1
|
Biswas T, Sims C, Yuvaraj JK, Roberts RE, Löfstedt C, Andersson MN. Functional Characterization Supports Multiple Evolutionary Origins of Pheromone Receptors in Bark Beetles. Mol Biol Evol 2024; 41:msae196. [PMID: 39288326 PMCID: PMC11451568 DOI: 10.1093/molbev/msae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Chemical communication using pheromones is thought to have contributed to the diversification and speciation of insects. The species-specific pheromones are detected by specialized pheromone receptors (PRs). Whereas the evolution and function of PRs have been extensively studied in Lepidoptera, only a few PRs have been identified in beetles, which limits our understanding of their evolutionary histories and physiological functions. To shed light on these questions, we aimed to functionally characterize potential PRs in the spruce bark beetle Ips typographus ("Ityp") and explore their evolutionary origins and molecular interactions with ligands. Males of this species release an aggregation pheromone comprising 2-methyl-3-buten-2-ol and (4S)-cis-verbenol, which attracts both sexes to attacked trees. Using two systems for functional characterization, we show that the highly expressed odorant receptor (OR) ItypOR41 responds specifically to (4S)-cis-verbenol, with structurally similar compounds eliciting minor responses. We next targeted the closely related ItypOR40 and ItypOR45. Whereas ItypOR40 was unresponsive, ItypOR45 showed an overlapping response profile with ItypOR41, but a broader tuning. Our phylogenetic analysis shows that these ORs are present in a different OR clade as compared to all other known beetle PRs, suggesting multiple evolutionary origins of PRs in bark beetles. Next, using computational analyses and experimental validation, we reveal two amino acid residues (Gln179 and Trp310) that are important for ligand binding and pheromone specificity of ItypOR41 for (4S)-cis-verbenol, possibly via hydrogen bonding to Gln179. Collectively, our results shed new light on the origins, specificity, and ligand binding mechanisms of PRs in beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Cassie Sims
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | | | | | - Christer Löfstedt
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Martin N Andersson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| |
Collapse
|
2
|
Li R, Song X, Shan S, Hussain Dhiloo K, Wang S, Yin Z, Lu Z, Khashaveh A, Zhang Y. Female-Biased Odorant Receptor MmedOR48 in the Parasitoid Microplitis mediator Broadly Tunes to Plant Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17617-17625. [PMID: 39052973 DOI: 10.1021/acs.jafc.4c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Odorant receptors (ORs) play a crucial role in insect chemoreception. Here, a female-biased odorant receptor MmedOR48 in parasitoid Microplitis mediator was fully functionally characterized. The qPCR analysis suggested that the expression level of MmedOR48 increased significantly after adult emergence and was expressed much more in the antennae. Moreover, an in situ hybridization assay showed MmedOR48 was extensively located in the olfactory sensory neurons. In two-electrode voltage clamp recordings, recombinant MmedOR48 was broadly tuned to 23 kinds of volatiles, among which five plant aldehyde volatiles excited the strongest current recording values. Subsequent molecular docking analysis coupled with site-directed mutagenesis demonstrated that key amino acid residues Thr142, Gln80, Gln282, and Thr312 together formed the binding site in the active pocket for the typical aldehyde ligands. Furthermore, ligands of MmedOR48 could stimulate electrophysiological activities in female adults of the M. mediator. The main aldehyde ligand, nonanal, aroused significant behavioral preference of M. mediator in females than in males. These findings suggest that MmedOR48 may be involved in the recognition of plant volatiles in M. mediator, which provides valuable insight into understanding the olfactory mechanisms of parasitoids.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Khalid Hussain Dhiloo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Brajon L, Comte A, Capoduro R, Meslin C, Antony B, Al-Saleh MA, Pain A, Jacquin-Joly E, Montagné N. A conserved pheromone receptor in the American and the Asian palm weevils is also activated by host plant volatiles. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100090. [PMID: 39193175 PMCID: PMC11345504 DOI: 10.1016/j.cris.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.
