1
|
Gao E, Zhao Y, Wu M, Wang K, Zheng Q, Li Y, Qu X, Wu X, Guo W, Wang P. Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis. THE NEW PHYTOLOGIST 2025; 245:684-697. [PMID: 39497370 DOI: 10.1111/nph.20242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024]
Abstract
Autophagy is a conserved degradation pathway that regulates the clearance of paternal substrate at the early embryogenesis stage of animals. However, its mode of action is likely different in plants, which can regenerate through apomixis without fertilisation. Somatic embryogenesis (SE) is a unique plant process widely used for plant propagation and germplasm utilisation. Here, we studied citrus as an example and found a higher autophagic activity after SE initiation. Interestingly, amyloplasts were frequently found inside autophagosomes, whereas the inhibition of autophagy blocks amyloplasts/starch degradation and hinders somatic embryo formation. Furthermore, the consumption of storage lipids was faster in autophagy mutants, suggesting lipid metabolism is activated when starch utilisation is blocked. Exogenous application of autophagy-inducing chemicals (e.g. spermidine) significantly promoted the formation of autophagosomes and increased SE efficiency, indicating a positive correlation between autophagy, energy metabolism, and somatic embryo formation in citrus. Taken together, our study unveils a pathway for the degradation of plant-specific organelles and provides an effective approach for plant propagation.
Collapse
Affiliation(s)
- Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunju Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mengxia Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaomeng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
2
|
Lu L, Gao X, Qi Y, Zha Z, Gao Z, Ma N, Wu J, Yang H, Yi H. Functional characterisation of WRKY transcription factor CrWRKY48 involved in regulating seed abortion of Ponkan (Citrus reticulata). PHYSIOLOGIA PLANTARUM 2025; 177:e70048. [PMID: 39829364 DOI: 10.1111/ppl.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Citrus fruits are one of the most important fruits in the world, and their seedless character is favored by consumers. WRKY is a plant-specific transcription factor family involved in all aspects of plant growth and development. However, the molecular mechanism of seedless fruit formation in citrus and the role of the WRKY gene family in seed abortion are still poorly understood. In this study, we identified 47 WRKY family genes in the citrus fruit Citrus reticulata and comprehensively characterized the WRKY gene family through gene structure and evolutionary relationships. The expression patterns and protein interaction networks of the WRKY gene family were analyzed based on citrus seed abortion transcriptome data, and several WRKY genes that may be involved in the seed abortion regulation were excavated. Furthermore, CrWRKY48 was verified to regulate seed abortion positively in Arabidopsis thaliana, and the rate of seed abortion caused by overexpression of CrWRKY48 reached 45.48%. Using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays, DNA affinity purification sequencing and yeast-one-hybrid assays, we found that CrWRKY48 activated excessive programmed cell death by regulating the expression of programmed cell death-related genes such as SOBIR1. Our results show the potential regulation of the WRKY gene family for citrus seed abortion and provide novel insights into the role of CrWRKY48 in mediating citrus seed abortion by activating programmed cell death.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiong Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yongjie Qi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zixian Zha
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhenghui Gao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Na Ma
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Raha P, Khatua I, Saha G, Adhikari S, Gantait S, Bandyopadhyay TK. Morpho-histology of co-occurrence of somatic embryos, shoots, and inflorescences within a callus of Limonium 'Misty Blue'. PHYSIOLOGIA PLANTARUM 2024; 176:e14389. [PMID: 38887935 DOI: 10.1111/ppl.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
This is the first attempt to report the co-occurrence of somatic embryos, shoots, and inflorescences and their sequential development from stem cell niches of an individual callus mass through morpho-histological study of any angiosperm. In the presence of a proper auxin/cytokinin combination, precambial stem cells from the middle layer of a compact callus, which was derived from the thin cell layer of the inflorescence rachis of Limonium, expressed the highest level of totipotency and pluripotency and simultaneously developed somatic embryos, shoots, and inflorescences. This study also proposed the concept of programmed cell death during bipolar somatic embryo and unipolar shoot bud pattern formation. The unique feature of this research was the stepwise histological description of in vitro racemose inflorescence development. Remarkably, during the initiation of inflorescence development, either a unipolar structure with open vascular elements or an independent bipolar structure with closed vascular elements were observed. The protocol predicted the production of 6.6 ± 0.24 and 7.4 ± 0.24 somatic embryos and shoots, respectively, from 400 mg of callus, which again multiplied, rooted, and acclimatised. The plants' ploidy level and genetic fidelity were assessed randomly before acclimatisation by flow cytometry and inter simple sequence repeats (ISSR) marker analysis. Finally, the survivability and flower quality of the regenerated plants were evaluated in the field.
Collapse
Affiliation(s)
- Priyanka Raha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Ishita Khatua
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Gourab Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Sinchan Adhikari
- Department of Botany, University of Kalyani, Nadia, West Bengal, India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
| | | |
Collapse
|
4
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Theodorou I, Charrier B. The shift to 3D growth during embryogenesis of kelp species, atlas of cell division and differentiation of Saccharina latissima. Development 2023; 150:dev201519. [PMID: 37882832 PMCID: PMC10660787 DOI: 10.1242/dev.201519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
In most organisms, 3D growth takes place at the onset of embryogenesis. In some brown algae, 3D growth occurs later in development, when the organism consists of several hundred cells. We studied the cellular events that take place when 3D growth is established in the embryo of the brown alga Saccharina, a kelp species. Semi-thin sections, taken from where growth shifts from 2D to 3D, show that 3D growth first initiates from symmetrical cell division in the monolayered lamina, and then is enhanced through a series of asymmetrical cell divisions in a peripheral monolayer of cells called the meristoderm. Then, daughter cells rapidly differentiate into cortical and medullary cells, characterised by their position, size and shape. In essence, 3D growth in kelps is based on a series of differentiation steps that occur rapidly after the initiation of a bilayered lamina, followed by further growth of the established differentiated tissues. Our study depicts the cellular landscape necessary to study cell-fate programming in the context of a novel mode of 3D growth in an organism phylogenetically distant from plants and animals.
Collapse
Affiliation(s)
- Ioannis Theodorou
- Laboratory of Integrative Marine Models, Station Biologique de Roscoff, UMR8227, CNRS, Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
- Plant Sciences Department, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Bénédicte Charrier
- Laboratory of Integrative Marine Models, Station Biologique de Roscoff, UMR8227, CNRS, Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
| |
Collapse
|
6
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
7
|
Li HZ, Wu H, Song KK, Zhao HH, Tang XY, Zhang XH, Wang D, Dong SL, Liu F, Wang J, Li ZC, Yang L, Xiang QZ. Transcriptome analysis revealed enrichment pathways and regulation of gene expression associated with somatic embryogenesis in Camellia sinensis. Sci Rep 2023; 13:15946. [PMID: 37743377 PMCID: PMC10518320 DOI: 10.1038/s41598-023-43355-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
The high frequency, stable somatic embryo system of tea has still not been established due to the limitations of its own characteristics and therefore severely restricts the genetic research and breeding process of tea plants. In this study, the transcriptome was used to illustrate the mechanisms of gene expression regulation in the somatic embryogenesis of tea plants. The number of DEGs for the (IS intermediate stage)_PS (preliminary stage), ES (embryoid stage)_IS and ES_PS stages were 109, 2848 and 1697, respectively. The enrichment analysis showed that carbohydrate metabolic processes were considerably enriched at the ES_IS stage and performed a key role in somatic embryogenesis, while enhanced light capture in photosystem I could provide the material basis for carbohydrates. The pathway analysis showed that the enriched pathways in IS_PS process were far less than those in ES_IS or ES_PS, and the photosynthesis and photosynthetic antenna protein pathway of DEGs in ES_IS or ES_PS stage were notably enriched and up-regulated. The key photosynthesis and photosynthesis antenna protein pathways and the Lhcb1 gene were discovered in tea plants somatic embryogenesis. These results were of great significance to clarify the mechanism of somatic embryogenesis and the breeding research of tea plants.
