1
|
Marambire ET, Abdulahi A, Wondie A, Gize A, Mekonnen AT, Khadka K, Manhica I, Quinn N, Saiwal N, Mufune T, Valiyakath VQ, Froeschl G. Intergenerational impact of drought and famine on health systems in developing countries - symposium proceedings. BMC Proc 2024; 18:24. [PMID: 39497154 PMCID: PMC11536704 DOI: 10.1186/s12919-024-00310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The 2024 edition of the One Health symposium explored the intergenerational health impacts of drought and famine in developing countries, with a focus on innovative strategies for resilience-building in healthcare infrastructures. Organized by students of the CIHLMU Center for International Health at Ludwig-Maximilians-Universität Munich, Germany, the event convened experts and participants from diverse backgrounds to address the urgent challenges posed by climate change-induced crises. Through presentations, panel discussions, and collaborative exchanges, the symposium underscored the profound health and socioeconomic implications of climate-related disasters, emphasizing the need for cross-sectoral cooperation and transformative action. Key recommendations emerged, including integrating climate change considerations into health systems, fostering multidisciplinary collaboration, and empowering communities to withstand future challenges. Despite the severity of the current situation, the symposium instilled optimism and determination among participants, inspiring a collective commitment to building a brighter and more resilient future for generations to come.
Collapse
Affiliation(s)
- Edson T Marambire
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany.
- The Health Research Unit Zimbabwe, Biomedical Research and Training Institute, Harare, Zimbabwe.
| | - Abdifatah Abdulahi
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Faculty of Medical Sciences, Institute of Health Sciences, Jigjiga University, Addis Ababa, Ethiopia
| | - Awoke Wondie
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Department of Public Health, Debre Tabor University, Debre Tabor, Ethiopia
| | - Addisu Gize
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Department of Microbiology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Afework T Mekonnen
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Population and Family Health Department, Jimma University, Jimma, Ethiopia
| | - Khim Khadka
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Health Directorate, Gandaki Province, Pokhara, Nepal
| | - Ivan Manhica
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Ministério da Saúde, Maputo, Moçambique
| | - Nicole Quinn
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | - Nidhi Saiwal
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | - Tiza Mufune
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Ministry of Health, Kabwe District Health Office, Kabwe, Zambia
| | - Vahuka Q Valiyakath
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Teaching & Training Unit, Institute of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Bavaria, Germany
| | - Guenter Froeschl
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Bavaria, Germany
- Teaching & Training Unit, Institute of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Bavaria, Germany
| |
Collapse
|
2
|
Hanzouli F, Daldoul S, Zemni H, Boubakri H, Vincenzi S, Mliki A, Gargouri M. Stilbene production as part of drought adaptation mechanisms in cultivated grapevine (Vitis vinifera L.) roots modulates antioxidant status. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39499234 DOI: 10.1111/plb.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
Stilbenes, naturally occurring polyphenolic secondary metabolites, play a pivotal role in adaptation of various plant species to biotic and abiotic factors. Recently, increased attention has been directed toward their potential to enhance plant stress tolerance. We evaluated drought tolerance of three grapevine varieties grown with different levels of water deficit. Throughout, we studied physiological mechanisms associated with drought stress tolerance, particularly stilbene accumulation in root tissues, using HPLC. Additionally, we explored the possible relationship between antioxidant potential and stilbene accumulation in response to water deficit. The results underscore the detrimental impact of water deficit on grapevine growth, water status, and membrane stability index, while revealing varying tolerance among the studied genotypes. Notably, Syrah variety had superior drought tolerance, compared to Razegui and Muscat d'Italie grapes. Under severe water deficit, Syrah exhibited a substantial increase in levels of stilbenic compounds, such as t-resveratrol, t-piceatannol, t-ɛ-viniferin, and t-piceid, in root tissues compared to other genotypes. This increase was positively correlated with total antioxidant activity (TAA), emphasizing the active role of resveratrol and its derivatives in total antioxidant potential. This demonstratres the potential involvement of resveratrol and its derivatives in enhancing antioxidant status of the drought-tolerant Syrah grape variety. Our findings suggest that these stilbenes may function as valuable markers in grapevine breeding programs, offering novel insights for the sustainable cultivation of grapevines in water-limited environments.
Collapse
Affiliation(s)
- F Hanzouli
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - S Daldoul
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - H Zemni
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - H Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - S Vincenzi
- University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Legnaro, Italy
| | - A Mliki
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Gargouri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Kabała K, Janicka M. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules. Int J Mol Sci 2024; 25:10749. [PMID: 39409078 PMCID: PMC11476557 DOI: 10.3390/ijms251910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
GABA (gamma-aminobutyric acid) is an amino acid whose numerous regulatory functions have been identified in animal organisms. More and more research indicate that in plants, this molecule is also involved in controlling basic growth and development processes. As recent studies have shown, GABA plays an essential role in triggering plant resistance to unfavorable environmental factors, which is particularly important in the era of changing climate. The main sources of GABA in plant cells are glutamic acid, converted in the GABA shunt pathway, and polyamines subjected to oxidative degradation. The action of GABA is often related to the activity of other messengers, including phytohormones, polyamines, NO, H2O2, or melatonin. GABA can function as an upstream or downstream element in the signaling pathways of other regulators, acting synergistically or antagonistically with them to control cellular processes. Understanding the role of GABA and its interactions with other signaling molecules may be important for developing crop varieties with characteristics that enable adaptation to a changing environment.
Collapse
Affiliation(s)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
4
|
Jin W, Xie K, Tang W, Yang Y, Zhang J, Yu X, Lu Y. Comparative metabolomics and transcriptomics provide new insights into florpyrauxifen-benzyl resistance in Echinochloa glabrescens. FRONTIERS IN PLANT SCIENCE 2024; 15:1392460. [PMID: 39022606 PMCID: PMC11253777 DOI: 10.3389/fpls.2024.1392460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Echinochloa glabrescens Munro ex Hook. f. is a weed of the genus Echinocloa (Echinocloa spp.) that occurs frequently in paddy fields, causing serious harm to rice production. Florpyrauxifen-benzyl (FPB) is a foliar-applied herbicide used to control Echinocloa spp. in paddy fields. However, in recent years, with the widespread use of FPB in rice production, FPB-resistant barnyard grasses have been reported. Here, we identified an FPB-resistant E. glabrescens population with a resistance index (RI) of 10.65 and conducted a comparative analysis using untargeted metabolomics and transcriptomics to investigate the differences between an FPB-resistant E. glabrescens population and a susceptible E. glabrescens population after treatment with the recommended field dose of FPB. Our results showed that the FPB-resistant E. glabrescens had 115 differentially accumulated metabolites (DAMs; 65 up-regulated and 50 down-regulated) and 6397 differentially expressed genes (DEGs; 65 up-regulated and 50 down-regulated) compared to the susceptible E. glabrescens. The analysis of DAMs and DEGs revealed that DAMs were significantly enriched in Glutathione metabolism, Arginine and proline metabolism, and Zeatin biosynthesis pathways, while DEGs were mainly enriched in carbon fixation in photosynthetic organisms, photosynthesis, cyanoamino acid metabolism and glutathione metabolism, etc. The glutathione metabolism pathway was found to be significantly enriched for both DEGs and DAMs. Within this pathway, the metabolites (spermine) and genes (GSTU8, GSTU18, GSTF1) may play a pivotal role in the resistance mechanism of FPB-resistant E. glabrescens. Furthermore, we demonstrated the presence of GST-mediated metabolic resistance in an FPB-resistant E. glabrescens population by using NBD-Cl. Overall, our study provides new insights into the underlying mechanisms of E. glabrescens resistance to FPB through a comparative analysis of untargeted metabolomics and transcriptomics. Additionally, we identified the GST-mediated metabolic resistance in an FPB-resistant E. glabrescens population, and screened for three candidate genes (GSTU8, GSTU18, GSTF1), which has significant implications for improving the weed management efficacy of FPB in rice production and guiding judicious herbicide usage.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyue Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yongliang Lu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
5
|
De Pascali M, Greco D, Vergine M, Carluccio G, De Bellis L, Luvisi A. A Physiological and Molecular Focus on the Resistance of "Filippo Ceo" Almond Tree to Xylella fastidiosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:576. [PMID: 38475423 DOI: 10.3390/plants13050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
6
|
Etminani F, Harighi B, Bahramnejad B, Mozafari AA. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC PLANT BIOLOGY 2024; 24:104. [PMID: 38336608 PMCID: PMC11297725 DOI: 10.1186/s12870-024-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.