Collapse
Affiliation(s)
- Ludvine Brajon
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
- Institut universitaire de France (IUF)
| |
Collapse
|
4
|
Wang C, Cao S, Shi C, Guo M, Sun D, Liu Z, Xiu P, Wang Y, Wang G, Liu Y. The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth. Cell Mol Life Sci 2024; 81:259. [PMID: 38878072 PMCID: PMC11335300 DOI: 10.1007/s00018-024-05303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 08/22/2024]
Abstract
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Collapse
Affiliation(s)
- Chenrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
6
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
7
|
Zhang S, Jacquin-Joly E, Montagné N, Liu F, Liu Y, Wang G. Identification of an odorant receptor responding to sex pheromones in Spodoptera frugiperda extends the novel type-I PR lineage in moths. INSECT SCIENCE 2024; 31:489-502. [PMID: 37573259 DOI: 10.1111/1744-7917.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 08/14/2023]
Abstract
In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a single monophyletic clade in the odorant receptor (OR) family, but recent studies have shown that ORs in another lineage also bind type-I sex pheromones, which indicates that type-I PRs have multiple independent origins in the Lepidoptera. In this study, we investigated whether ORs of the pest moth Spodoptera frugiperda belonging to clades closely related to this novel PR lineage may also have the capacity to bind type-I pheromones and serve as male PRs. Among the 7 ORs tested, only 1 (SfruOR23) exhibited a male-biased expression pattern. Importantly, in vitro functional characterization showed that SfruOR23 could bind several type-I sex pheromone compounds with Z-9-tetradecenal (Z9-14:Ald), a minor component found in female sex pheromone glands, as the optimal ligand. In addition, SfruOR23 also showed weak responses to plant volatile organic compounds. Altogether, we characterized an S. frugiperda PR positioned in a lineage closely related to the novel PR clade, indicating that the type-I PR lineage can be extended in moths.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Zhang YY, Bai TF, Guo JM, Wei ZQ, Liu SR, He Y, Ye JJ, Yan Q, Zhang J, Dong SL. Molecular mechanism of sex pheromone perception in male Mythimna loreyi revealed by in vitro system. PEST MANAGEMENT SCIENCE 2024; 80:744-755. [PMID: 37779104 DOI: 10.1002/ps.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Mythimna loreyi is an important agricultural pest with a sensitive sex pheromone communication system. To clarify the pheromone binding proteins (PBPs) and pheromone receptors (PRs) involved in sex pheromone perception is important for both understanding the molecular olfactory mechanism and developing a new pest control strategy in M. loreyi. RESULTS First, the electroantennogram (EAG) assay showed that male M. loreyi displayed the highest response to the major sex pheromone component Z9-14:Ac, and higher responses to two minor components, Z7-12:Ac and Z11-16:Ac. Second, the fluorescence competition binding assay showed that PBP1 bound all three pheromones and other tested compounds with high or moderate affinity, while PBP2 and PBP3 each bound only one pheromone component and few other compounds. Third, functional study using the Xenopus oocyte system demonstrated that, of the six candidate PRs, PR2 was weakly sensitive to the major pheromone Z9-14:Ac, but was strongly sensitive to pheromone analog Z9-14:OH; PR3 was strongly and specifically sensitive to a minor component Z7-12:Ac; PR4 and OR33 were both weakly sensitive to another minor component, Z11-16:Ac. Finally, phylogenetic relationship and ligand profiles of PRs were compared among six species from two closely related genera Mythimna and Spodoptera, suggesting functional shifts of M. loreyi PRs toward Spodoptera PRs. CONCLUSION Functional differentiations were revealed among three PBPs and six PRs in sex pheromone perception, laying an important basis for understanding the molecular mechanism of sex pheromone perception and for developing new control strategies in M. loreyi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Ying Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Teng-Fei Bai
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Si-Ruo Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu He
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing-Jing Ye
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Tang R, Huang C, Yang J, Rao ZC, Cao L, Bai PH, Zhao XC, Dong JF, Yan XZ, Wan FH, Jiang NJ, Han RC. A ghost moth olfactory prototype of the lepidopteran sex communication. Gigascience 2024; 13:giae044. [PMID: 39028585 PMCID: PMC11258902 DOI: 10.1093/gigascience/giae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/07/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
Sex role differentiation is a widespread phenomenon. Sex pheromones are often associated with sex roles and convey sex-specific information. In Lepidoptera, females release sex pheromones to attract males, which evolve sophisticated olfactory structures to relay pheromone signals. However, in some primitive moths, sex role differentiation becomes diverged. Here, we introduce the chromosome-level genome assembly from ancestral Himalaya ghost moths, revealing a unique olfactory evolution pattern and sex role parity among Lepidoptera. These olfactory structures of the ghost moths are characterized by a dense population of trichoid sensilla, both larger male and female antennal entry parts of brains, compared to the evolutionary later Lepidoptera. Furthermore, a unique tandem of 34 odorant receptor 19 homologs in Thitarodes xiaojinensis (TxiaOr19) has been identified, which presents overlapped motifs with pheromone receptors (PRs). Interestingly, the expanded TxiaOr19 was predicted to have unconventional tuning patterns compared to canonical PRs, with nonsexual dimorphic olfactory neuropils discovered, which contributes to the observed equal sex roles in Thitarodes adults. Additionally, transposable element activity bursts have provided traceable loci landscapes where parallel diversifications occurred between TxiaOr19 and PRs, indicating that the Or19 homolog expansions were diversified to PRs during evolution and thus established the classic sex roles in higher moths. This study elucidates an olfactory prototype of intermediate sex communication from Himalaya ghost moths.