Collapse
Affiliation(s)
- Hao-Zhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Wu
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 5030, Gembloux 2, Belgium
| | - Kang-Kang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Hui Zhao
- Ri Zhao Cha Cang Tea Co. Ltd, Ri'zhao, 276800, China
| | - Xiao-Yan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, He'fei, 230036, China
| | - Xiao-Hua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Wang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Shao-Lin Dong
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhong-Cong Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
9
|
Pérez-Pérez Y, Solís MT, Albacete A, Testillano PS. Opposite Auxin Dynamics Determine the Gametophytic and Embryogenic Fates of the Microspore. Int J Mol Sci 2023; 24:11177. [PMID: 37446349 DOI: 10.3390/ijms241311177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Teresa Solís
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Center for Edaphology and Applied Biology of Segura, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Hao Z, Wu H, Zheng R, Li R, Zhu Z, Chen Y, Lu Y, Cheng T, Shi J, Chen J. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:716-733. [PMID: 36575581 DOI: 10.1111/tpj.16077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) is widely used for studying the mechanisms of embryo development. However, little is known about the underlying mechanisms, especially in woody plants. Previous studies have established an SE system for Chinese fir (Cunninghamia lanceolata), but this system is genotype-dependent, which limits its application in practice. Here, we found that phytosulfokine (PSK), a plant peptide hormone, can not only increase SE efficiency, but also establish SE in recalcitrant genotypes of C. lanceolata. Proembryogenic mass (PEM) browning and determination of hydrogen peroxide (H2 O2 ) content by 2',7'-dichlorofluorescein staining indicated that a reactive oxygen species (ROS) burst occurred rapidly after PEMs were transferred to SE induction medium. Transcriptome analysis and quantitative reverse transcriptase-PCR validation showed that PSK treatment helped to maintain ROS homeostasis by decreasing the activity of peroxidases in early SE induction. This PSK-regulated redox microenvironment might be helpful to induce expression of SE-related genes like WOX2 in early SE induction. Further analyses suggested that PSK promotes SE induction in C. lanceolata partially through decreasing H2 O2 levels, which is necessary but not sufficient for SE induction in recalcitrant genotypes of C. lanceolata. Furthermore, heterologous overexpression of ClPSK in Arabidopsis led to enhanced SE induction and resistance to H2 O2 stress. Taken together, our study reveals a biological function for the plant peptide hormone PSK, extends our knowledge about SE in woody trees, and provides a valuable tool for establishing an efficient and genotype-independent SE system in C. lanceolata and other coniferous trees.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hua Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Rui Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zeli Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
12
|
Pei L, Zhao Y, Shi X, Chen R, Yan J, Li X, Jiang Z, Wang J, Shi S. The Role of γ-Aminobutyric Acid (GABA) in the Occurrence of Adventitious Roots and Somatic Embryos in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3512. [PMID: 36559624 PMCID: PMC9784130 DOI: 10.3390/plants11243512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The occurrence of adventitious roots and somatic embryos is a crucial step in micropropagation that frequently limits the application of this technique in woody plants. Recent studies demonstrated that they can be negatively or positively regulated with γ-aminobutyric acid (GABA), which is a four-carbon non-proteinous amino acid that not only acts as a main inhibitory neurotransmitter in mammals. It has been reported that GABA affects plant growth and their response to stress although its mode of action is still unclear. This review dealt with the effects of GABA on adventitious root formation and growth as well as on somatic embryogenesis. Furthermore, we focused on discussing the interaction of GABA with phytohormones, such as auxin, ethylene, abscisic acid, and gibberellin, as well as with the carbon and nitrogen metabolism during adventitious root development. We suggested that research on GABA will contribute to the application of micropropagation in the recalcitrant fruit and forest species.
Collapse
Affiliation(s)
- Lu Pei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Xinru Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Rongrong Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Jiawei Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Xu Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Aguilar ME, Wang XY, Escalona M, Yan L, Huang LF. Somatic embryogenesis of Arabica coffee in temporary immersion culture: Advances, limitations, and perspectives for mass propagation of selected genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:994578. [PMID: 36275513 PMCID: PMC9582858 DOI: 10.3389/fpls.2022.994578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culture in temporary immersion systems (TIS) is a valuable tool for the semi-automation of high frequency somatic embryogenesis of coffee. This system allows the intermittent exposure of explants to liquid medium in cycles of specific frequency and duration of immersion with renewal of the culture atmosphere in each cycle. TIS have revolutionized somatic embryogenesis of coffee plants as an alternative for scaling up and reducing costs associated with labor-intensive solid media culture. In Central America, somatic embryogenesis is employed on a commercial scale to produce F1 Coffea arabica hybrids. In Asia and Africa, somatic embryogenesis is used for the multiplication of selected genotypes of C. arabica and C.canephora. Somatic embryogenesis of coffee plants is considered a model system for woody species due to its biological versatility and low frequency of somaclonal variation. Nevertheless, the success of somatic embryogenesis for mass propagation of coffee plants depends on the development, optimization, and transfer of complementary technologies. Temporary immersion using the RITA® bioreactor is, so far, the best complementary tool for somatic embryogenesis of Arabica coffee for a single recipient with simple changes in liquid media. Likewise, high volume bioreactors, such as 10-L glass BIT® and 10-L flexible disposable plastic bags, have been successfully used for somatic embryogenesis of other coffee species. These bioreactors allow the manipulation of thousands of embryos under semi-automated conditions. The protocols, advantages, and benefits of this technology have been well documented for organogenesis and somatic embryogenesis pathways. However, adaptation in commercial laboratories requires technical and logistical adjustments based on the biological response of the cultures as well as the costs of implementation and production. This review presents the historical and present background of TIS and its commercial application and, in particular, pertinent information regarding temporary immersion culture for C. arabica somatic embryogenesis. The main limitations of this technology, such as hyperhydricity, asynchrony, and developmental abnormalities, are examined, and a critical analysis of current knowledge regarding physiological, biochemical, and molecular aspects of the plant response to temporary immersion is offered. Further, perspectives are provided for understanding and solving the morpho-physiological problems associated with temporary immersion culture of coffee plants. Systematic Review Registration.
