1
|
Westgeest AJ, Vasseur F, Enquist BJ, Milla R, Gómez-Fernández A, Pot D, Vile D, Violle C. An allometry perspective on crops. THE NEW PHYTOLOGIST 2024; 244:1223-1237. [PMID: 39288438 DOI: 10.1111/nph.20129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown. Here, we review how an allometry perspective on crops gains insights into the phenotypic evolution during crop domestication, the breeding of varieties adapted to novel conditions, and the prediction of crop yields. As allometry is an active field of research, modeling and manipulating crop allometric relationships can help to develop more resilient and productive agricultural systems to face future challenges.
Collapse
Affiliation(s)
- Adrianus J Westgeest
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
- Département Biologie et Ecologie, Institut Agro, Montpellier, 34060, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85719, USA
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
| | - Rubén Milla
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Alicia Gómez-Fernández
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - David Pot
- CIRAD, UMR AGAP Institut, Montpellier, 34980, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34980, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34060, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
| |
Collapse
|
2
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
4
|
Gong W, Oubounyt M, Baumbach J, Dresselhaus T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024; 27:110081. [PMID: 38979009 PMCID: PMC11228802 DOI: 10.1016/j.isci.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.
Collapse
Affiliation(s)
- Wen Gong
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Mhaned Oubounyt
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Wu W, Yue W, Bi J, Zhang L, Xu D, Peng C, Chen X, Wang S. Influence of climatic variables on maize grain yield and its components by adjusting the sowing date. FRONTIERS IN PLANT SCIENCE 2024; 15:1411009. [PMID: 38993937 PMCID: PMC11236551 DOI: 10.3389/fpls.2024.1411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Yield and its components are greatly affected by climate change. Adjusting the sowing date is an effective way to alleviate adverse effects and adapt to climate change. Aiming to determine the optimal sowing date of summer maize and clarify the contribution of climatic variables to grain yield and its components, a consecutive 4-year field experiment was conducted from 2016 to 2019 with four sowing dates at 10-day intervals from 5 June to 5 July. Analysis of historical meteorological data showed that more solar radiation (SR) was distributed from early June to mid-August, and the maximum temperature (Tmax) > 32°C appeared from early July to late August, which advanced and lasted longer in 1991-2020 relative to 1981-1990. Additionally, the precipitation was mainly distributed from early June to late July. The climate change in the growing season of summer maize resulted in optimal sowing dates ranging from 5 June to 15 June, with higher yields and yield stability, mainly because of the higher kernel number per ear and 1,000-grain weight. The average contribution of kernel number per ear to grain yield was 58.7%, higher than that of 1,000-grain weight (41.3%). Variance partitioning analysis showed that SR in 15 days pre-silking to 15 days post-silking (SS) and silking to harvest (SH) stages significantly contributed to grain yield by 63.1% and 86.4%. The extreme growing degree days (EDD) > 32°C, SR, precipitation, and diurnal temperature range (DTR) contributed 20.6%, 22.9%, 14.5%, and 42.0% to kernel number per ear in the SS stage, respectively. Therefore, we concluded that the early sowing dates could gain high yield and yield stability due to the higher SR in the growing season. Meanwhile, due to the decreasing trend in SR and increasing Tmax trend in this region, in the future, new maize varieties with high-temperature resistance, high light efficiency, shade tolerance, and medium-season traits need to be bred to adapt to climate change and increased grain yield.
Collapse
Affiliation(s)
- Wenming Wu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wei Yue
- Agricultural Meteorological Center, Anhui Meteorological Service, Hefei, China
| | - Jianjian Bi
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lin Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dafeng Xu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chen Peng
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shiji Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
6
|
Li W, Li Y, Shi H, Wang H, Ji K, Zhang L, Wang Y, Dong Y, Li Y. ZmMPK6, a mitogen-activated protein kinase, regulates maize kernel weight. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3287-3299. [PMID: 38457358 DOI: 10.1093/jxb/erae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
Kernel weight is a critical agronomic trait in maize production. Many genes are related to kernel weight but only a few of them have been applied to maize breeding and cultivation. Here, we identify a novel function of maize mitogen-activated protein kinase 6 (ZmMPK6) in the regulation of maize kernel weight. Kernel weight was reduced in zmmpk6 mutants and increased in ZmMPK6-overexpressing lines. In addition, starch granules, starch content, protein content, and grain-filling characteristics were also affected by the ZmMPK6 expression level. ZmMPK6 is mainly localized in the nucleus and cytoplasm, widely distributed across various tissues, and is expressed during kernel development, which is consistent with its role in kernel weight. Thus, these results provide new insights into the role of ZmMPK6, a mitogen-activated protein kinase, in maize kernel weight, and could be applied to further molecular breeding for kernel quality and yield in maize.