Collapse
Affiliation(s)
- Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi, 030801, China
| | - Zhong-Chen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Peng-Hua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Xin-Cheng Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Feng Dong
- Forestry College, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xi-Zhong Yan
- College of Plant Protection, Shanxi Agricultural University, Shanxi, 030801, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Nan-Ji Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| |
Collapse
|
10
|
Zboray K, Toth AV, Miskolczi TD, Pesti K, Casanova E, Kreidl E, Mike A, Szenes Á, Sági L, Lukacs P. High-throughput ligand profile characterization in novel cell lines expressing seven heterologous insect olfactory receptors for the detection of volatile plant biomarkers. Sci Rep 2023; 13:21757. [PMID: 38066004 PMCID: PMC10709440 DOI: 10.1038/s41598-023-47455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Agriculturally important crop plants emit a multitude of volatile organic compounds (VOCs), which are excellent indicators of their health status and their interactions with pathogens and pests. In this study, we have developed a novel cellular olfactory panel for detecting fungal pathogen-related VOCs we had identified in the field, as well as during controlled inoculations of several crop plants. The olfactory panel consists of seven stable HEK293 cell lines each expressing a functional Drosophila olfactory receptor as a biosensing element along with GCaMP6, a fluorescent calcium indicator protein. An automated 384-well microplate reader was used to characterize the olfactory receptor cell lines for their sensitivity to reference VOCs. Subsequently, we profiled a set of 66 VOCs on all cell lines, covering a concentration range from 1 to 100 μM. Results showed that 49 VOCs (74.2%) elicited a response in at least one olfactory receptor cell line. Some VOCs activated the cell lines even at nanomolar (ppb) concentrations. The interaction profiles obtained here will support the development of biosensors for agricultural applications. Additionally, the olfactory receptor proteins can be purified from these cell lines with sufficient yields for further processing, such as structure determination or integration with sensor devices.
Collapse
Affiliation(s)
- Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- TetraLab Ltd., Budapest, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tímea D Miskolczi
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Pesti
- TetraLab Ltd., Budapest, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Novartis AG, 6336, Langkampfen, Austria
| | - Arpad Mike
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Áron Szenes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - László Sági
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Peter Lukacs
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary.
| |
Collapse
|
11
|
Yuan TT, Luo ZJ, Luo ZX, Cai XM, Bian L, Xiu CL, Fu NX, Chen ZM, Zhang LW, Li ZQ. Olfactory Gene Families in Scopula subpunctaria and Candidates for Type-II Sex Pheromone Detection. Int J Mol Sci 2022; 23:ijms232415775. [PMID: 36555416 PMCID: PMC9779464 DOI: 10.3390/ijms232415775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Jun Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Xiu Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Xiao-Ming Cai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Lei Bian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Chun-Li Xiu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Nan-Xia Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Mao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| | - Zhao-Qun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| |
Collapse
|
12
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
13
|
The Genetic Basis of Gene Expression Divergence in Antennae of Two Closely Related Moth Species, Helicoverpa armigera and Helicoverpa assulta. Int J Mol Sci 2022; 23:ijms231710050. [PMID: 36077444 PMCID: PMC9456569 DOI: 10.3390/ijms231710050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.
Collapse
|
14
|
Yin N, Xiao H, Yang A, Wu C, Liu N. Genome-Wide Analysis of Odorant and Gustatory Receptors in Six Papilio Butterflies (Lepidoptera: Papilionidae). INSECTS 2022; 13:779. [PMID: 36135480 PMCID: PMC9500883 DOI: 10.3390/insects13090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.
Collapse
Affiliation(s)
| | | | | | | | - Naiyong Liu
- Correspondence: ; Tel./Fax: +86-871-63862665
| |
Collapse
|
15
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
16
|
Nieberding CM, Beldade P, Baumlé V, San Martin G, Arun A, Lognay G, Montagné N, Bastin-Héline L, Jacquin-Joly E, Noirot C, Klopp C, Visser B. Mosaic Evolution of Molecular Pathways for Sex Pheromone Communication in a Butterfly. Genes (Basel) 2022; 13:1372. [PMID: 36011283 PMCID: PMC9407440 DOI: 10.3390/genes13081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly nocturnal) to butterflies (mostly diurnal) that occurred ~119 million years ago. In moths, it is the females that typically emit pheromones to attract male mates, but in butterflies males emit pheromones that are used by females for mate choice. The molecular bases of sex pheromone communication are well understood in moths, but they have remained relatively unexplored in butterflies. We used a combination of transcriptomics, real time qPCR, and phylogenetics to identify genes involved in the different steps (i.e., production, regulation, and reception) of sex pheromone communication of the butterfly Bicyclus anynana. Our results show that the biosynthesis and reception of sex pheromones relies both on moth-specific gene families (reductases) and on more ancestral insect gene families (desaturases, olfactory receptors, odorant binding proteins). Interestingly, B. anynana appears to use what was believed to be the moth-specific neuropeptide Pheromone Biosynthesis Activating Neuropeptide (PBAN) for regulating sex pheromone production. Altogether, our results suggest that a mosaic pattern best explains how sex pheromone communication evolved in butterflies, with some molecular components derived from moths, and others conserved from more ancient insect ancestors. This is the first large-scale investigation of the genetic pathways underlying sex pheromone communication in a butterfly.