Collapse
Affiliation(s)
- María Elena Aguilar
- Biotechnology Laboratories, Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica
| | - Xiao-yang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| | - Maritza Escalona
- Plant Tissues Culture Lab, Centro de Bioplantas, Universidad Ciego de Ávila, Ciego de Ávila, Cuba
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| | - Li-fang Huang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| |
Collapse
|
14
|
de Silva KK, Dunwell JM, Wickramasuriya AM. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int J Genomics 2022; 2022:7471063. [PMID: 35837132 PMCID: PMC9274236 DOI: 10.1155/2022/7471063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
Somatic embryogenesis (SE), which occurs naturally in many plant species, serves as a model to elucidate cellular and molecular mechanisms of embryo patterning in plants. Decoding the regulatory landscape of SE is essential for its further application. Hence, the present study was aimed at employing Weighted Gene Correlation Network Analysis (WGCNA) to construct a gene coexpression network (GCN) for Arabidopsis SE and then identifying highly correlated gene modules to uncover the hub genes associated with SE that may serve as potential molecular targets. A total of 17,059 genes were filtered from a microarray dataset comprising four stages of SE, i.e., stage I (zygotic embryos), stage II (proliferating tissues at 7 days of induction), stage III (proliferating tissues at 14 days of induction), and stage IV (mature somatic embryos). This included 1,711 transcription factors and 445 EMBRYO DEFECTIVE genes. GCN analysis identified a total of 26 gene modules with the module size ranging from 35 to 3,418 genes using a dynamic cut tree algorithm. The module-trait analysis revealed that four, four, seven, and four modules were associated with stages I, II, III, and IV, respectively. Further, we identified a total of 260 hub genes based on the degree of intramodular connectivity. Validation of the hub genes using publicly available expression datasets demonstrated that at least 78 hub genes are potentially associated with embryogenesis; of these, many genes remain functionally uncharacterized thus far. In silico promoter analysis of these genes revealed the presence of cis-acting regulatory elements, "soybean embryo factor 4 (SEF4) binding site," and "E-box" of the napA storage-protein gene of Brassica napus; this suggests that these genes may play important roles in plant embryo development. The present study successfully applied WGCNA to construct a GCN for SE in Arabidopsis and identified hub genes involved in the development of somatic embryos. These hub genes could be used as molecular targets to further elucidate the molecular mechanisms underlying SE in plants.
Collapse
Affiliation(s)
- Kithmee K. de Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | |
Collapse
|
15
|
Borges Araujo AJ, Cerruti GV, Zuccarelli R, Rodriguez Ruiz M, Freschi L, Singh R, Moerschbacher BM, Floh EIS, Wendt dos Santos AL. Proteomic Analysis of S-Nitrosation Sites During Somatic Embryogenesis in Brazilian Pine, Araucaria angustifolia (Bertol.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:902068. [PMID: 35845673 PMCID: PMC9280032 DOI: 10.3389/fpls.2022.902068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodriguez Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ratna Singh
- Department of Plant Biology and Biotechnology, WWU Münster, Münster, Germany
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM. miR171 modulates induction of somatic embryogenesis in citrus callus. PLANT CELL REPORTS 2022; 41:1403-1415. [PMID: 35381869 DOI: 10.1007/s00299-022-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.
Collapse
Affiliation(s)
- Qiao-Fang Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Wehbi H, Soulhat C, Morin H, Bendahmane A, Hilson P, Bouchabké-Coussa O. One-Week Scutellar Somatic Embryogenesis in the Monocot Brachypodium distachyon. PLANTS 2022; 11:plants11081068. [PMID: 35448796 PMCID: PMC9025947 DOI: 10.3390/plants11081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Plant somatic embryogenesis (SE) is a natural process of vegetative propagation. It can be induced in tissue cultures to investigate developmental transitions, to create transgenic or edited lines, or to multiply valuable crops. We studied the induction of SE in the scutellum of monocots with Brachypodium distachyon as a model system. Towards the in-depth analysis of SE initiation, we determined the earliest stages at which somatic scutellar cells acquired an embryogenic fate, then switched to a morphogenetic mode in a regeneration sequence involving treatments with exogenous hormones: first an auxin (2,4-D) then a cytokinin (kinetin). Our observations indicated that secondary somatic embryos could already develop in the proliferative calli derived from immature zygotic embryo tissues within one week from the start of in vitro culture. Cell states and tissue identity were deduced from detailed histological examination, and in situ hybridization was performed to map the expression of key developmental genes. The fast SE induction method we describe here facilitates the mechanistic study of the processes involved and may significantly shorten the production of transgenic or gene-edited plants.
Collapse
Affiliation(s)
- Houssein Wehbi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| | - Camille Soulhat
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; (H.M.); (A.B.)
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; (H.M.); (A.B.)
| | - Pierre Hilson
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
- Correspondence:
| | - Oumaya Bouchabké-Coussa
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| |
Collapse
|
18
|
Zhou L, Yarra R, Jin L, Yang Y, Cao H, Zhao Z. Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm. BMC Genomics 2022; 23:11. [PMID: 34983381 PMCID: PMC8729141 DOI: 10.1186/s12864-021-08245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. Results We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon–intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. Conclusions A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene’s structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08245-2.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China.
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Zhihao Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| |
Collapse
|
19
|
Arnholdt-Schmitt B, Mohanapriya G, Bharadwaj R, Noceda C, Macedo ES, Sathishkumar R, Gupta KJ, Sircar D, Kumar SR, Srivastava S, Adholeya A, Thiers KL, Aziz S, Velada I, Oliveira M, Quaresma P, Achra A, Gupta N, Kumar A, Costa JH. From Plant Survival Under Severe Stress to Anti-Viral Human Defense - A Perspective That Calls for Common Efforts. Front Immunol 2021; 12:673723. [PMID: 34211468 PMCID: PMC8240590 DOI: 10.3389/fimmu.2021.673723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - KarineLeitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Shahid Aziz
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and its Applications, Universidade de Évora, Évora, Portugal
| | - Paulo Quaresma
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- NOVA LINCS – Laboratory for Informatics and Computer Science, University of Évora, Évora, Portugal
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Nidhi Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ashwani Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Hargovind Khorana Chair, Jayoti Vidyapeeth Womens University, Jaipur, India
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
20
|
Godel-Jędrychowska K, Kulińska-Łukaszek K, Kurczyńska E. Similarities and Differences in the GFP Movement in the Zygotic and Somatic Embryos of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649806. [PMID: 34122474 PMCID: PMC8194063 DOI: 10.3389/fpls.2021.649806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.
Collapse
|
21
|
An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nat Commun 2021; 12:2508. [PMID: 33947865 PMCID: PMC8096963 DOI: 10.1038/s41467-021-22815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.
Collapse
|
22
|
Mitrofanova I, Ivanova N, Kuzmina T, Mitrofanova O, Zubkova N. In vitro Regeneration of Clematis Plants in the Nikita Botanical Garden via Somatic Embryogenesis and Organogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:541171. [PMID: 33777060 PMCID: PMC7994861 DOI: 10.3389/fpls.2021.541171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
The effects of growth regulators, namely, 6-benzylaminopurine (BAP) and thidiazuron (TDZ), on the morphogenic capacity of 13 cultivars of clematis plants, in terms of their morphological structure formation, shoot regeneration, and somatic embryo development, are presented. The clematis cultivars 'Alpinist,' 'Ay-Nor,' 'Bal Tsvetov,' 'Crimson Star,' 'Crystal Fountain,' 'Kosmicheskaya Melodiya,' 'Lesnaya Opera,' 'Madame Julia Correvon,' 'Nevesta,' 'Nikitsky Rosovyi,' 'Nikolay Rubtsov,' 'Serenada Kryma,' and 'Vechniy Zov' were taken in collection plots of the Nikita Botanical Gardens for use in study. After explant sterilization with 70% ethanol (1 min), 0.3-0.4% Cl2 (15 min), and 1% thimerosal (10 min), 1-cm long segments with a single node were introduced to an in vitro culture. The explants were established on the basal MS medium supplemented with BAP (2.20-8.90 μM) and 0.049 μM NAA, or TDZ (3.0; 6.0, and 9.0 μM) with 30 g/L sucrose and 9 g/L agar. The medium with 0.89 μM BAP served as the control. Culture vessels and test tubes with the explants were maintained in plant growth chamber-controlled conditions: with a 16-h photoperiod, under cool-white light fluorescent lamps with a light intensity of 37.5 μmol m-2 s-1, at a temperature of 24 ± 1°C. Histological analysis demonstrated that adventitious bud and somatic embryo formation in studied clematis cultivars occurred at numerous areas of active meristematic cell zones. The main role of plant growth regulators and its concentrations were demonstrated. It was determined that maximum adventitious microshoot regeneration without any morphological abnormalities formed on the media supplemented with BAP or TDZ. 4.40 μM BAP, or 6.0 μM TDZ were optimal cytokinin concentrations for micropropagation. The explants of 'Alpinist,' 'Ay-Nor,' 'Crimson Star,' 'Crystal Fountain,' 'Nevesta,' and 'Serenada Kryma' cultivars displayed high morphogenetic capacity under in vitro culturing. During indirect somatic embryogenesis, light intensity 37.5 μmol m-2 s-1 stimulated a higher-number somatic embryo formation and a temperature of 26°C affected somatic embryo development. Active formation of primary and secondary somatic embryos was also demonstrated. 2.20 μM BAP with 0.09 μM IBA affected the high-number somatic embryo formation for eight cultivars. Secondary somatic embryogenesis by the same concentration of BAP was induced. The frequency of secondary somatic embryogenesis was higher in 'Crystal Fountain' (100%), 'Crimson Star' (100%), 'Nevesta' (97%), and 'Ay-Nor' (92%) cultivars. Based on these results, the methodology for direct somatic embryogenesis and organogenesis of studied clematis cultivars has been developed.