Collapse
Affiliation(s)
- Wenyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yayong Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Huiyue Shi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Han Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Kun Ji
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| |
Collapse
|
7
|
Zhang L, Fu M, Li W, Dong Y, Zhou Q, Wang Q, Li X, Gao J, Wang Y, Wang H, Li Y, Wang J, Wu Y, Li Y. Genetic variation in ZmKW1 contributes to kernel weight and size in dent corn and popcorn. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1453-1467. [PMID: 38163293 PMCID: PMC11123423 DOI: 10.1111/pbi.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Miaomiao Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Wenyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Qiang Zhou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of AgronomyXinyang Agricultural and Forestry UniversityXinyangChina
| | - Qilei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xinyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Han Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yayong Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
8
|
Li Y, Huang S, Meng Q, Li Z, Fritschi FB, Wang P. Pre-silking water deficit in maize induced kernel loss through impaired silk growth and ovary carbohydrate dynamics. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10141. [PMID: 38586117 PMCID: PMC10998497 DOI: 10.1002/pei3.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Both carbon limitation and developmentally driven kernel failure occur in the apical region of maize (Zea mays L.) ears. Failed kernel development in the basal and middle regions of the ear often is neglected because their spaces usually are occupied by adjacent ovaries at harvest. We tested the spatial distribution of kernel losses and potential underlying reasons, from perspectives of silk elongation and carbohydrate dynamics, when maize experienced water deficit during silk elongation. Kernel loss was distributed along the length of the ear regardless of water availability, with the highest kernel set in the middle region and a gradual reduction toward the apical and basal ends. Water deficit limited silk elongation in a manner inverse to the temporal pattern of silk initiation, more strongly in the apical and basal regions of the ear than in the middle region. The limited recovery of silk elongation, especially at the apical and basal regions following rescue irrigation was probably due to water potentials below the threshold for elongation and lower growth rates of the associated ovaries. While sugar concentrations increased or did not respond to water deficit in ovaries and silks, the calculated sugar flux into the developing ovaries was impaired and diverged among ovaries at different positions under water deficit. Water deficit resulted in 58% kernel loss, 68% of which was attributable to arrested silks within husks caused by lower water potentials and 32% to ovaries with emerged silks possibly due to impaired carbohydrate metabolism.
Collapse
Affiliation(s)
- Yebei Li
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Shoubing Huang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qingfeng Meng
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zongxin Li
- Shandong Academy of Agricultural ScienceJinanChina
| | - Felix B. Fritschi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Pu Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
10
|
Wu X, Tong L, Kang S, Du T, Ding R, Li S, Chen Y. Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016583 DOI: 10.1002/jsfa.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing crop yield per unit area by increasing planting density is essential to ensure food security. However, the optimal combination of planting density and nitrogen (N) application for high-yielding maize and its source-sink characteristics need to be more clearly understood. RESULTS A 2-year field experiment was conducted combining three planting densities (D1: 70 000 plants ha-1 ; D2: 100 000 plants ha-1 ; D3: 130 000 plants ha-1 ) and three nitrogen rates (N1: 150 kg hm-2 ; N2: 350 kg hm-2 ; N3: 450 kg hm-2 ). The results showed that increasing planting density significantly increased leaf area index and grain yield but negatively affected ear traits. The Richards model was used to fit the dynamic changes of dry matter accumulation of maize under different treatments, and the fitting results were good. Increasing planting density increased population yield while limiting the development of individual plants, bringing the period of rapid dry matter accumulation to an early end and accelerating leaf senescence. An appropriate nitrogen rate could prolong the period of rapid accumulation of dry matter in maize, and increase the 100-kernel weight. Increasing planting density enhanced post-silking dry matter accumulation to a lesser extent, and the source-sink relationship of the maize population gradually developed from sink limitation to source limitation with increasing planting density. CONCLUSION The decrease in yield due to the insufficient source strength to meet the sink demand at too high densities was the reason that limited further improvement of the optimal planting density. An appropriate nitrogen rate facilitated the realization of yield potential at high density. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuanyi Wu
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Ling Tong
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Sien Li
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Yang Chen
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
11
|
Gao J, Zhang Y, Xu C, Wang X, Wang P, Huang S. Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:437-454. [PMID: 36786687 DOI: 10.1111/tpj.16147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Drought is a major abiotic stress reducing maize (Zea mays) yield worldwide especially before and during silking. The mechanism underlying drought tolerance in maize and the roles of different organs have not been elucidated. Hence, we conducted field trials under pre-silking drought conditions using two maize genotypes: FM985 (drought-tolerant) and ZD958 (drought-sensitive). The two genotypes did not differ in plant height, grain number, and yield under control conditions. However, the grain number per ear and the yield of FM985 were 38.1 and 35.1% higher and plants were 17.6% shorter than ZD958 under drought conditions. More 13 C photosynthates were transported to the ear in FM985 than in ZD958, which increased floret fertility and grain number. The number of differentially expressed genes was much higher in stem than in other organs. Stem-ear interactions are key determinants of drought tolerance, in which expression of genes related to abscisic acid, lignin, and flavonoid biosynthesis and carbon metabolism in the stem was induced by drought, which inhibited stem elongation and promoted assimilate allocation to the ear in FM985. In comparison with ZD958, the activities of trehalose 6-phosphate phosphatase and sucrose non-fermentation-associated kinase 1 were higher in the stem and lower in the kernel of FM985, which facilitated kernel formation. These results reveal that, beyond the ear response, stem elongation is involved in the whole process of drought tolerance before silking. Abscisic acid together with trehalose 6-phosphate, lignin, and flavonoid suppresses stem elongation and allocates assimilates into the ear, providing a novel and systematic regulatory pathway for drought tolerance in maize.
