1
|
Zhao H, Huang X, Ma B, Jiang B, Jiang Z, Cai J. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition. PLANT, CELL & ENVIRONMENT 2025; 48:992-1004. [PMID: 39390757 DOI: 10.1111/pce.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.
Collapse
Affiliation(s)
- Han Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bolong Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bo Jiang
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Zaimin Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Klein SP, Kaeppler SM, Brown KM, Lynch JP. Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize. THE PLANT GENOME 2024; 17:e20489. [PMID: 39034891 DOI: 10.1002/tpg2.20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Collapse
Affiliation(s)
- Stephanie P Klein
- Interdepartmental Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
4
|
Rodriguez-Zaccaro FD, Lieberman M, Groover A. A systems genetic analysis identifies putative mechanisms and candidate genes regulating vessel traits in poplar wood. FRONTIERS IN PLANT SCIENCE 2024; 15:1375506. [PMID: 38867883 PMCID: PMC11167656 DOI: 10.3389/fpls.2024.1375506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Wood is the water conducting tissue of tree stems. Like most angiosperm trees, poplar wood contains water-conducting vessel elements whose functional properties affect water transport and growth rates, as well as susceptibility to embolism and hydraulic failure during water stress and drought. Here we used a unique hybrid poplar pedigree carrying genomically characterized chromosomal insertions and deletions to undertake a systems genomics analysis of vessel traits. We assayed gene expression in wood forming tissues from clonal replicates of genotypes covering dosage quantitative trait loci with insertions and deletions, genotypes with extreme vessel trait phenotypes, and control genotypes. A gene co-expression analysis was used to assign genes to modules, which were then used in integrative analyses to identify modules associated with traits, to identify putative molecular and cellular processes associated with each module, and finally to identify candidate genes using multiple criteria including dosage responsiveness. These analyses identified known processes associated with vessel traits including stress response, abscisic acid and cell wall biosynthesis, and in addition identified previously unexplored processes including cell cycle and protein ubiquitination. We discuss our findings relative to component processes contributing to vessel trait variation including signaling, cell cycle, cell expansion, and cell differentiation.
Collapse
Affiliation(s)
| | - Meric Lieberman
- University of California Davis, Genome Center, Davis, CA, United States
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- USDA Forest Service, Northern Research Station, Burlington, VT, United States
| |
Collapse
|
5
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
6
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
7
|
Influence of Juvenile Growth on Xylem Safety and Efficiency in Three Temperate Tree Species. FORESTS 2022. [DOI: 10.3390/f13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The evolution of the internal water transport system was a prerequisite for high plant productivity. In times of climate change, understanding the dependency of juvenile growth on xylem hydraulic physiology is therefore of high importance. Here, we explored various wood anatomical, hydraulic, and leaf morphological traits related to hydraulic safety and efficiency in three temperate broadleaved tree species (Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia). We took advantage of a severe natural heat wave that resulted in different climatic growing conditions for even-aged plants from the same seed source growing inside a greenhouse and outside. Inside the greenhouse, the daily maximum vapour pressure deficit was on average 36% higher than outside during the growing seasons. Because of the higher atmospheric moisture stress, the biomass production differed up to 5.6-fold between both groups. Except for one species, a high productivity was associated with a high hydraulic efficiency caused by large xylem vessels and a large, supported leaf area. Although no safety-efficiency trade-off was observed, productivity was significantly related to P50 in two of the tree species but without revealing any clear pattern. A considerable plasticity in given traits was observed between both groups, with safety-related traits being more static while efficiency-related traits revealed a higher intra-specific plasticity. This was associated with other wood anatomical and leaf morphological adjustments. We confirm that a high hydraulic efficiency seems to be a prerequisite for a high biomass production, while our controversial results on the growth–xylem safety relationship confirm that safety-efficiency traits are decoupled and that their relationship with juvenile growth and water regime is species-specific.