Collapse
Affiliation(s)
- Irina Mitrofanova
- Plant Biotechnology and Virology Laboratory, Plant Developmental Biology, Biotechnology and Biosafety Department, FSFIS “The Nikita Botanical Gardens – National Scientific Center of the RAS,”Yalta, Russia
| | - Natalia Ivanova
- Plant Biotechnology and Virology Laboratory, Plant Developmental Biology, Biotechnology and Biosafety Department, FSFIS “The Nikita Botanical Gardens – National Scientific Center of the RAS,”Yalta, Russia
| | - Tatyana Kuzmina
- Structural Botany and Plant Reproductive Biology Section, FSFIS “The Nikita Botanical Gardens – National Scientific Center of the RAS,”Yalta, Russia
| | - Olga Mitrofanova
- Plant Biotechnology and Virology Laboratory, Plant Developmental Biology, Biotechnology and Biosafety Department, FSFIS “The Nikita Botanical Gardens – National Scientific Center of the RAS,”Yalta, Russia
| | - Natalya Zubkova
- Floriculture Laboratory, FSFIS “The Nikita Botanical Gardens – National Scientific Center of the RAS,”Yalta, Russia
| |
Collapse
|
23
|
Somatic Embryogenesis in Centaurium erythraea Rafn-Current Status and Perspectives: A Review. PLANTS 2020; 10:plants10010070. [PMID: 33396285 PMCID: PMC7823438 DOI: 10.3390/plants10010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.
Collapse
|
24
|
Song Y, Bai X, Dong S, Yang Y, Dong H, Wang N, Zhang H, Li S. Stable and Efficient Agrobacterium-Mediated Genetic Transformation of Larch Using Embryogenic Callus. FRONTIERS IN PLANT SCIENCE 2020; 11:584492. [PMID: 33324434 PMCID: PMC7723890 DOI: 10.3389/fpls.2020.584492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
Larix olgensis or larch is an economically important coniferous tree species with rapid growth in the early stages, strong adaptability, and a short time to harvest. The genetic improvement of larch has garnered considerable attention in recent years for reclaiming timber forests. However, traditional breeding methods are largely ineffective for achieving rapid genetic improvement of L. olgensis. Studies show that the efficiency of plant regeneration can be improved by optimizing somatic embryogenesis. On this basis, we devised a stable, fast and efficient Agrobacterium-mediated genetic transformation method using suspended embryogenic calluses as explants and β-glucuronidase as the reporter. We evaluated the effects of the Agrobacterium load, co-culture period, and addition of acetosyringone and transformant screening antibiotic on the transformation efficiency. In addition, we tested the pCAMBIA 1300-PtHCA 2-1 promoter-GUS binary expression vector, which contains the GUS gene ORF under the control of Populus trichocarpa high cambial activity PtHCA 2-1 promoter, and observed the tissue-specific expression of the GUS gene in the somatic embryos of transgenic larch. This novel technique can not only accelerate the generation of superior transgenic strains of L. olgensis but also aid in future gene functional studies.
Collapse
|
25
|
Osorio-Montalvo P, De-la-Peña C, Oropeza C, Nic-Can G, Córdova-Lara I, Castillo-Castro E, Sáenz-Carbonell L. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L). PLANT CELL REPORTS 2020; 39:1345-1357. [PMID: 32789543 DOI: 10.1007/s00299-020-02568-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 05/08/2023]
Abstract
DNA methylation, morphogenesis and gene expression during the somatic embryogenesis of Coconut are affected by 5-Azacytidine pretreatments, indicating that DNA methylation is an important factor throughout this process. Somatic embryogenesis (SE) is a process that can aid in the production of elite Cocos nucifera palms. It has been well established that epigenetic mechanisms are regulators of cell differentiation programs; however, their role in the coconut somatic embryogenesis has not yet been addressed. To this end, the morphogenetic changes, the global DNA methylation and the expression profiles of the SE-related genes and DNA methyltransferases genes were evaluated during the SE process, with and without the presence of 5-Azacytidine (AzaC). The results show that three days of pretreatments with 15 µM and 20 µM of AzaC significantly increased early somatic embryo formation (four- and tenfold, respectively). A clear peak of the global percentage of DNA methylation (approximately 13%) was determined at the beginning of the culture, followed by a re-establishing stage and a steady increase thereafter; in all cases, the levels of DNA methylation were lower after the pretreatments with AzaC. Additionally, the expression profiles of the SERK, WUS, BBM and LEC genes are modulated during the SE process and the pretreatments with AzaC affect the expression profiles of these genes, even at early stages. Furthermore, increased levels of expression were observed for the genes encoding for DNA methyltransferases (MET, CMT and DRM) at early and late stages of SE, indicating that DNA methylation is an important factor throughout the SE.
Collapse
Affiliation(s)
- Pedro Osorio-Montalvo
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Carlos Oropeza
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Geovanny Nic-Can
- CONACYT-Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iván Córdova-Lara
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Eduardo Castillo-Castro
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Luis Sáenz-Carbonell
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
26
|
Olivares-García CA, Mata-Rosas M, Peña-Montes C, Quiroz-Figueroa F, Segura-Cabrera A, Shannon LM, Loyola-Vargas VM, Monribot-Villanueva JL, Elizalde-Contreras JM, Ibarra-Laclette E, Ramirez-Vázquez M, Guerrero-Analco JA, Ruiz-May E. Phenylpropanoids Are Connected to Cell Wall Fortification and Stress Tolerance in Avocado Somatic Embryogenesis. Int J Mol Sci 2020; 21:ijms21165679. [PMID: 32784357 PMCID: PMC7460882 DOI: 10.3390/ijms21165679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.
Collapse
Affiliation(s)
- Carol A. Olivares-García
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (C.A.O.-G.); (M.M.-R.)