Collapse
Affiliation(s)
- Jia Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Yingjun Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao, Ministry of Agriculture and Rural Affairs, Wuqiao, 061802, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| |
Collapse
|
12
|
Cai F, Mi N, Ming H, Zhang Y, Zhang H, Zhang S, Zhao X, Zhang B. Responses of dry matter accumulation and partitioning to drought and subsequent rewatering at different growth stages of maize in Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1110727. [PMID: 37021320 PMCID: PMC10069628 DOI: 10.3389/fpls.2023.1110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Dry matter accumulation (DMA) and dry matter partitioning (DMP) are important physiological processes determining crop yield formation. Deep understanding of the DMA and DMP processes and their responses to drought are limited by difficulty in acquiring total root biomass. METHODS Pot experiments with treatments quitting and ceasing ear growth (QC) and controlling soil water (WC) during vegetative (VP) and reproductive (RP) growth stages of maize (Zea mays) were conducted in Jinzhou in 2019 and 2020 to investigate the effects of drought and rewatering on DMW and DMP of different organs. RESULTS The response of DMW of reproductive organ to drought was more sensitive than those of vegetative organs, and was maintained after rehydration. Drought during VP (VPWC) reduced more sharply DMW of stalk than of leaves, and that during RP (RPWC) decreased more substantially leaves DMW. The effect of drought on DMPR was inconsistent with that on DMW for each organ. The DMP patterns of maize in different growth stages have adaptability to some level of water stress, and their responses increased with drought severity. Drought increased significantly DMP rates (DMPRs) of vegetative organs and reduced the ear DMPR and harvest index (HI), attributing to the suppressed photosynthates partitioning into ear and dry matter redistribution (DMRD) of vegetative organs, especially for stalk DMRD decreasing 26%. The persistence of drought impact was related to its occurrence stage and degree as well as the duration during rewatering to maturity. The aftereffect of drought during different growth periods on DMP were various, and that of VPWC enlarged and drastically induced the reduction of HI, also was larger than that of RPWC which demonstrated obvious alleviation in the previous responses of DMP and HI. Root-shoot ratio (RSR) increased under VPWC and RPWC and subsequent rehydration. DISCUSSION The DMWs of stalk, roots and leaves were affected by VPWC in order from large to small, and were close to or larger than the controls after rehydration, indicating the compensation effect of rewatering after drought. The DMPRs, RSR AND HI are the important parameters in agricultural production, and are often used as the constants, but in fact they vary with plant growth. In addition, the interannual differences in ear and stalk DMPRs in response to drought were probably caused by the difference in degree and occurrence stage of drought, further reflecting the variation in response of allometry growth among organs to the environment. Besides, the persistence of drought impact was related to the occurrence stage and degree of drought, which is also associated with the duration during rewatering to maturity. Notably, the effect of drought on DMW was inconsistent with that on DMPR for each organ meaning that the two variables should be discussed separately. The QC did not affect total DMW but increased RSR, changed and intensified the effect and aftereffect of RPWC on DMP, respectively, indicating that the DMP pattern and its response to drought occur change under the condition of QC.
Collapse
Affiliation(s)
- Fu Cai
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
- Key Laboratory of Agrometeorological Disasters, Liaoning, Shenyang, China
| | - Na Mi
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
- Key Laboratory of Agrometeorological Disasters, Liaoning, Shenyang, China
| | - Huiqing Ming
- Liaoning Province Meteorological Service Center, Shenyang, China
| | - Yushu Zhang
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
- Key Laboratory of Agrometeorological Disasters, Liaoning, Shenyang, China
| | - Hui Zhang
- Jinzhou Ecology and Agriculture Meteorological Center, Jinzhou, China
| | - Shujie Zhang
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
- Key Laboratory of Agrometeorological Disasters, Liaoning, Shenyang, China
| | - Xianli Zhao
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
| | - Bingbing Zhang
- Jinzhou Ecology and Agriculture Meteorological Center, Jinzhou, China
| |
Collapse
|
13
|
Urfan M, Hakla HR, Sharma S, Khajuria M, Satbhai SB, Vyas D, Bhougal S, Yadav NS, Pal S. Paclobutrazol improves surface water use efficiency by regulating allometric trait behavior in maize. CHEMOSPHERE 2022; 307:135958. [PMID: 35952796 DOI: 10.1016/j.chemosphere.2022.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol (PBZ) role in drought management of maize is least understood. In maize, root traits are linked with surface water management. Over three years, early and terminal deficit irrigation (EDI and TDI) with or without PBZ were imposed on DKC-9144 and PG-2475 maize varieties. Several allometric parameters viz. stem height, stem diameter, leaf area and root traits along with physiological processes were measured. Implication of these parameters in the management of soil surface irrigation in terms of water use efficiency (WUE) was demonstrated in maize. Increased number of lateral roots and root number density in DKC-9144 provided more surface area for water absorption for better management of EDI. Root growth rates showed a similar pattern with root length, root surface areas, and root numbers in EDI. Elevated expressions of ZmRTCL, ZmRTCS and ZmARF34 in EDI and EDI plus PBZ were associated with seminal roots and root laterals initiation. Under TDI alone or in combination with PBZ, root lengths (BRL, CRL, SRL) and root surface areas varied in DKC-9144 and PG-2475 over control. Furthermore, correlation analysis showed that decrease in WUE under TDI was significantly associated with a reduction in stem thickness and leaf surface area. For WUE_N in TDI and PBZ plus TDI, structural equation modelling proposed, brace root surface area (BRSA_N) as a positive contributor, while a negative contributor was seminal root surface area (SRSA_N). Present study explained the importance of specific root traits and their association with other allometric parameters for improving WUE in DKC-9144 variety of maize and the crop in general.
Collapse
Affiliation(s)
- Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India.
| | - Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India.
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India.
| | - Manu Khajuria
- Biodiversity and Applied Botany Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab, 140406, India.
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Sunil Bhougal
- Department of Statistics, University of Jammu, Jammu, 180006, India.
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, 403587, Canada.
