1
|
Wang R, Zhong Y, Han J, Huang L, Wang Y, Shi X, Li M, Zhuang Y, Ren W, Liu X, Cao H, Xin B, Lai J, Chen L, Chen F, Yuan L, Wang Y, Li X. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. THE PLANT CELL 2024; 36:4388-4403. [PMID: 38917216 PMCID: PMC11448906 DOI: 10.1093/plcell/koae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.
Collapse
Affiliation(s)
- Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liangliang Huang
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengfei Li
- State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Ren
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Chen Y, Li Y, Fu Y, Jia L, Li L, Xu Z, Zhang N, Liu Y, Fan X, Xuan W, Xu G, Zhang R. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3388-3400. [PMID: 38497798 DOI: 10.1093/jxb/erae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. THE PLANT GENOME 2024; 17:e20461. [PMID: 38797919 DOI: 10.1002/tpg2.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
Collapse
Affiliation(s)
- Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Xu N, Cheng L, Kong Y, Chen G, Zhao L, Liu F. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1351998. [PMID: 38501135 PMCID: PMC10944928 DOI: 10.3389/fpls.2024.1351998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Nitrate is the major form of nitrogen acquired by most crops and also serves as a vital signaling molecule. Nitrate is absorbed from the soil into root cells usually by the low-affinity NRT1 NO3 - transporters and high-affinity NRT2 NO3 - transporters, with NRT2s serving to absorb NO3 - under NO3 -limiting conditions. Seven NRT2 members have been identified in Arabidopsis, and they have been shown to be involved in various biological processes. In this review, we summarize the spatiotemporal expression patterns, localization, and biotic and abiotic responses of these transporters with a focus on recent advances in the current understanding of the functions of the seven AtNRT2 genes. This review offers beneficial insight into the mechanisms by which plants adapt to changing environmental conditions and provides a theoretical basis for crop research in the near future.
Collapse
Affiliation(s)
- Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Li Cheng
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yuan Kong
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Guiling Chen
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Sigalas PP, Buchner P, Kröper A, Hawkesford MJ. The Functional Diversity of the High-Affinity Nitrate Transporter Gene Family in Hexaploid Wheat: Insights from Distinct Expression Profiles. Int J Mol Sci 2023; 25:509. [PMID: 38203680 PMCID: PMC10779101 DOI: 10.3390/ijms25010509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
High-affinity nitrate transporters (NRT) are key components for nitrogen (N) acquisition and distribution within plants. However, insights on these transporters in wheat are scarce. This study presents a comprehensive analysis of the NRT2 and NRT3 gene families, where the aim is to shed light on their functionality and to evaluate their responses to N availability. A total of 53 NRT2s and 11 NRT3s were identified in the bread wheat genome, and these were grouped into different clades and homoeologous subgroups. The transcriptional dynamics of the identified NRT2 and NRT3 genes, in response to N starvation and nitrate resupply, were examined by RT-qPCR in the roots and shoots of hydroponically grown wheat plants through a time course experiment. Additionally, the spatial expression patterns of these genes were explored within the plant. The NRT2s of clade 1, TaNRT2.1-2.6, showed a root-specific expression and significant upregulation in response to N starvation, thus emphasizing a role in N acquisition. However, most of the clade 2 NRT2s displayed reduced expression under N-starved conditions. Nitrate resupply after N starvation revealed rapid responsiveness in TaNRT2.1-2.6, while clade 2 genes exhibited gradual induction, primarily in the roots. TaNRT2.18 was highly expressed in above-ground tissues and exhibited distinct nitrate-related response patterns for roots and shoots. The TaNRT3 gene expression closely paralleled the profiles of TaNRT2.1-2.6 in response to nitrate induction. These findings enhance the understanding of NRT2 and NRT3 involvement in nitrogen uptake and utilization, and they could have practical implications for improving nitrogen use efficiency. The study also recommends a standardized nomenclature for wheat NRT2 genes, thereby addressing prior naming inconsistencies.
Collapse
Affiliation(s)
- Petros P. Sigalas
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK; (P.B.); (M.J.H.)
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK; (P.B.); (M.J.H.)
| | - Alex Kröper
- Faculty of Agronomy, University of Hohenheim, 70599 Stuttgart, Germany;
| | | |
Collapse
|
7
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
8
|
Hajibarat Z, Saidi A, Ghazvini H, Hajibarat Z. Comparative analysis of physiological traits and gene expression patterns in nitrogen deficiency among barley cultivars. J Genet Eng Biotechnol 2023; 21:110. [PMID: 37947941 PMCID: PMC10638351 DOI: 10.1186/s43141-023-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Nitrogen is one of the most important mineral nutrients for plants and is absorbed by the root system mainly in the inorganic form (NH+4 and NO-3). Plants absorb nitrogen as a food source for growth, biomass production, and development. Nitrogen is mainly absorbed as nitrate, which is the most common source of nitrogen available to higher plants. One of the unique features of nitrate transport is that NO-3 is both a substrate for transport and an inducer of NO-3 transport systems in genes and at physiological levels. METHODS In the present study, morphological and physiological traits (chlorophyll a/b, total chlorophyll, and carotenoid, antioxidant enzymes, and protein content), correlation between traits and gene expression, and principle component analysis of traits among five barley cultivars were measured in response to nitrogen deficiency (ND). The starved plants were transferred to a nutrient solution containing 0.2 mM and 2 mM NO-3 up to 7 and 14 days after ND application and non-stressed conditions, respectively. RESULTS Gene expression analysis revealed that the 10 HvNRT2 genes were induced in the leaf and root tissues at 7 and 14 days after ND treatments in five barley cultivars. Expression of NRT2 genes by relative quantitative qRT-PCR analysis for 10 HvNRT2 genes were determined. Based on the gene expression, HvNRT2.1, HvNRT2.2, and HvNRT2.4 were strongly induced by NO-3, peaking at 7 and 14 days after ND treatment. In contrast, the HvNRT2.4 showed only moderate induction in both leaves and roots. From our results, the Reyhan cultivar showed a significant increase in root fresh weight (RFW), protein content, and antioxidant enzyme activity in roots at 7 and 14 days after ND treatment as compared to the non-stressed condition. A highly positive correlation was observed between root catalase (CATr) and HvNRT2.2/2.5/2.6 leaves. CONCLUSION The expression of HvNRT2.4 is increased during long-term nitrogen starvation, while the expression of HvNRT2.1 and HvNRT2.2 are transiently increased by ND. Based on physiological and morphological traits and molecular mechanisms, the Reyhan is considered a tolerant cultivar under ND condition.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Habibollah Ghazvini
- Department of Cearal Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
10
|
Feng J, Zhu C, Cao J, Liu C, Zhang J, Cao F, Zhou X. Genome-wide identification and expression analysis of the NRT genes in Ginkgo biloba under nitrate treatment reveal the potential roles during calluses browning. BMC Genomics 2023; 24:633. [PMID: 37872493 PMCID: PMC10594704 DOI: 10.1186/s12864-023-09732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Can Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Fuliang Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Zhang K, Gao W, Zhou Y, Zhao H, Xia Y, Zhang M, Bo Y, Lyu X, Hu Z, Yang J, Zhang M. Allelic variations of ClACO gene improve nitrogen uptake via ethylene-mediated root architecture in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:199. [PMID: 37624448 DOI: 10.1007/s00122-023-04448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
KEY MESSAGE The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient 15N uptake in watermelon. Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity. Whereas previous researches on nitrogen absorption process are mainly focused on a few model plants or crops. To date, the causal genes that determine the efficient nitrogen uptake of watermelon have not been mapped and remains largely unknown. Here, we fine-mapped the 1-aminocyclopropane-1-carboxylate oxidase (ClACO) gene associated with nitrogen uptake efficiency in watermelon via bulked segregant analysis (BSA). The variations in the ClACO gene led to the changes of gene expression levels between two watermelon accessions with different nitrogen uptake efficiencies. Intriguingly, in terms of the transcript abundance of ClACO, it was concomitant with significant differences in ethylene evolutions in roots and root architectures between the two accessions and among the different genotypic offsprings of the recombinant BC2F1(ZJU132)-18. These findings suggest that ethylene as a negative regulator altered nitrogen uptake efficiency in watermelon by controlling root development. In conclusion, our current study will provide valuable target gene for precise breeding of 'green' watermelon varieties with high-nitrogen uptake efficiencies.