Collapse
Affiliation(s)
- Faegheh Etminani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Bahman Bahramnejad
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
7
|
Wang W, Shi S, Kang W, He L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H 2O 2 production to increase antioxidant enzyme activity. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154139. [PMID: 37988872 DOI: 10.1016/j.jplph.2023.154139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Drought stress is a major factor limiting agricultural development, and exogenous polyamines (PAs) can increase plant drought resistance by enhancing antioxidant activity, but few studies have examined whether endogenous PAs enhance the plant antioxidant system. Here, to investigate the effects of endogenous PAs on the antioxidant system of alfalfa under drought stress and the underlying mechanisms, two alfalfa cultivars, Longzhong (drought resistant) and Gannong No. 3 (drought sensitive), were used as test materials, and their seedlings were treated with polyethylene glycol (PEG-6000) for 8 days at -1.2 MPa to simulate drought stress. The levels of free PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)], hydrogen peroxide (H2O2), malondialdehyde (MDA), key PA metabolism enzyme [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO)] activities, and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] activities were measured. These physiological indicators were used for correlation analysis to investigate the relationship between PA metabolism and the antioxidant enzyme system. The results showed that PA synthesis in alfalfa under drought stress was dominated by the ADC pathway. Spd and Spm played an important role in improving drought tolerance. The high levels of ADC and SAMDC activities were facilitated by the conversion of Put to Spd and Spm. H2O2 generation by oxidative decomposition of PAs was mainly dependent on the oxidative decomposition of DAO but not PAO. Low DAO activity favored low H2O2 production. Spd, Spm, ADC, ODC and SAMDC were positively correlated with the antioxidant enzymes SOD, CAT and POD in both cultivars under drought. Therefore, we concluded that high ADC and SAMDC activities in alfalfa promoted the conversion of Put to Spd and Spm, leading to high accumulation of Spd and Spm and low Put accumulation. Low Put levels led to low H2O2 production through low DAO activity, and low H2O2 levels induced the expression of antioxidant enzyme-encoding genes to improve antioxidant enzyme activity and reduce MDA accumulation and thereby enhanced drought resistance in alfalfa.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Wenjuan Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Long He
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
de Vries F, Lau J, Hawkes C, Semchenko M. Plant-soil feedback under drought: does history shape the future? Trends Ecol Evol 2023:S0169-5347(23)00054-X. [PMID: 36973124 DOI: 10.1016/j.tree.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Plant-soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant-microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.
Collapse
Affiliation(s)
- Franciska de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jennifer Lau
- Department of Biology and Environmental Resilience Institute, Indiana University, IN, USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
9
|
Lima A, Didugu BGL, Chunduri AR, Rajan R, Jha A, Mamillapalli A. Thermal tolerance role of novel polyamine, caldopentamine, identified in fifth instar Bombyx mori. Amino Acids 2023; 55:287-298. [PMID: 36562834 DOI: 10.1007/s00726-022-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Silkworms have limited ability to regulate their body temperature; therefore, environmental changes, such as global warming, can adversely affect their viability. Polyamines have shown protection to various organisms against heat stress. This study evaluated the qualitative and quantitative changes in heat-stressed Bombyx mori larvae polyamines. Fifth instar Bombyx mori larvae were divided into two groups; control group, reared at room temperature, i.e., 28 ± 2 °C, and the heat shock group, exposed to 40 °C. Dansylation of the whole worm polyamines and subsequent thin-layer chromatography revealed the presence of components with the same Rf value as dansyl-putrescine, spermidine, and spermine. The dansyl-putrescine, spermidine, and spermine polyamines were identified by mass spectrometric analyses. After heat shock, the thin-layer chromatography of the whole-larvae tissue extracts showed qualitative and quantitative changes in dansylated polyamines. A new polyamine, caldopentamine, was identified, which showed elevated levels in heat-stressed larvae. This polyamine could play a role in helping the larvae tolerate various stress, including thermal stress. No significant changes in silk fiber's economic and mechanical properties were observed in our study. This study indicated that PA, caldopentamine, supplementation could improve heat-stress tolerance in Bombyx mori.
Collapse
Affiliation(s)
- Anugata Lima
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Brinda Goda Lakshmi Didugu
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Alekhya Rani Chunduri
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Resma Rajan
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anjali Jha
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
10
|
Abdelhaleim MS, Rahimi M, Okasha SA. Assessment of drought tolerance indices in faba bean genotypes under different irrigation regimes. Open Life Sci 2022; 17:1462-1472. [DOI: 10.1515/biol-2022-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Drought stress has devastating impacts on faba bean production, particularly with the current abrupt climate changes in arid environments. Hence, it is essential to identify drought-tolerant genotypes. The present study aimed at assessing six faba bean genotypes under three irrigation levels during two winter successive growing seasons (2018/2019 and 2019/2020). The applied irrigation levels were well-watered (every 4 days (D1), moderate drought every 8 days (D2), and severe drought 12 days (D3)) regimes. The analysis of variance exhibited highly significant differences among genotypes, irrigation treatments, and their interactions for all studied traits, except the number of pods plant−1 in the first season. Yield traits of all assessed genotypes decreased significantly with increasing drought stress. Otherwise, proline content (Pro) increased significantly with increasing drought stress. The genotypes Giza.843, Nubaria.2, and Nubaria.3 recorded the highest values of plant height, number of branches/plant, pods/plant, pods weight/plant, 100 seed weight, seed yield/plant, and seed yield/kg under drought stress. Similarly, the highest Pro was displayed by Giza.843 and Nubaria.3 under drought stress in both seasons. Furthermore, Giza.843, Nubaria.2, and Nubaria.3 genotypes had the highest values for most tolerant indices. Accordingly, these genotypes could be exploited in developing drought-tolerant and high-yielding faba bean genotypes in arid environments through breeding programs.
Collapse
Affiliation(s)
- Manal S. Abdelhaleim
- Agronomy Department, Faculty of Agriculture, Suez Canal University , 41522 , Ismailia , Egypt
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology , Kerman , Iran
| | - Salah A. Okasha
- Agronomy Department, Faculty of Agriculture, Suez Canal University , 41522 , Ismailia , Egypt
| |
Collapse
|
11
|
Cheng X, Pang F, Tian W, Tang X, Wu L, Hu X, Zhu H. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC 1 involving in rapid vegetative growth and early flowering in tobacco. Sci Rep 2022; 12:13612. [PMID: 35948667 PMCID: PMC9365820 DOI: 10.1038/s41598-022-18064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In previous study, ectopic expression of GhSAMDC1 improved vegetative growth and early flowering in tobacco, which had been explained through changes of polyamine content, polyamines and flowering relate genes expression. To further disclose the transcript changes of ectopic expression of GhSAMDC1 in tobacco, the leaves from wild type and two transgenic lines at seedling (30 days old), bolting (60 days old) and flowering (90 days old) stages were performed for transcriptome analysis. Compared to wild type, a total of 938 differentially expressed genes (DEGs) were found to be up- or down-regulated in the two transgenic plants. GO and KEGG analysis revealed that tobacco of wild-type and transgenic lines were controlled by a complex gene network, which regulated multiple metabolic pathways. Phytohormone detection indicate GhSAMDC1 affect endogenous phytohormone content, ABA and JA content are remarkably increased in transgenic plants. Furthermore, transcript factor analysis indicated 18 transcript factor families, including stress response, development and flowering related transcript factor families, especially AP2-EREBP, WRKY, HSF and Tify are the most over-represented in those transcript factor families. In conclusion, transcriptome analysis provides insights into the molecular mechanism of GhSAMDC1 involving rapid vegetative growth and early flowering in tobacco.