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
14
|
Tang Q, Ren J, Du X, Niu S, Liu S, Wei D, Zhang Y, Bian D, Cui Y, Gao Z. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. FRONTIERS IN PLANT SCIENCE 2022; 13:1035254. [PMID: 36340386 PMCID: PMC9632278 DOI: 10.3389/fpls.2022.1035254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Enhancing maize lodging resistance with plant growth retardants (PGRs) is common in maize production. However, the underlying mechanisms of yield formation as affected by PGRs are still poorly understood. A field experiment contained PGR application (a mixture of ethephon and cycocel, EC) with normal (T1) and double (T2) doses and water control (CK) was conducted at four maize plant densities (4.5, 6.0, 7.5, and 9.0 plants m-2) in 2020 and 2021. In this two-year study, the grain yield and kernel number per ear (KNE) of EC treatments were reduced by 4.8-9.0% and 3.3-12.2%, respectively, compared with CK under densities of 4.5, 6.0, and 7.5 plants m-2 without lodging. However, under the density of 9.0 plants m-2, EC treatments had no pronounced effects on grain yield and yield components. Across all densities, EC significantly decreased the leaf area index (LAI), and the lowest LAI was recorded in T2. The concentrations of nonstructural carbohydrates (NSCs; starch and soluble sugar) in the stem were significantly decreased by 9.9-10.2% in T2 averaged all densities. The sucrose and starch concentrations in grains also declined in the EC treatments. The key enzymes (cell wall acid invertase, sucrose synthase, and adenosine diphosphate pyrophosphorylase) and grain polyamine concentrations showed a slight downward trend under EC treatments compared to CK. NSCs in stems and grains, kernel enzyme activities, and polyamines in grains presented significant positive correlations with KNE. Additionally, structural carbohydrate (SC; including cellulose, hemicellulose, and lignin) concentrations in stems were improved with enhanced lodging resistance by spraying EC. Significant negative relationships were observed between SC with kernel number m-2 (KNM) and yield, suggesting that improved SC in stems might affect the availability of NSCs for kernel set. Although the lowest kernel weight and KNE were obtained at 9.0 plant m-2, relatively high LAI still ensured high KNM and high yield. Collectively, EC treatment increased SC in stems, enhanced lodging resistance of maize and reduced NSC availability for kernels, ultimately presenting adverse effects on maize kernel number and yield under relative low density.
Collapse
Affiliation(s)
| | | | - Xiong Du
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | | | | | | | | | | | - Yanhong Cui
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | - Zhen Gao
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| |
Collapse
|
15
|
Messina CD, Rotundo J, Hammer GL, Gho C, Reyes A, Fang Y, van Oosterom E, Borras L, Cooper M. Radiation use efficiency increased over a century of maize (Zea mays L.) breeding in the US corn belt. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5503-5513. [PMID: 35640591 DOI: 10.1093/jxb/erac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/23/2022] [Indexed: 05/26/2023]
Abstract
In the absence of stress, crop growth depends on the amount of light intercepted by the canopy and the conversion efficiency [radiation use efficiency (RUE)]. This study tested the hypothesis that long-term genetic gain for grain yield was partly due to improved RUE. The hypothesis was tested using 30 elite maize hybrids commercialized in the US corn belt between 1930 and 2017. Crops grown under irrigation showed that pre-flowering crop growth increased at a rate of 0.11 g m-2 year-1, while light interception remained constant. Therefore, RUE increased at a rate of 0.0049 g MJ-1 year-1, translating into an average of 3 g m-2 year-1 of grain yield over 100 years of maize breeding. Considering that the harvest index has not changed for crops grown at optimal density for the hybrid, the cumulative RUE increase over the history of commercial maize breeding in the USA can account for ~32% of the documented yield trend for maize grown in the central US corn belt. The remaining RUE gap between this study and theoretical maximum values suggests that a yield improvement of a similar magnitude could be achieved by further increasing RUE.
Collapse
Affiliation(s)
- Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jose Rotundo
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA 50131, USA
| | - Graeme L Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carla Gho
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA 50131, USA
| | - Andres Reyes
- Corteva Agriscience, 18369 County Rd 96, Woodland, CA, USA
| | - Yinan Fang
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA 50131, USA
| | - Erik van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lucas Borras
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA 50131, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Zhang A, Jin L, Yarra R, Cao H, Chen P, John Martin JJ. Transcriptome analysis reveals key developmental and metabolic regulatory aspects of oil palm (Elaeis guineensis Jacq.) during zygotic embryo development. BMC PLANT BIOLOGY 2022; 22:112. [PMID: 35279075 PMCID: PMC8917659 DOI: 10.1186/s12870-022-03459-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Oil palm is the most efficient oil-producing crop in the world, and the yield of palm oil is associated with embryonic development. However, a comprehensive understanding of zygotic embryo development at the molecular level remains elusive. In order to address this issue, we report the transcriptomic analysis of zygotic embryo development in oil palm, specifically focusing on regulatory genes involved in important biological pathways. RESULTS In this study, three cDNA libraries were prepared from embryos at S1 (early-stage), S2 (middle-stage), and S3 (late-stage). There were 16,367, 16,500, and 18,012 genes characterized at the S1, S2, and S3 stages of embryonic development, respectively. A total of 1522, 2698, and 142 genes were differentially expressed in S1 vs S2, S1 vs S3, and S2 vs S3, respectively. Using Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify key genes and pathways. In the hormone signaling pathway, genes related to auxin antagonize the output of cytokinin which regulates the development of embryo meristem. The genes related to abscisic acid negatively regulating the synthesis of gibberellin were strongly up-regulated in the mid-late stage of embryonic development. The results were reported the early synthesis and mid-late degradation of sucrose, as well as the activation of the continuous degradation pathway of temporary starch, providing the nutrients needed for differentiation of the embryonic cell. Moreover, the transcripts of genes involved in fatty acid synthesis were also abundantly accumulated in the zygotic embryos. CONCLUSION Taken together, our research provides a new perspective on the developmental and metabolic regulation of zygotic embryo development at the transcriptional level in oil palm.
Collapse
Affiliation(s)
- Anni Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, 571339, China
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, 571339, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, 571339, China
| | - Ping Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570228, China.