Collapse
Affiliation(s)
- Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Patrícia Beldade
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisboa, Portugal;
| | - Véronique Baumlé
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Gilles San Martin
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Alok Arun
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Georges Lognay
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Lucie Bastin-Héline
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Céline Noirot
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Christophe Klopp
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| |
Collapse
|
17
|
Godoy R, Mutis A, Carabajal Paladino L, Venthur H. Genome-Wide Identification of Aldehyde Oxidase Genes in Moths and Butterflies Suggests New Insights Into Their Function as Odorant-Degrading Enzymes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.823119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aldehyde oxidases (AOXs) are common detoxifying enzymes in several organisms. In insects, AOXs act in xenobiotic metabolism and as odorant-degrading enzymes (ODEs). These last appear as crucial enzymes in the life cycle of insects, helping to reset their olfactory system, particularly in lepidopterans, which fulfill important ecological roles (e.g., pollination or destructive life cycles). A comprehensive understanding of their olfactory system has provided opportunities to study key chemosensory proteins. However, no significant advance has been made around lepidopteran AOXs research, and even less around butterflies, a recently evolved lineage. In this study we have identified novel AOX gene families in moths and butterflies in order to understand their role as ODEs. Eighteen genomes from both moths and butterflies were used for phylogenetics, molecular evolution and sequence analyses. We identified 164 AOXs, from which 91 are new. Their phylogeny showed two main clades that are potentially related to odorant-degrading function, where both moths and butterflies have AOXs. A first ODE-related clade seems to have a non-ditrysian origin, likely related to plant volatiles. A second ODE-related clade could be more pheromone-biased. Molecular evolution analysis suggests a slight purifying selection process, though a number of sites appeared under positive selection. ODE-related AOXs have changed a phenylalanine residue by proline in the active site. Finally, this study could serve as a reference for further evolutionary and functional studies around Lepidopteran AOXs.
Collapse
|
18
|
Yuvaraj JK, Jordan MD, Zhang DD, Andersson MN, Löfstedt C, Newcomb RD, Corcoran JA. Sex pheromone receptors of the light brown apple moth, Epiphyas postvittana, support a second major pheromone receptor clade within the Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103708. [PMID: 34973420 DOI: 10.1016/j.ibmb.2021.103708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.
Collapse
Affiliation(s)
| | - Melissa D Jordan
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Jacob A Corcoran
- Department of Biology, Lund University, Lund, Sweden; The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| |
Collapse
|
19
|
Nuo SM, Yang AJ, Li GC, Xiao HY, Liu NY. Transcriptome analysis identifies candidate genes in the biosynthetic pathway of sex pheromones from a zygaenid moth, Achelura yunnanensis (Lepidoptera: Zygaenidae). PeerJ 2021; 9:e12641. [PMID: 34993022 PMCID: PMC8679906 DOI: 10.7717/peerj.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.
