1
|
Lei Z, Han J, Yi X, Luo X, Zhang W, He D, Gong C, Zhang Y. Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39846236 DOI: 10.1111/plb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Plants with the C4 photosynthetic pathway can withstand water stress better than plants with C3 metabolism. However, it is unclear whether C4 photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L., Xinluzao45) was used to determine gas exchange, stomatal and vein anatomy, phosphoenolpyruvate carboxykinase (PEPC) and Rubisco enzyme activity, and carbon isotope composition (δ13C) under well-watered, mild or moderate water stress. Water stress triggered reduced photosynthesis, stomatal conductance, and Rubisco activity, but higher vein density (VD), PEPC activity, and WUE. The correlations between δ13C and each of VD and PEPC activity implied that these coordinately contributed to higher leaf WUE via a preliminary induction of C4 photosynthetic pathway. Preliminary C4 photosynthesis indicated by more PEPC enzyme and veins offers an effective way to improve leaf WUE and potentially aids in acclimation to adverse growing conditions.
Collapse
Affiliation(s)
- Z Lei
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - J Han
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - X Yi
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - X Luo
- College of Agronomy, Northwest A&F University, Yangling, China
| | - W Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - D He
- College of Agronomy, Northwest A&F University, Yangling, China
| | - C Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Y Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Boorboori MR, Lackóová L. Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1504970. [PMID: 39898265 PMCID: PMC11782229 DOI: 10.3389/fpls.2024.1504970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025]
Abstract
In recent decades, climate change has caused a decrease in rainfall, increasing sea levels, temperatures rising, and as a result, an expansion in salt marshes across the globe. An increase in water and soil salinity has led to a decline in the cultivated areas in different areas, and consequently, a substantial decrease in crop production. Therefore, it has forced scientists to find cheap, effective and environmentally friendly methods to minimize salinity's impact on crops. One of the best strategies is to use beneficial soil microbes, including arbuscular mycorrhizal fungi, in order to increase plant tolerance to salt. The findings of this review showed that salinity can severely impact the morphological, physiological, and biochemical structures of plants, lowering their productivity. Although plants have natural capabilities to deal with salinity, these capacities are limited depending on plant type, and variety, as well as salinity levels, and other environmental factors. Furthermore, result of the present review indicates that arbuscular mycorrhizal fungi have a significant effect on increasing plant resistance in saline soils by improving the soil structure, as well as stimulating various plant factors including photosynthesis, antioxidant defense system, secondary metabolites, absorption of water and nutrients.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, Anhui, China
| | - Lenka Lackóová
- Faculty of Horticulture and Landscape Engineering, Institute of Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
3
|
Bredow M, Khwanbua E, Sartor Chicowski A, Qi Y, Breitzman MW, Holan KL, Liu P, Graham MA, Whitham SA. Elevated CO 2 alters soybean physiology and defense responses, and has disparate effects on susceptibility to diverse microbial pathogens. THE NEW PHYTOLOGIST 2025. [PMID: 39788902 DOI: 10.1111/nph.20364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Increasing atmospheric CO2 levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO2 (eCO2) will affect a particular plant-pathogen interaction. We investigated how eCO2 may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean. Soybean plants grown in ambient CO2 (aCO2, 419 parts per million (ppm)) or in eCO2 (550 ppm) were challenged with bacterial, viral, fungal, and oomycete pathogens. Disease severity, pathogen growth, gene expression, and molecular plant defense responses were quantified. In eCO2, plants were less susceptible to Pseudomonas syringae pv. glycinea (Psg) but more susceptible to bean pod mottle virus, soybean mosaic virus, and Fusarium virguliforme. Susceptibility to Pythium sylvaticum was unchanged, although a greater loss in biomass occurred in eCO2. Reduced susceptibility to Psg was associated with enhanced defense responses. Increased susceptibility to the viruses was associated with reduced expression of antiviral defenses. This work provides a foundation for understanding how future eCO2 levels may impact molecular responses to pathogen challenges in soybean and demonstrates that microbes infecting both shoots and roots are of potential concern in future climatic conditions.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Aline Sartor Chicowski
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Matthew W Breitzman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, 50011, IA, USA
| | - Katerina L Holan
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Michelle A Graham
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| |
Collapse
|
4
|
O'Brien K, Ashioya L, Faith JT. Non-Analog Behaviour of Eastern African Herbivore Communities During the Last Glacial Period. Ecol Lett 2025; 28:e70041. [PMID: 39737742 DOI: 10.1111/ele.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
Modern African ungulates navigate seasonal variation in resource availability through diet-switching (primarily mixed-feeders) and/or migrating (primarily grass grazers). These ecological generalisations are well-documented today, but the extent to which they apply to the non-analog ecosystems of the Pleistocene are unclear. Drawing from serially-sampled stable isotope measurements from 18 Kenyan large herbivore species from the Last Glacial Period (LGP), we evaluate how diet, diet-switching, and migration compare to observations from present-day settings. We find a higher grazing signal in most LGP species and a greater magnitude of diet-switching than in the present. Additionally, we find that the relationships between grass intake, migration, diet-switching, and body size during the LGP were unlike those observed today. This establishes a revised paleoecology of LGP herbivore communities and highlights that LGP herbivores were behaviourally non-analog. Our results imply that ecological observations from present-day settings offer an incomplete perspective of herbivore-environment interactions.
Collapse
Affiliation(s)
- Kaedan O'Brien
- Department of Anthropology, SUNY Oneonta, Oneonta, New York, USA
| | | | - J Tyler Faith
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Natural History Museum of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Welti EA, Kaspari M. Elevated CO 2, nutrition dilution, and shifts in Earth's insect abundance. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101255. [PMID: 39182720 DOI: 10.1016/j.cois.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.
Collapse
Affiliation(s)
- Ellen Ar Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630 USA.
| | - Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
6
|
Bellasio C. Instantaneous growth: a compact measure of efficient carbon and nitrogen allocation in leaves and roots of C 3 and C 4 plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14535. [PMID: 39431421 DOI: 10.1111/ppl.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Elucidating plant functions and identifying crop productivity bottlenecks requires the accurate quantification of their performance. This task has been attained through photosynthetic models. However, their traditional focus on the leaf's capacity to uptake CO2 is becoming increasingly restrictive. Advanced bioengineering of C3 plants has made it possible to increase rates of CO2 assimilation by packing photosynthetic structures more densely within leaves. The operation of mechanisms that concentrate CO2 inside leaves can boost rates of assimilation while requiring a lower investment in carboxylating enzymes. Therefore, whether in the context of spontaneous plants or modern manipulation, considering trade-offs in resource utilization efficiency emerges as a critical necessity. I've developed a concise and versatile analytical model that simulates concurrent leaf and root growth by balancing instantaneous fluxes of carbon and nitrogen. Carbon is made available by leaf photosynthesis, encompassing all types of biochemistries, while nitrogen is either taken up by roots or remobilized after senescence. The allocation of leaf nitrogen between light or carbon reactions was determined using a fitting algorithm: growth maximisation was the only reliable fitting goal. Both the leaf nitrogen pool and the root-to-leaf ratio responded realistically to various environmental drivers (CO2 concentration, light intensity, soil nitrogen), replicating trends typically observed in plants. Furthermore, modifying the strength of CO2 concentrating mechanisms proved sufficient to alter the root-to-leaf ratio between C3 and C4 types. This direct and mechanistic one-to-one link convincingly demonstrates, for the first time, the functional dependence of a morphological trait on a single biochemical property.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi di Perugia, Perugia, Italy
- University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
7
|
Gao W, Dai D, Luo H, Yu D, Liu C, Zhang N, Liu L, You C, Zhou S, Tu L, Liu Y, Huang C, He X, Cui X. Habitat differentiation and environmental adaptability contribute to leaf size variations globally in C 3 and C 4 grasses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173309. [PMID: 38782268 DOI: 10.1016/j.scitotenv.2024.173309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The grass family (Poaceae) dominates ~43 % of Earth's land area and contributes 33 % of terrestrial primary productivity that is critical to naturally regulating atmosphere CO2 concentration and global climate change. Currently grasses comprise ~11,780 species and ~50 % of them (~6000 species) utilize C4 photosynthetic pathway. Generally, grass species have smaller leaves under colder and drier environments, but it is unclear whether the primary drivers of leaf size differ between C3 and C4 grasses on a global scale. Here, we analyzed 34 environmental variables, such as latitude, elevation, mean annual temperature, mean annual precipitation, and solar radiation etc., through a comparatively comprehensive database of ~3.0 million occurrence records from 1380 C3 and 978 C4 grass species (2358 species in total). Results from this study confirm that C4 grasses have occupied habitats with lower latitudes and elevations, characterized by warmer, sunnier, drier and less fertile environmental conditions. Grass leaf size correlates positively with mean annual temperature and precipitation as expected. Our results also demonstrate that the mean temperature of the wettest quarter of the year is the primary control for C3 leaf size, whereas C4 leaf size is negatively correlated with the difference between summer and winter temperatures. For C4 grasses, phylogeny exerts a significant effect on leaf size but is less important than environmental factors. Our findings highlight the importance of evolutionarily contrasting variations in leaf size between C3 and C4 grasses for shaping their geographical distribution and habitat suitability at the global scale.
Collapse
Affiliation(s)
- Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dachuan Dai
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huan Luo
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Congcong Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ning Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengming You
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Lihua Tu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Yang Liu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Congde Huang
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinhua He
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 95616, USA.
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
8
|
Berauer BJ, Akale A, Schweiger AH, Knott M, Diehl D, Wolf M, Sawers RJH, Ahmed MA. Differences in mucilage properties and stomatal sensitivity of locally adapted Zea mays in relation with precipitation seasonality and vapour pressure deficit regime of their native environment. PLANT DIRECT 2023; 7:e519. [PMID: 37600238 PMCID: PMC10435965 DOI: 10.1002/pld3.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.
Collapse
Affiliation(s)
- Bernd J. Berauer
- Institute of Landscape and Plant Ecology, Department of Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Asegidew Akale
- Root‐Soil Interaction, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andreas H. Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Mathilde Knott
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Dörte Diehl
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Marc‐Philip Wolf
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Ruairidh J. H. Sawers
- Department of Plant ScienceThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Mutez A. Ahmed
- Root‐Soil Interaction, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
9
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Faghihinia M, Jansa J. Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple ( 13C, 15N and 33P) labeling study. FRONTIERS IN PLANT SCIENCE 2022; 13:1047270. [PMID: 36589136 PMCID: PMC9799978 DOI: 10.3389/fpls.2022.1047270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Collapse
Affiliation(s)
- Maede Faghihinia
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
11
|
Sagun JV, Chow WS, Ghannoum O. Leaf pigments and photosystems stoichiometry underpin photosynthetic efficiency of related C 3 , C-C 4 and C 4 grasses under shade. PHYSIOLOGIA PLANTARUM 2022; 174:e13819. [PMID: 36344438 DOI: 10.1111/ppl.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The quantum yield of photosynthesis (QY, CO2 fixed per light absorbed) depends on the efficiency of light absorption, the coupling between light absorption and electron transport, and the coupling between electron transport and carbon metabolism. QY is generally lower in C3 relative to C4 plants at warm temperatures and differs among the C4 subtypes. We investigated the acclimation to shade of light absorption and electron transport in six representative grasses with C3 , C3 -C4 and C4 photosynthesis. Plants were grown under full (control) or 25% (shade) sunlight. We measured the in vivo activity and stoichiometry of PSI and PSII, leaf spectral properties and pigment contents, and photosynthetic enzyme activities. Under control growth-light conditions, C4 species had higher CO2 assimilation rates, which declined to a greater extent relative to the C3 species. Whole leaf PSII/PSI ratios were highest in the C3 species, while QY and cyclic electron flow (CEF) were highest in the C4 , NADP-ME species. Shade significantly reduced leaf PSII/PSI, linear electron flow (LEF) and CEF of most species. Overall, shade reduced leaf absorptance, especially in the green region, as well as carotenoid and chlorophyll contents in C4 more than non-C4 species. The NAD-ME species underwent the greatest reduction in leaf absorptance and pigments under shade. In conclusion, shade compromised QY the least in the C3 and the most in the C4 -NAD-ME species. Different sensitivity to shade was associated with the ability to maintain leaf absorptance and pigments. This is important for maximising light absorption and minimising photoprotection under low light.