Collapse
|
8
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
9
|
Hietz P, Rungwattana K, Scheffknecht S, George JP. Effects of Provenance, Growing Site, and Growth on Quercus robur Wood Anatomy and Density in a 12-Year-Old Provenance Trial. FRONTIERS IN PLANT SCIENCE 2022; 13:795941. [PMID: 35574121 PMCID: PMC9100569 DOI: 10.3389/fpls.2022.795941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Vessels are responsible for an efficient and safe water transport in angiosperm xylem. Whereas large vessels efficiently conduct the bulk of water, small vessels might be important under drought stress or after winter when large vessels are embolized. Wood anatomy can adjust to the environment by plastic adaptation, but is also modified by genetic selection, which can be driven by climate or other factors. To distinguish between plastic and genetic components on wood anatomy, we used a Quercus robur trial where trees from ten Central European provenances were planted in three locations in Austria along a rainfall gradient. Because wood anatomy also adjusts to tree size and in ring-porous species, the vessel size depends on the amount of latewood and thereby ring width, we included tree size and ring width in the analysis. We found that the trees' provenance had a significant effect on average vessel area (VA), theoretical specific hydraulic conductivity (Ks), and the vessel fraction (VF), but correlations with annual rainfall of provenances were at best weak. The trial site had a strong effect on growth (ring width, RW), which increased from the driest to the wettest site and wood density (WD), which increased from wet to dry sites. Significant site x provenance interactions were seen only for WD. Surprisingly, the drier site had higher VA, higher VF, and higher Ks. This, however, is mainly a result of greater RW and thus a greater proportion of latewood in the wetter forest. The average size of vessels > 70 μm diameter increased with rainfall. We argue that Ks, which is measured per cross-sectional area, is not an ideal parameter to compare the capacity of ring-porous trees to supply leaves with water. Small vessels (<70 μm) on average contributed only 1.4% to Ks, and we found no evidence that their number or size was adaptive to aridity. RW and tree size had strong effect on all vessel parameters, likely via the greater proportion of latewood in wide rings. This should be accounted for when searching for wood anatomical adaptations to the environment.
Collapse
Affiliation(s)
- Peter Hietz
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kanin Rungwattana
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Susanne Scheffknecht
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jan-Peter George
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Vienna, Austria
- Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Lauriks F, Salomón RL, De Roo L, Goossens W, Leroux O, Steppe K. Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. PLANT PHYSIOLOGY 2022; 188:268-284. [PMID: 34718790 PMCID: PMC8774844 DOI: 10.1093/plphys/kiab497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Olivier Leroux
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins. PLANTS 2021; 10:plants10091777. [PMID: 34579309 PMCID: PMC8469263 DOI: 10.3390/plants10091777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Aristotelia chilensis (Molina) Stuntz is a promising species in the food industry as it provides 'super fruits' with remarkable antioxidant activity. However, under the predicted climate change scenario, the ongoing domestication of the species must consider selecting the most productive genotypes and be based on traits conferring drought tolerance. We assessed the vulnerability to cavitation and stomatal sensitivity to vapor pressure deficit (VPD) in A. chilensis clones originated from provenances with contrasting climates. A nursery experiment was carried out for one growing season on 2-year-old potted plants. Measurements of stomatal conductance (gs) responses to VPD were taken in spring, summer, and autumn, whereas vulnerability to cavitation was evaluated at the end of spring. Overall, the vulnerability to cavitation of the species was moderate (mean P50 of -2.2 MPa). Parameters of the vulnerability curves (Kmax, P50, P88, and S50) showed no differences among clones or when northern and southern clones were compared. Moreover, there were no differences in stomatal sensitivity to VPD at the provenance or the clonal level. However, compared with other studies, the stomatal sensitivity was considered moderately low, especially in the range of 1 to 3 kPa of VPD. The comparable performance of genotypes from contrasting provenance origins suggests low genetic variation for these traits. Further research must consider testing on diverse environmental conditions to assess the phenotypic plasticity of these types of traits.