Collapse
Affiliation(s)
- Shu-Mei Nuo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Hou XQ, Yuvaraj JK, Roberts RE, Zhang DD, Unelius CR, Löfstedt C, Andersson MN. Functional Evolution of a Bark Beetle Odorant Receptor Clade Detecting Monoterpenoids of Different Ecological Origins. Mol Biol Evol 2021; 38:4934-4947. [PMID: 34293158 PMCID: PMC8557457 DOI: 10.1093/molbev/msab218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How and which new functions may evolve among related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which physiological and behavioral responses to pheromones, volatiles from host and nonhost trees, and fungal symbionts are well described. In contrast, knowledge of OR function is restricted to two receptors detecting the pheromone compounds (S)-(-)-ipsenol (ItypOR46) and (R)-(-)-ipsdienol (ItypOR49). These receptors belong to an Ips-specific OR-lineage comprising seven ItypORs. To gain insight into the functional evolution of related ORs, we characterized the five remaining ORs in this clade using Xenopus oocytes. Two receptors responded primarily to the host tree monoterpenes (+)-3-carene (ItypOR25) and p-cymene (ItypOR27). Two receptors responded to oxygenated monoterpenoids produced in larger relative amounts by the beetle-associated fungi, with ItypOR23 specific for (+)-trans-(1R, 4S)-4-thujanol, and ItypOR29 responding to (+)-isopinocamphone and similar ketones. ItypOR28 responded to the pheromone E-myrcenol from the competitor Ips duplicatus. Overall, the OR responses match well with those of previously characterized olfactory sensory neuron classes except that neurons detecting E-myrcenol have not been identified. The characterized ORs are under strong purifying selection and demonstrate a shared functional property in that they all primarily respond to monoterpenoids. The variation in functional groups among OR ligands and their diverse ecological origins suggest that neofunctionalization has occurred early in the evolution of this OR-lineage following gene duplication.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Department of Biology, Lund University, Lund, Sweden
| | | | | | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - C Rikard Unelius
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | | | | |
Collapse
|
21
|
Chen XL, Li BL, Chen YX, Li GW, Wu JX. Functional analysis of the odorant receptor coreceptor in odor detection in Grapholita molesta (lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21837. [PMID: 34293199 DOI: 10.1002/arch.21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system must detect and discriminate various semiochemicals in the environment. In response to such diversity, insects have evolved a family of odorant-gated ion channels composed of a common receptor (coreceptor, Orco) and a ligand-binding tuning odorant receptor (OR) that confers odour specificity. This study aims to examine the expression pattern of Orco gene of Grapholita molesta (GmolOrco) and to elucidate the role of GmolOrco in detecting G. molesta sex pheromone and green leaf volatiles by using gene silencing via RNA interference (RNAi) coupled antennal electrophysiological (EAG). Multiple sequence alignment showed that GmolOrco shared high sequence similarities with the Orco ortholog of lepidopterans. The results of real-time quantitative PCR detection demonstrated that GmolOrco was predominantly expressed in adult antennae and had the highest expression quantity in adult period among the different developmental stages. Compared with the noninjected controls, GmolOrco expression in GmolOrcodouble-stranded RNA (dsRNA)-injected males was reduced to 39.92% and that in females was reduced to 40.43%. EAG assays showed that the responses of GmolOrco-dsRNA injected males to sex pheromones (Z)-8-dodecenyl acetate (Z8-12:OAc) and (Z)-8-dodecenyl alcohol (Z8-12:OH) were significantly reduced, and the GmolOrco-dsRNA-injected female to green leaf volatile (Z)-3-hexenyl acetate also significantly declined. We inferred that Orco-mediated olfaction was different in male and female G. molesta adults and was mainly involved in recognizing the sex pheromones released by female moths.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Yu-Xin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Roberts RE, Yuvaraj JK, Andersson MN. Codon Optimization of Insect Odorant Receptor Genes May Increase Their Stable Expression for Functional Characterization in HEK293 Cells. Front Cell Neurosci 2021; 15:744401. [PMID: 34552471 PMCID: PMC8450354 DOI: 10.3389/fncel.2021.744401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Insect odorant receptor (OR) genes are routinely expressed in Human Embryonic Kidney (HEK) 293 cells for functional characterization ("de-orphanization") using transient or stable expression. However, progress in this research field has been hampered because some insect ORs are not functional in this system, which may be due to insufficient protein levels. We investigated whether codon optimization of insect OR sequences for expression in human cells could facilitate their functional characterization in HEK293 cells with stable and inducible expression. We tested the olfactory receptor co-receptor (Orco) proteins from the bark beetles Ips typographus ("Ityp") and Dendroctonus ponderosae ("Dpon"), and six ItypORs previously characterized in Xenopus laevis oocytes and/or HEK cells. Western blot analysis indicated that codon optimization yielded increased cellular protein levels for seven of the eight receptors. Our experimental assays demonstrated that codon optimization enabled functional characterization of two ORs (ItypOR25 and ItypOR29) which are unresponsive when expressed from wildtype (non-codon optimized) genes. Similar to previous Xenopus oocyte recordings, ItypOR25 responded primarily to the host/conifer monoterpene (+)-3-carene. ItypOR29 responded primarily to (+)-isopinochamphone and similar ketones produced by fungal symbionts and trees. Codon optimization also resulted in significantly increased responses in ItypOR49 to its pheromone ligand (R)-(-)-ipsdienol, and improved responses to the Orco agonist VUAA1 in ItypOrco. However, codon optimization did not result in functional expression of DponOrco, ItypOR23, ItypOR27, and ItypOR28 despite higher protein levels as indicated by Western blots. We conclude that codon optimization may enable or improve the functional characterization of insect ORs in HEK cells, although this method is not sufficient for all ORs that are not functionally expressed from wildtype genes.
