1
|
Meroz N, Livny T, Toledano G, Sorokin Y, Tovi N, Friedman J. Evolution in microbial microcosms is highly parallel, regardless of the presence of interacting species. Cell Syst 2024; 15:930-940.e5. [PMID: 39419002 DOI: 10.1016/j.cels.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Evolution often follows similar trajectories in replicate populations, suggesting that it may be predictable. However, populations are naturally embedded in multispecies communities, and the extent to which evolution is contingent on the specific species interacting with the focal population is still largely unexplored. Here, we study adaptations in strains of 11 different species, experimentally evolved both in isolation and in various pairwise co-cultures. Although partner-specific effects are detectable, evolution was mostly shared between strains evolved with different partners; similar changes occurred in strains' growth abilities, in community properties, and in about half of the repeatedly mutated genes. This pattern persisted even in species pre-adapted to the abiotic conditions. These findings indicate that evolution may not always depend strongly on the biotic environment, making predictions regarding coevolutionary dynamics less challenging than previously thought. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Nittay Meroz
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel.
| | - Tal Livny
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Gal Toledano
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Yael Sorokin
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Nesli Tovi
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Jonathan Friedman
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel.
| |
Collapse
|
2
|
Freitas O, Campos PRA. Understanding evolutionary rescue and parallelism in response to environmental stress. Evolution 2024; 78:1453-1463. [PMID: 38738664 DOI: 10.1093/evolut/qpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Evolutionary rescue, the process by which populations facing environmental stress avoid extinction through genetic adaptation, is a critical area of study in evolutionary biology. The order in which mutations arise and get established will be relevant to the population's rescue. This study investigates the degree of parallel evolution at the genotypic level between independent populations facing environmental stress and subject to different demographic regimes. Under density regulation, 2 regimes exist: In the first, the population can restore positive growth rates by adjusting its population size or through adaptive mutations, whereas in the second regime, the population is doomed to extinction unless a rescue mutation occurs. Analytical approximations for the likelihood of evolutionary rescue are obtained and contrasted with simulation results. We show that the initial level of maladaptation and the demographic regime significantly affect the level of parallelism. There is an evident transition between these 2 regimes. Whereas in the first regime, parallelism decreases with the level of maladaptation, it displays the opposite behavior in the rescue/extinction regime. These findings have important implications for understanding population persistence and the degree of parallelism in evolutionary responses as they integrate demographic effects and evolutionary processes.
Collapse
Affiliation(s)
- Osmar Freitas
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Richter A, Blei F, Hu G, Schwitalla JW, Lozano-Andrade CN, Xie J, Jarmusch SA, Wibowo M, Kjeldgaard B, Surabhi S, Xu X, Jautzus T, Phippen CBW, Tyc O, Arentshorst M, Wang Y, Garbeva P, Larsen TO, Ram AFJ, van den Hondel CAM, Maróti G, Kovács ÁT. Enhanced surface colonisation and competition during bacterial adaptation to a fungus. Nat Commun 2024; 15:4486. [PMID: 38802389 PMCID: PMC11130161 DOI: 10.1038/s41467-024-48812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.
Collapse
Affiliation(s)
- Anne Richter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Department Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich-Schiller-Universität, Jena, Germany
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
| | - Jan W Schwitalla
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jiyu Xie
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Scott A Jarmusch
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Bodil Kjeldgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Surabhi Surabhi
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Christopher B W Phippen
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Olaf Tyc
- Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Internal Medicine I, Goethe University Hospital, Frankfurt, Germany
| | - Mark Arentshorst
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Thomas Ostenfeld Larsen
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Arthur F J Ram
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark.
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Lamont BB, He T, Cowling RM. Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic. ANNALS OF BOTANY 2024; 133:649-658. [PMID: 37076271 PMCID: PMC11082520 DOI: 10.1093/aob/mcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean during the Late Cretaceous (100-65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the Early Cretaceous, an alternative view is that it migrated to the Cape from North-West-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other palaeo-disciplines. METHODS We used palynology (identity, date and location of records), molecular phylogeny and chronogram preparation, biogeography of plate tectonics, and palaeo-atmospheric and ocean circulation models. KEY RESULTS Our collation of the rich assemblage of Proteaceae palynomorphs stretching back to 107 Ma (Triorites africaensis) in North-West Africa showed its progressive overland migration to the Cape by 75-65 Ma. No key palynomorphs recorded in Australia-Antarctica have morphological affinities with African fossils but specific clade assignment of the pre-Miocene records is not currently possible. The Cape Proteaceae encompass three molecular-based clades (tribes) whose most recent apparent ancestors are sisters to those in Australia. However, our chronogram shows that the major Adenanthos/Leucadendron-related clade, originating 54-34 Ma, would have 'arrived' too late as species with Proteaceae affinities were already present ~20 million years earlier. The Franklandia/Protea-related clade arose 118-81 Ma so its distinctive pollen should have been the foundation for the scores of palynomorphs recorded at 100-80 Ma, but it was not. Also, the prevailing winds and ocean currents trended away from South Africa rather than towards, as the 'out-of-Australia' hypothesis requires. Based on the evidence assembled here, we list three points favouring an Australian origin and nine against; four points favouring an Antarctic origin and seven against; and nine points favouring a North-West-Central African origin and three against. CONCLUSIONS We conclude that a gradual migration of the Proteaceae from North-West-Central Africa southeast→south→southwest to the Cape and its surroundings occurred via adaptation and speciation during the period 95-70 Ma. We caution that incorrect conclusions may be drawn from literal interpretations of molecular phylogenies that neglect the fossil record and do not recognize the possible confounding effects of selection under matched environments leading to parallel evolution and extinction of bona fide sister clades.
