(3)(-) or P, that induced a hyperpolarization of the plasma membrane of root cells, induce HAK5 transcription. However, only the deprivation of K(+) produces functional HAK5-mediated K(+) uptake in the root. These results suggest on the one hand the existence of a posttranscriptional regulation of HAK5 elicited by the low K(+) signal and on the other that HAK5 may be involved in yet-unknown functions related to NO(3)(-) and P deficiencies. These results have been obtained here with Solanum lycopersicum (cv. Micro-Tom) as well as Arabidopsis thaliana plants, suggesting that the posttranscriptional regulation of high-affinity HAK transporters take place in all plant species.
Collapse
Affiliation(s)
- Francisco Rubio
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F. Brachypodium: a promising hub between model species and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5683-96. [PMID: 25262566 DOI: 10.1093/jxb/eru376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brachypodium distachyon was proposed as a model species for genetics and molecular genomics in cereals less than 10 years ago. It is now established as a standard for research on C3 cereals on a variety of topics, due to its close phylogenetic relationship with Triticeae crops such as wheat and barley, and to its simple genome, its minimal growth requirement, and its short life cycle. In this review, we first highlight the tools and resources for Brachypodium that are currently being developed and made available by the international community. We subsequently describe how this species has been used for comparative genomic studies together with cereal crops, before illustrating major research fields in which Brachypodium has been successfully used as a model: cell wall synthesis, plant-pathogen interactions, root architecture, and seed development. Finally, we discuss the usefulness of research on Brachypodium in order to improve nitrogen use efficiency in cereals, with the aim of reducing the amount of applied fertilizer while increasing the grain yield. Several paths are considered, namely an improvement of either nitrogen remobilization from the vegetative organs, nitrate uptake from the soil, or nitrate assimilation by the plant. Altogether, these examples position the research on Brachypodium as at an intermediate stage between basic research, carried out mainly in Arabidopsis, and applied research carried out on wheat and barley, enabling a complementarity of the studies and reciprocal benefits.
Collapse
Affiliation(s)
- Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Laure C David
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Richard Sibout
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Sylvie Ferrario-Méry
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Françoise Daniel-Vedele
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
44
|
Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. PLANT AND SOIL 2014. [PMID: 0 DOI: 10.1007/s11104-014-2131-8] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
45
|
Vidal EA, Moyano TC, Canales J, Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5611-8. [PMID: 25129132 DOI: 10.1093/jxb/eru326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Canales
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5657-71. [PMID: 24863438 DOI: 10.1093/jxb/eru227] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we will present the latest developments in systems biology with particular emphasis on improving nitrogen-use efficiency (NUE) in crops such as maize and demonstrating the application of metabolic models. The review highlights the importance of improving NUE in crops and provides an overview of the transcriptome, proteome, and metabolome datasets available, focusing on a comprehensive understanding of nitrogen regulation. 'Omics' data are hard to interpret in the absence of metabolic flux information within genome-scale models. These models, when integrated with 'omics' data, can serve as a basis for generating predictions that focus and guide further experimental studies. By simulating different nitrogen (N) conditions at a pseudo-steady state, the reactions affecting NUE and additional gene regulations can be determined. Such models thus provide a framework for improving our understanding of the metabolic processes underlying the more efficient use of N-based fertilizers.
Collapse
Affiliation(s)
- Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rajib Saha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lenaïg Guillard
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Gilles Clément
- Plateau Technique Spécifique de Chimie du Végétal, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Route de St Cyr, F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Rafael Cañas
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| |
Collapse
|
47
|
Balazadeh S, Schildhauer J, Araújo WL, Munné-Bosch S, Fernie AR, Proost S, Humbeck K, Mueller-Roeber B. Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3975-92. [PMID: 24692653 PMCID: PMC4106441 DOI: 10.1093/jxb/eru119] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated.
Collapse
Affiliation(s)
- Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Jörg Schildhauer
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, D-06120 Halle, Germany
| | - Wagner L Araújo
- Max-Planck Institute of Molecular Plant Physiology, Central Metabolism Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brasil
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Central Metabolism Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Klaus Humbeck
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, D-06120 Halle, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
48
|
Nitrite promotes the growth and decreases the lignin content of indica rice calli: a comprehensive transcriptome analysis of nitrite-responsive genes during in vitro culture of rice. PLoS One 2014; 9:e95105. [PMID: 24740395 PMCID: PMC3989302 DOI: 10.1371/journal.pone.0095105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/23/2014] [Indexed: 01/01/2023] Open
Abstract
As both major macronutrients and signal molecules, nitrogen metabolites, such as nitrate and nitrite, play an important role in plant growth and development. In this study, the callus growth of indica rice cv. 9311 was significantly enhanced by nitrite, whereas the soluble protein content remained unchanged. The deep RNA sequencing technology (RNA-seq) showed that the transcriptional profiles of cv. 9311 calli were significantly changed after adding nitrite to the nitrate-free medium, and these nitrite-responsive genes were involved in a wide range of plant processes, particularly in the secondary metabolite pathways. Interestingly, most of the genes involved in phenylpropanoid-related pathways were coordinately down-regulated by nitrite, such as four cinnamoyl-CoA reductase, and these in turn resulted in the decrease of lignin content of indica calli. Furthermore, several candidate genes related to cell growth or stress responses were identified, such as genes coding for expansins, SMALL AUXIN UP RNA (SAUR) and HSP20s, and these suggested that nitrite could probably serve as a transcriptome signal to enhance the indica calli growth by regulation of various downstream genes expression. This study contributes to a better understanding of the function of nitrite during the process of plant tissue culture and could aid in the application of this technology to improved indica genetic transformation efficiency.
Collapse
|
49
|
Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. Nitrate transport and signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:789-98. [PMID: 24532451 DOI: 10.1093/jxb/eru001] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have developed adaptive responses allowing them to cope with nitrogen (N) fluctuation in the soil and maintain growth despite changes in external N availability. Nitrate is the most important N form in temperate soils. Nitrate uptake by roots and its transport at the whole-plant level involves a large panoply of transporters and impacts plant performance. Four families of nitrate-transporting proteins have been identified so far: nitrate transporter 1/peptide transporter family (NPF), nitrate transporter 2 family (NRT2), the chloride channel family (CLC), and slow anion channel-associated homologues (SLAC/SLAH). Nitrate transporters are also involved in the sensing of nitrate. It is now well established that plants are able to sense external nitrate availability, and hence that nitrate also acts as a signal molecule that regulates many aspects of plant intake, metabolism, and gene expression. This review will focus on a global picture of the nitrate transporters so far identified and the recent advances in the molecular knowledge of the so-called primary nitrate response, the rapid regulation of gene expression in response to nitrate. The recent discovery of the NIN-like proteins as master regulators for nitrate signalling has led to a new understanding of the regulation cascade.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:185-200. [PMID: 24220653 PMCID: PMC3883287 DOI: 10.1093/jxb/ert358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.
Collapse
Affiliation(s)
- Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|