Collapse
Affiliation(s)
- Julius Ver Sagun
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Wah Soon Chow
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
12
|
Lal MK, Sharma N, Adavi SB, Sharma E, Altaf MA, Tiwari RK, Kumar R, Kumar A, Dey A, Paul V, Singh B, Singh MP. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO 2]. PLANT MOLECULAR BIOLOGY 2022; 110:305-324. [PMID: 35610527 DOI: 10.1007/s11103-022-01274-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/10/2022] [Indexed: 05/27/2023]
Abstract
Photosynthesis is the vital metabolism of the plant affected by abiotic stress such as high temperature and elevated [CO2] levels, which ultimately affect the source-sink relationship. Triose phosphate, the primary precursor of carbohydrate (starch and sucrose) synthesis in the plant, depends on environmental cues. The synthesis of starch in the chloroplasts of leaves (during the day), the transport of photoassimilates (sucrose) from source to sink, the loading and unloading of photoassimilates, and the accumulation of starch in the sink tissue all require a highly regulated network and communication system within the plant. These processes might be affected by high-temperature stress and elevated [CO2] conditions. Generally, elevated [CO2] levels enhance plant growth, photosynthetic rate, starch synthesis, and accumulation, ultimately diluting the nutrient of sink tissues. On the contrary, high-temperature stress is detrimental to plant development affecting photosynthesis, starch synthesis, sucrose synthesis and transport, and photoassimilate accumulation in sink tissues. Moreover, these environmental conditions also negatively impact the quality attributes such as grain/tuber quality, cooking quality, nutritional status in the edible parts and organoleptic traits. In this review, we have attempted to provide an insight into the source-sink relationship and the sugar metabolites synthesized and utilized by the plant under elevated [CO2] and high-temperature stress. This review will help future researchers comprehend the source-sink process for crop growth under changing climate scenarios.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Nitin Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Dr Yashwant, Singh Parmar University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Sandeep B Adavi
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Eshita Sharma
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
13
|
Munroe SEM, McInerney FA, Guerin GR, Andrae JW, Welti N, Caddy-Retalic S, Atkins R, Sparrow B. Plant families exhibit unique geographic trends in C4 richness and cover in Australia. PLoS One 2022; 17:e0271603. [PMID: 35994485 PMCID: PMC9394836 DOI: 10.1371/journal.pone.0271603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families. Proportional cover and richness of C4 species were determined at 541 one-hectare plots across Australia for 14 families. C4 cover and richness of the most common and abundant families were regressed against climate and local parameters. C4 richness and cover in the monocot families Poaceae and Cyperaceae increased with latitude and were strongly positively correlated with January temperatures, however C4 Cyperaceae occupied a more restricted temperature range. Seasonal rainfall, soil pH, soil texture, and tree cover modified proportional C4 cover in both families. Eudicot families displayed considerable variation in C4 distribution patterns. Proportional C4 Euphorbiaceae richness and cover were negatively correlated with increased moisture availability (i.e. high rainfall and low aridity), indicating they were more common in dry environments. Proportional C4 Chenopodiaceae richness and cover were weakly correlated with climate and local environmental factors, including soil texture. However, the explanatory power of C4 Chenopodiaceae models were poor, suggesting none of the factors considered in this study strongly influenced Chenopodiaceae distribution. Proportional C4 richness and cover in Aizoaceae, Amaranthaceae, and Portulacaceae increased with latitude, suggesting C4 cover and richness in these families increased with temperature and summer rainfall, but sample size was insufficient for regression analysis. Results demonstrate the unique relationships between different C4 taxa and climate, and the significant modifying effects of environmental factors on C4 distribution. Our work also revealed C4 families will not exhibit similar responses to local perturbations or climate.
Collapse
Affiliation(s)
- Samantha E. M. Munroe
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Terrestrial Ecosystem Research Network (TERN), University of Adelaide, Adelaide, South Australia, Australia
| | - Francesca A. McInerney
- School of Physical Sciences and the Sprigg Geobiology Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Greg R. Guerin
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Terrestrial Ecosystem Research Network (TERN), University of Adelaide, Adelaide, South Australia, Australia
| | - Jake W. Andrae
- School of Physical Sciences and the Sprigg Geobiology Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nina Welti
- CSIRO Agriculture and Food, Urrbrae, South Australia, Australia
| | - Stefan Caddy-Retalic
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Sydney, Australia
| | - Rachel Atkins
- School of Physical Sciences and the Sprigg Geobiology Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ben Sparrow
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Terrestrial Ecosystem Research Network (TERN), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Wang J, Wen X. Limiting resource and leaf functional traits jointly determine distribution patterns of leaf intrinsic water use efficiency along aridity gradients. FRONTIERS IN PLANT SCIENCE 2022; 13:909603. [PMID: 35968133 PMCID: PMC9372487 DOI: 10.3389/fpls.2022.909603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
16
|
Israel WK, Watson-Lazowski A, Chen ZH, Ghannoum O. High intrinsic water use efficiency is underpinned by high stomatal aperture and guard cell potassium flux in C3 and C4 grasses grown at glacial CO2 and low light. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1546-1565. [PMID: 34718533 DOI: 10.1093/jxb/erab477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 05/15/2023]
Abstract
We compared how stomatal morphology and physiology control intrinsic leaf water use efficiency (iWUE) in two C3 and six C4 grasses grown at ambient (400 µmol mol-1) or glacial CO2 (180 µmol mol-1) and high (1000 µmol m-2 s-1) or low light intensity (200 µmol m-2 s-1). C4 grasses tended to have higher iWUE and CO2 assimilation rates, and lower stomatal conductance (gs), operational stomatal aperture (aop), and guard cell K+ influx rate relative to C3 grasses, while stomatal size (SS) and stomatal density (SD) did not vary according to the photosynthetic type. Overall, iWUE and gs depended most on aop and density of open stomata. In turn, aop correlated with K+ influx, stomatal opening speed on transition to high light, and SS. Species with higher SD had smaller and faster-opening stomata. Although C4 grasses operated with lower gs and aop at ambient CO2, they showed a greater potential to open stomata relative to maximal stomatal conductance (gmax), indicating heightened stomatal sensitivity and control. We uncovered promising links between aop, gs, iWUE, and K+ influx among C4 grasses, and differential K+ influx responses of C4 guard cells to low light, revealing molecular targets for improving iWUE in C4 crops.
Collapse
Affiliation(s)
- Walter Krystler Israel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australia
| | - Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australia
| |
Collapse
|
17
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
18
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Pignon CP, Long SP. Retrospective analysis of biochemical limitations to photosynthesis in 49 species: C 4 crops appear still adapted to pre-industrial atmospheric [CO 2 ]. PLANT, CELL & ENVIRONMENT 2020; 43:2606-2622. [PMID: 32743797 DOI: 10.1111/pce.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Leaf CO2 uptake (A) in C4 photosynthesis is limited by the maximum apparent rate of PEPc carboxylation (Vpmax ) at low intercellular [CO2 ] (ci ) with a sharp transition to a ci -saturated rate (Vmax ) due to co-limitation by ribulose-1:5-bisphosphate carboxylase/oxygenase (Rubisco) and regeneration of PEP. The response of A to ci has been widely used to determine these two parameters. Vmax and Vpmax depend on different enzymes but draw on a shared pool of leaf resources, such that resource distribution is optimized, and A maximized, when Vmax and Vpmax are co-limiting. We collected published A/ci curves in 49 C4 species and assessed variation in photosynthetic traits between phylogenetic groups, and as a function of atmospheric [CO2 ]. The balance of Vmax -Vpmax varied among evolutionary lineages and C4 subtypes. Operating A was strongly Vmax -limited, such that re-allocation of resources from Vpmax towards Vmax was predicted to improve A by 12% in C4 crops. This would not require additional inputs but rather altered partitioning of existing leaf nutrients, resulting in increased water and nutrient-use efficiency. Optimal partitioning was achieved only in plants grown at pre-industrial atmospheric [CO2 ], suggesting C4 crops have not adjusted to the rapid increase in atmospheric [CO2 ] of the past few decades.