Collapse
Affiliation(s)
- Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Gao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuelin Xia
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyi Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
12
|
Jia L, Hu D, Wang J, Liang Y, Li F, Wang Y, Han Y. Genome-Wide Identification and Functional Analysis of Nitrate Transporter Genes ( NPF, NRT2 and NRT3) in Maize. Int J Mol Sci 2023; 24:12941. [PMID: 37629121 PMCID: PMC10454388 DOI: 10.3390/ijms241612941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitrate is the primary form of nitrogen uptake in plants, mainly transported by nitrate transporters (NRTs), including NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY), NRT2 and NRT3. In this study, we identified a total of 78 NPF, seven NRT2, and two NRT3 genes in maize. Phylogenetic analysis divided the NPF family into eight subgroups (NPF1-NPF8), consistent with the results in Arabidopsis thaliana and rice. The NRT2 family appears to have evolved more conservatively than the NPF family, as NRT2 genes contain fewer introns. The promoters of all NRTs are rich in cis-acting elements responding to biotic and abiotic stresses. The expression of NRTs varies in different tissues and developmental stages, with some NRTs only expressed in specific tissues or developmental stages. RNA-seq analysis using Xu178 revealed differential expression of NRTs in response to nitrogen starvation and nitrate resupply. Moreover, the expression patterns of six key NRTs genes (NPF6.6, NPF6.8, NRT2.1, NRT2.5 and NRT3.1A/B) varied in response to alterations in nitrogen levels across distinct maize inbred lines with different nitrogen uptake rates. This work enhances our understanding of the structure and expression of NRTs genes, and their roles in nitrate response, paving the way for improving maize nitrogen efficiency through molecular breeding.
Collapse
Affiliation(s)
- Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Desheng Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Junbo Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yuanyuan Liang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Fang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| |
Collapse
|
13
|
Liao Z, Xia X, Zhang Z, Nong B, Guo H, Feng R, Chen C, Xiong F, Qiu Y, Li D, Yang X. Genome-wide association study using specific-locus amplified fragment sequencing identifies new genes influencing nitrogen use efficiency in rice landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1126254. [PMID: 37521918 PMCID: PMC10375723 DOI: 10.3389/fpls.2023.1126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 08/01/2023]
Abstract
Nitrogen is essential for crop production. It is a critical macronutrient for plant growth and development. However, excessive application of nitrogen fertilizer is not only a waste of resources but also pollutes the environment. An effective approach to solving this problem is to breed rice varieties with high nitrogen use efficiency (NUE). In this study, we performed a genome-wide association study (GWAS) on 419 rice landraces using 208,993 single nucleotide polymorphisms (SNPs). With the mixed linear model (MLM) in the Tassel software, we identified 834 SNPs associated with root surface area (RSA), root length (RL), root branch number (RBN), root number (RN), plant dry weight (PDW), plant height (PH), root volume (RL), plant fresh weight (PFW), root fractal dimension (RFD), number of root nodes (NRN), and average root diameter (ARD), with a significant level of p < 2.39×10-7. In addition, we found 49 SNPs that were correlated with RL, RBN, RN, PDW, PH, PFW, RFD, and NRN using genome-wide efficient mixed-model association (GEMMA), with a significant level of p < 1×10-6. Additionally, the final results for eight traits associated with 193 significant SNPs by using multi-locus random-SNP-effect mixed linear model (mrMLM) model and 272 significant SNPs associated with 11 traits by using IIIVmrMLM. Within the linkage intervals of significantly associated SNP, we identified eight known related genes to NUE in rice, namely, OsAMT2;3, OsGS1, OsNR2, OsNPF7.4, OsPTR9, OsNRT1.1B, OsNRT2.3, and OsNRT2.2. According to the linkage disequilibrium (LD) decay value of this population, there were 75 candidate genes within the 150-kb regions upstream and downstream of the most significantly associated SNP (Chr5_29804690, Chr5_29956584, and Chr10_17540654). These candidate genes included 22 transposon genes, 25 expressed genes, and 28 putative functional genes. The expression levels of these candidate genes were measured by real-time quantitative PCR (RT-qPCR), and the expression levels of LOC_Os05g51700 and LOC_Os05g51710 in C347 were significantly lower than that in C117; the expression levels of LOC_Os05g51740, LOC_Os05g51780, LOC_Os05g51960, LOC_Os05g51970, and LOC_Os10g33210 were significantly higher in C347 than C117. Among them, LOC_Os10g33210 encodes a peptide transporter, and LOC_Os05g51690 encodes a CCT domain protein and responds to NUE in rice. This study identified new loci related to NUE in rice, providing new genetic resources for the molecular breeding of rice landraces with high NUE.
Collapse
Affiliation(s)
- Zuyu Liao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Faqian Xiong
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongfu Qiu
- College of Agriculture, Guangxi University, Nanning, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
14
|
Deng QY, Luo JT, Zheng JM, Tan WF, Pu ZJ, Wang F. Genome-wide systematic characterization of the NRT2 gene family and its expression profile in wheat (Triticum aestivum L.) during plant growth and in response to nitrate deficiency. BMC PLANT BIOLOGY 2023; 23:353. [PMID: 37420192 DOI: 10.1186/s12870-023-04333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is a major cereal crop that is grown worldwide, and it is highly dependent on sufficient N supply. The molecular mechanisms associated with nitrate uptake and assimilation are still poorly understood in wheat. In plants, NRT2 family proteins play a crucial role in NO3- acquisition and translocation under nitrate limited conditions. However, the biological functions of these genes in wheat are still unclear, especially their roles in NO3- uptake and assimilation. RESULTS In this study, a comprehensive analysis of wheat TaNRT2 genes was conducted using bioinformatics and molecular biology methods, and 49 TaNRT2 genes were identified. A phylogenetic analysis clustered the TaNRT2 genes into three clades. The genes that clustered on the same phylogenetic branch had similar gene structures and nitrate assimilation functions. The identified genes were further mapped onto the 13 wheat chromosomes, and the results showed that a large duplication event had occurred on chromosome 6. To explore the TaNRT2 gene expression profiles in wheat, we performed transcriptome sequencing after low nitrate treatment for three days. Transcriptome analysis revealed the expression levels of all TaNRT2 genes in shoots and roots, and based on the expression profiles, three highly expressed genes (TaNRT2-6A.2, TaNRT2-6A.6, and TaNRT2-6B.4) were selected for qPCR analysis in two different wheat cultivars ('Mianmai367' and 'Nanmai660') under nitrate-limited and normal conditions. All three genes were upregulated under nitrate-limited conditions and highly expressed in the high nitrogen use efficiency (NUE) wheat 'Mianmai367' under low nitrate conditions. CONCLUSION We systematically identified 49 NRT2 genes in wheat and analysed the transcript levels of all TaNRT2s under nitrate deficient conditions and over the whole growth period. The results suggest that these genes play important roles in nitrate absorption, distribution, and accumulation. This study provides valuable information and key candidate genes for further studies on the function of TaNRT2s in wheat.
Collapse
Affiliation(s)
- Qing-Yan Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jiang-Tao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jian-Min Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Wen-Fang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| | - Zong-Jun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China.
| | - Fang Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
15
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Zhang X, Feng J, Zhao R, Cheng H, Ashraf J, Wang Q, Lv L, Zhang Y, Song G, Zuo D. Functional characterization of the GhNRT2.1e gene reveals its significant role in improving nitrogen use efficiency in Gossypium hirsutum. PeerJ 2023; 11:e15152. [PMID: 37009157 PMCID: PMC10064996 DOI: 10.7717/peerj.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Nitrate is the primary type of nitrogen available to plants, which is absorbed and transported by nitrate transporter 2 (NRT2) at low nitrate conditions.