Collapse
Affiliation(s)
- Xinqi Cheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Fangqin Pang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China.
| |
Collapse
|
12
|
Dinis LT, Jesus C, Amaral J, Gómez-Cadenas A, Correia B, Alves A, Pinto G. Water Deficit Timing Differentially Affects Physiological Responses of Grapevines Infected with Lasiodiplodia theobromae. PLANTS (BASEL, SWITZERLAND) 2022; 11:1961. [PMID: 35956441 PMCID: PMC9370450 DOI: 10.3390/plants11151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Diseases and climate change are major factors limiting grape productivity and fruit marketability. Lasiodiplodia theobromae is a fungus of the family Botryosphaeriaceae that causes Botryosphaeria dieback of grapevine worldwide. Abiotic stress may change host vitality and impact susceptibility to the pathogen and/or change the pathogen's life cycle. However, the interaction between both stress drivers is poorly understood for woody plants. We addressed the hypothesis that distinct morpho-physiological and biochemical responses are induced in grapevine (Vitis vinifera)-L. theobromae interactions depending on when water deficits are imposed. Grapevines were submitted to water deficit either before or after fungus inoculation. Water deficit led to the reduction of the net photosynthetic rate, stomatal conductance, and transpiration rate, and increased the abscisic acid concentration regardless of fungal inoculation. L. theobromae inoculation before water deficit reduced plant survival by 50% and resulted in the accumulation of jasmonic acid and reductions in malondialdehyde levels. Conversely, grapevines inoculated after water deficit showed an increase in proline and malondialdehyde content and all plants survived. Overall, grapevines responded differently to the primary stress encountered, with consequences in their physiological responses. This study reinforces the importance of exploring the complex water deficit timing × disease interaction and the underlying physiological responses involved in grapevine performance.
Collapse
Affiliation(s)
- Lia-Tânia Dinis
- Department of Agronomy & CITAB–Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Apt. 1013, 5000-801 Vila Real, Portugal
| | - Cláudia Jesus
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Aurelio Gómez-Cadenas
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain;
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| |
Collapse
|
13
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
14
|
Khan R, Ma X, Zhang J, Wu X, Iqbal A, Wu Y, Zhou L, Wang S. Circular drought-hardening confers drought tolerance via modulation of the antioxidant defense system, osmoregulation, and gene expression in tobacco. PHYSIOLOGIA PLANTARUM 2021; 172:1073-1088. [PMID: 33755204 DOI: 10.1111/ppl.13402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Drought stress hinders the growth and development of crop plants and ultimately its productivity. It is expected that drought stress will be frequent and intense in the future due to drastic changes in the global climate. It is necessary to make crop plants more resilient to drought stress through various techniques; drought-hardening is one of them. Defining various metabolic strategies used by tobacco plants to confer drought tolerance will be important for maintaining plant physiological functions, but studies addressing this topic are limited. This study was designed to elucidate the drought tolerance and adaptation strategies used by tobacco plants via the application of different circular drought-hardening cycles (control: no drought-hardening, T1: one cycle of drought hardening, T2: two cycles of drought-hardening, and T3: three cycles of drought-hardening) to two tobacco varieties namely Honghuadajinyuan (H) and Yun Yan-100 (Y). The results revealed that drought-hardening decreased the fresh and dry biomass of the tobacco plants. The decrease was more pronounced in the T3 treatment for both H (23 and 29%, respectively) and Y (26 and 31%, respectively) under drought stress. The MDA contents, especially in T1 and T2 in both varieties, were statistically similar compared with control under drought stress. Similarly, higher POD, APX, and GR activities were observed, especially in T3, and elevated amounts of AsA and GSH were also observed among the different circular drought-hardening treatments under drought stress. Thus circular drought-hardening mitigated the oxidative damage by increasing the antioxidant enzyme activities and elevated the content of antioxidant substances, a key metabolic strategy under drought stress. Similarly, another important plant metabolic strategy is the osmotic adjustment. Different circular drought-hardening treatments improved the accumulation of proline and soluble sugars contents which contributed to osmoregulation. Finally, at the molecular level, circular drought-hardening improved the transcript levels of antioxidant enzyme-related genes (CAT, APX1, and GR2), proline and polyamines biosynthesis-related genes (P5CS1 and ADC2), and ABA signaling (SnRK2), and transcription factors (AREB1 and WRKY6) in response to drought stress. As a result, circular drought-hardening (T2 and T3 treatments) promoted tolerance to water stress via affecting the anti-oxidative capacity, osmotic adjustment, and regulation of gene expression in tobacco.
Collapse
Affiliation(s)
- Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinghua Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Juan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoying Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Anas Iqbal
- Key Laboratory of Crop Cultivation and Farming System, College of Agriculture, Guangxi University, Nanning, China
| | - Yuanhua Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Lei Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shusheng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| |
Collapse
|
15
|
Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
17
|
Zhu L, Qian N, Sun Y, Lu X, Duan H, Qian L. Pseudomonas fluorescens DN16 Enhances Cucumber Defense Responses Against the Necrotrophic Pathogen Botrytis cinerea by Regulating Thermospermine Catabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:645338. [PMID: 33692821 PMCID: PMC7937916 DOI: 10.3389/fpls.2021.645338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Plants can naturally interact with beneficial rhizobacteria to mediate defense responses against foliar pathogen infection. However, the mechanisms of rhizobacteria-mediated defense enhancement remain rarely clear. In this study, beneficial rhizobacterial strain Pseudomonas fluorescens DN16 greatly increased the resistance of cucumber plants against Botrytis cinerea infection. RNA-sequencing analyses showed that several polyamine-associated genes including a thermospermine (TSpm) synthase gene (CsACL5) and polyamine catabolic genes (CsPAO1, CsPAO5, and CsCuAO1) were notably induced by DN16. The associations of TSpm metabolic pathways with the DN16-mediated cucumber defense responses were further investigated. The inoculated plants exhibited the increased leaf TSpm levels compared with the controls. Accordantly, overexpression of CsACL5 in cucumber plants markedly increased leaf TSpm levels and enhanced defense against B. cinerea infection. The functions of TSpm catabolism in the DN16-mediated defense responses of cucumber plants to B. cinerea were further investigated by pharmacological approaches. Upon exposure to pathogen infection, the changes of leaf TSpm levels were positively related to the enhanced activities of polyamine catabolic enzymes including polyamine oxidases (PAOs) and copper amine oxidases (CuAOs), which paralleled the transcription of several defense-related genes such as pathogenesis-related protein 1 (CsPR1) and defensin-like protein 1 (CsDLP1). However, the inhibited activities of polyamine catabolic enzymes abolished the DN16-induced cucumber defense against B. cinerea infection. This was in line with the impaired expression of defense-related genes in the inoculated plants challenged by B. cinerea. Collectively, our findings unraveled a pivotal role of TSpm catabolism in the regulation of the rhizobacteria-primed defense states by mediating the immune responses in cucumber plants after B. cinerea infection.