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, 571339, China.
| |
Collapse
|
17
|
Larrosa FH, Borrás L. Differential Maize Yield Hybrid Responses to Stand Density Are Correlated to Their Response to Radiation Reductions Around Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:771739. [PMID: 35111174 PMCID: PMC8801883 DOI: 10.3389/fpls.2021.771739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Altered stand density affects maize yields by producing changes in both numerical yield components, kernel number per plant (KNP), and kernel weight (KW). Kernel number is determined by the accumulation of ear biomass during the flowering period, whereas KW is determined by the sink potential established during flowering and the capacity of the plant to fulfill this potential during effective grain filling. Here, we tested if different short shading treatments during different stages around flowering can help discriminate genotypic differences in eco-physiological parameters relevant for maize stand density yield response and associated yield components. Our specific objectives were to: (i) identify hybrids with differential shading stress response, (ii) explore shading effects over eco-physiological parameters mechanistically related to KNP and KW, and (iii) test if shading stress can be used for detecting differential genotypic yield responses to stand density. The objectives were tested using four commercial maize hybrids. Results indicated that KNP was the yield component most related to yield changes across the different shading treatments, and that the specific shading imposed soon after anthesis generated the highest yield reductions. Hybrids less sensitive to shading stress were those that reduced their plant growth rate the least and the ones that accumulated more ear biomass during flowering. Genotype susceptibility to shading stress around flowering was correlated to stand density responses. This indicated that specific shading stress treatments are a useful tool to phenotype for differential stand density responses of commercial hybrids.
Collapse
Affiliation(s)
| | - Lucas Borrás
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
18
|
Zhou J, Tian L, Wang S, Li H, Zhao Y, Zhang M, Wang X, An P, Li C. Ovary Abortion Induced by Combined Waterlogging and Shading Stress at the Flowering Stage Involves Amino Acids and Flavonoid Metabolism in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:778717. [PMID: 34887895 PMCID: PMC8649655 DOI: 10.3389/fpls.2021.778717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Maize (Zea mays L.) crops on the North China Plain are often subject to continuous overcast rain at the flowering stage. This causes waterlogging and shading stresses simultaneously and leads to huge yield losses, but the causes of these yield losses remain largely unknown. To explore the factors contributing to yield loss caused by combined waterlogging and shading stress at the flowering stage, we performed phenotypic, physiological, and quasi-targeted metabolomics analyses of maize plants subjected to waterlogging, shading, and combined waterlogging and shading (WS) treatments. Analyses of phenotypic and physiological indexes showed that, compared with waterlogging or shading alone, WS resulted in lower source strength, more severe inhibition of ovary and silk growth at the ear tip, a reduced number of emerged silks, and a higher rate of ovary abortion. Changes in carbon content and enzyme activity could not explain the ovary abortion in our study. Metabolomic analyses showed that the events occurred in ovaries and silks were closely related to abortion, WS forced the ovary to allocate more resources to the synthesis of amino acids involved in the stress response, inhibited the energy metabolism, glutathione metabolism and methionine salvage pathway, and overaccumulation of H2O2. In silks, WS led to lower accumulation levels of specific flavonoid metabolites with antioxidant capacity, and to over accumulation of H2O2. Thus, compared with each single stress, WS more seriously disrupted the normal metabolic process, and resulted more serious oxidative stress in ovaries and silks. Amino acids involved in the stress response in ovaries and specific flavonoid metabolites with antioxidant capacity in silks play important roles during ovary abortion. These results identify novel traits for selection in breeding programs and targets for genome editing to increase maize yield under WS stress.
Collapse
|
19
|
Niu S, Du X, Wei D, Liu S, Tang Q, Bian D, Zhang Y, Cui Y, Gao Z. Heat Stress After Pollination Reduces Kernel Number in Maize by Insufficient Assimilates. Front Genet 2021; 12:728166. [PMID: 34691151 PMCID: PMC8532994 DOI: 10.3389/fgene.2021.728166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Global warming has increased the occurrence of high temperature stress in plants, including maize, resulting in decreased the grain number and yield. Previous studies indicate that heat stress mainly damages the pollen grains and thus lowered maize grain number. Other field studies have shown that heat stress after pollination results in kernel abortion. However, the mechanism by which high temperature affect grain abortion following pollination remains unclear. Hence, this study investigated the field grown heat-resistant maize variety “Zhengdan 958” (ZD958) and heat-sensitive variety “Xianyu 335” (XY335) under a seven-day heat stress treatment (HT) after pollination. Under HT, the grain numbers of XY335 and ZD958 were reduced by 10.9% (p = 0.006) and 5.3% (p = 0.129), respectively. The RNA sequencing analysis showed a higher number of differentially expressed genes (DEGs) between HT and the control in XY335 compared to ZD958. Ribulose diphosphate carboxylase (RuBPCase) genes were downregulated by heat stress, and RuBPCase activity was significantly lowered by 14.1% (p = 0.020) in XY335 and 5.3% (p = 0.436) in ZD958 in comparison to CK. The soluble sugar and starch contents in the grains of XY335 were obviously reduced by 26.1 and 58.5%, respectively, with no distinct change observed in ZD958. Heat stress also inhibited the synthesis of grain starch, as shown by the low activities of metabolism-related enzymes. Under HT, the expression of trehalose metabolism genes in XY335 were upregulated, and these genes may be involved in kernel abortion at high temperature. In conclusion, this study revealed that post-pollination heat stress in maize mainly resulted in reduced carbohydrate availability for grain development, though the heat-resistant ZD958 was nevertheless able to maintain growth.