Collapse
|
12
|
Reeger JE, Wheatley M, Yang Y, Brown KM. Targeted mutation of transcription factor genes alters metaxylem vessel size and number in rice roots. PLANT DIRECT 2021; 5:e00328. [PMID: 34142002 PMCID: PMC8204146 DOI: 10.1002/pld3.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Root metaxylem vessels are responsible for axial water transport and contribute to hydraulic architecture. Variation in metaxylem vessel size and number can impact drought tolerance in crop plants, including rice, a crop that is particularly sensitive to drought. Identifying and validating candidate genes for metaxylem development would aid breeding efforts for improved varieties for drought tolerance. We identified three transcription factor candidate genes that potentially regulate metaxylem vessel size and number in rice based on orthologous annotations, published expression data, and available root and drought-related QTL data. Single gene knockout mutants were generated for each candidate using CRISPR-Cas9 genome editing. Root metaxylem vessel area and number were analyzed in 6-week-old knockout mutants and wild-type plants under well-watered and drought conditions in the greenhouse. Compared with wild type, LONESOME HIGHWAY (OsLHW) mutants had fewer, smaller metaxylem vessels in shallow roots and more, larger vessels in deep roots in drought conditions, indicating that OsLHW may be a repressor of drought-induced metaxylem plasticity. The AUXIN RESPONSE FACTOR 15 mutants showed fewer but larger metaxylem vessel area in well-watered conditions, but phenotypes were inconsistent under drought treatment. ORYZA SATIVA HOMEBOX 6 (OSH6) mutants had fewer, smaller metaxylem vessels in well-watered conditions with greater effects on xylem number than size. OSH6 mutants had larger shoots and more, deeper roots than the wild type in well-watered conditions, but there were no differences in performance under drought between mutants and wild type. Though these candidate gene mutants did not exhibit large phenotypic effects, the identification and investigation of candidate genes related to metaxylem traits in rice deepen our understanding of metaxylem development and are needed to facilitate incorporation of favorable alleles into breeding populations to improve drought stress tolerance.
Collapse
Affiliation(s)
- Jenna E. Reeger
- Intercollege Graduate Degree Program in Plant BiologyHuck Institutes of the Life SciencesPenn State UniversityUniversity ParkPAUSA
| | - Matthew Wheatley
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yinong Yang
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Kathleen M. Brown
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
13
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
14
|
Gessler A, Bottero A, Marshall J, Arend M. The way back: recovery of trees from drought and its implication for acclimation. THE NEW PHYTOLOGIST 2020; 228:1704-1709. [PMID: 32452535 DOI: 10.1111/nph.16703] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich, 8092, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Alessandra Bottero
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogens ekologi och skötsel, Umeå, 901 83, Sweden
| | - Matthias Arend
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| |
Collapse
|
15
|
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK. Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. TREE PHYSIOLOGY 2020; 40:215-229. [PMID: 31860729 DOI: 10.1093/treephys/tpz121] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Understanding which hydraulic traits are under genetic control and/or are phenotypically plastic is essential in understanding how tree species will respond to rapid shifts in climate. We quantified hydraulic traits in Eucalyptus obliqua L'Her. across a precipitation gradient in the field to describe (i) trait variation in relation to long-term climate and (ii) the short-term (seasonal) ability of traits to adjust (i.e., phenotypic plasticity). Seedlings from each field population were raised under controlled conditions to assess (iii) which traits are under strong genetic control. In the field, drier populations had smaller leaves with anatomically thicker xylem vessel walls, a lower leaf hydraulic vulnerability and a lower water potential at turgor loss point, which likely confers higher hydraulic safety. Traits such as the water potential at turgor loss point and ratio of sapwood to leaf area (Huber value) showed significant adjustment from wet to dry conditions in the field, indicating phenotypic plasticity and importantly, the ability to increase hydraulic safety in the short term. In the nursery, seedlings from drier populations had smaller leaves and a lower leaf hydraulic vulnerability, suggesting that key traits associated with hydraulic safety are under strong genetic control. Overall, our study suggests a strong genetic control over traits associated with hydraulic safety, which may compromise the survival of wet-origin populations in drier future climates. However, phenotypic plasticity in physiological and morphological traits may confer sufficient hydraulic safety to facilitate genetic adaptation.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Virginia Williamson