Collapse
|
23
|
Guo M, Du L, Chen Q, Feng Y, Zhang J, Zhang X, Tian K, Cao S, Huang T, Jacquin-Joly E, Wang G, Liu Y. Odorant Receptors for Detecting Flowering Plant Cues Are Functionally Conserved across Moths and Butterflies. Mol Biol Evol 2021; 38:1413-1427. [PMID: 33231630 PMCID: PMC8042770 DOI: 10.1093/molbev/msaa300] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Odorant receptors (ORs) are essential for plant–insect interactions. However, despite the global impacts of Lepidoptera (moths and butterflies) as major herbivores and pollinators, little functional data are available about Lepidoptera ORs involved in plant-volatile detection. Here, we initially characterized the plant-volatile-sensing function(s) of 44 ORs from the cotton bollworm Helicoverpa armigera, and subsequently conducted a large-scale comparative analysis that establishes how most orthologous ORs have functionally diverged among closely related species whereas some rare ORs are functionally conserved. Specifically, our systematic analysis of H. armigera ORs cataloged the wide functional scope of the H. armigera OR repertoire, and also showed that HarmOR42 and its Spodoptera littoralis ortholog are functionally conserved. Pursuing this, we characterized the HarmOR42-orthologous ORs from 11 species across the Glossata suborder and confirmed the HarmOR42 orthologs form a unique OR lineage that has undergone strong purifying selection in Glossata species and whose members are tuned with strong specificity to phenylacetaldehyde, a floral scent component common to most angiosperms. In vivo studies via HarmOR42 knockout support that HarmOR42-related ORs are essential for host-detection by sensing phenylacetaldehyde. Our work also supports that these ORs coevolved with the tube-like proboscis, and has maintained functional stability throughout the long-term coexistence of Lepidoptera with angiosperms. Thus, beyond providing a rich empirical resource for delineating the precise functions of H. armigera ORs, our results enable a comparative analysis of insect ORs that have apparently facilitated and currently sustain the intimate adaptations and ecological interactions among nectar feeding insects and flowering plants.
Collapse
Affiliation(s)
- Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yilu Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Identification and expression profiling of chemosensory membrane protein genes in Achelura yunnanensis (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100876. [PMID: 34246924 DOI: 10.1016/j.cbd.2021.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.
Collapse
|
25
|
Tian K, Liu W, Feng LK, Huang TY, Wang GR, Lin KJ. Functional characterization of pheromone receptor candidates in codling moth Cydia pomonella (Lepidoptera: Tortricidae). INSECT SCIENCE 2021; 28:445-456. [PMID: 32369668 DOI: 10.1111/1744-7917.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Sex pheromones serve a critical role in Lepidopterans finding mates. Male moths perceive and react to sex pheromones emitted by conspecific females through a delicate pheromone communication system. Pheromone receptors (PRs) are the key sensory elements at the beginning of that process. The codling moth (Cydia pomnonella) is an important pome fruit pest globally and a serious invasive species in China. Pheromone-based techniques have been used successfully in monitoring and controlling this species. We conducted ribonucleic acid sequencing analysis of the codling moth antennal transcriptome and identified 66 odorant receptors (ORs) in a population from Xinjiang province, China, of which 14 were PRs, including two novel PRs (CpomOR2e and CpomOR73). Four PRs that contain full-length open reading frames (CpomOR1, OR2a, OR5, OR7) and four PRs with ligands that have not been reported previously (CpomOR1, OR2a, OR5, OR7) were selected to deorphanize in the heterologous Xenopus oocyte expression system. Specifically, we found that CpomOR2a and CpomOR5 responded to (E,E)-8, 10-dodecadien-1-yl acetate (codlemone acetate). Furthermore, CpomOR5 (EC50 = 1.379 × 10-8 mol/L) was much more sensitive to codlemone acetate than CpomOR2a (EC50 = 1.663 × 10-6 mol/L). Since codlemone acetate is an important component of C. pomonella sex pheromone, our results improve the current understanding of pheromone communication in codling moths and will be helpful for the development of pest management strategies.