Collapse
Affiliation(s)
- Shiduo Niu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Xiong Du
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Dejie Wei
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Shanshan Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Qian Tang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Dahong Bian
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Yarong Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Yanhong Cui
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Zhen Gao
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| |
Collapse
|
20
|
Cossani CM, Sadras VO. Symmetric response to competition in binary mixtures of cultivars associates with genetic gain in wheat yield. Evol Appl 2021; 14:2064-2078. [PMID: 34429749 PMCID: PMC8372091 DOI: 10.1111/eva.13265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022] Open
Abstract
The evolution in the definition of crop yield-from the ratio of seed harvested to seed sown to the contemporary measure of mass of seed per unit land area-has favoured less competitive phenotypes. Here we use binary mixtures of cultivars spanning five decades of selection for yield and agronomic adaptation to ask three questions. First, what is the degree of symmetry in the response of yield to neighbour; this is, if an older, more competitive cultivar increases yield by 10% with a less competitive neighbour in comparison to pure stands, would the newer, less competitive cultivar reduce yield by 10% when grown with older neighbour. Lack of symmetry would indicate factors other than competitive ability underly yield improvement. Second, what are the yield components underlying competitive interactions. Third, to what extent are the responses to neighbour mediated by radiation, water and nitrogen. A focus on yield components and resources can help the interpretation of shifts in the crop phenotype in response to selection for yield. The rate of genetic gain in yield over five decades was 24 kg ha-1 year-1 or 0.61% year-1. A strongly symmetrical yield response to neighbour indicates that yield improvement closely associates with a reduction in competitive ability. Response to neighbour was larger for grain number and biomass than for grain weight and allocation of biomass to grain. Under our experimental conditions, competition for radiation was dominant compared to competition of water and nitrogen. High-yielding phenotypes had lower competitive ability for radiation but compensated with higher radiation use efficiency, a measure of canopy photosynthetic efficiency. Genetic and agronomic manipulation of the crop phenotype to reduce competitive ability could further improve wheat yield to meet the challenge of global food security.
Collapse
Affiliation(s)
- C. Mariano Cossani
- South Australian Research Institute, and School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - Victor O. Sadras
- South Australian Research Institute, and School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| |
Collapse
|
21
|
Transmitting silks of maize have a complex and dynamic microbiome. Sci Rep 2021; 11:13215. [PMID: 34168223 PMCID: PMC8225909 DOI: 10.1038/s41598-021-92648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7–11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15–26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7–25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Collapse
|
22
|
Cagnola JI, Parco M, Rotili DH, Ploschuk EL, Curin F, Amas JI, Luque SF, Maddonni GA, Otegui ME, Casal JJ. Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3902-3913. [PMID: 33744949 DOI: 10.1093/jxb/erab119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Identifying the physiological traits indirectly selected during the search for high-yielding maize hybrids is useful for guiding further improvements. To investigate such traits, in this study we focused on the critical period of kernel formation because kernel number is the main yield component affected by breeding. Our results show that breeding has increased the number of florets per ear and ear growth rate but not the vegetative shoot growth rate, suggesting localised effects around the ear. Consistent with this possibility, breeding has increased the net CO2 exchange of the ear leaf in field-grown crops grown at high population densities. This response is largely accounted for by increased light interception (which increases photosynthesis) and by reduced rates of respiration of the ear leaf in modern hybrids compared to older ones. Modern hybrids show increased ear-leaf area per unit leaf dry matter (specific leaf area), which accounts for the reduced respiratory load per unit leaf area. These observations are consistent with a model where the improved ear leaf CO2 exchange helps the additional florets produced by modern hybrids to survive the critical period of high susceptibility to stress and hence to produce kernels.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Parco
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Rotili
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Curin
- Centro de Investigaciones y Transferencia del noroeste de la Provincia de Buenos Aires (CIT-NOBA-CONICET), Argentina
| | - Juan I Amas
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Argentina
| | - Sergio F Luque
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Maddonni
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - María E Otegui
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Producción Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
23
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
24
|
Dalla Lana F, Madden LV, Paul PA. Natural Occurrence of Maize Gibberella Ear Rot and Contamination of Grain with Mycotoxins in Association with Weather Variables. PLANT DISEASE 2021; 105:114-126. [PMID: 33197383 DOI: 10.1094/pdis-05-20-0952-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gibberella ear rot (GER) severity (percent area of the ear diseased) and associated grain contamination with mycotoxins were quantified in plots of 15 to 16 maize hybrids planted at 10 Ohio locations from 2015 to 2018. Deoxynivalenol (DON) was quantified in grain samples in all 4 years, whereas nivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol (15ADON) were quantified only in the last 2 years. Only DON and 15ADON were detected. The highest levels of GER and DON contamination were observed for 2018, followed by 2016 and 2017. No GER symptoms or DON were detected in 2015. Approximately 41% of the samples from asymptomatic ears had detectable levels of DON, and 7% of these samples from 2016 had DON > 5 ppm. Associations between DON contamination and 43 variables representing summaries of temperature (T), relative humidity (RH), rainfall (R), surface wetness, and T-RH combinations for different window lengths and positions relative to R1 growth stage were quantified with Spearman correlation coefficients (r). Fifteen-day window lengths tended to show the highest correlations. Most of the variables based on T, R, RH, and T-RH were significantly correlated with DON for the 15-day window, as well as other windows. For moisture-related variables, there generally was a negative correlation before R1, changing to a positive correlation after R1. Results showed that GER and DON can be frequently found in Ohio maize fields, with the risk of DON being associated with multiple weather variables, particularly those representing combinations of T between 15 and 30°C and RH > 80 summarized during the 3 weeks after R1.