Methods
Genome-wide identification of NRT2 genes in G. hirsutum was performed. Gene expression patterns were revealed using RNA-seq and qRT-PCR. Gene functions were characterized using overexpression in A. thaliana and silencing in G. hirsutum. Protein interactions were verified by yeast two-hybrid and luciferase complementation imaging (LCI) assays.
Results
We identified 14, 14, seven, and seven NRT2 proteins in G. hirsutum, G. barbadense, G. raimondii, and G. arboreum. Most NRT2 proteins were predicted in the plasma membrane. The NRT2 genes were classified into four distinct groups through evolutionary relationships, with members of the same group similar in conserved motifs and gene structure. The promoter regions of NRT2 genes included many elements related to growth regulation, phytohormones, and abiotic stresses. Tissue expression pattern results revealed that most GhNRT2 genes were specifically expressed in roots. Under low nitrate conditions, GhNRT2 genes exhibited different expression levels, with GhNRT2.1e being the most up-regulated. Arabidopsis plants overexpressing GhNRT2.1e exhibited increased biomass, nitrogen and nitrate accumulation, nitrogen uptake and utilization efficiency, nitrogen-metabolizing enzyme activity, and amino acid content under low nitrate conditions. In addition, GhNRT2.1e-silenced plants exhibited suppressed nitrate uptake and accumulation, hampered plant growth, affected nitrogen metabolism processes, and reduced tolerance to low nitrate. The results showed that GhNRT2.1e could promote nitrate uptake and transport under low nitrate conditions, thus effectively increasing nitrogen use efficiency (NUE). We found that GhNRT2.1e interacts with GhNAR2.1 by yeast two-hybrid and LCI assays.
Discussion
Our research lays the foundation to increase NUE and cultivate new cotton varieties with efficient nitrogen use.
Collapse
Affiliation(s)
- Xinmiao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jiajia Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ruolin Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Javaria Ashraf
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
17
|
Alfatih A, Zhang J, Song Y, Jan SU, Zhang ZS, Xia JQ, Zhang ZY, Nazish T, Wu J, Zhao PX, Xiang CB. Nitrate-responsive OsMADS27 promotes salt tolerance in rice. PLANT COMMUNICATIONS 2023; 4:100458. [PMID: 36199247 PMCID: PMC10030316 DOI: 10.1016/j.xplc.2022.100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 05/04/2023]
Abstract
Salt stress is a major constraint on plant growth and yield. Nitrogen (N) fertilizers are known to alleviate salt stress. However, the underlying molecular mechanisms remain unclear. Here, we show that nitrate-dependent salt tolerance is mediated by OsMADS27 in rice. The expression of OsMADS27 is specifically induced by nitrate. The salt-inducible expression of OsMADS27 is also nitrate dependent. OsMADS27 knockout mutants are more sensitive to salt stress than the wild type, whereas OsMADS27 overexpression lines are more tolerant. Transcriptomic analyses revealed that OsMADS27 upregulates the expression of a number of known stress-responsive genes as well as those involved in ion homeostasis and antioxidation. We demonstrate that OsMADS27 directly binds to the promoters of OsHKT1.1 and OsSPL7 to regulate their expression. Notably, OsMADS27-mediated salt tolerance is nitrate dependent and positively correlated with nitrate concentration. Our results reveal the role of nitrate-responsive OsMADS27 and its downstream target genes in salt tolerance, providing a molecular mechanism for the enhancement of salt tolerance by nitrogen fertilizers in rice. OsMADS27 overexpression increased grain yield under salt stress in the presence of sufficient nitrate, suggesting that OsMADS27 is a promising candidate for the improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Sami Ullah Jan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Ping-Xia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
18
|
Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions. Int J Mol Sci 2023; 24:ijms24065290. [PMID: 36982364 PMCID: PMC10048922 DOI: 10.3390/ijms24065290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrogen is an important nutrient for plant growth and essential metabolic processes. Roots integrally obtain nutrients from soil and are closely related to the growth and development of plants. In this study, the morphological analysis of rice root tissues collected at different time points under low-nitrogen and normal nitrogen conditions demonstrated that, compared with normal nitrogen treatment, the root growth and nitrogen use efficiency (NUE) of rice under low-nitrogen treatment were significantly improved. To better understand the molecular mechanisms of the rice root system’s response to low-nitrogen conditions, a comprehensive transcriptome analysis of rice seedling roots under low-nitrogen and control conditions was conducted in this study. As a result, 3171 differentially expressed genes (DEGs) were identified. Rice seedling roots enhance NUE and promote root development by regulating the genes related to nitrogen absorption and utilization, carbon metabolism, root growth and development, and phytohormones, thereby adapting to low-nitrogen conditions. A total of 25,377 genes were divided into 14 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with nitrogen absorption and utilization. A total of 8 core genes and 43 co-expression candidates related to nitrogen absorption and utilization were obtained in these two modules. Further studies on these genes will contribute to the understanding of low-nitrogen adaptation and nitrogen utilization mechanisms in rice.
Collapse
|
19
|
Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, Chhillar H, Chopra P, Khan MIR. Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1087946. [PMID: 36909406 PMCID: PMC9996754 DOI: 10.3389/fpls.2023.1087946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.
Collapse
Affiliation(s)
- Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
20
|
Sinsirimongkol K, Buasong A, Teppabut Y, Pholmanee N, Chen Y, Miller AJ, Punyasuk N. EgNRT2.3 and EgNAR2 expression are controlled by nitrogen deprivation and encode proteins that function as a two-component nitrate uptake system in oil palm. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153833. [PMID: 36257088 DOI: 10.1016/j.jplph.2022.153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.
Collapse
Affiliation(s)
| | - Atcharaporn Buasong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Teppabut
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nutthida Pholmanee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yi Chen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony J Miller
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Napassorn Punyasuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
21
|
Zhang M, Lai L, Liu X, Liu J, Liu R, Wang Y, Liu J, Chen J. Overexpression of Nitrate Transporter 1/Peptide Gene OsNPF7.6 Increases Rice Yield and Nitrogen Use Efficiency. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121981. [PMID: 36556346 PMCID: PMC9786031 DOI: 10.3390/life12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Overuse of nitrogen fertilizer in fields has raised production costs, and caused environmental problems. Improving nitrogen use efficiency (NUE) of rice is essential for sustainable agriculture. Here we report the cloning, characterization and roles for rice of OsNPF7.6, a member of the nitrate transporter 1/peptide transporter family (NPF). The OsNPF7.6 protein is located in the plasma membrane, expressed in each tissue at all stages and is significantly regulated by nitrate in rice. Our study shows that the overexpression of OsNPF7.6 can increase the nitrate uptake rate of rice. Additionally, field experiments showed that OsNPF7.6 overexpression increased the total tiller number per plant and the grain weight per panicle, thereby improving grain yield and agronomic NUE in rice. Thus, OsNPF7.6 can be applied to be a novel target gene for breeding rice varieties with high NUE, and provide a reference for breeding higher yielding rice.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liuru Lai
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Xintong Liu
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Liu
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Ruifang Liu
- The High School Affiliated to Renmin University of China, Shenzhen 518119, China
| | - Yamei Wang
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (J.L.); (J.C.)