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Christopher Szota
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Raphael Trouvé
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| |
Collapse
|
16
|
Ruiz M, Oustric J, Santini J, Morillon R. Synthetic Polyploidy in Grafted Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:540894. [PMID: 33224156 PMCID: PMC7674608 DOI: 10.3389/fpls.2020.540894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
Synthetic polyploids have been extensively studied for breeding in the last decade. However, the use of such genotypes at the agronomical level is still limited. Polyploidization is known to modify certain plant phenotypes, while leaving most of the fundamental characteristics apparently untouched. For this reason, polyploid breeding can be very useful for improving specific traits of crop varieties, such as quality, yield, or environmental adaptation. Nevertheless, the mechanisms that underlie polyploidy-induced novelty remain poorly understood. Ploidy-induced phenotypes might also include some undesired effects that need to be considered. In the case of grafted or composite crops, benefits can be provided both by the rootstock's adaptation to the soil conditions and by the scion's excellent yield and quality. Thus, grafted crops provide an extraordinary opportunity to exploit artificial polyploidy, as the effects can be independently applied and explored at the root and/or scion level, increasing the chances of finding successful combinations. The use of synthetic tetraploid (4x) rootstocks may enhance adaptation to biotic and abiotic stresses in perennial crops such as apple or citrus. However, their use in commercial production is still very limited. Here, we will review the current and prospective use of artificial polyploidy for rootstock and scion improvement and the implications of their combination. The aim is to provide insight into the methods used to generate and select artificial polyploids and their limitations, the effects of polyploidy on crop phenotype (anatomy, function, quality, yield, and adaptation to stresses) and their potential agronomic relevance as scions or rootstocks in the context of climate change.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Julie Oustric
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Jérémie Santini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP, Equipe SEAPAG, F-97170 Petit-Bourg, Guadeloupe, France - AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
17
|
Matzner SL, Ronning N, Hawkinson J, Cummiskey T, Buchanan J, Miller E, Carlisle G. Does acclimation in cavitation resistance due to mechanical perturbation support the pit area or conduit reinforcement hypotheses in Phaseolus vulgaris? PHYSIOLOGIA PLANTARUM 2019; 167:378-390. [PMID: 30537192 PMCID: PMC6557702 DOI: 10.1111/ppl.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 05/23/2023]
Abstract
Two Phaseolus vulgaris L. cultivars were exposed to reduced water and stem mechanical perturbation treatments (flexing) to determine if acclimation to these treatments induced hydraulic changes, altered cavitation resistance and changed stem mechanical properties. Additionally, this study sought to determine if changes in cavitation resistance would support the pit area or conduit reinforcement hypotheses. Flexing reduced biomass, leaf area, xylem vessel area and hydraulic conductivity. One cultivar had greater measures of stem strength and cavitation resistance. Flexing increased cavitation resistance (P50 ) but did not increase Young's modulus, rigidity or flexural strength on dried stems. Stem rigidity and basal diameter were correlated with leaf mass. The ratio of conduit wall thickness to span [(t/b)h 2 ] increased under high water and flexing treatments while rigidity decreased for one cultivar exposed to both flexing and lower water suggesting an inability to compensate for two simultaneous stresses. Although P50 was not correlated with measures of mechanical strength, P50 was correlated with vessel diameter, consistent with the pit area hypothesis. This study confirmed that mechanical perturbation can impact xylem structural properties and result in altered plant water flow characteristics and cavitation resistance. Long-term hydraulic acclimation in these herbaceous annuals was constrained by similar tradeoffs that constrain hydraulic properties across species.