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz CP 91897, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (C.A.O.-G.); (M.M.-R.)
| | - Carolina Peña-Montes
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz CP 91897, Mexico
- Correspondence: (C.P.-M.); (E.R.-M.)
| | - Francisco Quiroz-Figueroa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Sinaloa, Boulevard Juan de Dios Bátiz Paredes # 250, Col. San Joachin, Guasave, Sinaloa 81101, Mexico;
| | - Aldo Segura-Cabrera
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK;
| | - Laura M. Shannon
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Victor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán CP 97205, Mexico;
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Jose M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Mónica Ramirez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
- Correspondence: (C.P.-M.); (E.R.-M.)
| |
Collapse
|
27
|
Chromatin Accessibility Dynamics and a Hierarchical Transcriptional Regulatory Network Structure for Plant Somatic Embryogenesis. Dev Cell 2020; 54:742-757.e8. [PMID: 32755547 DOI: 10.1016/j.devcel.2020.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Plant somatic embryogenesis refers to a phenomenon where embryos develop from somatic cells in the absence of fertilization. Previous studies have revealed that the phytohormone auxin plays a crucial role in somatic embryogenesis by inducing a cell totipotent state, although its underlying mechanism is poorly understood. Here, we show that auxin rapidly rewires the cell totipotency network by altering chromatin accessibility. The analysis of chromatin accessibility dynamics further reveals a hierarchical gene regulatory network underlying somatic embryogenesis. Particularly, we find that the embryonic nature of explants is a prerequisite for somatic cell reprogramming. Upon cell reprogramming, the B3-type totipotent transcription factor LEC2 promotes somatic embryo formation by direct activation of the early embryonic patterning genes WOX2 and WOX3. Our results thus shed light on the molecular mechanism by which auxin promotes the acquisition of plant cell totipotency and establish a direct link between cell totipotent genes and the embryonic development pathway.
Collapse
|
28
|
Petti C. Phloroglucinol Mediated Plant Regeneration of Ornithogalum dubium as the Sole "Hormone-Like Supplement" in Plant Tissue Culture Long-Term Experiments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E929. [PMID: 32717803 PMCID: PMC7464755 DOI: 10.3390/plants9080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a "hormone-like" molecule and can trigger direct embryogenesis without callus formation.
Collapse
Affiliation(s)
- Carloalberto Petti
- Institute of Technology Carlow, EnviroCORE, DSH, Kilkenny Road, R93 V960 Carlow, Ireland
| |
Collapse
|
29
|
Jekayinoluwa T, Tripathi JN, Obiero G, Muge E, Tripathi L. Phytochemical Analysis and Establishment of Embryogenic Cell Suspension and Agrobacterium-mediated Transformation for Farmer Preferred Cultivars of West African Plantain ( Musa spp.). PLANTS 2020; 9:plants9060789. [PMID: 32599771 PMCID: PMC7357122 DOI: 10.3390/plants9060789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022]
Abstract
Banana and plantain are among the foremost staple food crops providing food and livelihood to over 500 million people in tropical countries. Despite the importance, their production is hampered due to several biotic and abiotic stresses. Plant tissue culture techniques such as somatic embryogenesis and genetic transformation offer a valuable tool for genetic improvement. Identification and quantification of phytochemicals found in banana and plantain are essential in optimizing in vitro activities for crop improvement. Total antioxidants, phenolics, flavonoids, and tannins were quantified in various explants obtained from the field, as well as in vitro plants of banana and plantain cultivars. The result showed genotypic variation in the phytochemicals of selected cultivars. The embryogenic cell suspensions were developed for three farmer-preferred plantain cultivars, Agbagba, Obino l’Ewai, and Orishele, using different MS and B5-based culture media. Both culture media supported the development of friable embryogenic calli (FEC), while MS culture media supported the proliferation of fine cell suspension in liquid culture media. The percentage of FEC generated for Agbagba, Obino l’Ewai, and Orishele were 22 ± 24%, 13 ± 28%, and 9 ± 16%, respectively. Cell suspensions produced from FECs were successfully transformed by Agrobacterium-mediated transformation with reporter gene constructs and regenerated into whole plants.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Jaindra Nath Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Edward Muge
- Department of Biochemistry, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Correspondence: ; Tel.: +254-20-422-3472
| |
Collapse
|
30
|
Li S, Yan H, Mei WM, Tse YC, Wang H. Boosting autophagy in sexual reproduction: a plant perspective. THE NEW PHYTOLOGIST 2020; 226:679-689. [PMID: 31917864 DOI: 10.1111/nph.16414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The key process of sexual reproduction is the successful fusion of the sperm and egg cell. Distinct from dynamic and flagellated animal sperm cells, higher flowering plant sperm cells are immotile. Therefore, plants have evolved a novel reproductive system to achieve fertilization and generate progenies. Plant sexual reproduction consists of multiple steps, mainly including gametophyte development, pollen-pistil recognition, pollen germination, double fertilization and postfertilization. During reproduction, active production, consumption and recycling of cellular components and energy are critically required to achieve fertilization. However, the underlying machinery of cellular degradation and turnover remains largely unexplored. Autophagy, the major catabolic pathway in eukaryotic cells, participates in regulating multiple aspects of plant activities, including abiotic and biotic stress resistance, pathogen response, senescence, nutrient remobilization and plant development. Nevertheless, a key unanswered question is how autophagy regulates plant fertilization and reproduction. Here, we focus on comparing and contrasting autophagy in several key reproductive processes of plant and animal systems to feature important distinctions and highlight future research directions of autophagy in angiosperm reproduction. We further discuss the potential crosstalk between autophagy and programmed cell death, which are often considered as two disconnected events in plant sexual reproduction.
Collapse
Affiliation(s)
- Shanshan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Ming Mei
- Outpatient Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and Department of Biology, Southern University of Science and Technology, Shenzhen, 518005, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Methylation Analysis of CpG Islands in Pineapple SERK1 Promoter. Genes (Basel) 2020; 11:genes11040425. [PMID: 32326553 PMCID: PMC7231283 DOI: 10.3390/genes11040425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatic embryogenesis (SE) is a more rapid and controllable method for plant propagation than traditional breeding methods. However, it often suffers from limited efficiency. SERK1 promotes SE in several plants, including pineapple (Ananas comosus L.). We investigate the embryonic cell-specific transcriptional regulation of AcSERK1 by methylation analysis of CpG islands in AcSERK1 regulatory sequences. This revealed differences in the methylation status of CpG islands between embryonic callus and non-embryonic callus; the methylation inhibitor 5-azaC increased AcSERK1 expression and also accelerated SE. These findings indicate that the expression of AcSERK1 is regulated epigenetically. This study lays the foundation for further analysis of epigenetic regulatory mechanisms that may enhance the efficiency of SE in pineapple and other plants.
Collapse
|
32
|
Boguspaev K, Turasheva S, Seilkhanov T, Faleev D, Mutalkhanov M, Portnoy V. Rapid Rubber Extraction and NMR Spectroscopy of Rubber, Extracted from the Endemic Species Scorzonera Tau-Saghyz. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2020. [DOI: 10.18321/ectj931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Scorzonera tau-saghyz Lipsch. et G.G. Bosse is an endemic rubber producing plant, growing in mountain regions in South Kazakhstan. The rubber content in plants and the quality of biopolymer has an important impact on industrial rubber production. The results of this study showed that the amount of rubber in S. tau-saghyz roots fluctuates between 7.74% and 38.75%. The amount of synthesized and deposited rubber biopolymer particles depends on various factors such as physiological age of plant, origin, temperature, moisture and environmental conditions. We optimized the extraction method of natural rubber by using n-hexane as a solvent for direct extraction. This method allows extracting the maximum amount of rubber from 3‒4-year-old plants. NMR results show structural links of natural isoprene rubber in the root extract sample. There is a clear relationship between methyl, methine and methylene protons which corresponds to isoprene rubber structure. The samples having strongly marked singlets that are inherent for rubber functional groups confirms the stereospecific structure of rubber. Good solubility of the root extract in deuterated chloroform can characterize the low molecular weight of the polymer. NMR characterization of rubber, extracted from S. tau-saghyz roots, is reported for the first time. Regeneration in vitro provides an important opportunity for endemic preservation by rapidly increasing the number of plants. The best regeneration of adventitious shoots was obtained on MS medium containing 5.5 μM kinetin and 0.5 μM NAA. The plants were successfully acclimatized in a glasshouse with 75% of S. tau-saghyz plantlets, respectively surviving after transfer to ex vitro conditions.