Collapse
Affiliation(s)
- Charles P Pignon
- Carl Woese Institute for Genomic Biology and Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Stephen P Long
- Carl Woese Institute for Genomic Biology and Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois, USA
- Lancaster Environment Centre, University of Lancaster, UK
| |
Collapse
|
20
|
Modelling the effects of CO 2 on C 3 and C 4 grass competition during the mid-Pleistocene transition in South Africa. Sci Rep 2020; 10:16234. [PMID: 33004831 PMCID: PMC7530989 DOI: 10.1038/s41598-020-72614-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C3 and C4 photosynthetic pathways, whereas C3 grasses decline after the mid-Pleistocene transition (MPT, c. 1.2–0.8 Ma). However, the local terrestrial proxy record cannot distinguish between the potential drivers of these vegetation changes. In this study we show that low glacial CO2 levels, similar to those at the MPT, lead to the local decline of C3 grasses under conditions of decreased water availability, using a vegetation model (LPX) driven by Atmosphere–Ocean coupled General Climate Model climate reconstructions. We modelled vegetation for glacial climates under different levels of CO2 and fire regimes and find evidence that a combination of low CO2 and changed seasonality is driving the changes in grass cover, whereas fire has little influence on the ratio of C3:C4 grasses. Our results suggest the prevalence of a less vegetated landscape with limited, seasonal water availability, which could potentially explain the much sparser mid-Pleistocene archaeological record in the southern Kalahari.
Collapse
|
21
|
Zhao M, Guo R, Li M, Liu Y, Wang X, Fu H, Wang S, Liu X, Shi L. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves. PHYSIOLOGIA PLANTARUM 2020; 168:819-834. [PMID: 31593297 DOI: 10.1111/ppl.13022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 05/26/2023]
Abstract
To explore the regulatory mechanisms involved in the adaption to nitrogen (N) deficiency of wild soybean, the ion balance, photosynthetic characteristics, metabolic and transcriptional changes in leaves of common and low N (LN)-tolerant wild soybean seedlings under LN stress were determined. The LN-tolerant wild soybean seedlings showed a stronger ability to maintain photosynthesis and nutrient balance than common wild soybean. A total of 52 differentially accumulated metabolites, mainly related to carbon and N metabolism, were identified between the control and the LN treatment group. In general, tricarboxylic acid (TCA) cycle, shikimic acid pathway, synthetase/glutamate synthase (GS/GOGAT) cycle and accumulation of most organic acids were enhanced in LN-tolerant wild soybean, while reduced in common wild soybean under LN stress compared with their respective control group. Moreover, glycolysis, sugar and polyol and fatty acid metabolism increased in both wild soybean genotypes, and increased more in LN-tolerant wild soybean. A total of 3381 differentially expressed genes (DEGs) were identified in leaves of both wild soybean genotypes and the expressed level of DEGs associated with sugars, polyols, fatty acids and energy metabolism was significantly higher in LN-tolerant wild soybean than in common wild soybean, consistent with changes in metabolite level. Our results suggest new ideas for the study of LN tolerance of wild soybean and provide a theoretical basis for development and utilization of wild soybean resources.
Collapse
Affiliation(s)
- Mingli Zhao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Mingxia Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Yuan Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Xiaoxia Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Hui Fu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Shiyao Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Xueying Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| |
Collapse
|
22
|
Watson-Lazowski A, Papanicolaou A, Koller F, Ghannoum O. The transcriptomic responses of C 4 grasses to subambient CO 2 and low light are largely species specific and only refined by photosynthetic subtype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1170-1184. [PMID: 31651067 DOI: 10.1111/tpj.14583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Three subtypes of C4 photosynthesis exist (NADP-ME, NAD-ME and PEPCK), each known to be beneficial under specific environmental conditions. However, the influence of photosynthetic subtype on transcriptomic plasticity, as well as the genes underpinning this variability, remain largely unknown. Here, we comprehensively investigate the responses of six C4 grass species, spanning all three C4 subtypes, to two controlled environmental stresses: low light (200 µmol m-2 sec-1 ) and glacial CO2 (subambient; 180 ppm). We identify a susceptibility within NADP-ME species to glacial CO2 . Notably, although glacial CO2 phenotypes could be tied to C4 subtype, biochemical and transcriptomic responses to glacial CO2 were largely species specific. Nevertheless, we were able to identify subtype specific subsets of significantly differentially expressed transcripts which link resource acquisition and allocation to NADP-ME species susceptibility to glacial CO2 . Here, low light phenotypes were comparable across species with no clear subtype response, while again, transcriptomic responses to low light were largely species specific. However, numerous functional similarities were noted within the transcriptomic responses to low light, suggesting these responses are functionally relatively conserved. Additionally, PEPCK species exhibited heightened regulation of transcripts related to metabolism in response to both stresses, likely tied to their C4 metabolic pathway. These results highlight the influence that both species and subtype can have on plant responses to abiotic stress, building on our mechanistic understanding of acclimation within C4 grasses and highlighting avenues for future crop improvements.
Collapse
Affiliation(s)
- Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Fiona Koller
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| |
Collapse
|
23
|
Induced Mutagenesis Enhances Lodging Resistance and Photosynthetic Efficiency of Kodomillet (Paspalum Scrobiculatum). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present research was focused in the development of photosynthetically efficient (PhE) and non-lodging mutants by utilizing ethyl methane sulphonate (EMS) and gamma radiation in the kodomillet variety CO 3, prone to lodging. Striking variations in a number of anatomical characteristics of leaf anatomy for PhE and culm thickness for lodging resistance was recorded in M2 (second mutant) generation. The identified mutants were subjected to transcriptomic studies to understand their molecular basis. Expression profiling was undertaken for pyruvate phosphate dikinase (PPDK), Nicotinamide Adenine Dinucleotide Phosphate Hydrogen—(NADPH) and NADP-dependent malate dehydrogenase (NADP-MDH) in the mutants CO 3-100-7-12 (photosynthetically efficient) and in CO 3-200-13-4 (less efficient). For lodging trait, two mutants CO 3-100-18-22 (lodged) and CO 3-300-7-4 (non-lodged) were selected for expression profiling using genes GA2ox6 and Rht-B. The studies confirmed the expression of PPDK increased 30-fold, NADP-ME2 ~1-fold and NADP-MDH10 was also highly expressed in the mutant CO 3-100-7-12. These expression profiles suggest that kodomillet uses an NADP-malic enzyme subtype C4 photosynthetic system. The expression of Rht-B was significantly up regulated in CO 3-300-7-4. The study highlights the differential expression patterns of the same gene in different lines at different time points of stress as well as non-stress conditions. This infers that the mutation has some effect on their expression; otherwise the expression levels will be unaltered. Enhancement in grain yield could be best achieved by developing a phenotype with high PhE and culm with thick sclerenchyma cells.