Collapse
Affiliation(s)
- Byron B Lamont
- Ecology Section, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Tianhua He
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Richard M Cowling
- African Centre for Coastal Palaeoscience, Nelson Mandela University, Eastern Cape, South Africa
| |
Collapse
|
5
|
Hoang KL, Read TD, King KC. Incomplete immunity in a natural animal-microbiota interaction selects for higher pathogen virulence. Curr Biol 2024; 34:1357-1363.e3. [PMID: 38430909 PMCID: PMC10962313 DOI: 10.1016/j.cub.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Incomplete immunity in recovered hosts is predicted to favor more virulent pathogens upon re-infection in the population.1 The microbiota colonizing animals can generate a similarly long-lasting, partial immune response, allowing for infection but dampened disease severity.2 We tracked the evolutionary trajectories of a widespread pathogen (Pseudomonas aeruginosa), experimentally passaged through populations of nematodes immune-primed by a natural microbiota member (P. berkeleyensis). This bacterium can induce genes regulated by a mitogen-activated protein kinase (MAPK) signaling pathway effective at conferring protection against pathogen-induced death despite infection.3 Across host populations, this incomplete immunity selected for pathogens more than twice as likely to kill as those evolved in non-primed (i.e., naive) or immune-compromised (mutants with a knockout of the MAPK ortholog) control populations. Despite the higher virulence, pathogen molecular evolution in immune-primed hosts was slow and constrained. In comparison, evolving pathogens in immune-compromised hosts were characterized by substantial genomic differentiation and attenuated virulence. These findings directly attribute the incomplete host immunity induced from microbiota as a significant force shaping the virulence and evolutionary dynamics of novel infectious diseases.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Division of Infectious Diseases, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - Timothy D Read
- Division of Infectious Diseases, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Kayla C King
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology & Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
6
|
Hu G, Wang Y, Liu X, Strube ML, Wang B, Kovács ÁT. Species and condition shape the mutational spectrum in experimentally evolved biofilms. mSystems 2023; 8:e0054823. [PMID: 37768063 PMCID: PMC10654089 DOI: 10.1128/msystems.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Biofilm formation is a vital factor for the survival and adaptation of bacteria in diverse environmental niches. Experimental evolution combined with the advancement of whole-population genome sequencing provides us a powerful tool to understand the genomic dynamic of evolutionary adaptation to different environments, such as during biofilm development. Previous studies described the genetic and phenotypic changes of selected clones from experimentally evolved Bacillus thuringiensis and Bacillus subtilis that were adapted under abiotic and biotic biofilm conditions. However, the full understanding of the dynamic evolutionary landscapes was lacking. Furthermore, the differences and similarities of adaptive mechanisms in B. thuringiensis and B. subtilis were not identified. To overcome these limitations, we performed longitudinal whole-population genome sequencing to study the underlying genetic dynamics at high resolution. Our study provides the first comprehensive mutational landscape of two bacterial species' biofilms that is adapted to an abiotic and biotic surface.
Collapse
Affiliation(s)
- Guohai Hu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yue Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Xin Liu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Bo Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Flanagan LM, Horton JS, Taylor TB. Mutational hotspots lead to robust but suboptimal adaptive outcomes in certain environments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001395. [PMID: 37815519 PMCID: PMC10634368 DOI: 10.1099/mic.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.
Collapse
Affiliation(s)
| | - James S. Horton
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
8
|
Sandberg TE, Wise KS, Dalldorf C, Szubin R, Feist AM, Glass JI, Palsson BO. Adaptive evolution of a minimal organism with a synthetic genome. iScience 2023; 26:107500. [PMID: 37636038 PMCID: PMC10448532 DOI: 10.1016/j.isci.2023.107500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/28/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The bacterial strain JCVI-syn3.0 stands as the first example of a living organism with a minimized synthetic genome, derived from the Mycoplasma mycoides genome and chemically synthesized in vitro. Here, we report the experimental evolution of a syn3.0- derived strain. Ten independent replicates were evolved for several hundred generations, leading to growth rate improvements of > 15%. Endpoint strains possessed an average of 8 mutations composed of indels and SNPs, with a pronounced C/G- > A/T transversion bias. Multiple genes were repeated mutational targets across the independent lineages, including phase variable lipoprotein activation, 5 distinct; nonsynonymous substitutions in the same membrane transporter protein, and inactivation of an uncharacterized gene. Transcriptomic analysis revealed an overall tradeoff reflected in upregulated ribosomal proteins and downregulated DNA and RNA related proteins during adaptation. This work establishes the suitability of synthetic, minimal strains for laboratory evolution, providing a means to optimize strain growth characteristics and elucidate gene functionality.
Collapse
Affiliation(s)
- Troy E. Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kim S. Wise
- J. Craig Venter Institute, San Diego, La Jolla, CA, USA
| | - Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - John I. Glass
- J. Craig Venter Institute, San Diego, La Jolla, CA, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
9
|
Hu G, Wang Y, Blake C, Nordgaard M, Liu X, Wang B, Kovács ÁT. Parallel genetic adaptation of Bacillus subtilis to different plant species. Microb Genom 2023; 9:mgen001064. [PMID: 37466402 PMCID: PMC10438812 DOI: 10.1099/mgen.0.001064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Plant growth-promoting rhizobacteria benefit plants by stimulating their growth or protecting them against phytopathogens. Rhizobacteria must colonize and persist on plant roots to exert their benefits. However, little is known regarding the processes by which rhizobacteria adapt to different plant species, or behave under alternating host plant regimes. Here, we used experimental evolution and whole-population whole-genome sequencing to analyse how Bacillus subtilis evolves on Arabidopsis thaliana and tomato seedlings, and under an alternating host plant regime, in a static hydroponic setup. We observed parallel evolution across multiple levels of biological organization in all conditions, which was greatest for the two heterogeneous, multi-resource, spatially structured environments at the genetic level. Species-specific adaptation at the genetic level was also observed, possibly caused by the selection stress imposed by different host plants. Furthermore, a trade-off between motility and biofilm development was supported by mutational changes in motility- and biofilm-related genes. Finally, we identified several condition-specific and common targeted genes in different environments by comparing three different B. subtilis biofilm adaptation settings. The results demonstrate a common evolutionary pattern when B. subtilis is adapting to the plant rhizosphere in similar conditions, and reveal differences in genetic mechanisms between different host plants. These findings will likely support strain improvements for sustainable agriculture.