Collapse
Affiliation(s)
- Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Kai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ke-Jian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Godoy R, Machuca J, Venthur H, Quiroz A, Mutis A. An Overview of Antennal Esterases in Lepidoptera. Front Physiol 2021; 12:643281. [PMID: 33868009 PMCID: PMC8044547 DOI: 10.3389/fphys.2021.643281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Lepidoptera are used as a model for the study of insect olfactory proteins. Among them, odorant degrading enzymes (ODEs), that degrade odorant molecules to maintain the sensitivity of antennae, have received less attention. In particular, antennal esterases (AEs; responsible for ester degradation) are crucial for intraspecific communication in Lepidoptera. Currently, transcriptomic and genomic studies have provided AEs in several species. However, efforts in gene annotation, classification, and functional assignment are still lacking. Therefore, we propose to combine evidence at evolutionary, structural, and functional level to update ODEs as well as key information into an easier classification, particularly of AEs. Finally, the kinetic parameters for putative inhibition of ODEs are discussed in terms of its role in future integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Juan Machuca
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
27
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021; 19:16. [PMID: 33499862 PMCID: PMC7836466 DOI: 10.1186/s12915-020-00946-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
28
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021. [PMID: 33499862 DOI: 10.1101/2020.03.07.980797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
29
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
30
|
Xiao Y, An XK, Khashaveh A, Shan S, Wang Q, Wang SN, Gu SH, Li ZY, Zhang YJ. Broadly Tuned Odorant Receptor AlinOR59 Involved in Chemoreception of Floral Scent in Adelphocoris lineolatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13815-13823. [PMID: 33151685 DOI: 10.1021/acs.jafc.0c04434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant volatiles such as floral scent compounds play a crucial role in mediating insect host locating, mate search, and oviposition sites selection. The alfalfa plant bug, Adelphocoris lineolatus (Goeze), is a seriously polyphagous herbivore of alfalfa and cotton that has an obvious preference for flowering host plants. In this study, we focused on the role of an odorant receptor AlinOR59 in the perception of plant volatiles in A. lineolatus. In situ hybridization showed that AlinOR59 was coexpressed with the coreceptor AlinORco in the ORNs cell located in the long curved sensilla trichodea on antennae of both genders. The Xenopus oocytes expression coupled with two-electrode voltage clamp recordings demonstrated that AlinOR59 responded to 15 plant volatiles. In electroantennogram assays, all of the above 15 compounds could excite electrophysiological responses in the antennae of adult bugs. Furthermore, an important floral scent compound, methyl salicylate, was utilized to evaluate the behavioral responses of A. lineolatus. It was found that adult bugs of both genders were significantly attracted to methyl salicylate. Taken together, our findings suggest that AlinOR59 plays a crucial role in the perception of floral scents in A. lineolatus and could be used as a potential target to design novel olfactory regulators for the management of bugs.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shao-Hua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Yang H, Dong J, Sun YL, Hu Z, Lyu QH, Li D. Identification and expression profiles of candidate chemosensory receptors in Histia rhodope (Lepidoptera: Zygaenidae). PeerJ 2020; 8:e10035. [PMID: 33024644 PMCID: PMC7520089 DOI: 10.7717/peerj.10035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Insect olfaction and vision play important roles in survival and reproduction. Diurnal butterflies mainly rely on visual cues whereas nocturnal moths rely on olfactory signals to locate external resources. Histia rhodope Cramer (Lepidoptera: Zygaenidae) is an important pest of the landscape tree Bischofia polycarpa in China and other Southeast Asian regions. As a diurnal moth, H. rhodope represents a suitable model for studying the evolutionary shift from olfactory to visual communication. However, only a few chemosensory soluble proteins have been characterized and information on H. rhodope chemoreceptor genes is currently lacking. In this study, we identified 45 odorant receptors (ORs), nine ionotropic receptors (IRs), eight gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs) from our previously acquired H. rhodope antennal transcriptomic data. The number of chemoreceptors of H. rhodope was less compared with that found in many nocturnal moths. Some specific chemoreceptors such as OR co-receptor (ORco), ionotropic receptors co-receptor, CO2 receptors, sugar receptors and bitter receptors were predicted by phylogenetic analysis. Notably, two candidate pheromone receptors (PRs) were identified within a novel PR lineage. qRT-PCR results showed that almost all tested genes (22/24) were predominantly expressed in antennae, indicating that they may be important in olfactory function. Among these antennae-enriched genes, six ORs, five IRs and two GRs displayed female-biased expression, while two ORs displayed male-biased expression. Additionally, HrhoIR75q.2 and HrhoGR67 were more highly expressed in heads and legs. This study enriches the olfactory gene inventory of H. rhodope and provides the foundation for further research of the chemoreception mechanism in diurnal moths.