Collapse
Affiliation(s)
- F Dalla Lana
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - L V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - P A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
25
|
Lana FD, Paul PA, Minyo R, Thomison P, Madden LV. Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain. PHYTOPATHOLOGY 2020; 110:1908-1922. [PMID: 32689899 DOI: 10.1094/phyto-05-20-0194-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trials were conducted to quantify the stability (or lack of G × E interaction) of 15 maize hybrids to Gibberella ear rot (GER; caused by Fusarium graminearum) and deoxynivalenol (DON) contamination of grain across 30 Ohio environments (3 years × 10 locations). In each environment, one plot of each hybrid was planted and 10 ears per plot were inoculated via the silk channel. GER severity (proportion of ear area diseased) and DON contamination of grain (ppm) were quantified. Multiple rank-based methods, including Kendall's concordance coefficient (W) and Piepho's U, were used to quantify hybrid stability. The results found insufficient evidence to suggest crossover G × E interaction of ranks, with W greater than zero for GER (W = 0.28) and DON (W = 0.26), and U not statistically significant for either variable (P > 0.20). Linear mixed models (LMMs) were also used to quantify hybrid stability, accounting for crossover or noncrossover G × E interaction of transformed observed data. Based on information criteria and likelihood ratio tests for GER and DON response variables, the models with more complex variance-covariance structures-heterogeneous compound symmetry and factor-analytic-provided a better fit than the model with the simpler compound symmetry structure, indicating that one or more hybrids differed in stability. Overall, hybrids were stable based on rank-based methods, which indicated a lack of crossover G × E interaction, but the LMMs identified a few hybrids that were sensitive to environment. Resistant hybrids were generally more stable than susceptible hybrids.
Collapse
Affiliation(s)
- F Dalla Lana
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - P A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - R Minyo
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210
| | - P Thomison
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210
| | - L V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
26
|
Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks. AI 2020. [DOI: 10.3390/ai1030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Maize kernel traits such as kernel length, kernel width, and kernel number determine the total kernel weight and, consequently, maize yield. Therefore, the measurement of kernel traits is important for maize breeding and the evaluation of maize yield. There are a few methods that allow the extraction of ear and kernel features through image processing. We evaluated the potential of deep convolutional neural networks and binary machine learning (ML) algorithms (logistic regression (LR), support vector machine (SVM), AdaBoost (ADB), Classification tree (CART), and the K-Neighbor (kNN)) for accurate maize kernel abortion detection and classification. The algorithms were trained using 75% of 66 total images, and the remaining 25% was used for testing their performance. Confusion matrix, classification accuracy, and precision were the major metrics in evaluating the performance of the algorithms. The SVM and LR algorithms were highly accurate and precise (100%) under all the abortion statuses, while the remaining algorithms had a performance greater than 95%. Deep convolutional neural networks were further evaluated using different activation and optimization techniques. The best performance (100% accuracy) was reached using the rectifier linear unit (ReLu) activation procedure and the Adam optimization technique. Maize ear with abortion were accurately detected by all tested algorithms with minimum training and testing time compared to ear without abortion. The findings suggest that deep convolutional neural networks can be used to detect the maize ear abortion status supplemented with the binary machine learning algorithms in maize breading programs. By using a convolution neural network (CNN) method, more data (big data) can be collected and processed for hundreds of maize ears, accelerating the phenotyping process.
Collapse
|
27
|
Liang XG, Gao Z, Shen S, Paul MJ, Zhang L, Zhao X, Lin S, Wu G, Chen XM, Zhou SL. Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153194. [PMID: 32563766 DOI: 10.1016/j.jplph.2020.153194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The interception of irradiation by smog pollution and cloud cover associated with extreme rainfall events has become an increasingly important limiting factor in crop production in China. Little is known about the adaptation of carbon (C) allocation to periodic low irradiance in field conditions. The trehalose signaling pathway plays a critical role in adapting C allocation to the environment in crops but its importance in adaptation to low light in field conditions is not known. To determine the effects of low irradiance on C economy and maize yield, two commonly grown hybrids (LY-16 and ZD-958) were subject to three levels of shading (15 %, 50 %, and 97 %) for one week from V13 stage in two successive seasons. Shading led to yield loss mainly due to decreased kernel number, which was greater in LY-16 than ZD-958. Effects of shading on leaf area and photosynthesis were similar in both varieties. Starch levels in leaves were maintained, whereas total soluble carbohydrates were reduced up to fivefold by shading in both varieties. Shading increased the proportion of photoassimilate retained in leaves relative to reproductive organs. Carbohydrates in ears and stem were decreased by shading similarly in both varieties. Amongst the parameters measured, the main difference between LY-16 and ZD-958 associated with yield penalty was the expression of class II trehalose phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) genes which were increased due to shading in leaves and ears, particularly in ears of LY-16. It is concluded that altered C fixation and allocation by low irradiance limited ear growth at pre-anthesis. Activation of TPSII and TPP genes indicates that the trehalose pathway likely plays a role in ear development under low light and could be a target for yield improvement under such conditions as with other stresses.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Matthew J Paul
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Li Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Gong Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China; Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China.