Collapse
Affiliation(s)
- Guohai Hu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- BGI-Beijing, Beijing 102601, PR China
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- BGI-Beijing, Beijing 102601, PR China
| | - Bo Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Shenzhen, 518083 Shenzhen, PR China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, 2333BE Leiden, Netherlands
| |
Collapse
|
10
|
Izydorczyk C, Waddell BJ, Thornton CS, Conly JM, Rabin HR, Somayaji R, Surette MG, Church DL, Parkins MD. Stenotrophomonas maltophilia natural history and evolution in the airways of adults with cystic fibrosis. Front Microbiol 2023; 14:1205389. [PMID: 37396351 PMCID: PMC10308010 DOI: 10.3389/fmicb.2023.1205389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is an opportunistic pathogen infecting persons with cystic fibrosis (pwCF) and portends a worse prognosis. Studies of S. maltophilia infection dynamics have been limited by cohort size and follow-up. We investigated the natural history, transmission potential, and evolution of S. maltophilia in a large Canadian cohort of 321 pwCF over a 37-year period. Methods One-hundred sixty-two isolates from 74 pwCF (23%) were typed by pulsed-field gel electrophoresis, and shared pulsotypes underwent whole-genome sequencing. Results S. maltophilia was recovered at least once in 82 pwCF (25.5%). Sixty-four pwCF were infected by unique pulsotypes, but shared pulsotypes were observed between 10 pwCF. In chronic carriage, longer time periods between positive sputum cultures increased the likelihood that subsequent isolates were unrelated. Isolates from individual pwCF were largely clonal, with differences in gene content being the primary source of genetic diversity objectified by gene content differences. Disproportionate progression of CF lung disease was not observed amongst those infected with multiple strains over time (versus a single) or amongst those with shared clones (versus strains only infecting one patient). We did not observe evidence of patient-to-patient transmission despite relatedness between isolates. Twenty-four genes with ≥ 2 mutations accumulated over time were identified across 42 sequenced isolates from all 11 pwCF with ≥ 2 sequenced isolates, suggesting a potential role for these genes in adaptation of S. maltophilia to the CF lung. Discussion Genomic analyses suggested common, indirect sources as the origins of S. maltophilia infections in the clinic population. The information derived from a genomics-based understanding of the natural history of S. maltophilia infection within CF provides unique insight into its potential for in-host evolution.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara J. Waddell
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina S. Thornton
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Deirdre L. Church
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
11
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
12
|
Johnson SE, Tittes S, Franks SJ. Rapid, nonparallel genomic evolution of Brassica rapa (field mustard) under experimental drought. J Evol Biol 2023; 36:550-562. [PMID: 36721268 DOI: 10.1111/jeb.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
While we know that climate change can potentially cause rapid phenotypic evolution, our understanding of the genetic basis and degree of genetic parallelism of rapid evolutionary responses to climate change is limited. In this study, we combined the resurrection approach with an evolve-and-resequence design to examine genome-wide evolutionary changes following drought. We exposed genetically similar replicate populations of the annual plant Brassica rapa derived from a field population in southern California to four generations of experimental drought or watered conditions in a greenhouse. Genome-wide sequencing of ancestral and descendant population pools identified hundreds of SNPs that showed evidence of rapidly evolving in response to drought. Several of these were in stress response genes, and two were identified in a prior study of drought response in this species. However, almost all genetic changes were unique among experimental populations, indicating that the evolutionary changes were largely nonparallel, despite the fact that genetically similar replicates of the same founder population had experienced controlled and consistent selection regimes. This nonparallelism of evolution at the genetic level is potentially because of polygenetic adaptation allowing for multiple different genetic routes to similar phenotypic outcomes. Our findings help to elucidate the relationship between rapid phenotypic and genomic evolution and shed light on the degree of parallelism and predictability of genomic evolution to environmental change.
Collapse
Affiliation(s)
- Stephen E Johnson
- Department of Biological Sciences and Louis Calder Center, Fordham University, Bronx, New York, USA
| | - Silas Tittes
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Steven J Franks
- Department of Biological Sciences and Louis Calder Center, Fordham University, Bronx, New York, USA
| |
Collapse
|
13
|
Panda A, Tuller T. Determinants of associations between codon and amino acid usage patterns of microbial communities and the environment inferred based on a cross-biome metagenomic analysis. NPJ Biofilms Microbiomes 2023; 9:5. [PMID: 36693851 PMCID: PMC9873608 DOI: 10.1038/s41522-023-00372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Codon and amino acid usage were associated with almost every aspect of microbial life. However, how the environment may impact the codon and amino acid choice of microbial communities at the habitat level is not clearly understood. Therefore, in this study, we analyzed codon and amino acid usage patterns of a large number of environmental samples collected from diverse ecological niches. Our results suggested that samples derived from similar environmental niches, in general, show overall similar codon and amino acid distribution as compared to samples from other habitats. To substantiate the relative impact of the environment, we considered several factors, such as their similarity in GC content, or in functional or taxonomic abundance. Our analysis demonstrated that none of these factors can fully explain the trends that we observed at the codon or amino acid level implying a direct environmental influence on them. Further, our analysis demonstrated different levels of selection on codon bias in different microbial communities with the highest bias in host-associated environments such as the digestive system or oral samples and the lowest level of selection in soil and water samples. Considering a large number of metagenomic samples here we showed that microorganisms collected from similar environmental backgrounds exhibit similar patterns of codon and amino acid usage irrespective of the location or time from where the samples were collected. Thus our study suggested a direct impact of the environment on codon and amino usage of microorganisms that cannot be explained considering the influence of other factors.
Collapse
Affiliation(s)
- Arup Panda
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
14
|
Ahrens CW, Watson‐Lazowski A, Huang G, Tissue DT, Rymer PD. The roles of divergent and parallel molecular evolution contributing to thermal adaptive strategies in trees. PLANT, CELL & ENVIRONMENT 2022; 45:3476-3491. [PMID: 36151708 PMCID: PMC9828096 DOI: 10.1111/pce.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting 'local' temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future.
Collapse
Affiliation(s)
- Collin W. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNew South WalesAustralia
| | - Alexander Watson‐Lazowski
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- John Innes CentreNorwich Research ParkNorwichUK
| | - Guomin Huang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - David T. Tissue
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- Global Centre for Land‐Based Innovation, Hawkesbury CampusWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
15
|
Chaturvedi S, Gompert Z, Feder JL, Osborne OG, Muschick M, Riesch R, Soria-Carrasco V, Nosil P. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nat Ecol Evol 2022; 6:1952-1964. [PMID: 36280782 PMCID: PMC7613875 DOI: 10.1038/s41559-022-01909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, UK
| | - Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Patrik Nosil
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
16
|
Fraimout A, Päiviö E, Merilä J. Relaxed risk of predation drives parallel evolution of stickleback behavior. Evolution 2022; 76:2712-2723. [PMID: 36117280 PMCID: PMC9827860 DOI: 10.1111/evo.14631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/22/2023]
Abstract
The occurrence of similar phenotypes in multiple independent populations derived from common ancestral conditions (viz. parallel evolution) is a testimony of evolution by natural selection. Parallel evolution implies that populations share a common phenotypic response to a common selection pressure associated with habitat similarity. Examples of parallel evolution at genetic and phenotypic levels are fairly common, but the driving selective agents often remain elusive. Similarly, the role of phenotypic plasticity in facilitating early stages of parallel evolution is unclear. We investigated whether the relaxation of predation pressure associated with the colonization of freshwater ponds by nine-spined sticklebacks (Pungitius pungitius) likely explains the divergence in complex behaviors between marine and pond populations, and whether this divergence is parallel. Using laboratory-raised individuals exposed to different levels of perceived predation risk, we calculated vectors of phenotypic divergence for four behavioral traits between habitats and predation risk treatments. We found a significant correlation between the directions of evolutionary divergence and phenotypic plasticity, suggesting that divergence in behavior between habitats is aligned with the response to relaxation of predation pressure. Finally, we show alignment across multiple pairs of populations, and that relaxation of predation pressure has likely driven parallel evolution of behavior in this species.