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.L.); (J.C.)
| |
Collapse
|
22
|
Rogato A, Valkov VT, Chiurazzi M. LjNRT2.3 plays a hierarchical role in the control of high affinity transport system for root nitrate acquisition in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2022; 13:1042513. [PMID: 36438153 PMCID: PMC9687105 DOI: 10.3389/fpls.2022.1042513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a key mineral nutrient required for plant growth and development. Plants have evolved sophisticated mechanisms to respond to changes of nutritional availability in the surrounding environment and the optimization of root nitrate acquisition under nitrogen starvation is crucial to cope with unfavoured condition of growth. In this study we present a general description of the regulatory transcriptional and spatial profile of expression of the Lotus japonicus nitrate transporter NRT2 family. Furthermore, we report a phenotypic characterization of two independent Ljnrt2.3 knock out mutants indicating the involvement of the LjNRT2.3 gene in the root nitrate acquisition and lateral root elongation pathways occurring in response to N starvation conditions. We also report an epistatic relationship between LjNRT2.3 and LjNRT2.1 suggesting a combined mode of action of these two genes in order to optimize the Lotus response to a prolonged N starvation.
Collapse
|
23
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
24
|
Cui X, He H, Hu S, Zhang B, Cai H. Synergistic Interaction between Copper and Nitrogen-Uptake, Translocation, and Distribution in Rice Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:2612. [PMID: 36235478 PMCID: PMC9572941 DOI: 10.3390/plants11192612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Interactions among nutrients have been widely recognized in plants and play important roles in crop growth and yield formation. However, the interplay of Cu and N in rice plants is not yet clear. In this study, rice plants were grown with different combinations of Cu and N supply. The effects of Cu-N interaction on the growth, yield production, Cu and N transport, and gene expression levels were analyzed. The results showed that the effect of N supply on rice growth and yield formation was more pronounced than that of Cu supply. The Cu supply significantly improved the uptake of N (by 9.52-30.64%), while the N supply significantly promoted the root-to-shoot translocation of Cu (by 27.28-38.45%) and distributed more Cu (1.85-19.16%) into the shoots and leaves. The results of qRT-PCR showed that +Cu significantly up-regulated the expression levels of both NO3- and NH4+ transporter genes OsNRTs and OsAMTs, including OsNRT1.1B, OsNRT2.1, OsNRT2.3a, OsNRT2.4, OsAMT1.2, OsAMT1.3, and OsAMT3.1. Meanwhile, +N significantly up-regulated the expression levels of Cu transporter genes OsHMA5 and OsYSL16. In addition, the supply of Cu up-regulated the expression levels of OsGS1;2, OsGS2, and OsNADH-GOGAT to 12.61-, 6.48-, and 6.05-fold, respectively. In conclusion, our study demonstrates a synergistic effect between Cu and N in rice plants. It is expected that our results would be helpful to optimize the application of N and Cu fertilizers in agriculture.
Collapse
Affiliation(s)
- Xinlong Cui
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwang Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Banfa Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Gao Y, Qi S, Wang Y. Nitrate signaling and use efficiency in crops. PLANT COMMUNICATIONS 2022; 3:100353. [PMID: 35754172 PMCID: PMC9483113 DOI: 10.1016/j.xplc.2022.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) is not only an essential nutrient but also an important signaling molecule for plant growth. Low nitrogen use efficiency (NUE) of crops is causing increasingly serious environmental and ecological problems. Understanding the molecular mechanisms of NO3- regulation in crops is crucial for NUE improvement in agriculture. During the last several years, significant progress has been made in understanding the regulation of NO3- signaling in crops, and some key NO3- signaling factors have been shown to play important roles in NO3- utilization. However, no detailed reviews have yet summarized these advances. Here, we focus mainly on recent advances in crop NO3- signaling, including short-term signaling, long-term signaling, and the impact of environmental factors. We also review the regulation of crop NUE by crucial genes involved in NO3- signaling. This review provides useful information for further research on NO3- signaling in crops and a theoretical basis for breeding new crop varieties with high NUE, which has great significance for sustainable agriculture.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
26
|
Shen C, Li Q, An Y, Zhou Y, Zhang Y, He F, Chen L, Liu C, Mao W, Wang X, Liang H, Yin W, Xia X. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4778-4792. [PMID: 35526197 DOI: 10.1093/jxb/erac190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plants have evolved complex mechanisms to cope with the fluctuating environmental availability of nitrogen. However, potential genes modulating plant responses to nitrate are yet to be characterized. Here, a poplar GATA transcription factor gene PdGNC (GATA nitrate-inducible carbon-metabolism-involved) was found to be strongly induced by low nitrate. Overexpressing PdGNC in poplar clone 717-1B4 (P. tremula × alba) significantly improved nitrate uptake, remobilization, and assimilation with higher nitrogen use efficiency (NUE) and faster growth, particularly under low nitrate conditions. Conversely, CRISPR/Cas9-mediated poplar mutant gnc exhibited decreased nitrate uptake, relocation, and assimilation, combined with lower NUE and slower growth. Assays with yeast one-hybrid, electrophoretic mobility shift, and a dual-luciferase reporter showed that PdGNC directly activated the promoters of nitrogen pathway genes PdNRT2.4b, PdNR, PdNiR, and PdGS2, leading to a significant increase in nitrate utilization in poplar. As expected, the enhanced NUE promoted growth under low nitrate availability. Taken together, our data show that PdGNC plays an important role in the regulation of NUE and growth in poplar by improving nitrate acquisition, remobilization, and assimilation, and provide a promising strategy for molecular breeding to improve productivity under nitrogen limitation in trees.
Collapse
Affiliation(s)
- Chao Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Qing Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yi An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yangyan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Fang He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Lingyun Chen
- Hangzhou Lifeng Seed Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Li K, Zhang S, Tang S, Zhang J, Dong H, Yang S, Qu H, Xuan W, Gu M, Xu G. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. PLANT PHYSIOLOGY 2022; 189:1608-1624. [PMID: 35512346 PMCID: PMC9237666 DOI: 10.1093/plphys/kiac178] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Plants adjust root architecture and nitrogen (N) transporter activity to meet the variable N demand, but their integrated regulatory mechanism remains unclear. We have previously reported that a floral factor in rice (Oryza sativa), N-mediated heading date-1 (Nhd1), regulates flowering time. Here, we show that Nhd1 can directly activate the transcription of the high-affinity ammonium (NH4+) transporter 1;3 (OsAMT1;3) and the dual affinity nitrate (NO3-) transporter 2.4 (OsNRT2.4). Knockout of Nhd1 inhibited root growth in the presence of NO3- or a low concentration of NH4+. Compared to the wild-type (WT), nhd1 and osamt1;3 mutants showed a similar decrease in root growth and N uptake under low NH4+ supply, while nhd1 and osnrt2.4 mutants showed comparable root inhibition and altered NO3- translocation in shoots. The defects of nhd1 mutants in NH4+ uptake and root growth response to various N supplies were restored by overexpression of OsAMT1;3 or OsNRT2.4. However, when grown in a paddy field with low N availability, nhd1 mutants accumulated more N and achieved a higher N uptake efficiency (NUpE) due to the delayed flowering time and prolonged growth period. Our findings reveal a molecular mechanism underlying the growth duration-dependent NUpE.