Collapse
Affiliation(s)
- Lin Zhu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| | - Xiaoming Lu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Haiming Duan
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Lisheng Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
19
|
Responses to Drought Stress Modulate the Susceptibility to Plasmopara viticola in Vitis vinifera Self-Rooted Cuttings. PLANTS 2021; 10:plants10020273. [PMID: 33573332 PMCID: PMC7912678 DOI: 10.3390/plants10020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Climate change will increase the occurrence of plants being simultaneously subjected to drought and pathogen stress. Drought can alter the way in which plants respond to pathogens. This research addresses how grapevine responds to the concurrent challenge of drought stress and Plasmopara viticola, the causal agent of downy mildew, and how one stress affects the other. Self-rooted cuttings of the drought-tolerant grapevine cultivar Xynisteri and the drought-sensitive cultivar Chardonnay were exposed to full or deficit irrigation (40% of full irrigation) and artificially inoculated with P. viticola in vitro or in planta. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under full irrigation, Xynisteri was more susceptible to P. viticola than the drought-sensitive cultivar Chardonnay. Drought stress increased the susceptibility of grapevine leaves inoculated in vitro, but both cultivars showed resistance against P. viticola when inoculated in planta. Abscisic acid, rather than jasmonic acid and salicylic acid, seemed to play a prominent role in this resistance. The irrigation-dependent susceptibility observed in this study indicates that the practices used to mitigate the effects of climate change may have a profound impact on plant pathogens.
Collapse
|
20
|
Sharath Chandran US, Tarafdar A, Mahesha HS, Sharma M. Temperature and Soil Moisture Stress Modulate the Host Defense Response in Chickpea During Dry Root Rot Incidence. FRONTIERS IN PLANT SCIENCE 2021; 12:653265. [PMID: 34149753 PMCID: PMC8213392 DOI: 10.3389/fpls.2021.653265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 05/14/2023]
Abstract
Dry root rot caused by the necrotrophic phytopathogenic fungus Rhizoctonia bataticola is an emerging threat to chickpea production in India. In the near future, the expected increase in average temperature and inconsistent rainfall patterns resultant of changing climatic scenarios are strongly believed to exacerbate the disease to epidemic proportions. The present study aims to quantify the collective role of temperature and soil moisture content (SMC) on disease progression in chickpea under controlled environmental conditions. In our study, we could find that both temperature and soil moisture played a decisive role in influencing the dry root rot disease scenario. As per the disease susceptibility index (DSI), a combination of high temperature (35°C) and low SMC (60%) was found to elicit the highest disease susceptibility in chickpea. High pathogen colonization was realized in chickpea root tissue at all time-points irrespective of genotype, temperature, and SMC. Interestingly, this was in contrast to the DSI where no visible symptoms were recorded in the roots or foliage during the initial time-points. For each time-point, the colonization was slightly higher at 35°C than 25°C, while the same did not vary significantly with respect to SMC. Furthermore, the differential expression study revealed the involvement of host defense-related genes like endochitinase and PR-3-type chitinase (CHI III) genes in delaying the dry root rot (DRR) disease progression in chickpea. Such genes were found to be highly active during the early stages of infection especially under low SMC.
Collapse
Affiliation(s)
- U. S. Sharath Chandran
- Legumes Pathology, Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Avijit Tarafdar
- Legumes Pathology, Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - H. S. Mahesha
- Crop Improvement Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Mamta Sharma
- Legumes Pathology, Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- *Correspondence: Mamta Sharma,
| |
Collapse
|
21
|
Antonucci G, Croci M, Miras-Moreno B, Fracasso A, Amaducci S. Integration of Gas Exchange With Metabolomics: High-Throughput Phenotyping Methods for Screening Biostimulant-Elicited Beneficial Responses to Short-Term Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 12:678925. [PMID: 34140966 PMCID: PMC8204046 DOI: 10.3389/fpls.2021.678925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Biostimulants are emerging as a feasible tool for counteracting reduction in climate change-related yield and quality under water scarcity. As they are gaining attention, the necessity for accurately assessing phenotypic variables in their evaluation is emerging as a critical issue. In light of this, high-throughput phenotyping techniques have been more widely adopted. The main bottleneck of these techniques is represented by data management, which needs to be tailored to the complex, often multifactorial, data. This calls for the adoption of non-linear regression models capable of capturing dynamic data and also the interaction and effects between multiple factors. In this framework, a commercial glycinebetaine- (GB-) based biostimulant (Vegetal B60, ED&F Man) was tested and distributed at a rate of 6 kg/ha. Exogenous application of GB, a widely accumulated and documented stress adaptor molecule in plants, has been demonstrated to enhance the plant abiotic stress tolerance, including drought. Trials were conducted on tomato plants during the flowering stage in a greenhouse. The experiment was designed as a factorial combination of irrigation (water-stressed and well-watered) and biostimulant treatment (treated and control) and adopted a mixed phenotyping-omics approach. The efficacy of a continuous whole-canopy multichamber system coupled with generalized additive mixed modeling (GAMM) was evaluated to discriminate between water-stressed plants under the biostimulant treatment. Photosynthetic performance was evaluated by using GAMM, and was then correlated to metabolic profile. The results confirmed a higher photosynthetic efficiency of the treated plants, which is correlated to biostimulant-mediated drought tolerance. Furthermore, metabolomic analyses demonstrated the priming effect of the biostimulant for stress tolerance and detoxification and stabilization of photosynthetic machinery. In support of this, the overaccumulation of carotenoids was particularly relevant, given their photoprotective role in preventing the overexcitation of photosystem II. Metabolic profile and photosynthetic performance findings suggest an increased effective use of water (EUW) through the overaccumulation of lipids and leaf thickening. The positive effect of GB on water stress resistance could be attributed to both the delayed onset of stress and the elicitation of stress priming through the induction of H2O2-mediated antioxidant mechanisms. Overall, the mixed approach supported by a GAMM analysis could prove a valuable contribution to high-throughput biostimulant testing.
Collapse
Affiliation(s)
- Giulia Antonucci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
- *Correspondence: Giulia Antonucci
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| |
Collapse
|
22
|
Zhang H, Ai M, Shi F, He H, Song H, Luo Z, Huang Q, Lu J. Deterioration mechanism of minced mutton induced by Fenton oxidation treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Sci Rep 2020; 10:15835. [PMID: 32985535 PMCID: PMC7523002 DOI: 10.1038/s41598-020-72474-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023] Open
Abstract
Soil salinity affects the plant growth and productivity detrimentally, but Solanum chilense, a wild relative of cultivated tomato (Solanum lycopersicum L.), is known to have exceptional salt tolerance. It has precise adaptations against direct exposure to salt stress conditions. Hence, a better understanding of the mechanism to salinity stress tolerance by S. chilense can be accomplished by comprehensive gene expression studies. In this study 1-month-old seedlings of S. chilense and S. lycopersicum were subjected to salinity stress through application of sodium chloride (NaCl) solution. Through RNA-sequencing here we have studied the differences in the gene expression patterns. A total of 386 million clean reads were obtained through RNAseq analysis using the Illumina HiSeq 2000 platform. Clean reads were further assembled de novo into a transcriptome dataset comprising of 514,747 unigenes with N50 length of 578 bp and were further aligned to the public databases. Genebank non-redundant (Nr), Viridiplantae, Gene Ontology (GO), KOG, and KEGG databases classification suggested enrichment of these unigenes in 30 GO categories, 26 KOG, and 127 pathways, respectively. Out of 265,158 genes that were differentially expressed in response to salt treatment, 134,566 and 130,592 genes were significantly up and down-regulated, respectively. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in cytokinin, ethylene, auxin, abscisic acid, gibberellin, and Ca2+ mediated signaling pathways were up-regulated. Furthermore, GO enrichment analysis was performed using REVIGO and up-regulation of multiple genes involved in various biological processes in chilense under salinity were identified. Through pathway analysis of DEGs, “Wnt signaling pathway” was identified as a novel pathway for the response to the salinity stress. Moreover, key genes for salinity tolerance, such as genes encoding proline and arginine metabolism, ROS scavenging system, transporters, osmotic regulation, defense and stress response, homeostasis and transcription factors were not only salt-induced but also showed higher expression in S. chilense as compared to S. lycopersicum. Thus indicating that these genes may have an important role in salinity tolerance in S. chilense. Overall, the results of this study improve our understanding on possible molecular mechanisms underlying salt tolerance in plants in general and tomato in particular.