Collapse
Affiliation(s)
- Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland,Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Elisa Päiviö
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland,Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SAR
| |
Collapse
|
17
|
Whiting JR, Paris JR, van der Zee MJ, Fraser BA. AF‐vapeR
: A multivariate genome scan for detecting parallel evolution using allele frequency change vectors. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James R. Whiting
- Department of Biosciences University of Exeter Exeter UK
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - Josephine R. Paris
- Department of Biosciences University of Exeter Exeter UK
- Department of Health, Life and Environmental Sciences University of L'Aquila L'Aquila Italy
| | | | | |
Collapse
|
18
|
Lin YJ, Cai LN, Zhao YY, Cheng HY, Storey KB, Yu DN, Zhang JY. Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea). INSECTS 2022; 13:insects13070564. [PMID: 35886740 PMCID: PMC9320148 DOI: 10.3390/insects13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Mantodea is regarded as an excellent material to study the gene rearrangements and large non-coding regions (LNCRs) in mitochondrial genomes. Meanwhile, as a result of the convergent evolution and parallelism, the gene rearrangements and LNCRs are specific to some taxonomic groups within Mantodea, which play an important role in phylogenetic relationship research. Nine mitochondrial genomes (mitogenomes) from four newly established families of praying mantises are obtained and annotated. Eight types of gene rearrangements, including four novel types of gene rearrangements in Mantodea, are detected, which can be explained by the tandem replication-random loss (TDRL) model. Moreover, one conserved motif between trnI-trnQ is detected in Toxoderidae. This study shed light on the formation mechanisms of these gene rearrangements and LNCRs in four newly established families of praying mantises. Abstract Long non-coding regions (NCRs) and gene rearrangements are commonly seen in mitochondrial genomes of Mantodea and are primarily focused on three regions: CR-I-Q-M-ND2, COX2-K-D-ATP8, and ND3-A-R-N-S-E-F-ND5. In this study, eight complete and one nearly complete mitochondrial genomes of praying mantises were acquired for the purpose of discussing mitochondrial gene rearrangements and phylogenetic relationships within Mantodea, primarily in the newly established families Haaniidae and Gonypetidae. Except for Heterochaeta sp. JZ-2017, novel mitochondrial gene arrangements were detected in Cheddikulama straminea, Sinomiopteryx graham, Pseudovates chlorophaea, Spilomantis occipitalis. Of note is the fact that one type of novel arrangement was detected for the first time in the Cyt b-S2-ND1 region. This could be reliably explained by the tandem replication-random loss (TDRL) model. The long NCR between trnT and trnP was generally found in Iridopteryginae and was similar to the ND4L or ND6 gene. Combined with gene rearrangements and intergenic regions, the monophyly of Haaniidae was supported, whereas the paraphyly of Gonypetidae was recovered. Furthermore, several synapomorphies unique to some clades were detected that conserved block sequences between trnI and trnQ and gaps between trnT and trnP in Toxoderidae and Iridopteryginae, respectively.
Collapse
Affiliation(s)
- Yi-Jie Lin
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
| | - Ling-Na Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
| | - Yu-Yang Zhao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
| | - Hong-Yi Cheng
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
- Correspondence: (H.-Y.C.); or (J.-Y.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Y.-J.L.); (L.-N.C.); (Y.-Y.Z.); (D.-N.Y.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (H.-Y.C.); or (J.-Y.Z.)
| |
Collapse
|
19
|
Sabatino SJ, Pereira P, Carneiro M, Dilytė J, Archer JP, Munoz A, Nonnis-Marzano F, Murias A. The genetics of adaptation in freshwater Eurasian shad ( Alosa). Ecol Evol 2022; 12:e8908. [PMID: 35646309 PMCID: PMC9130566 DOI: 10.1002/ece3.8908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Studying the genetics of phenotypic convergence can yield important insights into adaptive evolution. Here, we conducted a comparative genomic study of four lineages (species and subspecies) of anadromous shad (Alosa) that have independently evolved life cycles entirely completed in freshwater. Three naturally diverged (A. fallax lacustris, A. f. killarnensis, and A. macedonica), and the fourth (A. alosa) was artificially landlocked during the last century. To conduct this analysis, we assembled and annotated a draft of the A. alosa genome and generated whole‐genome sequencing for 16 anadromous and freshwater populations of shad. Widespread evidence for parallel genetic changes in freshwater populations within lineages was found. In freshwater A. alosa, which have only been diverging for tens of generations, this shows that parallel adaptive evolution can rapidly occur. However, parallel genetic changes across lineages were comparatively rare. The degree of genetic parallelism was not strongly related to the number of shared polymorphisms between lineages, thus suggesting that other factors such as divergence among ancestral populations or environmental variation may influence genetic parallelism across these lineages. These overall patterns were exemplified by genetic differentiation involving a paralog of ATPase‐α1 that appears to be under selection in just two of the more distantly related lineages studied, A. f. lacustris and A. alosa. Our findings provide insights into the genetic architecture of adaptation and parallel evolution along a continuum of population divergence.
Collapse
Affiliation(s)
- Stephen J Sabatino
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Paulo Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Miguel Carneiro
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Jolita Dilytė
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - John Patrick Archer
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Antonio Munoz
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Francesco Nonnis-Marzano
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal.,Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parma Italy
| | - Antonio Murias
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| |
Collapse
|
20
|
Johnson SE, Hamann E, Franks SJ. Rapid, parallel evolution of field mustard (Brassica rapa) under experimental drought. Evolution 2021; 76:262-274. [PMID: 34878171 DOI: 10.1111/evo.14413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Climate change is driving evolutionary and plastic responses in populations, but predicting these responses remains challenging. Studies that combine experimental evolution with ancestor-descendant comparisons allow assessment of the causes, parallelism, and adaptive nature of evolutionary responses, although such studies remain rare, particularly in a climate change context. Here, we created experimental populations of Brassica rapa derived from the same natural population and exposed these replicated populations to experimental drought or watered conditions for four generations. We then grew ancestors and descendants concurrently, following the resurrection approach. Experimental populations under drought showed rapid evolution of earlier flowering time and increased specific leaf area, consistent with a drought escape strategy and observations in natural populations. Evolutionary shifts followed the direction of selection and increased fitness under drought, indicative of adaptive evolution. Evolution to drought also occurred largely in parallel among replicate populations. Further, traits showed phenotypic plasticity to drought, but the direction and effect size of plasticity varied. Our results demonstrate parallel evolution to experimental drought, suggesting that evolution to strong, consistent selection may be predictable. Broadly, our study demonstrates the utility of combining experimental evolution with the resurrection approach to investigate responses to climate change.