Collapse
|
18
|
Pouzoulet J, Scudiero E, Schiavon M, Santiago LS, Rolshausen PE. Modeling of xylem vessel occlusion in grapevine. TREE PHYSIOLOGY 2019; 39:1438-1445. [PMID: 30938422 DOI: 10.1093/treephys/tpz036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/16/2019] [Indexed: 05/23/2023]
Abstract
Morphological traits of the plant vascular system such as xylem vessel diameter have been implicated in many physiological processes including resistance to drought-induced xylem cavitation and vessel occlusion during infection with vascular wilt diseases. In both events, xylem vessels lose function because they become filled with air or tyloses and gels. Xylem cavitation has been well studied, whereas vessel occlusion remains purely descriptive even though it is a critical response to wounding injuries and compartmentalization of vascular pathogens. The timing of vessel occlusion is a key determinant to a successful compartmentalization of pathogens within the plant vascular system and we hypothesized that xylem vessel diameter is the driving variable. Using a dye injection method coupled with automated image analysis, we parameterized a model to investigate how xylem vessel diameter affects the speed of vessel occlusion in Vitis vinifera L. cv. Cabernet Sauvignon in response to wounding. Our dataset contains observations from 6,646 vessels at five kinetic points following stem pruning, over a time course of 1 week. Using this approach we provide evidence that the diameter of vessels is a key determinant of the timing of their occlusion. We discuss how these findings impact resistance to vascular wilt diseases in perennial woody hosts.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Elia Scudiero
- USDA-ARS, US Salinity Laboratory, Riverside, CA, USA
| | - Marco Schiavon
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
19
|
Lauder JD, Moran EV, Hart SC. Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers. TREE PHYSIOLOGY 2019; 39:1071-1085. [PMID: 30924877 DOI: 10.1093/treephys/tpz031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/26/2018] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Plants frequently exhibit tradeoffs between reproduction and growth when resources are limited, and often change these allocation patterns in response to stress. Shorter-lived plants such as annuals tend to allocate relatively more resources toward reproduction when stressed, while longer-lived plants tend to invest more heavily in survival and stress defense. However, severe stress may affect the fitness implications of allocating relatively more resources to reproduction versus stress defense. Increased drought intensity and duration have led to widespread mortality events in coniferous forests. In this review, we ask how potential tradeoffs between reproduction and survival influence the likelihood of drought-induced mortality and species persistence. We propose that trees may exhibit what we call 'fight or flight' behaviors under stress. 'Fight' behaviors involve greater resource allocation toward survival (e.g., growth, drought-resistant xylem and pest defense). 'Flight' consists of higher relative allocation of resources to reproduction, potentially increasing both offspring production and mortality risk for the adult. We hypothesize that flight behaviors increase as drought stress escalates the likelihood of mortality in a given location.
Collapse
Affiliation(s)
- Jeffrey D Lauder
- Quantitative and Systems Biology Graduate Group, University of California, Merced, N. Lake Road, Merced, CA, USA
| | - Emily V Moran
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, N. Lake Road, Merced, CA, USA
| | - Stephen C Hart
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, N. Lake Road, Merced, CA, USA
| |
Collapse
|
20
|
Ahmad HB, Lens F, Capdeville G, Burlett R, Lamarque LJ, Delzon S. Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions. PHYSIOLOGIA PLANTARUM 2018; 163:59-72. [PMID: 29057474 DOI: 10.1111/ppl.12654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 05/27/2023]
Abstract
Drought-induced xylem embolism is a key process closely related to plant mortality during extreme drought events. However, this process has been poorly investigated in crop species to date, despite the observed decline of crop productivity under extreme drought conditions. Interspecific variation in hydraulic traits has frequently been reported, but less is known about intraspecific variation in crops. We assessed the intraspecific variability of embolism resistance in four sunflower (Helianthus annuus L.) accessions grown in well-watered conditions. Vulnerability to embolism was determined by the in situ flow-centrifuge method (cavitron), and possible trade-offs between xylem safety, xylem efficiency and growth were assessed. The relationship between stem anatomy and hydraulic traits was also investigated. Mean P50 was -3 MPa, but significant variation was observed between accessions, with values ranging between -2.67 and -3.22 MPa. Embolism resistance was negatively related to growth and positively related to xylem-specific hydraulic conductivity. There is, therefore, a trade-off between hydraulic safety and growth but not between hydraulic safety and efficiency. Finally, we found that a few anatomical traits, such as vessel density and the area of the vessel lumen relative to that of the secondary xylem, were related to embolism resistance, whereas stem tissue lignification was not. Further investigations are now required to investigate the link between the observed variability of embolism resistance and yield, to facilitate the identification of breeding strategies to improve yields in an increasingly arid world.