Collapse
|
24
|
Naguib DM, Nabil Abdelraouf AM. Onion dry scales extract induce resistance against bacterial wilt in eggplant through improving polyamines and antioxidant metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Adamipour N, Khosh-Khui M, Salehi H, Razi H, Karami A, Moghadam A. Regulation of stomatal aperture in response to drought stress mediating with polyamines, nitric oxide synthase and hydrogen peroxide in Rosa canina L. PLANT SIGNALING & BEHAVIOR 2020; 15:1790844. [PMID: 32657206 PMCID: PMC8550291 DOI: 10.1080/15592324.2020.1790844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/31/2023]
Abstract
To assess the role of genes involved in polyamines synthesis, nitric oxide synthase (NOS), copper amine oxidase activity (CuAO) and hydrogen peroxide (H2O2) in regulation of stomatal aperture to drought stress in Rosa canina L., a study was performed at three irrigating levels (25%, 50%, and 100% field capacity) with three replications at 1, 3, 6 and 12 days. The results showed that putrescine (Put) accumulation occurred under both 50% and 25% FC at 1 d. Furthermore, the role of the Put direct biosynthesis pathway ornithine decarboxylase (ODC) was more effective under 50% FC whereas in the 25% FC the Put indirect production pathway (agmatine iminohydrolase (AIH), N-carbamoyl putrescine amidohydrolase (CPA) and arginine decarboxylase (ADC)) was more effective. HPLC results showed that the accumulation of spermidine (Spd) and spermine (Spm) is consistent with the expression of S-adenosyl methionine decarboxylase (SAMDC), spermidine synthase (SPDS) and spermine synthase (SPMS) genes. Spd accumulation under both 50% and 25% FC occurred on the 3 d and then decreased in the other days. Spm content showed an increasing trend from 6 d under 50% FC and from 3 d under 25% FC. Our results suggest that among the measured polyamines, Put oxidation through CuAO activity increased resulted in an increase in H2O2 production. The H2O2 accumulation also as a secondary messenger led to enhance in NOS gene expression. Increase in NOS gene expression can act as a signal resulting in stomatal closure.
Collapse
Affiliation(s)
- Nader Adamipour
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Morteza Khosh-Khui
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
26
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Effects of Exogenous Abscisic Acid (ABA) on Carotenoids and Petal Color in Osmanthus fragrans 'Yanhonggui'. PLANTS 2020; 9:plants9040454. [PMID: 32260328 PMCID: PMC7238031 DOI: 10.3390/plants9040454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023]
Abstract
Osmanthus fragrans is a well-known native plant in China, and carotenoids are the main group of pigments in the petals. Abscisic acid (ABA) is one of the products of the metabolic pathway of carotenoids. Application of ABA could affect pigmentation of flower petals by changing the carotenoid content. However, little is known about the effects of ABA treatment on carotenoid accumulation in O. fragrans. In this study, different concentrations of ABA (0, 150 and 200 mg/L) were spread on the petals of O. fragrans 'Yanhonggui'. The petal color of 'Yanhonggui' receiving every ABA treatment was deeper than that of the control. The content of total carotenoids in the petals significantly increased with 200 mg/L ABA treatment. In the petals, α-carotene and β-carotene were the predominant carotenoids. The expression of several genes involved in the metabolism of carotenoids increased with 200 mg/L ABA treatment, including PSY1, PDS1, Z-ISO1, ZDS1, CRTISO, NCED3 and CCD4. However, the transcription levels of the latter two carotenoid degradation-related genes were much lower than of the five former carotenoid biosynthesis-related genes; the finding would explain the significant increase in total carotenoids in 'Yanhonggui' petals receiving the 200 mg/L ABA treatment.
Collapse
|
28
|
Zwingelstein M, Draye M, Besombes JL, Piot C, Chatel G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:782-794. [PMID: 31812093 DOI: 10.1016/j.wasman.2019.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 05/28/2023]
Abstract
Viticultural waste has been widely demonstrated to contain high-added value compounds named the stilbenes. Among them, trans-resveratrol (Rsv) and trans-ε-viniferin (Vf) are the most abundant in particular in grape canes. Various emerging methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) or pressurized solvent extraction (PSE) have been studied to recover Rsv and Vf from grape canes in order to enhance their extraction. This paper gives a critical overview of the techniques used to this end, integrating conventional and non-conventional methods investigated in the literature as well as those used in industrial processes. It finally highlights that the unconventional technics are usually less time-consuming than conventional extraction ones but further investigations for the discussed compounds and biomass are needed to optimize and understand the influence of the individual parameters of each extraction process.
Collapse
Affiliation(s)
- Marion Zwingelstein
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France; Agence de l'Environnement et de Maîtrise de l'Energie (ADEME), F-49004 Angers, France
| | | | | | | | - Gregory Chatel
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France.
| |
Collapse
|
29
|
Hidalgo-Castellanos J, Duque AS, Burgueño A, Herrera-Cervera JA, Fevereiro P, López-Gómez M. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153034. [PMID: 31493718 DOI: 10.1016/j.jplph.2019.153034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance.
Collapse
Affiliation(s)
- Javier Hidalgo-Castellanos
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - Ana Sofia Duque
- Plant Cell Biotechnology Lab, Instituto de Tecnologia Química e Biológica António Xavier (Green-it Unit), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alvaro Burgueño
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain
| | - Pedro Fevereiro
- Plant Cell Biotechnology Lab, Instituto de Tecnologia Química e Biológica António Xavier (Green-it Unit), Universidade Nova de Lisboa, Oeiras, Portugal; Departamento Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Portugal
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.