Collapse
Affiliation(s)
- Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shuo Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongzhang Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- Authors for correspondence: (S.Z.); (G.X.)
| |
Collapse
|
28
|
Pachamuthu K, Hari Sundar V, Narjala A, Singh RR, Das S, Avik Pal HCY, Shivaprasad PV. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3511-3530. [PMID: 35243491 DOI: 10.1093/jxb/erac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris- Saclay, Versailles, France
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Rahul R Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Harshith C Y Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| |
Collapse
|
29
|
Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:523-551. [PMID: 35595292 DOI: 10.1146/annurev-arplant-070121-015752] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Green Revolution of the 1960s improved crop yields in part through the widespread cultivation of semidwarf plant varieties, which resist lodging but require a high-nitrogen (N) fertilizer input. Because environmentally degrading synthetic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced N use efficiency (NUE). Here, we summarize the current understanding of how plants sense, uptake, and respond to N availability in the model plants that can be used to improve sustainable productivity in agriculture. Recent progress in unlocking the genetic basis of NUE within the broader context of plant systems biology has provided insights into the coordination of plant growth and nutrient assimilation and inspired the implementation of a new breeding strategy to cut fertilizer use in high-yield cereal crops. We conclude that identifying fresh targets for N sensing and response in crops would simultaneously enable improved grain productivity and NUE to launch a new Green Revolution and promote future food security.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Nan Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Kumar A, Kumar S, Venkatesh K, Singh NK, Mandal PK, Sinha SK. Physio-molecular traits of contrasting bread wheat genotypes associated with 15N influx exhibiting homeolog expression bias in nitrate transporter genes under different external nitrate concentrations. PLANTA 2022; 255:104. [PMID: 35416522 DOI: 10.1007/s00425-022-03890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The high affinity nitrate transport system is a potential target for improving nitrogen use efficiency of bread wheat growing either under optimal or limiting nitrate concentration. Nitrate uptake is one of the most important traits to take into account to improve nitrogen use efficiency in wheat (Triticum aestivum L.). In this study, we aimed to gain an insight into the regulation of NO3- -uptake and translocation systems in two contrasting wheat genotypes [K9107(K9) vs. Choti Lerma (CL)]. Different conditions, such as NO3--uptake rates, soil-types, N-free solid external media, and external NO3- levels at the seedling stage, were considered. We also studied the contribution of homeolog expression of five genes encoding two nitrate transporters in the root tissue, along with their overall transcript expression levels relative to specific external nitrate availability. We observed that K9107 had a higher 15N influx than Choti Lerma under both limiting as well as optimum external N conditions in vermiculite-perlite (i.e., N-free solid) medium, with the improved translocation efficiency in Choti Lerma. However, in different soil types, different levels of 15N-enrichment in both the genotypes were found. Our results also demonstrated that the partitioning of dry matter in root and shoot was different under these growing conditions. Moreover, K9107 showed significantly higher relative expression of TaNRT2.1 at the lowest and TaNPF6.1 and TaNPF6.2 at the highest external nitrate concentrations. We also observed genotype-specific and nitrate starvation-dependent homeolog expression bias in all five nitrate transporter genes. Our data suggest that K9107 had a higher NO3- influx capacity, involving different nitrate transporters, than Choti Lerma at the seedling stage.
Collapse
Affiliation(s)
- Amresh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sarvendra Kumar
- Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Karnam Venkatesh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
31
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
32
|
Bishayee B, Chatterjee RP, Ruj B, Chakrabortty S, Nayak J. Strategic management of nitrate pollution from contaminated water using viable adsorbents: An economic assessment-based review with possible policy suggestions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114081. [PMID: 34823908 DOI: 10.1016/j.jenvman.2021.114081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Groundwater contaminated with nitrate has prompted a flurry of research studies around the world in the recent years to address this burning environmental issue. The common presence of nitrates in groundwater, wastewater, and surface waters has thrown an enormously critical challenge to the global research communities to provide safe and clean drinking water to municipalities. As per WHO, the maximum permissible limit of nitrate in drinking water is 10 mg/L and in groundwater is 50 mg/L; exceeding the limits, several human health problems are observed. Adsorption, ion-exchange processes, membrane-based approaches, electrochemical and chemical procedures, biological methods, filtration, nanoparticles, etc. have been well investigated and reviewed to reduce nitrate levels in water samples in the recent years. Process conditions, as well as the efficacy of various approaches, were discovered to influence different techniques for nitrate mitigation. But, because of low cost, simple operation, easy handling, and high removal effectiveness, adsorption has been found to be the most suitable and efficient approach. The main objectives of this review primarily focuses on the creation of a naturally abundant, cost-effective innovative abundant material, such as activated clay particles combined with iron oxide. Oxide-clay nanocomposite materials, effectively remove nitrate with higher removal efficiency along with recovery of nitrate concentrated sludge. Such methods stand out as flexible and economic ways for capturing stabilized nitrate in solid matrices to satisfy long-term operations. A techno-economic assessment along with suitable policy suggestions have been reported to justify the viability of the brighter processes. Indeed, this kind of analytical review appears ideal for municipal community recommendations on abatement of excess nitrate to supply of clean water.
Collapse
Affiliation(s)
- Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India.
| |
Collapse
|
33
|
Ji C, Li J, Jiang C, Zhang L, Shi L, Xu F, Cai H. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res 2022; 35:187-198. [PMID: 35003800 PMCID: PMC8721242 DOI: 10.1016/j.jare.2021.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zn promoted translocation and distribution of N into leaves and brown rice. Zn induced the expression levels of N transporter genes in both root and shoot. Zn increased the N assimilation level in leaves. N promoted translocation and distribution of Zn into leaves and brown rice. N up-regulated the expression levels of Zn transporter genes in both root and shoot.
Introduction Multiple studies have shown strong relationships between different nutrients in plants, and the important role of N in Zn acquisition and translocation has been recognized. Objectives The aim of this study was to estimate the effect of Zn on N uptake, translocation, and distribution in rice as well as the corresponding molecular mechanisms. We also aimed to evaluate the impact of N on the Zn content in rice grains which is closely related to the Zn nutrition in humans with rice-based diets. Methods We conducted both field trials and hydroponic cultures of two rice cultivars to analyze the growth and yield, the uptake, translocation, and distribution of N and Zn, as well as the expression of N transport and assimilation genes, and the Zn transporter genes under different combined applications of N and Zn. Results Zn supply promoted the root-to-shoot translocation (12–70% increasing) and distribution of N into the leaves (19–49% increasing) and brown rice (6–9% increasing) and increased the rice biomass (by 14–35%) and yield (by 13–63%). Zn supply induced the expression of OsNRTs and OsAMTs in both roots and shoots, but repressed the expression of OsNiR2, OsGS1;2, and OsFd-GOGAT in roots, whereas it activated the expression of OsNiR2, OsGS1;1, OsGS2, and OsFd-GOGAT in the shoots. Moreover, the enzyme activities of nitrite reductase, nitrate reductase, and glutamine synthetase increased and the free NO3– concentration decreased, but the soluble protein concentration increased significantly in the shoots after Zn supply. Synergistically, N significantly facilitated the root-to-shoot translocation (1.68–11.66 fold) and distribution of Zn into the leaves (1.68–6.37 fold) and brown rice (7–12% increasing) and upregulated the expression levels of Zn transporter genes in both the roots and shoots. Conclusions We propose a working model of the cross-talk between Zn and N in rice plants, which will aid in the appropriate combined application of Zn and N fertilizers in the field to improve both N utilization in plants and Zn nutrition in humans with rice-based diets.
Collapse
Key Words
- AMT, ammonium transporter
- Distribution
- GLY, Guangliangyou 35
- GOGAT, glutamate synthase
- GS, glutamine synthetase
- Interaction
- N, nitrogen
- NR, nitrate reductase
- NRT, nitrate transporter
- NiR, nitrite reductase
- Nip, Nipponbare
- Nitrogen
- Rice
- Translocation
- ZIP, ZRT, IRT-like protein
- Zinc
- Zn, Zinc
Collapse
Affiliation(s)
- Chenchen Ji
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author.
| |
Collapse
|
34
|
Souza AFF, Bucher CA, Arruda LN, Rangel RP, Santos LA, Fernandes MS, Souza SR. Knockdown of OsNRT2.4 modulates root morphology and alters nitrogen metabolism in response to low nitrate availability in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:5. [PMID: 37309484 PMCID: PMC10248605 DOI: 10.1007/s11032-021-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The expression patterns of the NRT2 genes have been well described; however, the role of OsNRT2.4 in root growth is not well known. In this study, we thus aimed at investigating the role of high-affinity NO3- transport OsNRT2.4 in root growth modulation. Through the amiRNA-mediated gene silencing technique, we successfully obtained osnrt2.4 knockdown lines to study the role of OsNRT2.4 on root growth under low nitrate conditions. We performed real-time PCR analysis to investigate the relative gene expression level in root and shoot, soluble metabolites, and measurement of root system. Knockdown of OsNRT2.4 decreased rice growth. The comparison with wild-type (WT) plants showed that (i) knockdown of OsNRT2.4 inhibited root formation under low NO3- supply; (ii) we demonstrated that the mutant lines had significantly increased NO3- uptake than WT plants when grown in different nitrate supplies; (iii) osnrt2.4 knockdown lines showed an alteration in nitrogen metabolism, and this affected the root growth; and (iv) the downregulation of OsNRT2.4 enhanced the expression of gene response of low external NO3- concentrations. Herein we provide new insights in OsNRT2.4 functions. Our data demonstrated that OsNRT2.4 plays a role in root growth, nitrogen metabolic pathway and probably have functions in nitrate transport from root to shoot under low nitrate availability in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01273-6.