Collapse
Affiliation(s)
- Hafiz B Ahmad
- BIOGECO, INRA, University of Bordeaux, Cestas, France
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, Leiden, the Netherlands
| | | | - Régis Burlett
- BIOGECO, INRA, University of Bordeaux, Cestas, France
| | | | | |
Collapse
|
21
|
Garavillon-Tournayre M, Gousset-Dupont A, Gautier F, Benoit P, Conchon P, Souchal R, Lopez D, Petel G, Venisse JS, Bastien C, Label P, Fumanal B. Integrated drought responses of black poplar: how important is phenotypic plasticity? PHYSIOLOGIA PLANTARUM 2018; 163:30-44. [PMID: 28940533 DOI: 10.1111/ppl.12646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/24/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time-limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1-year-old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.
Collapse
Affiliation(s)
| | | | | | - Pierrick Benoit
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Pierre Conchon
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Romain Souchal
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - David Lopez
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Gilles Petel
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | | | | | - Philippe Label
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
22
|
Wildhagen H, Paul S, Allwright M, Smith HK, Malinowska M, Schnabel SK, Paulo MJ, Cattonaro F, Vendramin V, Scalabrin S, Janz D, Douthe C, Brendel O, Buré C, Cohen D, Hummel I, Le Thiec D, van Eeuwijk F, Keurentjes JJB, Flexas J, Morgante M, Robson P, Bogeat-Triboulot MB, Taylor G, Polle A. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. TREE PHYSIOLOGY 2018; 38:320-339. [PMID: 28541580 PMCID: PMC5982782 DOI: 10.1093/treephys/tpx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 05/03/2023]
Abstract
Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.
Collapse
Affiliation(s)
- Henning Wildhagen
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077 Göttingen, Germany
| | - Shanty Paul
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mike Allwright
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Hazel K Smith
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Marta Malinowska
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | - Sabine K Schnabel
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M João Paulo
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Simone Scalabrin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Dennis Janz
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Cyril Douthe
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Oliver Brendel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Cyril Buré
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - David Cohen
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Irène Hummel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Didier Le Thiec
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Fred van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaume Flexas
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Michele Morgante
- Università Di Udine, Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Paul Robson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | | | - Gail Taylor
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- Corresponding author ()
| |
Collapse
|
23
|
De Baerdemaeker NJF, Hias N, Van den Bulcke J, Keulemans W, Steppe K. The effect of polyploidization on tree hydraulic functioning. AMERICAN JOURNAL OF BOTANY 2018; 105:161-171. [PMID: 29570227 DOI: 10.1002/ajb2.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. METHODS Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. KEY RESULTS Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. CONCLUSIONS Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Niek Hias
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wannes Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
24
|
Pfautsch S, Aspinwall MJ, Drake JE, Chacon-Doria L, Langelaan RJA, Tissue DT, Tjoelker MG, Lens F. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. ANNALS OF BOTANY 2018; 121:129-141. [PMID: 29325002 PMCID: PMC5786253 DOI: 10.1093/aob/mcx137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. METHODS To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. KEY RESULTS Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. CONCLUSIONS The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees.
Collapse
Affiliation(s)
- Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- For correspondence. E-mail
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | | | - Rob J A Langelaan
- Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
25
|
Hochberg U, Bonel AG, David-Schwartz R, Degu A, Fait A, Cochard H, Peterlunger E, Herrera JC. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. PLANTA 2017; 245:1091-1104. [PMID: 28214919 PMCID: PMC5432590 DOI: 10.1007/s00425-017-2662-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s) and leaf conductance (k leaf) under low stem water potential (Ψs), despite their high xylem vulnerability and in agreement with their lower turgor loss point (ΨTLP). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
- PIAF, INRA, Univ. Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Andrea Giulia Bonel
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Centre, 50250, Bet Dagan, Israel
| | - Asfaw Degu
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Hervé Cochard
- PIAF, INRA, Univ. Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Enrico Peterlunger
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Jose Carlos Herrera
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
26
|
Hochberg U, Albuquerque C, Rachmilevitch S, Cochard H, David-Schwartz R, Brodersen CR, McElrone A, Windt CW. Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. PLANT, CELL & ENVIRONMENT 2016; 39:1886-94. [PMID: 26648337 DOI: 10.1111/pce.12688] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 05/08/2023]
Abstract
The 'hydraulic vulnerability segmentation' hypothesis predicts that expendable distal organs are more susceptible to water stress-induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron-based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx ). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of -1.54 MPa, whereas the stems did not reach similar losses until -1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of -1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress-induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought.