Collapse
|
24
|
Duarte AG, Longstaffe FJ, Way DA. Nitrogen fertilisation influences low CO 2 effects on plant performance. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:134-144. [PMID: 31902392 DOI: 10.1071/fp19151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Low atmospheric CO2 conditions prevailed for most of the recent evolutionary history of plants. Such concentrations reduce plant growth compared with modern levels, but low-CO2 effects on plant performance may also be affected by nitrogen availability, since low leaf nitrogen decreases photosynthesis, and CO2 concentrations influence nitrogen assimilation. To investigate the influence of N availability on plant performance at low CO2, we grew Elymus canadensis at ambient (~400 μmol mol-1) and subambient (~180 μmol mol-1) CO2 levels, under four N-treatments: nitrate only; ammonium only; a full and a half mix of nitrate and ammonium. Growth at low CO2 decreased biomass in the full and nitrate treatments, but not in ammonium and half plants. Low CO2 effects on photosynthetic and maximum electron transport rates were influenced by fertilisation, with photosynthesis being most strongly impacted by low CO2 in full plants. Low CO2 reduced stomatal index in half plants, suggesting that the use of this indicator in paleo-inferences can be influenced by N availability. Under low CO2 concentrations, nitrate plants discriminated more against 15N whereas half plants discriminated less against 15N compared with the full treatment, suggesting that N availability should be considered when using N isotopes as paleo-indicators.
Collapse
Affiliation(s)
- André G Duarte
- Department of Biology, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada; and Corresponding author.
| | - Fred J Longstaffe
- Department of Biology, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada; and Department of Earth Sciences, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada; and Nicholas School of the Environment, Duke University, 9 Circuit Dr., 27710, Durham, USA; and Present address: Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, ACT 2601, Canberra, Australia
| |
Collapse
|
25
|
Quirk J, Bellasio C, Johnson DA, Beerling DJ. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. ANNALS OF BOTANY 2019; 124:77-90. [PMID: 31008510 PMCID: PMC6676382 DOI: 10.1093/aob/mcz048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/08/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS By the year 2100, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ~200 ppm since the Neogene, beginning ~24 Myr ago. Changing [CO2]a affects plant carbon-water balance, with implications for growth, drought tolerance and vegetation shifts. The evolution of C4 photosynthesis improved plant hydraulic function under low [CO2]a and preluded the establishment of savannahs, characterized by rapid transitions between open C4-dominated grassland with scattered trees and closed forest. Understanding directional vegetation trends in response to environmental change will require modelling. But models are often parameterized with characteristics observed in plants under current climatic conditions, necessitating experimental quantification of the mechanistic underpinnings of plant acclimation to [CO2]a. METHODS We measured growth, photosynthesis and plant-water relations, within wetting-drying cycles, of a C3 tree (Vachellia karroo, an acacia) and a C4 grass (Eragrostis curvula) grown at 200, 400 or 800 ppm [CO2]a. We investigated the mechanistic linkages between trait responses to [CO2]a under moderate soil drying, and photosynthetic characteristics. KEY RESULTS For V. karroo, higher [CO2]a increased assimilation, foliar carbon:nitrogen, biomass and leaf starch, but decreased stomatal conductance and root starch. For Eragrostis, higher [CO2]a decreased C:N, did not affect assimilation, biomass or starch, and markedly decreased stomatal conductance. Together, this meant that C4 advantages in efficient water-use over the tree were maintained with rising [CO2]a. CONCLUSIONS Acacia and Eragrostis acclimated differently to [CO2]a, with implications for their respective responses to water limitation and environmental change. Our findings question the carbon-centric focus on factors limiting assimilation with changing [CO2]a, how they are predicted and their role in determining productivity. We emphasize the continuing importance of water-conserving strategies in the assimilation response of savannah plants to rising [CO2]a.
Collapse
Affiliation(s)
- Joe Quirk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, Australia
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| | - David A Johnson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Zhou H, Akçay E, Helliker BR. Estimating C 4 photosynthesis parameters by fitting intensive A/C i curves. PHOTOSYNTHESIS RESEARCH 2019; 141:181-194. [PMID: 30758752 DOI: 10.1007/s11120-019-00619-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Measurements of photosynthetic assimilation rate as a function of intercellular CO2 (A/Ci curves) are widely used to estimate photosynthetic parameters for C3 species, yet few parameters have been reported for C4 plants, because of a lack of estimation methods. Here, we extend the framework of widely used estimation methods for C3 plants to build estimation tools by exclusively fitting intensive A/Ci curves (6-8 more sampling points) for C4 using three versions of photosynthesis models with different assumptions about carbonic anhydrase processes and ATP distribution. We use simulation analysis, out of sample tests, existing in vitro measurements and chlorophyll-fluorescence measurements to validate the new estimation methods. Of the five/six photosynthetic parameters obtained, sensitivity analyses show that maximal-Rubisco-carboxylation-rate, electron-transport-rate, maximal-PEP-carboxylation-rate, and carbonic-anhydrase were robust to variation in the input parameters, while day respiration and mesophyll conductance varied. Our method provides a way to estimate carbonic anhydrase activity, a new parameter, from A/Ci curves, yet also shows that models that do not explicitly consider carbonic anhydrase yield approximate results. The two photosynthesis models, differing in whether ATP could freely transport between RuBP and PEP regeneration processes yielded consistent results under high light, but they may diverge under low light intensities. Modeling results show selection for Rubisco of low specificity and high catalytic rate, low leakage of bundle sheath, and high PEPC affinity, which may further increase C4 efficiency.
Collapse
Affiliation(s)
- Haoran Zhou
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA.
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Danila FR, Quick WP, White RG, von Caemmerer S, Furbank RT. Response of plasmodesmata formation in leaves of C 4 grasses to growth irradiance. PLANT, CELL & ENVIRONMENT 2019; 42:2482-2494. [PMID: 30965390 DOI: 10.1111/pce.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three-dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP-ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m-2 s-1 ), and high light (1,000 μmol m-2 s-1 ), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four-fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M-BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.