| |
Collapse
|
30
|
Fortes AM, Agudelo-Romero P, Pimentel D, Alkan N. Transcriptional Modulation of Polyamine Metabolism in Fruit Species Under Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:816. [PMID: 31333688 PMCID: PMC6614878 DOI: 10.3389/fpls.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 05/29/2023]
Abstract
Polyamines are growth regulators that have been widely implicated in abiotic and biotic stresses. They are also associated with fruit set, ripening, and regulation of fruit quality-related traits. Modulation of their content confers fruit resilience, with polyamine application generally inhibiting postharvest decay. Changes in the content of free and conjugated polyamines in response to stress are highly dependent on the type of abiotic stress applied or the lifestyle of the pathogen. Recent studies suggest that exogenous application of polyamines or modulation of polyamine content by gene editing can confer tolerance to multiple abiotic and biotic stresses simultaneously. In this review, we explore data on polyamine synthesis and catabolism in fruit related to pre- and postharvest stresses. Studies of mutant plants, priming of stress responses, and treatments with polyamines and polyamine inhibitors indicate that these growth regulators can be manipulated to increase fruit productivity with reduced use of pesticides and therefore, under more sustainable conditions.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Patricia Agudelo-Romero
- School of Molecular Science, The University of Western Australia, Perth, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diana Pimentel
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
31
|
Hussain A, Nazir F, Fariduddin Q. 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:905-919. [PMID: 31404216 PMCID: PMC6656853 DOI: 10.1007/s12298-019-00672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 05/01/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids and polyamines are generally used to surpass different abiotic stresses like heavy metal toxicity in plants. The current study was conducted with an aim that 24-epibrassinolide (EBL) and/or spermidine (Spd) could modify root morphology, movement of stomata, cell viability, photosynthetic effectiveness, carbonic anhydrase and antioxidant enzyme activities in Brassica juncea under manganese (Mn) stress (30 or 150 mg kg-1 soil). EBL (10-8 M) and/or Spd, (1.0 mM) were applied to the foliage of B. juncea plants at 35 days after sowing (DAS), grown in the presence of Mn (30 or 150 mg kg-1 soil). High Mn concentration (150 mg kg-1 soil) altered root morphology, affected stomatal movement, reduced the viability of cells and photosynthetic effectiveness and increased the production of reactive oxygen species (O2 ·- and H2O2) in the leaves and antioxidant defense system of B. juncea at 45 DAS. Furthermore, exogenous treatment of EBL and Spd under stress and stress- free conditions improved the aforesaid traits while decreased the O2 ·- and H2O2 production. Therefore, EBL and Spd could be applied to the foliage of B. juncea plants for the better growth under metal stress.
Collapse
Affiliation(s)
- Anjuman Hussain
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
32
|
Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHMB, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Mahmud JA, Fujita M. Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions. Int J Mol Sci 2019; 20:ijms20133215. [PMID: 31261998 PMCID: PMC6651247 DOI: 10.3390/ijms20133215] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
Polyamines (PAs) are found in all living organisms and serve many vital physiological processes. In plants, PAs are ubiquitous in plant growth, physiology, reproduction, and yield. In the last decades, PAs have been studied widely for exploring their function in conferring abiotic stresses (salt, drought, and metal/metalloid toxicity) tolerance. The role of PAs in enhancing antioxidant defense mechanism and subsequent oxidative stress tolerance in plants is well-evident. However, the enzymatic regulation in PAs biosynthesis and metabolism is still under research and widely variable under various stresses and plant types. Recently, exogenous use of PAs, such as putrescine, spermidine, and spermine, was found to play a vital role in enhancing stress tolerance traits in plants. Polyamines also interact with other molecules like phytohormones, nitric oxides, trace elements, and other signaling molecules to providing coordinating actions towards stress tolerance. Due to the rapid industrialization metal/metalloid(s) contamination in the soil and subsequent uptake and toxicity in plants causes the most significant yield loss in cultivated plants, which also hamper food security. Finding the ways in enhancing tolerance and remediation mechanism is one of the critical tasks for plant biologists. In this review, we will focus the recent update on the roles of PAs in conferring metal/metalloid(s) tolerance in plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Mohsin Tanveer
- Stress Physiology Research Group, School of Land and Food, University of Tasmania, 7005 Hobart, Australia
| | - Sayed Mohammad Mohsin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mona H Soliman
- Biology Department, Faculty of Science Yanbu, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
33
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. Grapevine trunk diseases under thermal and water stresses. PLANTA 2019; 249:1655-1679. [PMID: 30805725 DOI: 10.1007/s00425-019-03111-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Heat and water stresses, individually or combined, affect both the plant (development, physiology, and production) and the pathogens (growth, morphology, dissemination, distribution, and virulence). The grapevine response to combined abiotic and biotic stresses is complex and cannot be inferred from the response to each single stress. Several factors might impact the response and the recovery of the grapevine, such as the intensity, duration, and timing of the stresses. In the heat/water stress-GTDs-grapevine interaction, the nature of the pathogens, and the host, i.e., the nature of the rootstock, the cultivar and the clone, has a great importance. This review highlights the lack of studies investigating the response to combined stresses, in particular molecular studies, and the misreading of the relationship between rootstock and scion in the relationship GTDs/abiotic stresses. Grapevine trunk diseases (GTDs) are one of the biggest threats to vineyard sustainability in the next 30 years. Although many treatments and practices are used to manage GTDs, there has been an increase in the prevalence of these diseases due to several factors such as vineyard intensification, aging vineyards, or nursery practices. The ban of efficient treatments, i.e., sodium arsenite, carbendazim, and benomyl, in the early 2000s may be partly responsible for the fast spread of these diseases. However, GTD-associated fungi can act as endophytes for several years on, or inside the vine until the appearance of the first symptoms. This prompted several researchers to hypothesise that abiotic conditions, especially thermal and water stresses, were involved in the initiation of GTD symptoms. Unfortunately, the frequency of these abiotic conditions occurring is likely to increase according to the recent consensus scenario of climate change, especially in wine-growing areas. In this article, following a review on the impact of combined thermal and water stresses on grapevine physiology, we will examine (1) how this combination of stresses might influence the lifestyle of GTD pathogens, (2) learnings from grapevine field experiments and modelling aiming at studying biotic and abiotic stresses, and (3) what mechanistic concepts can be used to explain how these stresses might affect the grapevine plant status.
Collapse
Affiliation(s)
- A Songy
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - O Fernandez
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - C Clément
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - P Larignon
- Institut Français de la Vigne et du Vin Pôle Rhône-Méditerranée, France, 7 avenue Cazeaux, 30230, Rodilhan, France
| | - F Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
35
|
Tarafdar A, Rani TS, Chandran USS, Ghosh R, Chobe DR, Sharma M. Exploring Combined Effect of Abiotic (Soil Moisture) and Biotic ( Sclerotium rolfsii Sacc.) Stress on Collar Rot Development in Chickpea. FRONTIERS IN PLANT SCIENCE 2018; 9:1154. [PMID: 30158943 PMCID: PMC6104659 DOI: 10.3389/fpls.2018.01154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/19/2018] [Indexed: 05/14/2023]
Abstract
Plants being sessile are under constant threat of multiple abiotic and biotic stresses within its natural habitat. A combined stress involving an abiotic and a biotic factor reportedly increases susceptibility of the plants to pathogens. The emerging threat, collar rot disease of chickpea (caused by Sclerotium rolfsii Sacc.) is reported to be influenced by soil moisture condition (SMC). Hence, we studied the influence of differential SMC viz. upper optimum (100%), optimum (80%), lower optimum (60%), and limiting (40%) soil moisture conditions on colonization and collar rot development over the course of infection in two chickpea cultivars, Annigeri (susceptible to collar rot) and ICCV 05530 (moderately resistant to collar rot). Disease incidence was found to be directly proportional to increase in soil moisture (R2 = 0.794). Maximum incidence was observed at 80% SMC, followed by 100 and 60% SMC. Expression of genes (qPCR analysis) associated with host cell wall binding (lectin) and degradation viz. endopolygalacturonase-2, endoglucosidase, and cellobiohydrolase during collar rot development in chickpea were relatively less at limiting soil moisture condition (40%) as compared to optimum soil moisture condition (80%). As compared to individual stress, the expression of defense response genes in chickpea seedlings were highly up-regulated in seedlings challenged with combined stress. Our qPCR results indicated that the expression of defense-related genes in chickpea during interaction with S. rolfsii at low SMC was primarily responsible for delayed disease reaction. Involvement of moisture and biotic stress-related genes in combined stress showed a tailored defense mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mamta Sharma