Collapse
Affiliation(s)
- Andressa Fabiane Faria Souza
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Carlos Alberto Bucher
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Leilson Novaes Arruda
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Rafael Passos Rangel
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Leandro Azevedo Santos
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Manlio Silvestre Fernandes
- Department of Soil, Plant Nutrition Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| | - Sonia Regina Souza
- Department of Chemistry, Plant Biochemistry Group, Federal Rural University of Rio de Janeiro (UFRRJ), Rodovia BR 465 km 7, Seropédica, RJ 23890-000 Brazil
| |
Collapse
|
35
|
Comparing the Effects of N and P Deficiency on Physiology and Growth for Fast- and Slow-Growing Provenances of Fraxinus mandshurica. FORESTS 2021. [DOI: 10.3390/f12121760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continuous increase in atmospheric carbon dioxide emissions, nitrogen (N) and phosphorus (P) as mineral elements increasingly restrict plant growth. To explore the effect of deficiency of P and N on growth and physiology, Fraxinus mandshurica (hereafter “F. mandshurica”) Rupr. annual seedlings of Wuchang (WC) provenance with fast growth and Dailing (DL) provenance with slow growth were treated with complete nutrition or starvation of N (N-), P (P-) or both elements (NP-). Although P- and N- increased the use efficiency of P (PUE) and N (NUE), respectively, they reduced the leaf area, chlorophyll content and activities of N assimilation enzymes (NR, GS, GOGAT), which decreased the dry weight and P or N amount. The free amino acid content and activities of Phosphoenolpyruvate carboxylase (PEPC) and acid phosphatase enzymes were reduced by N-. The transcript levels of NRT2.1, NRT2.4, NRT2.5, NRT2.7, AVT1, AAP3, NIA2, PHT1-3, PHT1-4 and PHT2-1 in roots were increased, but those of NRT2.1, NRT2.4, NRT2.5, PHT1-3, PHT1-4, PHT2-1 and AAP3 in leaves were reduced by P-. WC was significantly greater than DL under P- in dry weight, C amount, N amount, leaf area, PUE, NUE, which related to greater chlorophyll content, PEPC enzyme activity, N assimilation enzyme activities, and transcript levels of N and P transporter genes in roots and foliage, indicating a greater ability of WC to absorb, transport and utilize N and P under P-. WC was also greater than DL under N- in terms of the above indicators except the transcript levels of N and P assimilation genes, but most of the indicators did not reach a significant level, indicating that WC might be more tolerant to N- than DL, which requires further verification. In summary, WC was identified as a P-efficient provenance, as the growth rate was greater for the genetic type with high than low tolerance to P-.
Collapse
|
36
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
37
|
He W, Wang L, Lin Q, Yu F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1999-2019. [PMID: 34581486 DOI: 10.1111/jipb.13176] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa L.) is the most important food crop for at least half of the world's population. Due to improved living standards, the cultivation of high-quality rice for different purposes and markets has become a major goal. Rice quality is determined by the presence of many nutritional components, including seed storage proteins (SSPs), which are the second most abundant nutrient components of rice grains after starch. Rice SSP biosynthesis requires the participation of multiple organelles and is influenced by the external environment, making it challenging to understand the molecular details of SSP biosynthesis and improve rice protein quality. In this review, we highlight the current knowledge of rice SSP biosynthesis, including a detailed description of the key molecules involved in rice SSP biosynthetic processes and the major environmental factors affecting SSP biosynthesis. The effects of these factors on SSP accumulation and their contribution to rice quality are also discussed based on recent findings. This recent knowledge suggests not only new research directions for exploring rice SSP biosynthesis but also innovative strategies for breeding high-quality rice varieties.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| |
Collapse
|
38
|
Islam MQ, Hasan MN, Hoque H, Jewel NA, Bhuiyan MFH, Prodhan SH. Characterization of transcription factor MYB59 and expression profiling in response to low K + and NO 3- in indica rice (Oryza sativa L.). J Genet Eng Biotechnol 2021; 19:167. [PMID: 34704216 PMCID: PMC8548439 DOI: 10.1186/s43141-021-00248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Background Nitrogen and potassium are crucial supplements for plant development and growth. Plants can detect potassium and nitrate ions in soils and in like way, they modify root-to-shoot transport of these ions to adjust the conveyance among roots and shoots. Transcription factor MYB59 plays essential roles in numerous physiological processes inclusive of hormone response, abiotic stress tolerance, plant development, and metabolic regulation. In this study, we retrieved 56 MYB59 proteins from different plant species. Multiple sequence alignment, phylogenetic tree, conserved motif, chromosomal localization, and cis-regulatory elements of the retrieved sequences were analyzed. Gene structure, protein 3D structure, and DNA binding of OsMYB59 indica were also predicted. Finally, we characterized OsMYB59 and its function under low K+/NO3− conditions in Oryza sativa subsp. indica. Results Data analysis showed that MYB59s from various groups separated in terms of conserved functional domains and gene structure, where members of genus Oryza clustered together. Plants showed reduced height and yellowish appearance when grown on K+ and NO3− deficient medium. Quantitative real-time PCR uncovered that the OsMYB59 reacted to abiotic stresses where its expression was increased in BRRI dhan56 but decreased in other varieties on K+ deficient medium. In addition, OsMYB59 transcript level increased on NO3− deficient medium. Conclusions Our results can help to explain the biological functions of indica rice MYB59 protein and gave a theoretical premise to additionally describe its biological roles in response to abiotic stresses particularly drought. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00248-6.
Collapse
Affiliation(s)
- Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Fahmid Hossain Bhuiyan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
39
|
Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res 2021; 31:23-42. [PMID: 34524604 DOI: 10.1007/s11248-021-00284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Nitrogen (N) as a macronutrient is an important determinant of plant growth. The excessive usage of chemical fertilizers is increasing environmental pollution; hence, the improvement of crop's nitrogen use efficiency (NUE) is imperative for sustainable agriculture. N uptake, transportation, assimilation, and remobilization are four important determinants of plant NUE. Oryza sativa L. (rice) is a staple food for approximately half of the human population, around the globe and improvement in rice yield is pivotal for rice breeders. The N transporters, enzymes indulged in N assimilation, and several transcription factors affect the rice NUE and subsequent yield. Although, a couple of improvements have been made regarding rice NUE, the knowledge about regulatory mechanisms operating NUE is scarce. The current review provides a precise knowledge of how rice plants detect soil N and how this detection is translated into the language of responses that regulate the growth. Additionally, the transcription factors that control N-associated genes in rice are discussed in detail. This mechanistic insight will help the researchers to improve rice yield with minimized use of chemical fertilizers.
Collapse
|
40
|
Molecular Regulatory Networks for Improving Nitrogen Use Efficiency in Rice. Int J Mol Sci 2021; 22:ijms22169040. [PMID: 34445746 PMCID: PMC8396546 DOI: 10.3390/ijms22169040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is an important factor limiting the growth and yield of rice. However, the excessive application of nitrogen will lead to water eutrophication and economic costs. To create rice varieties with high nitrogen use efficiency (NUE) has always been an arduous task in rice breeding. The processes for improving NUE include nitrogen uptake, nitrogen transport from root to shoot, nitrogen assimilation, and nitrogen redistribution, with each step being indispensable to the improvement of NUE. Here, we summarize the effects of absorption, transport, and metabolism of nitrate, ammonium, and amino acids on NUE, as well as the role of hormones in improving rice NUE. Our discussion provide insight for further research in the future.