Collapse
|
33
|
von Arnold S, Zhu T, Larsson E, Uddenberg D, Clapham D. Regulation of Somatic Embryo Development in Norway Spruce. Methods Mol Biol 2020; 2122:241-255. [PMID: 31975307 DOI: 10.1007/978-1-0716-0342-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Somatic embryogenesis in Norway spruce combined with reverse genetics can be used as a model to study the regulation of embryo development in conifers. The somatic embryo system includes a sequence of developmental stages, which are similar in morphology to their zygotic counterparts. The system can be sufficiently synchronized to enable the collection and study of a large number of somatic embryos at each developmental stage.Here we describe a protocol for establishing transgenic cell lines in which genes of interest are upregulated or downregulated. Furthermore, we present methods for comparing embryo morphology and development in transgenic and control cell lines, including phenotyping the embryos, histological analysis, and tracking embryo development. The expression pattern of different genes is determined by GUS reporter assays.
Collapse
Affiliation(s)
- Sara von Arnold
- Department of Plant Biology and Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Emma Larsson
- Department of Plant Biology and Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniel Uddenberg
- Physiological Botany, Department of Organismal Biology and Linnean Center for Plant Biology, Uppsala University, Uppsala, Sweden
| | - David Clapham
- Department of Plant Biology and Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
34
|
Weigt D, Niemann J, Siatkowski I, Zyprych-Walczak J, Olejnik P, Kurasiak-Popowska D. Effect of Zearalenone and Hormone Regulators on Microspore Embryogenesis in Anther Culture of Wheat. PLANTS 2019; 8:plants8110487. [PMID: 31717618 PMCID: PMC6918171 DOI: 10.3390/plants8110487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
The purpose of this work was to assess the impact of zearalenone (ZEN) and selected hormone regulators on the effectiveness of microspore embryogenesis in anther culture of wheat. The plant material comprised F1 hybrids of winter and spring wheat. Six combinations of media inducing microspore proliferation and formation of embryogenic structures were investigated: two combinations of growth regulators (D - 2,4-D + dicamba, K - 2,4-D + kinetin), each with three ZEN concentrations (0 mL/L, 0.1 mL/L, 0.2 mL/L). A significant increase in microspore embryogenesis effectiveness on media with the addition of ZEN was observed both at the stages of its induction and the formation of green plants in some genotypes. In case of both combinations of growth regulators, an increased concentration of ZEN resulted in more effective induction of microspore embryogenesis. The most effective induction medium was the D medium supplemented with 0.2 mL/L ZEN. As a result of the use of zearalenone together with two combinations of growth regulators, all genotypes tested produced androgenic structures, which indicates the breakdown of genotypic recalcitrant in the analysed hybrids. In addition, green plants were obtained from 18 out of 19 tested hybrids. The addition of ZEN to the medium did not affect the number of regenerated albino plants nor the number of spontaneous genome doublings proportion.
Collapse
Affiliation(s)
- Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
- Correspondence:
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60–637 Poznań, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60–637 Poznań, Poland
| | - Przemysław Olejnik
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| |
Collapse
|
35
|
Pérez-Pérez Y, El-Tantawy AA, Solís MT, Risueño MC, Testillano PS. Stress-Induced Microspore Embryogenesis Requires Endogenous Auxin Synthesis and Polar Transport in Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1200. [PMID: 31611902 PMCID: PMC6776631 DOI: 10.3389/fpls.2019.01200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 05/17/2023]
Abstract
Stress-induced microspore embryogenesis is a model in vitro system of cell reprogramming, totipotency acquisition, and embryo development. After induction, responsive microspores abandon their developmental program to follow an embryogenic pathway, leading to in vitro embryo formation. This process is widely used to produce doubled-haploid lines, essential players to create new materials in modern breeding programs, particularly in cereals, although its efficiency is still low in many crop species, because the regulating mechanisms are still elusive. Stress signaling and endogenous hormones, mainly auxin, have been proposed as determinant factors of microspore embryogenesis induction in some eudicot species; however, much less information is available in monocot plants. In this study, we have analyzed the dynamics and possible role of endogenous auxin during stress-induced microspore embryogenesis in the monocot Hordeum vulgare, barley. The results showed auxin accumulation in early proembryo cells, from embryogenesis initiation and a further increase with embryo development and differentiation, correlating with the induction and expression pattern of the auxin biosynthesis gene HvTAR2-like. Pharmacological treatments with kynurenine, inhibitor of auxin biosynthesis, and α-(p-chlorophenoxy)-isobutyric acid (PCIB), auxin antagonist, impaired embryogenesis initiation and development, indicating that de novo auxin synthesis and its activity were required for the process. Efflux carrier gene HvPIN1-like was also induced with embryogenesis initiation and progression; auxin transport inhibition by N-1-naphthylphthalamic acid significantly reduced embryo development at early and advanced stages. The results indicate activation of auxin biosynthesis with microspore embryogenesis initiation and progression, in parallel with the activation of polar auxin transport, and reveal a central role of auxin in the process in a monocot species. The findings give new insights into the complex regulation of stress-induced microspore embryogenesis, particularly in monocot plants for which information is still scarce, and suggest that manipulation of endogenous auxin content could be a target to improve in vitro embryo production.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center, CIB-CSIC, Madrid, Spain
| | | | - María Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center, CIB-CSIC, Madrid, Spain
- Department of Genetics, Physiology and Microbiology, University Complutense of Madrid, Madrid, Spain
| | - María C. Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center, CIB-CSIC, Madrid, Spain
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center, CIB-CSIC, Madrid, Spain
| |
Collapse
|
36
|
Mohanapriya G, Bharadwaj R, Noceda C, Costa JH, Kumar SR, Sathishkumar R, Thiers KLL, Santos Macedo E, Silva S, Annicchiarico P, Groot SP, Kodde J, Kumari A, Gupta KJ, Arnholdt-Schmitt B. Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis-A Role Relevant for Seed Vigor Prediction and Plant Robustness. FRONTIERS IN PLANT SCIENCE 2019; 10:1134. [PMID: 31611888 PMCID: PMC6776121 DOI: 10.3389/fpls.2019.01134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.