| |
Collapse
|
28
|
Paponov IA, Paponov M, Sambo P, Engels C. Differential Regulation of Kernel Set and Potential Kernel Weight by Nitrogen Supply and Carbohydrate Availability in Maize Genotypes Contrasting in Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:586. [PMID: 32499807 PMCID: PMC7243938 DOI: 10.3389/fpls.2020.00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/17/2020] [Indexed: 05/15/2023]
Abstract
Sub-optimal nitrogen (N) conditions reduce maize yield due to a decrease in two sink components: kernel set and potential kernel weight. Both components are established during the lag phase, suggesting that they could compete for resources during this critical period. However, whether this competition occurs or whether different genotypic strategies exist to optimize photoassimilate use during the lag phase is not clear and requires further investigation. We have addressed this knowledge gap by conducting a nutrient solution culture experiment that allows abrupt changes in N level and light intensity during the lag phase. We investigated plant growth, dry matter partitioning, non-structural carbohydrate concentration, N concentration, and 15N distribution (applied 4 days before silking) in plant organs at the beginning and the end of the lag phase in two maize hybrids that differ in grain yield under N-limited conditions: one is a nitrogen-use-efficient (EFFI) genotype and the other is a control (GREEN) genotype that does not display high N use efficiency. We found that the two genotypes used different mechanisms to regulate kernel set. The GREEN genotype showed a reduction in kernel set associated with reduced dry matter allocation to the ear during the lag phase, indicating that the reduced kernel set under N-limited conditions was related to sink restrictions. This idea was supported by a negative correlation between kernel set and sucrose/total sugar ratios in the kernels, indicating that the capacity for sucrose cleavage might be a key factor defining kernel set in the GREEN genotype. By contrast, the kernel set of the EFFI genotype was not correlated with dry matter allocation to the ear or to a higher capacity for sucrose cleavage; rather, it showed a relationship with the different EFFI ear morphology with bigger kernels at the apex of the ear than in the GREEN genotype. The potential kernel weight was independent of carbohydrate availability but was related to the N flux per kernel in both genotypes. In conclusion, kernel set and potential kernel weight are regulated independently, suggesting the possibility of simultaneously increasing both sink components in maize.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research, Ås, Norway
- *Correspondence: Ivan A. Paponov,
| | - Martina Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Christof Engels
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Plant Nutrition and Fertilisation, Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Wei S, Wang X, Li G, Jiang D, Dong S. Maize Canopy Apparent Photosynthesis and 13C-Photosynthate Reallocation in Response to Different Density and N Rate Combinations. FRONTIERS IN PLANT SCIENCE 2019; 10:1113. [PMID: 31608081 PMCID: PMC6761910 DOI: 10.3389/fpls.2019.01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Appropriate planting density and nitrogen (N) supply are critical factors optimizing yield in crop cultivation. To advance the knowledge of maize plants under different density and N rate combinations, responses of canopy apparent photosynthesis (CAP), and assimilate redistribution characters (by 13CO2 stable isotope tracing) were investigated. In this study, two maize varieties DH618 and DH605 were grown at various planting densities (6.75, 8.25, 9.75, and 11.25 pl m-2) and N application rates (0, 180, 270, 360, and 540 kg ha-1) during 2013-2015. Maize grain yield (GY) was maximized at a density of 9.75 pl m-2 with 180-360 kg ha-1 N during the three study years. Maize GY, biomass, CAP, leaf area index (LAI), and 13C-photosynthate reallocation all responded more intensively to density than N rate, but the N response differed between varieties. We established links among CAP, LAI and biomass, and GY and kernel number per unit area (KNA). CAP depended on high LAI and enzyme activities for photosynthesis, yet both N deficiency and N excess had inhibitory effects. Besides, relations between 13C-photosynthate reallocation and yield components were executed. High density increased the 13C-photosynthate distribution in vegetative organs but reduced the allocation in ear, while N supply moderated the response. Based on our results, maize plants with greater CAP, more 13C-photosynthate distribution to ears, and less 13C-photosynthate distribution to stems under different density and N rate combinations could improve KNA and achieve a greater GY consequently.
Collapse
Affiliation(s)
- Shanshan Wei
- College of Agriculture/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an, China
| | - Xiangyu Wang
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an, China
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Guanghao Li
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an, China
| | - Dong Jiang
- College of Agriculture/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Dong Jiang, ; Shuting Dong,
| | - Shuting Dong
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an, China
- *Correspondence: Dong Jiang, ; Shuting Dong,
| |
Collapse
|
30
|
Thompson MEH, Raizada MN. Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road. Pathogens 2018; 7:E81. [PMID: 30314351 PMCID: PMC6313692 DOI: 10.3390/pathogens7040081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing damaging ear rots with dangerous mycotoxins. This review highlights the importance of silks as the direct highways by which globally important fungal pathogens enter maize kernels. First, the most important silk-entering fungal pathogens in maize are reviewed, including Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, and their mycotoxins. Next, we compare the different modes used by each fungal pathogen to invade the silks, including susceptible time intervals and the effects of pollination. Innate silk defences and current strategies to protect silks from ear rot pathogens are reviewed, and future protective strategies and silk-based research are proposed. There is a particular gap in knowledge of how to improve silk health and defences around the time of pollination, and a need for protective silk sprays or other technologies. It is hoped that this review will stimulate innovations in breeding, inputs, and techniques to help growers protect silks, which are expected to become more vulnerable to pathogens due to climate change.
Collapse
Affiliation(s)
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
31
|
Varshney RK, Tuberosa R, Tardieu F. Progress in understanding drought tolerance: from alleles to cropping systems. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3175-3179. [PMID: 29878257 PMCID: PMC5991209 DOI: 10.1093/jxb/ery187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | | |
Collapse
|
32
|
Puntel LA, Sawyer JE, Barker DW, Thorburn PJ, Castellano MJ, Moore KJ, VanLoocke A, Heaton EA, Archontoulis SV. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate. FRONTIERS IN PLANT SCIENCE 2018; 9:436. [PMID: 29706974 PMCID: PMC5909184 DOI: 10.3389/fpls.2018.00436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha-1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.
Collapse
Affiliation(s)
- Laila A. Puntel
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - John E. Sawyer
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Daniel W. Barker
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | | | - Kenneth J. Moore
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Andrew VanLoocke
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|