Collapse
|
41
|
Nitrate Modulates Lateral Root Formation by Regulating the Auxin Response and Transport in Rice. Genes (Basel) 2021; 12:genes12060850. [PMID: 34205855 PMCID: PMC8229813 DOI: 10.3390/genes12060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Nitrate (NO3-) plays a pivotal role in stimulating lateral root (LR) formation and growth in plants. However, the role of NO3- in modulating rice LR formation and the signalling pathways involved in this process remain unclear. Phenotypic and genetic analyses of rice were used to explore the role of strigolactones (SLs) and auxin in NO3--modulated LR formation in rice. Compared with ammonium (NH4+), NO3- stimulated LR initiation due to higher short-term root IAA levels. However, this stimulation vanished after 7 d, and the LR density was reduced, in parallel with the auxin levels. Application of the exogenous auxin α-naphthylacetic acid to NH4+-treated rice plants promoted LR initiation to levels similar to those under NO3- at 7 d; conversely, the application of the SL analogue GR24 to NH4+-treated rice inhibited LR initiation to levels similar to those under NO3- supply by reducing the root auxin levels at 10 d. D10 and D14 mutations caused loss of sensitivity of the LR formation response to NO3-. The application of NO3- and GR24 downregulated the transcription of PIN-FORMED 2(PIN2), an auxin efflux carrier in roots. LR number and density in pin2 mutant lines were insensitive to NO3- treatment. These results indicate that NO3- modulates LR formation by affecting the auxin response and transport in rice, with the involvement of SLs.
Collapse
|
42
|
Wu J, Zhang Z, Xia J, Alfatih A, Song Y, Huang Y, Wan G, Sun L, Tang H, Liu Y, Wang S, Zhu Q, Qin P, Wang Y, Li S, Mao C, Zhang G, Chu C, Yu L, Xiang C. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:448-461. [PMID: 32876985 PMCID: PMC7955889 DOI: 10.1111/pbi.13475] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavour in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the rice NIN-like protein 4 (OsNLP4) significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signalling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 plays a pivotal role in rice NUE and sheds light on crop NUE improvement.
Collapse
Affiliation(s)
- Jie Wu
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Zi‐Sheng Zhang
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Jin‐Qiu Xia
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Alamin Alfatih
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Ying Song
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Yi‐Jie Huang
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Guang‐Yu Wan
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Liang‐Qi Sun
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Hui Tang
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Yang Liu
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| | - Shi‐Mei Wang
- Rice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Qi‐Sheng Zhu
- Rice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Peng Qin
- Rice Research InstituteState Key Laboratory of Hybrid RiceSichuan Agricultural UniversityChengduSichuanChina
| | - Yu‐Ping Wang
- Rice Research InstituteState Key Laboratory of Hybrid RiceSichuan Agricultural UniversityChengduSichuanChina
| | - Shi‐Gui Li
- Rice Research InstituteState Key Laboratory of Hybrid RiceSichuan Agricultural UniversityChengduSichuanChina
| | - Chuan‐Zao Mao
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Gui‐Quan Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lin‐Hui Yu
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
- Present address:
Biology DepartmentBrookhaven National LaboratoryUpton, New YorkNYUSA
| | - Cheng‐Bin Xiang
- School of Life Sciences and Division of Molecular & Cell BiophysicsHefei National Science Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaThe Innovation Academy of Seed DesignChinese Academy of SciencesHefeiAnhui ProvinceChina
| |
Collapse
|
43
|
Gu M, Hu X, Wang T, Xu G. Modulation of plant root traits by nitrogen and phosphate: transporters, long-distance signaling proteins and peptides, and potential artificial traps. BREEDING SCIENCE 2021; 71:62-75. [PMID: 33762877 PMCID: PMC7973493 DOI: 10.1270/jsbbs.20102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 05/11/2023]
Abstract
As sessile organisms, plants rely on their roots for anchorage and uptake of water and nutrients. Plant root is an organ showing extensive morphological and metabolic plasticity in response to diverse environmental stimuli including nitrogen (N) and phosphorus (P) nutrition/stresses. N and P are two essential macronutrients serving as not only cell structural components but also local and systemic signals triggering root acclimatory responses. Here, we mainly focused on the current advances on root responses to N and P nutrition/stresses regarding transporters as well as long-distance mobile proteins and peptides, which largely represent local and systemic regulators, respectively. Moreover, we exemplified some of the potential pitfalls in experimental design, which has been routinely adopted for decades. These commonly accepted methods may help researchers gain fundamental mechanistic insights into plant intrinsic responses, yet the output might lack strong relevance to the real situation in the context of natural and agricultural ecosystems. On this basis, we further discuss the established-and yet to be validated-improvements in experimental design, aiming at interpreting the data obtained under laboratory conditions in a more practical view.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Corresponding author (e-mail: )
| | - Xu Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
44
|
Physiological and Molecular Traits Associated with Nitrogen Uptake under Limited Nitrogen in Soft Red Winter Wheat. PLANTS 2021; 10:plants10010165. [PMID: 33477261 PMCID: PMC7830070 DOI: 10.3390/plants10010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
A sufficient nitrogen (N) supply is pivotal for high grain yield and desired grain protein content in wheat (Triticum aestivum L.). Elucidation of physiological and molecular mechanisms underlying nitrogen use efficiency (NUE) will enhance our ability to develop new N-saving varieties in wheat. In this study, we analyzed two soft red winter wheat genotypes, VA08MAS-369 and VA07W-415, with contrasting NUE under limited N. Our previous study demonstrated that higher NUE in VA08MAS-369 resulted from accelerated senescence and N remobilization in flag leaves at low N. The present study revealed that VA08MAS-369 also exhibited higher nitrogen uptake efficiency (NUpE) than VA07W-415 under limited N. VA08MAS-369 consistently maintained root growth parameters such as maximum root depth, total root diameter, total root surface area, and total root volume under N limitation, relative to VA07W-415. Our time-course N content analysis indicated that VA08MAS-369 absorbed N more abundantly than VA07W-415 after the anthesis stage at low N. More efficient N uptake in VA08MAS-369 was associated with the increased expression of genes encoding a two-component high-affinity nitrate transport system, including four NRT2s and three NAR2s, in roots at low N. Altogether, these results demonstrate that VA08MAS-369 can absorb N efficiently even under limited N due to maintained root development and increased function of N uptake. The ability of VA08MAS-369 in N remobilization and uptake suggests that this genotype could be a valuable genetic material for the improvement of NUE in soft red winter wheat.