Collapse
Affiliation(s)
- Stephen E Johnson
- Department of Biological Sciences and Louis Calder Center, Fordham University, Bronx, New York, 10458
| | - Elena Hamann
- Department of Biological Sciences and Louis Calder Center, Fordham University, Bronx, New York, 10458
| | - Steven J Franks
- Department of Biological Sciences and Louis Calder Center, Fordham University, Bronx, New York, 10458
| |
Collapse
|
21
|
Horton JS, Flanagan LM, Jackson RW, Priest NK, Taylor TB. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021; 12:6092. [PMID: 34667151 PMCID: PMC8526746 DOI: 10.1038/s41467-021-26286-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
Mutational hotspots can determine evolutionary outcomes and make evolution repeatable. Hotspots are products of multiple evolutionary forces including mutation rate heterogeneity, but this variable is often hard to identify. In this work, we reveal that a near-deterministic genetic hotspot can be built and broken by a handful of silent mutations. We observe this when studying homologous immotile variants of the bacteria Pseudomonas fluorescens, AR2 and Pf0-2x. AR2 resurrects motility through highly repeatable de novo mutation of the same nucleotide in >95% lines in minimal media (ntrB A289C). Pf0-2x, however, evolves via a number of mutations meaning the two strains diverge significantly during adaptation. We determine that this evolutionary disparity is owed to just 6 synonymous variations within the ntrB locus, which we demonstrate by swapping the sites and observing that we are able to both break (>95% to 0%) and build (0% to 80%) a deterministic mutational hotspot. Our work reveals a key role for silent genetic variation in determining adaptive outcomes.
Collapse
Affiliation(s)
- James S Horton
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Louise M Flanagan
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicholas K Priest
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
22
|
Tarkington J, Zufall RA. Temperature affects the repeatability of evolution in the microbial eukaryote Tetrahymena thermophila. Ecol Evol 2021; 11:13139-13152. [PMID: 34646458 PMCID: PMC8495795 DOI: 10.1002/ece3.8036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
Evolutionary biologists have long sought to understand what factors affect the repeatability of adaptive outcomes. To better understand the role of temperature in determining the repeatability of adaptive trajectories, we evolved populations of different genotypes of the ciliate Tetrahymena thermophila at low and high temperatures and followed changes in growth rate over 6,500 generations. As expected, growth rate increased with a decelerating rate for all populations; however, there were differences in the patterns of evolution at the two temperatures. The growth rates of the different genotypes tended to converge as evolution proceeded at both temperatures, but this convergence was quicker and more pronounced at the higher temperature. Additionally, over the first 4,000 generations we found greater repeatability of evolution, in terms of change in growth rate, among replicates of the same genotype at the higher temperature. Finally, we found limited evidence of trade-offs in fitness between temperatures, and an asymmetry in the correlated responses, whereby evolution in a high temperature increases growth rate at the lower temperature significantly more than the reverse. These results demonstrate the importance of temperature in determining the repeatability of evolutionary trajectories for the eukaryotic microbe Tetrahymena thermophila and may provide clues to how temperature affects evolution more generally.
Collapse
Affiliation(s)
- Jason Tarkington
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Rebecca A. Zufall
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
| |
Collapse
|
23
|
Zerebecki RA, Sotka EE, Hanley TC, Bell KL, Gehring C, Nice CC, Richards CL, Hughes AR. Repeated Genetic and Adaptive Phenotypic Divergence across Tidal Elevation in a Foundation Plant Species. Am Nat 2021; 198:E152-E169. [DOI: 10.1086/716512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Robyn A. Zerebecki
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528
| | - Erik E. Sotka
- Department of Biology and Grice Marine Laboratory, College of Charleston, South Carolina 29412
| | - Torrance C. Hanley
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
| | - Katherine L. Bell
- Department of Entomology, University of Maryland, College Park, Maryland 20742
| | - Catherine Gehring
- Department of Biological Science and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011
| | - Chris C. Nice
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33617; and Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - A. Randall Hughes
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
| |
Collapse
|
24
|
Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation. Nat Commun 2021; 12:5193. [PMID: 34465770 PMCID: PMC8408183 DOI: 10.1038/s41467-021-25440-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2021] [Indexed: 01/17/2023] Open
Abstract
Historical contingency and diminishing returns epistasis have been typically studied for relatively divergent genotypes and/or over long evolutionary timescales. Here, we use Saccharomyces cerevisiae to study the extent of diminishing returns and the changes in the adaptive mutational spectra following a single first adaptive mutational step. We further evolve three clones that arose under identical conditions from a common ancestor. We follow their evolutionary dynamics by lineage tracking and determine adaptive outcomes using fitness assays and whole genome sequencing. We find that diminishing returns manifests as smaller fitness gains during the 2nd step of adaptation compared to the 1st step, mainly due to a compressed distribution of fitness effects. We also find that the beneficial mutational spectra for the 2nd adaptive step are contingent on the 1st step, as we see both shared and diverging adaptive strategies. Finally, we find that adaptive loss-of-function mutations, such as nonsense and frameshift mutations, are less common in the second step of adaptation than in the first step. Analyses of both natural and experimental evolution suggest that adaptation depends on the evolutionary past and adaptive potential decreases over time. Here, by tracking yeast adaptation with DNA barcoding, the authors show that such evolutionary phenomena can be observed even after a single adaptive step.
Collapse
|
25
|
Santos-Lopez A, Marshall CW, Haas AL, Turner C, Rasero J, Cooper VS. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. eLife 2021; 10:e70676. [PMID: 34431477 PMCID: PMC8412936 DOI: 10.7554/elife.70676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
History, chance, and selection are the fundamental factors that drive and constrain evolution. We designed evolution experiments to disentangle and quantify effects of these forces on the evolution of antibiotic resistance. Previously, we showed that selection of the pathogen Acinetobacter baumannii in both structured and unstructured environments containing the antibiotic ciprofloxacin produced distinct genotypes and phenotypes, with lower resistance in biofilms as well as collateral sensitivity to β-lactam drugs (Santos-Lopez et al., 2019). Here we study how this prior history influences subsequent evolution in new β-lactam antibiotics. Selection was imposed by increasing concentrations of ceftazidime and imipenem and chance differences arose as random mutations among replicate populations. The effects of history were reduced by increasingly strong selection in new drugs, but not erased, at times revealing important contingencies. A history of selection in structured environments constrained resistance to new drugs and led to frequent loss of resistance to the initial drug by genetic reversions and not compensatory mutations. This research demonstrates that despite strong selective pressures of antibiotics leading to genetic parallelism, history can etch potential vulnerabilities to orthogonal drugs.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Allison L Haas
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Caroline Turner
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
26
|
Fisher KJ, Vignogna RC, Lang GI. Overdominant Mutations Restrict Adaptive Loss of Heterozygosity at Linked Loci. Genome Biol Evol 2021; 13:6345346. [PMID: 34363476 PMCID: PMC8382679 DOI: 10.1093/gbe/evab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of heterozygosity is a common mode of adaptation in asexual diploid populations. Because mitotic recombination frequently extends the full length of a chromosome arm, the selective benefit of loss of heterozygosity may be constrained by linked heterozygous mutations. In a previous laboratory evolution experiment with diploid yeast, we frequently observed homozygous mutations in the WHI2 gene on the right arm of Chromosome XV. However, when heterozygous mutations arose in the STE4 gene, another common target on Chromosome XV, loss of heterozygosity at WHI2 was not observed. Here, we show that mutations at WHI2 are partially dominant and that mutations at STE4 are overdominant. We test whether beneficial heterozygous mutations at these two loci interfere with one another by measuring loss of heterozygosity at WHI2 over 1,000 generations for ∼300 populations that differed initially only at STE4 and WHI2. We show that the presence of an overdominant mutation in STE4 reduces, but does not eliminate, loss of heterozygosity at WHI2. By sequencing 40 evolved clones, we show that populations with linked overdominant and partially dominant mutations show less parallelism at the gene level, more varied evolutionary outcomes, and increased rates of aneuploidy. Our results show that the degree of dominance and the phasing of heterozygous beneficial mutations can constrain loss of heterozygosity along a chromosome arm, and that conflicts between partially dominant and overdominant mutations can affect evolutionary outcomes.