Collapse
Affiliation(s)
- Florence R Danila
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - William Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- International Rice Research Institute, Los Baños, Laguna, 4030, Philippines
- University of Sheffield, Sheffield, UK
| | - Rosemary G White
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Susanne von Caemmerer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Robert T Furbank
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
28
|
Cano FJ, Sharwood RE, Cousins AB, Ghannoum O. The role of leaf width and conductances to CO 2 in determining water use efficiency in C 4 grasses. THE NEW PHYTOLOGIST 2019; 223:1280-1295. [PMID: 31087798 DOI: 10.1111/nph.15920] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/28/2019] [Indexed: 05/26/2023]
Abstract
C4 plants achieve higher photosynthesis (An ) and intrinsic water use efficiency (iWUE) than C3 plants, but processes underpinning the variability in An and iWUE across the three C4 subtypes remain unclear, partly because we lack an integrated framework for quantifying the contribution of diffusional and biochemical limitations to C4 photosynthesis. We exploited the natural diversity among C4 grasses to develop an original mathematical approach for estimating eight key processes of C4 photosynthesis and their relative limitations to An . We also developed a new formulation to estimate mesophyll conductance (gm ) based on actual hydration rates of CO2 by carbonic anhydrases. We found a positive relationship between gm and iWUE and an inverse correlation with gsw among C4 grasses. We also revealed subtype-specific regulatory processes of iWUE that may be related to known anatomical traits characterising each C4 subtype. Leaf width was an important determinant of iWUE and showed significant correlations with key limitations of An , especially among NADP-ME species. In conclusion, incorporating leaf width in breeding trials may unlock new opportunities for C4 crops because the revealed negative relationship between leaf width and iWUE may translate into higher crop and canopy WUE.
Collapse
Affiliation(s)
- Francisco Javier Cano
- ARC Centre of Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2753, Australia
| | - Robert E Sharwood
- ARC Centre of Translational Photosynthesis and Australian National University, Research School of Biology, Acton, ACT, 2601, Australia
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Oula Ghannoum
- ARC Centre of Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2753, Australia
| |
Collapse
|
29
|
Quirk J, Bellasio C, Johnson DA, Osborne CP, Beerling DJ. C
4
savanna grasses fail to maintain assimilation in drying soil under low CO
2
compared with C
3
trees despite lower leaf water demand. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joe Quirk
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Chandra Bellasio
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
- Research School of Biology Australian National University Acton Australian Capital Territory Australia
- University of the Balearic Islands Palma, Illes Balears Spain
- Trees and Timber Institute National Research Council of Italy Sesto Fiorentino, Florence Italy
| | - David A. Johnson
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Colin P. Osborne
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - David J. Beerling
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
30
|
Watson-Lazowski A, Papanicolaou A, Sharwood R, Ghannoum O. Investigating the NAD-ME biochemical pathway within C 4 grasses using transcript and amino acid variation in C 4 photosynthetic genes. PHOTOSYNTHESIS RESEARCH 2018; 138:233-248. [PMID: 30078073 DOI: 10.1007/s11120-018-0569-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/28/2018] [Indexed: 05/18/2023]
Abstract
Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary 'path to C4' and improve C4 photosynthesis.
Collapse
Affiliation(s)
- Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia.
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert Sharwood
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
31
|
Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-93594-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
32
|
Bellasio C, Quirk J, Beerling DJ. Stomatal and non-stomatal limitations in savanna trees and C 4 grasses grown at low, ambient and high atmospheric CO 2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:181-192. [PMID: 30080602 DOI: 10.1016/j.plantsci.2018.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/07/2023]
Abstract
By the end of the century, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ∼200 ppm ∼24 Myr ago. Carbon dioxide enters plant leaves through stomata that limit CO2 diffusion and assimilation, imposing stomatal limitation (LS). Other factors limiting assimilation are collectively called non-stomatal limitations (LNS). C4 photosynthesis concentrates CO2 around Rubisco, typically reducing LS. C4-dominated savanna grasslands expanded under low [CO2]a and are metastable ecosystems where the response of trees and C4 grasses to rising [CO2]a will determine shifting vegetation patterns. How LS and LNS differ between savanna trees and C4 grasses under different [CO2]a will govern the responses of CO2 fixation and plant cover to [CO2]a - but quantitative comparisons are lacking. We measured assimilation, within soil wetting-drying cycles, of three C3 trees and three C4 grasses grown at 200, 400 or 800 ppm [CO2]a. Using assimilation-response curves, we resolved LS and LNS and show that rising [CO2]a alleviated LS, particularly for the C3 trees, but LNS was unaffected and remained substantially higher for the grasses across all [CO2]a treatments. Because LNS incurs higher metabolic costs and recovery compared with LS, our findings indicate that C4 grasses will be comparatively disadvantaged as [CO2]a rises.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK; Research School of Biology, Australian National University, Acton, ACT, 2601 Australia; University of the Balearic Islands 07122 Palma, Illes Balears, Spain; Trees and Timber institute, National Research Council of Italy, 50019 Sesto Fiorentino (Florence), Italy.
| | - Joe Quirk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
33
|
Sonawane BV, Sharwood RE, Whitney S, Ghannoum O. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3053-3068. [PMID: 29659931 PMCID: PMC5972597 DOI: 10.1093/jxb/ery129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/19/2018] [Indexed: 05/18/2023]
Abstract
The high energy cost and apparently low plasticity of C4 photosynthesis compared with C3 photosynthesis may limit the productivity and distribution of C4 plants in low light (LL) environments. C4 photosynthesis evolved numerous times, but it remains unclear how different biochemical subtypes perform under LL. We grew eight C4 grasses belonging to three biochemical subtypes [NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PEP-CK)] under shade (16% sunlight) or control (full sunlight) conditions and measured their photosynthetic characteristics at both low and high light. We show for the first time that LL (during measurement or growth) compromised the CO2-concentrating mechanism (CCM) to a greater extent in NAD-ME than in PEP-CK or NADP-ME C4 grasses by virtue of a greater increase in carbon isotope discrimination (∆P) and bundle sheath CO2 leakiness (ϕ), and a greater reduction in photosynthetic quantum yield (Φmax). These responses were partly explained by changes in the ratios of phosphoenolpyruvate carboxylase (PEPC)/initial Rubisco activity and dark respiration/photosynthesis (Rd/A). Shade induced a greater photosynthetic acclimation in NAD-ME than in NADP-ME and PEP-CK species due to a greater Rubisco deactivation. Shade also reduced plant dry mass to a greater extent in NAD-ME and PEP-CK relative to NADP-ME grasses. In conclusion, LL compromised the co-ordination of the C4 and C3 cycles and, hence, the efficiency of the CCM to a greater extent in NAD-ME than in PEP-CK species, while CCM efficiency was less impacted by LL in NADP-ME species. Consequently, NADP-ME species are more efficient at LL, which could explain their agronomic and ecological dominance relative to other C4 grasses.