Collapse
|
45
|
Wang X, Cai X, Xu C, Wang Q. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:297-307. [PMID: 33243709 DOI: 10.1016/j.plaphy.2020.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Nitrate transporters (NRTs) participate in nitrate uptake, transport and allocation within the plant. However, this gene family has not been studied thoroughly in spinach. This study provided the general information about spinach SoNRTs and their transcriptional and functional responses to different levels of nitrate supplies. Resultes showed that fifty-seven NPF (also known as NRT1), nine NRT2 and one NRT3 were identified in spinach homologous to characterized Arabidopsis NRT genes. Phylogenetic analysis organized the SoNRT family into three clades: NPF with three subclades, NRT2, and NRT3. The tested SoNRT genes showed the various expression profiles in relation to tissue specificity and nitrate supply, indicating their functional diversity in response to external nitrate supply. Among them, transgenic Arabidopsis plants overexpressing SoNPF30 showed improved biomass, decreased shoot nitrate contents but no significant difference of 15NO3- uptake rates when compared with those of the wild type in response to high N treatment. Under low N treatment, overexpressing of SoNRT3 significantly increased whole plant biomass, root nitrate contents and 15NO3- uptake rates. These demonstrated that SoNPF30 and SoNRT3 confer greater capacity for nitrate translocation or nitrate uptake, and could help to improve the ability of plant nitrogen utilization under those conditions. Our findings provide a valuable basis for future research on this family of genes in spinach.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiaofeng Cai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chenxi Xu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
46
|
Maghiaoui A, Gojon A, Bach L. NRT1.1-centered nitrate signaling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6226-6237. [PMID: 32870279 DOI: 10.1093/jxb/eraa361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
Plants need efficient nitrate (NO3-) sensing systems and sophisticated signaling pathways to develop a wide range of adaptive responses to external fluctuations of NO3- supply. In Arabidopsis thaliana, numerous molecular regulators have been identified to participate in signaling pathways that respond specifically to NO3-. In contrast, only a single NO3- sensing system has been described to date, relying on the NRT1.1 (NPF6.3/CHL1) NO3- transceptor. NRT1.1 governs a wide range of responses to NO3-, from fast reprogramming of genome expression (the primary nitrate response) to longer-term developmental changes (effects on lateral root development). NRT1.1 appears to be at the center of a complex network of signaling pathways, involving numerous molecular players acting downstream and/or upstream of it. Interestingly, some of these regulators are involved in crosstalk with the signaling pathways of other nutrients, such as inorganic phosphate or potassium. Although NRT1.1-mediated NO3- sensing and signaling has mostly been documented in Arabidopsis, recent evidence indicates that similar mechanisms involving NRT1.1 orthologues are operative in rice. This review aims to delineate how the NRT1.1 sensing system and the downstream/upstream transduction cascades are integrated to control both the expression of NO3--responsive genes and the induced plasticity of root development.
Collapse
Affiliation(s)
- Amel Maghiaoui
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| | - Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| | - Liên Bach
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| |
Collapse
|
47
|
Valkov VT, Sol S, Rogato A, Chiurazzi M. The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N 2 -fixation activity. THE NEW PHYTOLOGIST 2020; 228:682-696. [PMID: 32542646 DOI: 10.1111/nph.16728] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/27/2020] [Indexed: 05/25/2023]
Abstract
Atmospheric nitrogen (N2) -fixing nodules are formed on the roots of legume plants as result of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of carbon and energy, and therefore legumes have developed finely tuned mechanisms to cope with changing external environmental conditions, including nutrient availability and flooding. The investigation of the role of nitrate as regulator of the symbiotic N2 fixation has been limited to the inhibitory effects exerted by high external concentrations on nodule formation, development and functioning. We describe a nitrate-dependent route acting at low external concentrations that become crucial in hydroponic conditions to ensure an efficient nodule functionality. Combined genetic, biochemical and molecular studies are used to unravel the novel function of the LjNRT2.4 gene. Two independent null mutants are affected by the nitrate content of nodules, consistent with LjNRT2.4 temporal and spatial profiles of expression. The reduced nodular nitrate content is associated to a strong reduction of nitrogenase activity and a severe N-starvation phenotype observed under hydroponic conditions. We also report the effects of the mutations on the nodular nitric oxide (NO) production and content. We discuss the involvement of LjNRT2.4 in a nitrate-NO respiratory chain taking place in the N2 -fixing nodules.
Collapse
Affiliation(s)
- Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Stefano Sol
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| |
Collapse
|
48
|
Han X, Wu K, Fu X, Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. ABIOTECH 2020; 1:255-275. [PMID: 36304130 PMCID: PMC9590520 DOI: 10.1007/s42994-020-00027-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
The agricultural green revolution of the 1960s boosted cereal crop yield was in part due to cultivation of semi-dwarf green revolution varieties. The semi-dwarf plants resist lodging and require high nitrogen (N) fertilizer inputs to maximize yield. To produce higher grain yield, inorganic fertilizer has been overused by Chinese farmers in intensive crop production. With the ongoing increase in the food demand of global population and the environmental pollution, improving crop productivity with reduced N supply is a pressing challenge. Despite a great deal of research efforts, to date only a few genes that improve N use efficiency (NUE) have been identified. The molecular mechanisms underlying the coordination of plant growth, carbon (C) and N assimilation is still not fully understood, thus preventing significant improvement. Recent advances have shed light on how explore NUE within an overall plant biology system that considered the co-regulation of plant growth, C and N metabolisms as a whole, rather than focusing specifically on N uptake and assimilation. There are several potential approaches to improve NUE discussed in this review. Increasing knowledge of how plants sense and respond to changes in N availability, as well as identifying new targets for breeding strategies to simultaneously improve NUE and grain yield, could usher in a new green revolution.
Collapse
Affiliation(s)
- Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
49
|
Shi Z, Chang TG, Chen F, Zhao H, Song Q, Wang M, Wang Y, Zhou Z, Wang C, Zhou SC, Wang B, Chen G, Zhu XG. Morphological and physiological factors contributing to early vigor in the elite rice cultivar 9,311. Sci Rep 2020; 10:14813. [PMID: 32908221 PMCID: PMC7481250 DOI: 10.1038/s41598-020-71913-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/29/2020] [Indexed: 11/08/2022] Open
Abstract
Huanghuazhan (HHZ) and 9,311 are two elite rice cultivars in China. They have achieved high yield through quite different mechanisms. One of the major features that gives high yield capacity to 9,311 is its strong early vigor, i.e., faster establishment of its seedling as well as its better growth in its early stages. To understand the mechanistic basis of early vigor in 9,311, as compared to HHZ the cultivar, we have examined, under controlled environmental conditions, different morphological and physiological traits that may contribute to its early vigor. Our results show that the fresh weight of the seeds, at germination, not only determined the seedling biomass at 10 days after germination (DAG), but was also responsible for ~ 80% of variations in plant biomass between the two cultivars even up to 30 DAG. Furthermore, the 9,311 cultivar had a larger root system, which led to its higher nitrogen uptake capacity. Other noteworthy observations about 9,311 being a better cultivar than HHZ are: (i) Ten out of 15 genes involved in nitrogen metabolism were much more highly expressed in its roots; (ii) it had a higher water uptake rate, promoting better root-to-shoot nitrogen transfer; and (iii) consistent with the above, it had higher leaf photosynthetic rate and stomatal conductance. All of the above identified features explain, to a large extent, why the 9,311, as compared to HHZ, exhibits much more vigorous early growth.
Collapse
Affiliation(s)
- Zai Shi
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
| | - Tian-Gen Chang
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China.
| | - Faming Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Plank Gesellschaft Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Honglong Zhao
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
| | - Mengyao Wang
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Wang
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwei Zhou
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shao-Chuan Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Baoshan Wang
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Genyun Chen
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Chinese Academy of Science (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Building No. 1, Room 402, Fenglin Road 300, Shanghai, 200032, China.
| |
Collapse
|
50
|
Sahu A, Das A, Saikia K, Barah P. Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 2020; 112:4842-4852. [PMID: 32896629 DOI: 10.1016/j.ygeno.2020.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
Bacterial blight is caused by the pathogen Xanthomonas oryzae pv. oryzae (Xoo). Genome scale integrative analysis on the interaction of high and low temperatures on the molecular response signature in rice during the Xoo infection has not been conducted yet. We have analysed a unique RNA-Seq dataset generated on the susceptible rice variety IR24 under combined exposure of Xoo with low 29/21 °C (day/night) and high 35/31 °C (day/night) temperatures. Differentially regulated key genes and pathways in rice plants during both the stress conditions were identified. Differential dynamics of the regulatory network topology showed that WRKY and ERF families of transcription factors play a crucial role during signal crosstalk events in rice plants while responding to combined exposure of Xoo with low temperature vs. Xoo with high temperatures. Our study suggests that upon onset of high temperature, rice plants tend to switch its focus from defence response towards growth and reproduction.
Collapse
Affiliation(s)
- Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Akash Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Katherine Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India.
| |
Collapse
|