Collapse
Affiliation(s)
- Kaitlin J Fisher
- Department of Biological Sciences, Lehigh University, USA.,Laboratory of Genetics, University of Wisconsin-Madison, USA
| | | | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, USA
| |
Collapse
|
27
|
Jahn LJ, Simon D, Jensen M, Bradshaw C, Ellabaan MMH, Sommer MOA. Compatibility of Evolutionary Responses to Constituent Antibiotics Drive Resistance Evolution to Drug Pairs. Mol Biol Evol 2021; 38:2057-2069. [PMID: 33480997 PMCID: PMC8097295 DOI: 10.1093/molbev/msab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are believed to increase treatment efficacy and reduce resistance evolution (WHO treatment guidelines for drug-resistant tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33 antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current theories, the phenotypic features of drug pairs are weak predictors of resistance evolution. Instead, the resistance evolution is driven by the relationship between the evolutionary trajectories that lead to resistance to a drug combination and those that lead to resistance to the component drugs. Drug combinations requiring a novel genetic response from target bacteria compared with the individual component drugs significantly reduce resistance evolution. These data support combination therapy as a treatment option to decelerate resistance evolution and provide a novel framework for selecting optimized drug combinations based on bacterial evolutionary responses.
Collapse
Affiliation(s)
- Leonie Johanna Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Simon
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mia Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charles Bradshaw
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
28
|
Bailey SF, Alonso Morales LA, Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 2021; 13:6300525. [PMID: 34132772 PMCID: PMC8410137 DOI: 10.1093/gbe/evab141] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be 'seen' by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
29
|
Lim MCW, Bi K, Witt CC, Graham CH, Dávalos LM. Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations. J Hered 2021; 112:229-240. [PMID: 33631009 DOI: 10.1093/jhered/esab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 01/28/2023] Open
Abstract
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA (Bi)
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY
| |
Collapse
|
30
|
Selveshwari S, Lele K, Dey S. Genomic signatures of UV resistance evolution in
Escherichia coli
depend on the growth phase during exposure. J Evol Biol 2021; 34:953-967. [DOI: 10.1111/jeb.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- S Selveshwari
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Kasturi Lele
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
31
|
Hartke J, Waldvogel A, Sprenger PP, Schmitt T, Menzel F, Pfenninger M, Feldmeyer B. Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species. J Evol Biol 2021; 34:937-952. [DOI: 10.1111/jeb.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Juliane Hartke
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
| | - Ann‐Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute for Zoology University of Cologne Cologne Germany
| | - Philipp P. Sprenger
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
- Department of Animal Ecology and Tropical Biology, Biocentre, Am Hubland University of Würzburg Würzburg Germany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, Am Hubland University of Würzburg Würzburg Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG) Frankfurt am Main Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| |
Collapse
|
32
|
Johnson MS, Gopalakrishnan S, Goyal J, Dillingham ME, Bakerlee CW, Humphrey PT, Jagdish T, Jerison ER, Kosheleva K, Lawrence KR, Min J, Moulana A, Phillips AM, Piper JC, Purkanti R, Rego-Costa A, McDonald MJ, Nguyen Ba AN, Desai MM. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 2021; 10:e63910. [PMID: 33464204 PMCID: PMC7815316 DOI: 10.7554/elife.63910] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/12/2020] [Indexed: 01/25/2023] Open
Abstract
Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.
Collapse
Affiliation(s)
- Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Shreyas Gopalakrishnan
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Juhee Goyal
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Megan E Dillingham
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Tanush Jagdish
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Elizabeth R Jerison
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - Katya Kosheleva
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jiseon Min
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Julia C Piper
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- AeroLabs, Aeronaut Brewing CoSomervilleUnited States
| | - Ramya Purkanti
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- The Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Artur Rego-Costa
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Michael J McDonald
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- School of Biological Sciences, Monash UniversityVictoria, MonashAustralia
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| |
Collapse
|
33
|
Painter DT, van der Wouden F, Laubichler MD, Youn H. Quantifying simultaneous innovations in evolutionary medicine. Theory Biosci 2020; 139:319-335. [PMID: 33241494 PMCID: PMC7719117 DOI: 10.1007/s12064-020-00333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023]
Abstract
To what extent do simultaneous innovations occur and are independently from each other? In this paper we use a novel persistent keyword framework to systematically identify innovations in a large corpus containing academic papers in evolutionary medicine between 2007 and 2011. We examine whether innovative papers occurring simultaneously are independent from each other by evaluating the citation and co-authorship information gathered from the corpus metadata. We find that 19 out of 22 simultaneous innovative papers do, in fact, occur independently from each other. In particular, co-authors of simultaneous innovative papers are no more geographically concentrated than the co-authors of similar non-innovative papers in the field. Our result suggests producing innovative work draws from a collective knowledge pool, rather than from knowledge circulating in distinct localized collaboration networks. Therefore, new ideas can appear at multiple locations and with geographically dispersed co-authorship networks. Our findings support the perspective that simultaneous innovations are the outcome of collective behavior.