Collapse
Affiliation(s)
- Gunasekaran Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Cell and Molecular Biology of Plants (BPOCEMP)/Industrial Biotechnology and Bioproducts, Department of Sciences of the Vidaydela Agriculture, University of the Armed Forces-ESPE, Milagro, Ecuador
- Faculty of Engineering, State University of Milagro (UNEMI), Milagro, Ecuador
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Sarma Rajeev Kumar
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Sofia Silva
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Steven P.C. Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Aprajita Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- CERNAS-Research Center for Natural Resources, Environment and Society, Department of Environment, Escola Superior Agrária de Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
38
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
39
|
Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones AT. Using Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E38. [PMID: 30754699 PMCID: PMC6409764 DOI: 10.3390/plants8020038] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Efficient transformation of numerous important crops remains a challenge, due predominantly to our inability to stimulate growth of transgenic cells capable of producing plants. For years, this difficulty has been partially addressed by tissue culture strategies that improve regeneration either through somatic embryogenesis or meristem formation. Identification of genes involved in these developmental processes, designated here as morphogenic genes, provides useful tools in transformation research. In species from eudicots and cereals to gymnosperms, ectopic overexpression of genes involved in either embryo or meristem development has been used to stimulate growth of transgenic plants. However, many of these genes produce pleiotropic deleterious phenotypes. To mitigate this, research has been focusing on ways to take advantage of growth-stimulating morphogenic genes while later restricting or eliminating their expression in the plant. Methods of controlling ectopic overexpression include the use of transient expression, inducible promoters, tissue-specific promoters, and excision of the morphogenic genes. These methods of controlling morphogenic gene expression have been demonstrated in a variety of important crops. Here, we provide a review that highlights how ectopic overexpression of genes involved in morphogenesis has been used to improve transformation efficiencies, which is facilitating transformation of numerous recalcitrant crops. The use of morphogenic genes may help to alleviate one of the bottlenecks currently slowing progress in plant genome modification.
Collapse
Affiliation(s)
- Bill Gordon-Kamm
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Nagesh Sardesai
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Maren Arling
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Keith Lowe
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - George Hoerster
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Scott Betts
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - And Todd Jones
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| |
Collapse
|
40
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
41
|
Castander-Olarieta A, Montalbán IA, De Medeiros Oliveira E, Dell’Aversana E, D’Amelia L, Carillo P, Steiner N, Fraga HPDF, Guerra MP, Goicoa T, Ugarte MD, Pereira C, Moncaleán P. Effect of Thermal Stress on Tissue Ultrastructure and Metabolite Profiles During Initiation of Radiata Pine Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 9:2004. [PMID: 30705684 PMCID: PMC6344425 DOI: 10.3389/fpls.2018.02004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Climate change will inevitably lead to environmental variations, thus plant drought tolerance will be a determinant factor in the success of plantations and natural forestry recovery. Some metabolites, such as soluble carbohydrates and amino acids, have been described as being the key to both embryogenesis efficiency and abiotic stress response, contributing to phenotypic plasticity and the adaptive capacity of plants. For this reason, our main objectives were to evaluate if the temperature during embryonal mass initiation in radiata pine was critical to the success of somatic embryogenesis, to alter the morphological and ultrastructural organization of embryonal masses at cellular level and to modify the carbohydrate, protein, or amino acid contents. The first SE initiation experiments were carried out at moderate and high temperatures for periods of different durations prior to transfer to the control temperature of 23°C. Cultures initiated at moderate temperatures (30°C, 4 weeks and 40°C, 4 days) showed significantly lower initiation and proliferation rates than those at the control temperature or pulse treatment at high temperatures (50°C, 5 min). No significant differences were observed either for the percentage of embryogenic cell lines that produced somatic embryos, or for the number of somatic embryos per gram of embryonal mass. Based on the results from the first experiments, initiation was carried out at 40°C 4 h; 50°C, 30 min; and a pulse treatment of 60°C, 5 min. No significant differences were found for the initiation or number of established lines or for the maturation of somatic embryos. However, large morphological differences were observed in the mature somatic embryos. At the same time, changes observed at cellular level suggested that strong heat shock treatments may trigger the programmed cell death of embryogenic cells, leading to an early loss of embryogenic potential, and the formation of supernumerary suspensor cells. Finally, among all the differences observed in the metabolic profile, it is worth highlighting the accumulation of tyrosine and isoleucine, both amino acids involved in the synthesis of abiotic stress response-related secondary metabolites.
Collapse
Affiliation(s)
| | | | | | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Luisa D’Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Neusa Steiner
- Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Miguel Pedro Guerra
- Laboratório de Fisiología do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - Catia Pereira
- Department of Life Sciences, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
42
|
Pérez-Pérez Y, Carneros E, Berenguer E, Solís MT, Bárány I, Pintos B, Gómez-Garay A, Risueño MC, Testillano PS. Pectin De-methylesterification and AGP Increase Promote Cell Wall Remodeling and Are Required During Somatic Embryogenesis of Quercus suber. FRONTIERS IN PLANT SCIENCE 2019; 9:1915. [PMID: 30671070 PMCID: PMC6331538 DOI: 10.3389/fpls.2018.01915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 05/18/2023]
Abstract
Somatic embryogenesis is a reliable system for in vitro plant regeneration, with biotechnological applications in trees, but the regulating mechanisms are largely unknown. Changes in cell wall mechanics controlled by methylesterification of pectins, mediated by pectin methylesterases (PMEs) and pectin methyl esterase inhibitors (PMEIs) underlie many developmental processes. Arabinogalactan proteins (AGPs) are highly glycosylated proteins located at the surface of plasma membranes, in cell walls, and in extracellular secretions, with key roles in a range of different processes. In this study, we have investigated changes in two cell wall components, pectins and AGPs, during somatic embryogenesis in Quercus suber, a forest tree of high economic and ecologic value. At early embryogenesis stages, cells of proembryogenic masses showed high levels of esterified pectins and expression of QsPME and QsPMEI genes encoding a PME and a putative PMEI, respectively. At advanced stages, differentiating cells of heart, torpedo and cotyledonary embryos exhibited walls rich in de-esterified pectins, while QsPME gene expression and PME activity progressively increased. AGPs were detected in cell walls of proembryogenic masses and somatic embryos. QsLys-rich-AGP18, QsLys-rich-AGP17, and QsAGP16L1 gene expression increased with embryogenesis progression, as did the level of total AGPs, detected by dot blot with β-glucosyl Yariv reagent. Immuno dot blot, immunofluorescence assays and confocal analysis using monoclonal antibodies to high- (JIM7, LM20) and low- (JIM5, LM19) methylesterified pectins, and to certain AGP epitopes (LM6, LM2) showed changes in the amount and distribution pattern of esterified/de-esterified pectins and AGP epitopes, that were associated with proliferation and differentiation and correlated with expression of the PME and AGP genes analyzed. Pharmacological treatments with catechin, an inhibitor of PME activity, and Yariv reagent, which blocks AGPs, impaired the progression of embryogenesis, with pectin de-esterification and an increase in AGP levels being necessary for embryo development. Findings indicate a role for pectins and AGPs during somatic embryogenesis of cork oak, promoting the cell wall remodeling during the process. They also provide new insights into the regulating mechanisms of somatic embryogenesis in woody species, for which information is still scarce, opening up new possibilities to improve in vitro embryo production in tree breeding.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Eduardo Berenguer
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Ivett Bárány
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Beatriz Pintos
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Aránzazu Gómez-Garay
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - María C. Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| |
Collapse
|
43
|
Brunoni F, Ljung K, Bellini C. Control of root meristem establishment in conifers. PHYSIOLOGIA PLANTARUM 2019; 165:81-89. [PMID: 29920700 DOI: 10.1111/ppl.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterward through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots (ARs) forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the AR primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, e.g. are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| |
Collapse
|
44
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
45
|
Rodrigues AS, De Vega JJ, Miguel CM. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC PLANT BIOLOGY 2018; 18:379. [PMID: 30594130 PMCID: PMC6310951 DOI: 10.1186/s12870-018-1564-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/22/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis. RESULTS Total RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons. CONCLUSIONS Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.