- Legumes Pathology, Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| |
Collapse
|
36
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
37
|
Hatmi S, Villaume S, Trotel-Aziz P, Barka EA, Clément C, Aziz A. Osmotic Stress and ABA Affect Immune Response and Susceptibility of Grapevine Berries to Gray Mold by Priming Polyamine Accumulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1010. [PMID: 30050554 PMCID: PMC6050403 DOI: 10.3389/fpls.2018.01010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
Abiotic factors inducing osmotic stress can affect plant immunity and resistance against pathogen attack. Although a number of studies have characterized grapevine responses to various forms of biotic and abiotic stresses, the relationships between osmotic stress response and susceptibility of mature berries to Botrytis cinerea still remain unknown. In this study, we investigated the effects of osmotic stress and abscisic acid (ABA) on defense responses of mature grapevine berries before and after B. cinerea infection. We focused on the possible involvement of polyamines in the interaction between osmotic stress response and susceptibility to B. cinerea. We showed that osmotic stress induced by PEG or sucrose, and exogenous ABA induce transient but low defense responses, including weak expression of PR genes and phytoalexin synthesis in mature berries. This was accompanied by an upregulation of NCED2 involved in ABA biosynthesis and a large production of free polyamines. However, osmotic stress followed by B. cinerea infection primed berries for enhanced accumulation of polyamines, but slowed down the defense responses and increased susceptibility to the pathogen. A weak increase of diamine- and polyamine-oxidase activities was also recorded in stressed berries, but declined after pathogen infection. The pretreatment of stressed berries with appropriate inhibitors of diamine- and polyamine-oxidases further increased polyamine level and greatly lowered defense responses, leading to higher susceptibility to B. cinerea. These results suggest that increased polyamine titer through low activation of their oxidative degradation in grape berries may contribute at least in part to the weakening of defense responses and subsequent disease susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Aziz Aziz
- Induced Resistance and Plant Bioprotection – RIBP EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, University of Reims, Reims, France
| |
Collapse
|
38
|
Torres N, Antolín MC, Goicoechea N. Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry Quality in Grapevines Under Changing Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:897. [PMID: 30008729 PMCID: PMC6034061 DOI: 10.3389/fpls.2018.00897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/07/2018] [Indexed: 05/13/2023]
Abstract
Climate change and their resulting impacts are becoming a concern for winegrowers due to the high socioeconomic relevance of the winemaking sector worldwide. In fact, the projected climate change is expected to have detrimental impacts on the yield of grapevines, as well as on the quality and properties of grapes and wine. It is well known that arbuscular mycorrhizal fungi (AMF) can improve the nutritional quality of edible parts of crops and play essential roles in the maintenance of host plant fitness under stressed environments, including grapevines. The future scenarios of climate change may also modify the diversity and the growth of AMF in soils as well as the functionality of the mycorrhizal symbiosis. In this review, we summarize recent research progress on the effects of climate change on grapevine metabolism, paying special attention to the secondary compounds involved in the organoleptic properties of grapes and wines and to the levels of the phytohormones implied in the control of berry development and fruit ripening. In this context, the potential role of AMF for maintaining fruit quality in future climate change scenarios is discussed.
Collapse
Affiliation(s)
| | | | - Nieves Goicoechea
- Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Facultades de Ciencias y Farmacia y Nutrición, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
39
|
Santamaria ME, Diaz I, Martinez M. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:458. [PMID: 29681917 PMCID: PMC5898276 DOI: 10.3389/fpls.2018.00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.
Collapse
Affiliation(s)
- M. E. Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Kusano T, Sagor GHM, Berberich T. Molecules for Sensing Polyamines and Transducing Their Action in Plants. Methods Mol Biol 2018; 1694:25-35. [PMID: 29080152 DOI: 10.1007/978-1-4939-7398-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines play important roles in growth, development, and adaptive responses to various stresses. In the past two decades, progress in plant polyamine research has accelerated, and the key molecules and components involved in many biological events have been identified. Recently, polyamine sensors used to detect polyamine-enriched foods and polyamines derived from degrading flesh were identified in fly and zebrafish, respectively. Work has begun to identify such molecules in plants as well. Here, we summarize the current knowledge about polyamines in plants. Furthermore, we discuss the roles of key molecules, such as calcium ions, reactive oxygen species, nitric oxide, γ-aminobutyric acid, polyamine transporters, and the mitogen-activated protein kinase cascade, from the viewpoint of polyamine action.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | - G H M Sagor
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Centre (BiK-F), George-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Kang J, Li J, Gao S, Tian C, Zha X. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1175-1185. [PMID: 28182328 PMCID: PMC5552483 DOI: 10.1111/pbi.12707] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Drought represents a key limiting factor of global crop distribution. Receptor-like kinases play major roles in plant development and defence responses against stresses such as drought. In this study, LRK2, which encodes a leucine-rich receptor-like kinase, was cloned and characterized and found to be localized on the plasma membrane in rice. Promoter-GUS analysis revealed strong expression in tiller buds, roots, nodes and anthers. Transgenic plants overexpressing LRK2 exhibited enhanced tolerance to drought stress due to an increased number of lateral roots compared with the wild type at the vegetative stage. Moreover, ectopic expression of LRK2 seedlings resulted in increased tiller development. Yeast two-hybrid screening and bimolecular fluorescence complementation (BiFC) indicated a possible interaction between LRK2 and elongation factor 1 alpha (OsEF1A) in vitro. These results suggest that LRK2 functions as a positive regulator of the drought stress response and tiller development via increased branch development in rice. These findings will aid our understanding of branch regulation in other grasses and support improvements in rice genetics.
Collapse
Affiliation(s)
- Junfang Kang
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Jianmin Li
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Shuang Gao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Chao Tian
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Xiaojun Zha
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
42
|
Gupta A, Senthil-Kumar M. Transcriptome changes in Arabidopsis thaliana infected with Pseudomonas syringae during drought recovery. Sci Rep 2017; 7:9124. [PMID: 28831155 PMCID: PMC5567376 DOI: 10.1038/s41598-017-09135-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Field-grown plants experience cycles of drought stress and recovery due to variation in soil moisture status. Physiological, biochemical and transcriptome responses instigated by recovery are expected to be different from drought stress and non-stressed state. Such responses can further aid or antagonize the plant's interaction with the pathogen. However, at molecular level, not much is known about plant-pathogen interaction during drought recovery. In the present study, we performed a microarray-based global transcriptome profiling and demonstrated the existence of unique transcriptional changes in Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tomato DC3000 at the time of drought recovery (drought recovery pathogen, DRP) when compared to the individual drought (D) or pathogen (P) or drought recovery (DR). Furthermore, the comparison of DRP with D or DR and P transcriptome revealed the presence of a few common genes among three treatments. Notably, a gene encoding proline dehydrogenase (AtProDH1) was found to be commonly up-regulated under drought recovery (DR), DRP and P stresses. We also report an up-regulation of pyrroline-5-carboxylate biosynthesis pathway during recovery. We propose that AtProDH1 influences the defense pathways during DRP. Altogether, this study provides insight into the understanding of defense responses that operate in pathogen-infected plants during drought recovery.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
43
|
Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 2017. [PMID: 28578401 DOI: 10.1038/s41598-41017-03024-41590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.
Collapse
Affiliation(s)
- Hongchun Xiong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Huijun Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yongdun Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Linshu Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Jiayu Gu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Shirong Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Junhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Luxiang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China.
| |
Collapse
|
44
|
RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 2017; 7:2731. [PMID: 28578401 PMCID: PMC5457441 DOI: 10.1038/s41598-017-03024-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.
Collapse
|
45
|
Lima MRM, Machado AF, Gubler WD. Metabolomic Study of Chardonnay Grapevines Double Stressed with Esca-Associated Fungi and Drought. PHYTOPATHOLOGY 2017; 107:669-680. [PMID: 28402211 DOI: 10.1094/phyto-11-16-0410-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera 'Chardonnay' plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.