Collapse
Affiliation(s)
- Deryc T. Painter
- School of Complex Adaptive System, Arizona State University, Tempe, AZ 85281 USA
| | | | - Manfred D. Laubichler
- School of Complex Adaptive System, Arizona State University, Tempe, AZ 85281 USA
- Santa Fe Institute, Santa Fe, NM 87501 USA
| | - Hyejin Youn
- Kellogg School of Management, Northwestern University, Evanston, IL 60208 USA
- Northwestern Institute on Complex Systems, Evanston, IL 60208 USA
- London Mathematical Lab, London, WC2N 6DF UK
| |
Collapse
|
34
|
Burskaia V, Naumenko S, Schelkunov M, Bedulina D, Neretina T, Kondrashov A, Yampolsky L, Bazykin GA. Excessive Parallelism in Protein Evolution of Lake Baikal Amphipod Species Flock. Genome Biol Evol 2020; 12:1493-1503. [PMID: 32653919 DOI: 10.1093/gbe/evaa138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
Repeated emergence of similar adaptations is often explained by parallel evolution of underlying genes. However, evidence of parallel evolution at amino acid level is limited. When the analyzed species are highly divergent, this can be due to epistatic interactions underlying the dynamic nature of the amino acid preferences: The same amino acid substitution may have different phenotypic effects on different genetic backgrounds. Distantly related species also often inhabit radically different environments, which makes the emergence of parallel adaptations less likely. Here, we hypothesize that parallel molecular adaptations are more prevalent between closely related species. We analyze the rate of parallel evolution in genome-size sets of orthologous genes in three groups of species with widely ranging levels of divergence: 46 species of the relatively recent lake Baikal amphipod radiation, a species flock of very closely related cichlids, and a set of significantly more divergent vertebrates. Strikingly, in genes of amphipods, the rate of parallel substitutions at nonsynonymous sites exceeded that at synonymous sites, suggesting rampant selection driving parallel adaptation. At sites of parallel substitutions, the intraspecies polymorphism is low, suggesting that parallelism has been driven by positive selection and is therefore adaptive. By contrast, in cichlids, the rate of nonsynonymous parallel evolution was similar to that at synonymous sites, whereas in vertebrates, this rate was lower than that at synonymous sites, indicating that in these groups of species, parallel substitutions are mainly fixed by drift.
Collapse
Affiliation(s)
- Valentina Burskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia
| | - Sergey Naumenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mikhail Schelkunov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Tatyana Neretina
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
- N.A. Pertsov White Sea Biological Station, Lomonosov Moscow State University, Primorskiy, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Alexey Kondrashov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Department of Ecology and Evolutionary Biology, University of Michigan
| | - Lev Yampolsky
- Department of Biological Sciences, East Tennessee State University
| | - Georgii A Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| |
Collapse
|
35
|
van Boheemen LA, Hodgins KA. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol Ecol 2020; 29:4102-4117. [PMID: 32246535 DOI: 10.1111/mec.15429] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Uncovering the genomic basis of repeated adaption can provide important insights into the constraints and biases that limit the diversity of genetic responses. Demographic processes such as admixture or bottlenecks affect genetic variation underlying traits experiencing selection. The impact of these processes on the genetic basis of adaptation remains, however, largely unexamined empirically. We here test repeatability in phenotypes and genotypes along parallel climatic clines within the native North American and introduced European and Australian Ambrosia artemisiifolia ranges. To do this, we combined multiple lines of evidence from phenotype-environment associations, FST -like outlier tests, genotype-environment associations and genotype-phenotype associations. We used 853 individuals grown in common garden from 84 sampling locations, targeting 19 phenotypes, >83 k SNPs and 22 environmental variables. We found that 17%-26% of loci with adaptive signatures were repeated among ranges, despite alternative demographic histories shaping genetic variation and genetic associations. Our results suggest major adaptive changes can occur on short timescales, with seemingly minimum impacts due to demographic changes linked to introduction. These patterns reveal some predictability of evolutionary change during range expansion, key in a world facing ongoing climate change, and rapid invasive spread.
Collapse
Affiliation(s)
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
36
|
Walden N, Lucek K, Willi Y. Lineage‐specific adaptation to climate involves flowering time in North American
Arabidopsis lyrata. Mol Ecol 2020; 29:1436-1451. [DOI: 10.1111/mec.15338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Nora Walden
- Department of Environmental Sciences University of Basel Basel Switzerland
- Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
| | - Kay Lucek
- Department of Environmental Sciences University of Basel Basel Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences University of Basel Basel Switzerland
| |
Collapse
|
37
|
Abstract
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.
Collapse
Affiliation(s)
- Kevin J. Parsons
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kirsty McWhinnie
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Natalie Pilakouta
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Lynsey Walker
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
38
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
39
|
A remark on "Biological control through provision of additional food to predators: A theoretical study" [Theor. Popul. Biol. 72 (2007) 111-120]. Theor Popul Biol 2019; 132:60-68. [PMID: 31836473 DOI: 10.1016/j.tpb.2019.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022]
Abstract
Biological control, the use of predators and pathogens to control target pests, is a promising alternative to chemical control. It is hypothesized that the introduced predators efficacy can be boosted by providing them with an additional food source. The current literature (Srinivasu, 2007; 2010; 2011) claims that if the additional food is of sufficiently large quantity and quality then pest eradication is possible in finite time. The purpose of the current manuscript is to show that to the contrary, pest eradication is not possible in finite time, for any quantity and quality of additional food. We show that pest eradication will occur only in infinite time, and derive decay rates to the extinction state. We posit a new modeling framework to yield finite time pest extinction. Our results have large scale implications for the effective design of biological control methods involving additional food.
Collapse
|
40
|
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 2019; 56:130-141. [DOI: 10.1016/j.ymben.2019.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
41
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
42
|
Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of Staphylococcus aureus. Appl Environ Microbiol 2019; 85:AEM.01773-19. [PMID: 31471305 DOI: 10.1128/aem.01773-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogenic bacterium that colonizes an estimated one-third of the human population and can cause a wide spectrum of disease, ranging from superficial skin infections to life-threatening sepsis. The adaptive mechanisms that contribute to the success of this pathogen remain obscure partially due to a lack of knowledge of its metabolic requirements. Systems biology approaches can be extremely useful in predicting and interpreting metabolic phenotypes; however, such approaches rely on a chemically defined minimal medium as a basis to investigate the requirements of the cell. In this study, a chemically defined minimal medium formulation, termed synthetic minimal medium (SMM), was investigated and validated to support growth of three S. aureus strains: LAC and TCH1516 (USA300 lineage), as well as D592 (USA100 lineage). The formulated SMM was used in an adaptive laboratory evolution experiment to probe the various mutational trajectories of all three strains leading to optimized growth capabilities. The evolved strains were phenotypically characterized for their growth rate and antimicrobial susceptibility. Strains were also resequenced to examine the genetic basis for observed changes in phenotype and to design follow-up metabolite supplementation assays. Our results reveal evolutionary trajectories that arose from strain-specific metabolic requirements. SMM and the evolved strains can also serve as important tools to study antibiotic resistance phenotypes of S. aureus IMPORTANCE As researchers try to understand and combat the development of antibiotic resistance in pathogens, there is a growing need to thoroughly understand the physiology and metabolism of the microbes. Staphylococcus aureus is a threatening pathogen with increased antibiotic resistance and well-studied virulence mechanisms. However, the adaptive mechanisms used by this pathogen to survive environmental stresses remain unclear, mostly due to the lack of information about its metabolic requirements. Defining the minimal metabolic requirements for S. aureus growth is a first step toward unraveling the mechanisms by which it adapts to metabolic stresses. Here, we present the development of a chemically defined minimal medium supporting growth of three S. aureus strains, and we reveal key genetic mutations contributing to improved growth in minimal medium.