Collapse
Affiliation(s)
- Balasaheb V Sonawane
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
- School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Spencer Whitney
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| |
Collapse
|
34
|
Taylor SH, Aspinwall MJ, Blackman CJ, Choat B, Tissue DT, Ghannoum O. CO2 availability influences hydraulic function of C3 and C4 grass leaves. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2731-2741. [PMID: 29538702 PMCID: PMC5920307 DOI: 10.1093/jxb/ery095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/03/2018] [Indexed: 05/12/2023]
Abstract
Atmospheric CO2 (ca) has increased since the last glacial period, increasing photosynthetic water use efficiency and improving plant productivity. Evolution of C4 photosynthesis at low ca led to decreased stomatal conductance (gs), which provided an advantage over C3 plants that may be reduced by rising ca. Using controlled environments, we determined how increasing ca affects C4 water use relative to C3 plants. Leaf gas exchange and mass per area (LMA) were measured for four C3 and four C4 annual, crop-related grasses at glacial (200 µmol mol-1), ambient (400 µmol mol-1), and super-ambient (640 µmol mol-1) ca. C4 plants had lower gs, which resulted in a water use efficiency advantage at all ca and was broadly consistent with slower stomatal responses to shade, indicating less pressure on leaf water status. At glacial ca, net CO2 assimilation and LMA were lower for C3 than for C4 leaves, and C3 and C4 grasses decreased leaf hydraulic conductance (Kleaf) similarly, but only C4 leaves decreased osmotic potential at turgor loss. Greater carbon availability in C4 leaves at glacial ca generated a different hydraulic adjustment relative to C3 plants. At current and future ca, C4 grasses have advantages over C3 grasses due to lower gs, lower stomatal sensitivity, and higher absolute water use efficiency.
Collapse
Affiliation(s)
- Samuel H Taylor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
- Department of Biology, University of North Florida, Drive, Jacksonville, FL, USA
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australia
| |
Collapse
|
35
|
Řezáčová V, Zemková L, Beskid O, Püschel D, Konvalinková T, Hujslová M, Slavíková R, Jansa J. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C 3- Panicum bisulcatum and C 4- Panicum maximum Under Different Temperature Regimes. FRONTIERS IN PLANT SCIENCE 2018; 9:449. [PMID: 29681914 PMCID: PMC5897505 DOI: 10.3389/fpls.2018.00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jan Jansa
- Laboratory of Fungal Biology, Ecology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
36
|
Danila FR, Quick WP, White RG, Kelly S, von Caemmerer S, Furbank RT. Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C4 grasses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1135-1145. [PMID: 29300922 PMCID: PMC6018992 DOI: 10.1093/jxb/erx456] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 05/25/2023]
Abstract
Proliferation of plasmodesmata (PD) connections between bundle sheath (BS) and mesophyll (M) cells has been proposed as a key step in the evolution of two-cell C4 photosynthesis; However, a lack of quantitative data has hampered further exploration and validation of this hypothesis. In this study, we quantified leaf anatomical traits associated with metabolite transport in 18 species of BEP and PACMAD grasses encompassing four origins of C4 photosynthesis and all three C4 subtypes (NADP-ME, NAD-ME, and PCK). We demonstrate that C4 leaves have greater PD density between M and BS cells than C3 leaves. We show that this greater PD density is achieved by increasing either the pit field (cluster of PD) area or the number of PD per pit field area. NAD-ME species had greater pit field area per M-BS interface than NADP-ME or PCK species. In contrast, NADP-ME and PCK species had lower pit field area with increased number of PD per pit field area than NAD-ME species. Overall, PD density per M-BS cell interface was greatest in NAD-ME species while PD density in PCK species exhibited the largest variability. Finally, the only other anatomical characteristic that clearly distinguished C4 from C3 species was their greater Sb value, the BS surface area to subtending leaf area ratio. In contrast, BS cell volume was comparable between the C3 and C4 grass species examined.
Collapse
Affiliation(s)
- Florence R Danila
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
| | - William Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rosemary G White
- CSIRO Agriculture, Canberra Australian Capital Territory, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Susanne von Caemmerer
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
| | - Robert T Furbank
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
- CSIRO Agriculture, Canberra Australian Capital Territory, Australia
| |
Collapse
|
37
|
Bellasio C, Quirk J, Buckley TN, Beerling DJ. A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C 4 Photosynthesis. PLANT PHYSIOLOGY 2017; 175:104-119. [PMID: 28751312 PMCID: PMC5580762 DOI: 10.1104/pp.17.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/24/2017] [Indexed: 05/10/2023]
Abstract
C4 plants are major grain (maize [Zea mays] and sorghum [Sorghum bicolor]), sugar (sugarcane [Saccharum officinarum]), and biofuel (Miscanthus spp.) producers and contribute ∼20% to global productivity. Plants lose water through stomatal pores in order to acquire CO2 (assimilation [A]) and control their carbon-for-water balance by regulating stomatal conductance (gS). The ability to mechanistically predict gS and A in response to atmospheric CO2, water availability, and time is critical for simulating stomatal control of plant-atmospheric carbon and water exchange under current, past, or future environmental conditions. Yet, dynamic mechanistic models for gS are lacking, especially for C4 photosynthesis. We developed and coupled a hydromechanical model of stomatal behavior with a biochemical model of C4 photosynthesis, calibrated using gas-exchange measurements in maize, and extended the coupled model with time-explicit functions to predict dynamic responses. We demonstrated the wider applicability of the model with three additional C4 grass species in which interspecific differences in stomatal behavior could be accounted for by fitting a single parameter. The model accurately predicted steady-state responses of gS to light, atmospheric CO2 and oxygen, soil drying, and evaporative demand as well as dynamic responses to light intensity. Further analyses suggest that the effect of variable leaf hydraulic conductance is negligible. Based on the model, we derived a set of equations suitable for incorporation in land surface models. Our model illuminates the processes underpinning stomatal control in C4 plants and suggests that the hydraulic benefits associated with fast stomatal responses of C4 grasses may have supported the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Trees and Timber Institute, National Research Council of Italy, 50019 Florence, Italy
| | - Joe Quirk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Thomas N Buckley
- Sydney Institute of Agriculture, University of Sydney, Narrabri, New South Wales 2390, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
38
|
Chu X, Yang L, Wang S, Liu J, Yang H. Physiological and metabolic profiles of common reed provide insights into plant adaptation to low nitrogen conditions. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Huang J, Hammerbacher A, Forkelová L, Hartmann H. Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. PLANT, CELL & ENVIRONMENT 2017; 40:672-685. [PMID: 28010041 DOI: 10.1111/pce.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/12/2016] [Indexed: 05/29/2023]
Abstract
The atmospheric CO2 concentration ([CO2 ]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2 ] over a large gradient, including low [CO2 ], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO2 ] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2 ]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO2 ], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2 ] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Lenka Forkelová
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
40
|
Li G, Gerhart LM, Harrison SP, Ward JK, Harris JM, Prentice IC. Changes in biomass allocation buffer low CO 2 effects on tree growth during the last glaciation. Sci Rep 2017; 7:43087. [PMID: 28233772 PMCID: PMC5324044 DOI: 10.1038/srep43087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/19/2017] [Indexed: 11/09/2022] Open
Abstract
Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today.