Collapse
Affiliation(s)
- Marta R M Lima
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| | - Antoinette F Machado
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| | - Walter D Gubler
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| |
Collapse
|
46
|
Ma Y, Shukla V, Merewitz EB. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One 2017; 12:e0175848. [PMID: 28445484 PMCID: PMC5406032 DOI: 10.1371/journal.pone.0175848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
Creeping bentgrass is an important cool-season turfgrass species sensitive to drought. Treatment with polyamines (PAs) has been shown to improve drought tolerance; however, the mechanism is not yet fully understood. Therefore, this study aimed to evaluate transcriptome changes of creeping bentgrass in response to drought and exogenous spermidine (Spd) application using RNA sequencing (RNA-Seq). The high-quality sequences were assembled and 18,682 out of 49,190 (38%) were detected as coding sequences. A total of 22% and 19% of genes were found to be either up- or down-regulated due to drought while 20% and 34% genes were either up- or down- regulated in response to Spd application under drought conditions, respectively. Gene ontology (GO) and enrichment analysis were used to interpret the biological processes of transcripts and relative transcript abundance. Enriched or differentially expressed transcripts due to drought stress and/or Spd application were primarily associated with energy metabolism, transport, antioxidants, photosynthesis, signaling, stress defense, and cellular response to water deprivation. This research is the first to provide transcriptome data for creeping bentgrass under an abiotic stress using RNA-Seq analysis. Differentially expressed transcripts identified here could be further investigated for use as molecular markers or for functional analysis in responses to drought and Spd.
Collapse
Affiliation(s)
- Yingmei Ma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Vijaya Shukla
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily B. Merewitz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
47
|
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:537. [PMID: 28458674 PMCID: PMC5394115 DOI: 10.3389/fpls.2017.00537] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 05/18/2023]
Abstract
Global warming leads to the concurrence of a number of abiotic and biotic stresses, thus affecting agricultural productivity. Occurrence of abiotic stresses can alter plant-pest interactions by enhancing host plant susceptibility to pathogenic organisms, insects, and by reducing competitive ability with weeds. On the contrary, some pests may alter plant response to abiotic stress factors. Therefore, systematic studies are pivotal to understand the effect of concurrent abiotic and biotic stress conditions on crop productivity. However, to date, a collective database on the occurrence of various stress combinations in agriculturally prominent areas is not available. This review attempts to assemble published information on this topic, with a particular focus on the impact of combined drought and pathogen stresses on crop productivity. In doing so, this review highlights some agriculturally important morpho-physiological traits that can be utilized to identify genotypes with combined stress tolerance. In addition, this review outlines potential role of recent genomic tools in deciphering combined stress tolerance in plants. This review will, therefore, be helpful for agronomists and field pathologists in assessing the impact of the interactions between drought and plant-pathogens on crop performance. Further, the review will be helpful for physiologists and molecular biologists to design agronomically relevant strategies for the development of broad spectrum stress tolerant crops.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | | | | |
Collapse
|
48
|
Li S, Cui L, Zhang Y, Wang Y, Mao P. The Variation Tendency of Polyamines Forms and Components of Polyamine Metabolism in Zoysiagrass ( Zoysia japonica Steud.) to Salt Stress with Exogenous Spermidine Application. Front Physiol 2017; 8:208. [PMID: 28428760 PMCID: PMC5382195 DOI: 10.3389/fphys.2017.00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
To understand dynamic changes in polyamines (PAs) forms and components of polyamine metabolism in zoysiagrass (Zoysia japonica Steud.) response to salt stress with exogenous spermidine (Spd) application, two Chinese zoysia cultivars, z081 and z057, were exposed to sodium chloride stress for 2, 4, 6, and 8 days. The z057 cultivar possesses higher salinity tolerance than the z081 cultivar. Salt stress decreased the zoysiagrass fresh weight (FW) and increased free Spd and spermine (Spm) levels and soluble and insoluble putrescine (Put), Spd and Spm levels in both cultivars. Moreover, salt stress enhanced the activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO). Exogenous Spd increased PA metabolism and ADC, SAMDC, and DAO activities and decreased free Put levels under salt stress conditions in both cultivars. In addition, structural equation modeling (SEM) showed that ODC, SAMDC, and DAO contributed to PA metabolism, and endogenous Spd levels also contributed to endogenous Spm levels. Free PAs may be the primary factor influencing the variation of other PA forms. SEM also indicated that ADC and polyamine oxidase (PAO) play a limited role in enhancing zoysia salt tolerance via PA metabolism under salt stress.
Collapse
Affiliation(s)
- Shucheng Li
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Linlin Cui
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Yujuan Zhang
- Institute of Grassland Science, Chinese Academy of Agricultural ScienceHuhhot, China
| | - Yunwen Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Peisheng Mao
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| |
Collapse
|
49
|
Sinha R, Gupta A, Senthil-Kumar M. Concurrent Drought Stress and Vascular Pathogen Infection Induce Common and Distinct Transcriptomic Responses in Chickpea. FRONTIERS IN PLANT SCIENCE 2017; 8:333. [PMID: 28382041 PMCID: PMC5361651 DOI: 10.3389/fpls.2017.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
Chickpea (Cicer arietinum); the second largest legume grown worldwide is prone to drought and various pathogen infections. These drought and pathogen stresses often occur concurrently in the field conditions. However, the molecular events in response to that are largely unknown. The present study examines the transcriptome dynamics in chickpea plants exposed to a combination of water-deficit stress and Ralstonia solanacearum infection. R. solanacearum is a potential wilt disease causing pathogen in chickpea. Drought stressed chickpea plants were infected with this pathogen and the plants were allowed to experience progressive drought with 2 and 4 days of R. solanacearum infection called short duration stress (SD stresses) and long duration stress (LD stresses), respectively. Our study showed that R. solanacearum multiplication decreased under SD-combined stress compared to SD-pathogen but there was no significant change in LD-combined stress compared to LD-pathogen. The microarray analysis during these conditions showed that 821 and 1039 differentially expressed genes (DEGs) were unique to SD- and LD-combined stresses, respectively, when compared with individual stress conditions. Three and fifteen genes were common among all the SD-stress treatments and LD-stress treatments, respectively. Genes involved in secondary cell wall biosynthesis, alkaloid biosynthesis, defense related proteins, and osmo-protectants were up-regulated during combined stress. The expression of genes involved in lignin and cellulose biosynthesis were specifically up-regulated in SD-combined, LD-combined, and LD-pathogen stress. A close transcriptomic association of LD-pathogen stress with SD-combined stress was observed in this study which indicates that R. solanacearum infection also exerts drought stress along with pathogen stress thus mimics combined stress effect. Furthermore the expression profiling of candidate genes using real-time quantitative PCR validated the microarray data. The study showed that down-regulation of defense-related genes during LD-combined stress resulted in an increased bacterial multiplication as compared to SD-combined stress. Overall, our study highlights a sub-set of DEGs uniquely expressed in response to combined stress, which serve as potential candidates for further functional characterization to delineate the molecular response of the plant to concurrent drought-pathogen stress.
Collapse
|
50
|
Diao Q, Song Y, Shi D, Qi H. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato ( Lycopersicon esculentum Mill.) Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:203. [PMID: 28261254 PMCID: PMC5306283 DOI: 10.3389/fpls.2017.00203] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/02/2017] [Indexed: 05/04/2023]
Abstract
Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H2O2-dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress.
Collapse
Affiliation(s)
- Qiannan Diao
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Yongjun Song
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Dongmei Shi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| |
Collapse
|