Collapse
|
43
|
Sylvain F, Holland A, Audet‐Gilbert É, Luis Val A, Derome N. Amazon fish bacterial communities show structural convergence along widespread hydrochemical gradients. Mol Ecol 2019; 28:3612-3626. [DOI: 10.1111/mec.15184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution School of Life Science La Trobe University Bundoora Vic. Australia
| | - Émie Audet‐Gilbert
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular Instituto Nacional de Pesquisas da Amazônia (INPA) Manaus Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| |
Collapse
|
44
|
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 2019; 56:1-16. [PMID: 31401242 DOI: 10.1016/j.ymben.2019.08.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Harnessing the process of natural selection to obtain and understand new microbial phenotypes has become increasingly possible due to advances in culturing techniques, DNA sequencing, bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) experiments represent a powerful approach both to investigate the evolutionary forces influencing strain phenotypes, performance, and stability, and to acquire production strains that contain beneficial mutations. In this review, we summarize and categorize the applications of ALE to various aspects of microbial physiology pertinent to industrial bioproduction by collecting case studies that highlight the multitude of ways in which evolution can facilitate the strain construction process. Further, we discuss principles that inform experimental design, complementary approaches such as computational modeling that help maximize utility, and the future of ALE as an efficient strain design and build tool driven by growing adoption and improvements in automation.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Michael J Salazar
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Liam L Weng
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
45
|
Bertels F, Leemann C, Metzner KJ, Regoes R. Parallel evolution of HIV-1 in a long-term experiment. Mol Biol Evol 2019; 36:2400-2414. [PMID: 31251344 PMCID: PMC6805227 DOI: 10.1093/molbev/msz155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Environmental Systems Sciences, ETH Zurich, Zurich.,Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Roland Regoes
- Department of Environmental Systems Sciences, ETH Zurich, Zurich
| |
Collapse
|
46
|
Fraser BA, Whiting JR. What can be learned by scanning the genome for molecular convergence in wild populations? Ann N Y Acad Sci 2019; 1476:23-42. [PMID: 31241191 PMCID: PMC7586825 DOI: 10.1111/nyas.14177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Convergent evolution, where independent lineages evolve similar phenotypes in response to similar challenges, can provide valuable insight into how selection operates and the limitations it encounters. However, it has only recently become possible to explore how convergent evolution is reflected at the genomic level. The overlapping outlier approach (OOA), where genome scans of multiple independent lineages are used to find outliers that overlap and therefore identify convergently evolving loci, is becoming popular. Here, we present a quantitative analysis of 34 studies that used this approach across many sampling designs, taxa, and sampling intensities. We found that OOA studies with increased biological sampling power within replicates have increased likelihood of finding overlapping, "convergent" signals of adaptation between them. When identifying convergent loci as overlapping outliers, it is tempting to assume that any false-positive outliers derived from individual scans will fail to overlap across replicates, but this cannot be guaranteed. We highlight how population demographics and genomic context can contribute toward both true convergence and false positives in OOA studies. We finish with an exploration of emerging methods that couple genome scans with phenotype and environmental measures, leveraging added information from genome data to more directly test hypotheses of the likelihood of convergent evolution.
Collapse
Affiliation(s)
- Bonnie A Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - James R Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
47
|
Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections. Proc Natl Acad Sci U S A 2019; 116:14238-14247. [PMID: 31221761 DOI: 10.1073/pnas.1905747116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.
Collapse
|
48
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
49
|
Tokutomi N, Moyret‐Lalle C, Puisieux A, Sugano S, Martinez P. Quantifying local malignant adaptation in tissue-specific evolutionary trajectories by harnessing cancer's repeatability at the genetic level. Evol Appl 2019; 12:1062-1075. [PMID: 31080515 PMCID: PMC6503823 DOI: 10.1111/eva.12781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/03/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a potentially lethal disease, in which patients with nearly identical genetic backgrounds can develop a similar pathology through distinct combinations of genetic alterations. We aimed to reconstruct the evolutionary process underlying tumour initiation, using the combination of convergence and discrepancies observed across 2,742 cancer genomes from nine tumour types. We developed a framework using the repeatability of cancer development to score the local malignant adaptation (LMA) of genetic clones, as their potential to malignantly progress and invade their environment of origin. Using this framework, we found that premalignant skin and colorectal lesions appeared specifically adapted to their local environment, yet insufficiently for full cancerous transformation. We found that metastatic clones were more adapted to the site of origin than to the invaded tissue, suggesting that genetics may be more important for local progression than for the invasion of distant organs. In addition, we used network analyses to investigate evolutionary properties at the system-level, highlighting that different dynamics of malignant progression can be modelled by such a framework in tumour-type-specific fashion. We find that occurrence-based methods can be used to specifically recapitulate the process of cancer initiation and progression, as well as to evaluate the adaptation of genetic clones to given environments. The repeatability observed in the evolution of most tumour types could therefore be harnessed to better predict the trajectories likely to be taken by tumours and preneoplastic lesions in the future.
Collapse
Affiliation(s)
- Natsuki Tokutomi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Caroline Moyret‐Lalle
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon BérardCancer Research Center of LyonLyonFrance
| | - Alain Puisieux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon BérardCancer Research Center of LyonLyonFrance
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Pierre Martinez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon BérardCancer Research Center of LyonLyonFrance
| |
Collapse
|
50
|
Kassen R. Experimental Evolution of Innovation and Novelty. Trends Ecol Evol 2019; 34:712-722. [PMID: 31027838 DOI: 10.1016/j.tree.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
How does novelty, a new, genetically based function, evolve? A compelling answer has been elusive because there are few model systems where both the genetic mechanisms generating novel functions and the ecological conditions that govern their origin and spread can be studied in detail. This review article considers what we have learned about the evolution of novelty from microbial selection experiments. This work reveals that the genetic routes to novelty can be more highly variable than standard models have led us to believe and underscores the importance of considering both genetics and ecology in this process.
Collapse
Affiliation(s)
- Rees Kassen
- Department of Biology, University of Ottawa, Marie-Curie, Ottawa, Ontario, K1N6N5, Canada; kassenlab.weebly.com.
| |
Collapse
|