Collapse
Affiliation(s)
- Guangqi Li
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- School of Archaeology, Geography and Environmental Sciences (SAGES), Reading University, Reading, UK
| | - Laci M. Gerhart
- Geography Department, Kansas State University, Manhattan, KS 66505, USA
| | - Sandy P. Harrison
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- School of Archaeology, Geography and Environmental Sciences (SAGES), Reading University, Reading, UK
| | - Joy K. Ward
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John M. Harris
- The La Brea Tar Pits Museum (George C. Page Museum), 5801 Wilshire Boulevard, Los Angeles, CA 90036, USA
| | - I. Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| |
Collapse
|
41
|
Cunniff J, Jones G, Charles M, Osborne CP. Yield responses of wild C 3 and C 4 crop progenitors to subambient CO 2 : a test for the role of CO 2 limitation in the origin of agriculture. GLOBAL CHANGE BIOLOGY 2017; 23:380-393. [PMID: 27550721 DOI: 10.1111/gcb.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/13/2016] [Accepted: 07/26/2016] [Indexed: 05/24/2023]
Abstract
Limitation of plant productivity by the low partial pressure of atmospheric CO2 (Ca ) experienced during the last glacial period is hypothesized to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial Ca limits vegetative growth in the wild progenitors of both C3 and C4 founder crops. Here, we present data showing that glacial Ca also reduces grain yield in both crop types. We grew four wild progenitors of C3 (einkorn wheat and barley) and C4 crops (foxtail and broomcorn millets) at glacial and postglacial Ca , measuring grain yield and the morphological and physiological components contributing to these yield changes. The C3 species showed a significant increase in unthreshed grain yield of ~50% with the glacial to postglacial increase in Ca , which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at subambient levels of Ca . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by Ca in only one C4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C4 species at glacial Ca showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial Ca also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C3 and C4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture.
Collapse
Affiliation(s)
- Jennifer Cunniff
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Glynis Jones
- Department of Archaeology, Northgate House, University of Sheffield, West Street, Sheffield, S1 4ET, UK
| | - Michael Charles
- School of Archaeology, University of Oxford, 34-36 Beaumont Street, Oxford, OX1 2PG, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
42
|
Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes. Genome Biol 2016; 17:223. [PMID: 27793170 PMCID: PMC5084476 DOI: 10.1186/s13059-016-1080-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses. RESULTS We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C4 photosynthesis. CONCLUSIONS The phylogenetic location of D. oligosanthes makes it an ideal C3 plant for comparative analysis of C4 evolution in the panicoid grasses. This genome will not only provide a better C3 species for comparisons with C4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.
Collapse
Affiliation(s)
- Anthony J. Studer
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - James C. Schnable
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Allison R. Kolbe
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | - Ying Shao
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- St. Jude Children’s Research Hospital, Pediatric Cancer Genome Project, Memphis, TN USA
| | - Asaph B. Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | | |
Collapse
|
43
|
Rao X, Dixon RA. The Differences between NAD-ME and NADP-ME Subtypes of C 4 Photosynthesis: More than Decarboxylating Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:1525. [PMID: 27790235 PMCID: PMC5061750 DOI: 10.3389/fpls.2016.01525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Abstract
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| |
Collapse
|
44
|
Bellasio C, Beerling DJ, Griffiths H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. PLANT, CELL & ENVIRONMENT 2016; 39:1164-79. [PMID: 26286697 DOI: 10.1111/pce.12626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 05/27/2023]
Abstract
The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
45
|
Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3137-48. [PMID: 27122573 PMCID: PMC4867899 DOI: 10.1093/jxb/erw154] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg(2+), 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn(2+), no Mg(2+)) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45-60% activation) relative to C3 monocots (55-90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (<5min) was faster than in C3 plant samples (<10min), with addition of Rubisco activase not required for full activation. We conclude that Rubisco inactivation in illuminated leaves primarily stems from RuBP binding to non-carbamylated enzyme, a state readily reversible by dilution during cellular protein extraction.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Balasaheb V Sonawane
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Spencer M Whitney
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
46
|
Pinto H, Powell JR, Sharwood RE, Tissue DT, Ghannoum O. Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at inter-glacial CO2. PLANT, CELL & ENVIRONMENT 2016; 39:514-26. [PMID: 26381794 DOI: 10.1111/pce.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 08/21/2015] [Accepted: 09/05/2015] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis evolved multiple times in diverse lineages. Most physiological studies comparing C4 plants were not conducted at the low atmospheric CO2 prevailing during their evolution. Here, 24 C4 grasses belonging to three biochemical subtypes [nicotinamide adenine dinucleotide malic enzyme (NAD-ME), phosphoenolpyruvate carboxykinase (PCK) and nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME)] and six major evolutionary lineages were grown under ambient (400 μL L(-1) ) and inter-glacial (280 μL L(-1) ) CO2 . We hypothesized that nitrogen-related and water-related physiological traits are associated with subtypes and lineages, respectively. Photosynthetic rate and stomatal conductance were constrained by the shared lineage, while variation in leaf mass per area (LMA), leaf N per area, plant dry mass and plant water use efficiency were influenced by the subtype. Subtype and lineage were equally important for explaining variations in photosynthetic nitrogen use efficiency (PNUE) and photosynthetic water use efficiency (PWUE). CO2 treatment impacted most parameters. Overall, higher LMA and leaf N distinguished the Chloridoideae/NAD-ME group, while NADP-ME and PCK grasses were distinguished by higher PNUE regardless of lineage. Plants were characterized by high photosynthesis and PWUE when grown at ambient CO2 and by high conductance at inter-glacial CO2 . In conclusion, the evolutionary and biochemical diversity among C4 grasses was aligned with discernible leaf physiology, but it remains unknown whether these traits represent ecophysiological adaptation.
Collapse
Affiliation(s)
- Harshini Pinto
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
47
|
Britto de Assis Prado CH, Haik Guedes de Camargo-Bortolin L, Castro É, Martinez CA. Leaf Dynamics of Panicum maximum under Future Climatic Changes. PLoS One 2016; 11:e0149620. [PMID: 26894932 PMCID: PMC4760759 DOI: 10.1371/journal.pone.0149620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.
Collapse
Affiliation(s)
| | | | - Érique Castro
- Department of Botany, Federal University of São Carlos, São Carlos, São Paulo, Brazil, 13565–905
| | - Carlos Alberto Martinez
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 14040–901
| |
Collapse
|