Collapse
Affiliation(s)
- Uri Hochberg
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, 33100, Udine, Italy
- INRA, UMR 547 PIAF/Université Blaise Pascal, F-63039, Clermont-Ferrand, France
| | - Caetano Albuquerque
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Shimon Rachmilevitch
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Be'er Sheva, 84990, Israel
| | - Herve Cochard
- INRA, UMR 547 PIAF/Université Blaise Pascal, F-63039, Clermont-Ferrand, France
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Centre, Bet Dagan, 50250, Israel
| | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Andrew McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, 95616, USA
| | - Carel W Windt
- Forschungszentrum Jülich, Institute for Bio- and Geosciences, IBG-2: Plant Sciences, 52425, Jülich, Germany
| |
Collapse
|
27
|
Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics. THE NEW PHYTOLOGIST 2016; 211:357-70. [PMID: 26918522 DOI: 10.1111/nph.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/19/2016] [Indexed: 05/12/2023]
Abstract
Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.
Collapse
Affiliation(s)
- Luciano Pereira
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Paulo R L Bittencourt
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Mauro B M Junior
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Fernanda V Barros
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
28
|
Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield. FRONTIERS IN PLANT SCIENCE 2016; 7:791. [PMID: 27379112 PMCID: PMC4909056 DOI: 10.3389/fpls.2016.00791] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.
Collapse
Affiliation(s)
- Peter Hajek
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of GöttingenGöttingen, Germany
| | - Daniel Kurjak
- Faculty of Forestry, Technical University in ZvolenZvolen, Slovakia
| | - Georg von Wühlisch
- Federal Research Institute for Rural Areas, Forestry and Fisheries, Thuenen Institute for Forest GeneticsGroßhansdorf, Germany
| | - Sylvain Delzon
- UMR BIOGECO Institut National de la Recherche Agronomique-UB, University of BordeauxTalence, France
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of GöttingenGöttingen, Germany
| |
Collapse
|
29
|
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? THE NEW PHYTOLOGIST 2016; 210:443-58. [PMID: 26720626 DOI: 10.1111/nph.13798] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 05/04/2023]
Abstract
Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance.
Collapse
Affiliation(s)
- Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Florian Knutzen
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Sylvain Delzon
- UMR BIOGECO INRA-UB, University of Bordeaux, Avenue des Facultés, 33405, Talence, France
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hilmar Müller-Haubold
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Régis Burlett
- UMR BIOGECO INRA-UB, University of Bordeaux, Avenue des Facultés, 33405, Talence, France
| | - Yann Clough
- Centre for Environmental and Climate Research, Faculty of Science, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| |
Collapse
|
30
|
Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA. Climate determines vascular traits in the ecologically diverse genusEucalyptus. Ecol Lett 2016; 19:240-8. [DOI: 10.1111/ele.12559] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Sebastian Pfautsch
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Marco Harbusch
- Faculty of Agriculture and Environment; University of Sydney; 1 Central Avenue Eveleigh NSW 2015 Australia
| | - Anita Wesolowski
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | | | - Mark G. Tjoelker
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Peter B. Reich
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
- Department of Forest Resources; College of Food, Agricultural, and Natural Resource Sciences; University of Minnesota; St. Paul MN 55108 USA
| | - Mark A. Adams
- Faculty of Agriculture and Environment; University of Sydney; 1 Central Avenue Eveleigh NSW 2015 Australia
| |
Collapse
|
31
|
von Arx G, Crivellaro A, Prendin AL, Čufar K, Carrer M. Quantitative Wood Anatomy-Practical Guidelines. FRONTIERS IN PLANT SCIENCE 2016; 7:781. [PMID: 27375641 PMCID: PMC4891576 DOI: 10.3389/fpls.2016.00781] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Collapse
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- *Correspondence: Georg von Arx
| | - Alan Crivellaro
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Angela L. Prendin
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Marco Carrer
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| |
Collapse
|