Collapse
Affiliation(s)
- Andreia S. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José J. De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Célia M. Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
46
|
Hernández-Piedra G, Ruiz-Carrera V, Sánchez AJ, Hernández-Franyutti A, Azpeitia-Morales A. Morpho-histological development of the somatic embryos of Typha domingensis. PeerJ 2018; 6:e5952. [PMID: 30505633 PMCID: PMC6254243 DOI: 10.7717/peerj.5952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Background Sustainable methods of propagation of Typha domingensis through somatic embryogenesis can help mitigate its current condition of ecological marginalization and overexploitation. This study examined whether differentiation up to coleoptilar embryos could be obtained in an embryogenic line proliferated with light and high auxin concentration. Methods Murashige and Skoog medium at half ionic strength and containing 3% sucrose and 0.1% ascorbic acid was used for the three embryogenic phases. Induction started with aseptic 9-day-old germinated seeds cultured in 0.5 mg L−1 2,4-dichlorophenoxyacetic (2,4-D). Proliferation of the embryogenic callus was evaluated at 2,4-D concentrations ranging from 0 to 2 mg L−1 in cultures maintained in the dark. The dominant embryogenic products obtained in each treatment were used as embryogenic lines in the third phase. Thus, maturation of the somatic embryos (SEs) was analyzed using four embryogenic lines and under light vs. dark conditions. Embryogenic differentiation was also monitored histologically. Results Proliferation of the nine morphogenetic products was greater in the presence of 2,4-D, regardless of the concentration, than in the absence of auxin. Among the products, a yellow callus was invariably associated with the presence of an oblong SE and suspended cells in the 2,4-D treatments, and a brown callus with scutellar somatic embryos (scSEs) in the treatment without 2,4-D. During the maturation phase, especially the embryogenic line but also the light condition resulted in significant differences, with the highest averages of the nine morphogenetic products obtained under light conditions and the maximum concentration of auxin (YC3 embryogenic line). Only this line achieved scSE growth, under both light and dark conditions. Structurally complete coleoptilar somatic embryos (colSEs) could be anatomically confirmed only during the maturation phase. Discussion In the embryogenic line cultured with the highest auxin concentration, light exposure favored the transdifferentiation from embryogenic callus to scSE or colSE, although growth was asynchronous with respect to the three embryogenic phases. The differentiation and cellular organization of the embryos were compatible with all stages of embryogenic development in other monocotyledons. The growth of colSEs under light conditions in the YC3 embryogenic line and the structurally complete anatomic description of colSEs demonstrated that differentiation up to coleoptilar embryos could be obtained. The diversity of embryogenic products obtained in the YC3 embryogenic line opens up the opportunity to synchronize histological descriptions with the molecules associated with the somatic embryogenesis of Typha spp.
Collapse
Affiliation(s)
- Guadalupe Hernández-Piedra
- Programa de Maestría en Ciencias Ambientales, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Violeta Ruiz-Carrera
- Universidad Juárez Autónoma de Tabasco, Diagnóstico y Manejo de Humedales Tropicales, Villahermosa, Tabasco, México
| | - Alberto J Sánchez
- Universidad Juárez Autónoma de Tabasco, Diagnóstico y Manejo de Humedales Tropicales, Villahermosa, Tabasco, México
| | - Arlette Hernández-Franyutti
- Universidad Juárez Autónoma de Tabasco, Biología y Manejo de Organismos Acuáticos, Villahermosa, Tabasco, México
| | - Alfonso Azpeitia-Morales
- Campo Experimental Huimanguillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tabasco, México
| |
Collapse
|
47
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:1-15. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
48
|
Potocka I, Godel K, Dobrowolska I, Kurczyńska EU. Spatio-temporal localization of selected pectic and arabinogalactan protein epitopes and the ultrastructural characteristics of explant cells that accompany the changes in the cell fate during somatic embryogenesis in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:573-589. [PMID: 29727861 DOI: 10.1016/j.plaphy.2018.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
During somatic embryogenesis (SE), explant cells undergo changes in the direction of their differentiation, which lead to diverse cell phenotypes. Although the genetic bases of the SE have been extensively studied in Arabidopsis thaliana, little is known about the chemical characteristics of the wall of the explant cells, which undergo changes in the direction of differentiation. Thus, we examined the occurrence of selected pectic and AGP epitopes in explant cells that display different phenotypes during SE. Explants examinations have been supplemented with an analysis of the ultrastructure. The deposition of selected pectic and AGP epitopes in somatic embryos was determined. Compared to an explant at the initial stage, a/embryogenic/totipotent and meristematic/pluripotent cells were characterized by a decrease in the presence of AGP epitopes, b/the presence of AGP epitopes in differentiated cells was similar, and c/an increase of analyzed epitopes was detected in the callus cells. Totipotent cells could be distinguished from pluripotent cells by: 1/the presence of the LM2 epitope in the latest one, 2/the appearance of the JIM16 epitope in totipotent cells, and 3/the more abundant presence of the JIM7 epitope in the totipotent cells. The LM5 epitope characterized the wall of the cells that were localized within the mass of embryogenic domain. The JIM8, JIM13 and JIM16 AGP epitopes appeared to be the most specific for the callus cells. The results indicate a relationship between the developmental state of the explant cells and the chemical composition of the cell walls.
Collapse
Affiliation(s)
- Izabela Potocka
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kamila Godel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Izabela Dobrowolska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa U Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
49
|
Long JM, Liu CY, Feng MQ, Liu Y, Wu XM, Guo WW. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2979-2993. [PMID: 29659948 PMCID: PMC5972587 DOI: 10.1093/jxb/ery132] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 05/26/2023]
Abstract
miR156 is a highly conserved plant miRNA and has been extensively studied because of its versatile roles in plant development. Here, we report a novel role of miR156 in regulating somatic embryogenesis (SE) in citrus, one of the most widely cultivated fruit crops in the world. SE is an important means of in vitro regeneration, but over the course of long-term sub-culturing there is always a decline in the SE potential of the preserved citrus embryogenic callus, and this represents a key obstacle for citrus biotechnology. In this study, the SE competence of citrus callus of wild kumquat (Fortunella hindsii) was significantly enhanced by either overexpression of csi-miR156a or by individual knock-down of the two target genes, CsSPL3 and CsSPL14, indicating that the effect of miR156-SPL modules was established during the initial phases of SE induction. Biological processes that might promote SE in response to miR156 overexpression were explored using RNA-seq, and mainly included hormone signaling pathways, stress responses, DNA methylation, and the cell cycle. CsAKIN10 was identified as interacting protein of CsSPL14. Our results provide insights into the regulatory pathway through which miR156-SPL modules enhance the SE potential of citrus callus, and provide a theoretical basis for improvement of plant SE competence.
Collapse
Affiliation(s)
- Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chao-Yang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Landge AN, Radhakrishnan D, Kareem A, Prasad K. Intermediate Developmental Phases During Regeneration. PLANT & CELL PHYSIOLOGY 2018; 59:702-707. [PMID: 29361166 DOI: 10.1093/pcp/pcy011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
The initial view that regeneration can be a continuum in terms of regulatory mechanisms is gradually changing, and recent evidence points towards the presence of discrete regulatory steps and intermediate phases. Furthermore, regeneration presents an excellent example of a process generating order and pattern, i.e. a self-organization process. It is likely that the process traverses a set of intermediate phases before reaching an endpoint. Although some progress has been made in deciphering the identity of these intermediate phases, a lot more work is needed to derive a comprehensive and complete picture. Here, we discuss the intermediate developmental phases in plant regeneration and compare them with the possible intermediate developmental phases in animal regeneration.
Collapse
Affiliation(s)
- Amit N Landge
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695016, India
| | - Dhanya Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695016, India
| | - Abdul Kareem
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695016, India
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695016, India
| |
Collapse
|