Collapse
Affiliation(s)
- Haibo Yang
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junfeng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ya-Lan Sun
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenjie Hu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qi-Hui Lyu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Dingxu Li
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
32
|
Shen S, Cao S, Zhang Z, Kong X, Liu F, Wang G, Zhang S. Evolution of sex pheromone receptors in Dendrolimus punctatus Walker (lepidoptera: Lasiocampidae) is divergent from other moth species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103375. [PMID: 32305486 DOI: 10.1016/j.ibmb.2020.103375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dendrolimus punctatus Walker (Lepidoptera: Lasiocampidae) is a pine caterpillar moth distributed in most areas of southern China and is an economically important pest of pine, due to its defoliation activity. Understanding fundamental sex pheromone perception mechanisms in D. punctatus may provide effective and sustainable options for novel control strategies. However, the identification and function of pheromone receptors, key genes that receipt the pheromone of this pest, are both unclear now. Previous researches suggested several candidate pheromone receptors whose expression levels were male antennae bias in D. punctatus. In this study, we cloned six candidate pheromone receptors (DpunOR 20/45/46/51/54/58) and Orco from D. punctatus. Phylogenetic tree analysis showed that lepidopteran PRs tend to be conserved and clustered together; however, D. punctatus candidate PRs were located in a distinct clade. Motif analysis of PRs showed clear sequences differences between Dendrolimus spp. and other tested moth species. To illustrate the ligand response properties of the candidate PRs of D. punctatus, each of the six genes was expressed with an Orco gene in Xenopus oocytes and using two-electrode voltage-clamp recordings. Finally, we successfully identified two sex pheromone receptors (PR45 and PR46). Our study, which identified a novel lineage of PRs tuned to Type I pheromones in Lepidoptera, provides evidence for the new evolution origin of sex pheromone communication in moths, and lays a foundation for the development of novel control strategies of D. punctatus.
Collapse
Affiliation(s)
- Sifan Shen
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| | - Sufang Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
33
|
Cao S, Huang T, Shen J, Liu Y, Wang G. An Orphan Pheromone Receptor Affects the Mating Behavior of Helicoverpa armigera. Front Physiol 2020; 11:413. [PMID: 32425812 PMCID: PMC7204811 DOI: 10.3389/fphys.2020.00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023] Open
Abstract
The Lepidoptera is the second largest insect order, which has the most extensive knowledge of sex pheromones and mechanisms of pheromone communication since the identification of the first insect pheromone in Bombyx mori. In the past 15 years, pheromone receptors have been identified and functionally characterized in many moth species. HarmOR14 is a typical pheromone receptor of Helicoverpa armigera which showed no response to the tested pheromones in Xenopus oocyte expression system, but its orthologous gene in Heliothis virescens, HvirOR14 could be activated by pheromones in the same expression system. To assess the possible functions of OR14 in vivo, in this study, we knocked out this gene using CRISPR/Cas9 system and compared the mating behaviors and EAG response to pheromones between the wild type and mutant strains. Our results showed that OR14 mutants did not affect the mating rate or the EAG response to pheromones but could prolong the mating duration and change the mating time in undefined manners, which extends our understanding to this kind of pheromone receptors.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
34
|
Zhao YJ, Li GC, Zhu JY, Liu NY. Genome-based analysis reveals a novel SNMP group of the Coleoptera and chemosensory receptors in Rhaphuma horsfieldi. Genomics 2020; 112:2713-2728. [PMID: 32145380 DOI: 10.1016/j.ygeno.2020.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
35
|
Hou X, Zhang DD, Yuvaraj JK, Corcoran JA, Andersson MN, Löfstedt C. Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: A comparison of results in the Xenopus oocyte and HEK cell systems. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103289. [PMID: 31778795 DOI: 10.1016/j.ibmb.2019.103289] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells. We re-examined the responses of these five EsemORs in Xenopus oocytes. We showed that in both systems, EsemOR1 specifically responded to the plant volatile β-caryophyllene. EsemOR3 responded stronger to the pheromone component (S,Z)-6-nonen-2-ol than to its enantiomer (R,Z)-6-nonen-2-ol, the second pheromone component. However, EsemOR3 also responded secondarily to the plant volatile β-caryophyllene in the oocyte system, but not in the HEK cell system. EsemOR4 was unresponsive in the HEK cells, but responded primarily to (R,Z)-6-nonen-2-ol followed by (S,Z)-6-nonen-2-ol in the oocytes, representing a discovery of a new pheromone receptor in this species. EsemOR5 was broadly tuned in both systems, but the rank order among the most active pheromone compounds and antagonists was different. EsemOR6 showed no response to any compound in either system. We compared the results obtained in the two different heterologous systems with the activity previously recorded in vivo, and performed in situ hybridization to localize the expression of these OR genes in the antennae. In spite of similar results overall, differences in OR responses between heterologous expression systems suggest that conclusions about the function of individual ORs may differ depending on the system used for deorphanization.
Collapse
Affiliation(s)
- Xiaoqing Hou
- Department of Biology, Lund University, Lund, Sweden.
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Bastin-Héline L, de Fouchier A, Cao S, Koutroumpa F, Caballero-Vidal G, Robakiewicz S, Monsempes C, François MC, Ribeyre T, Maria A, Chertemps T, de Cian A, Walker WB, Wang G, Jacquin-Joly E, Montagné N. A novel lineage of candidate pheromone receptors for sex communication in moths. eLife 2019; 8:49826. [PMID: 31818368 PMCID: PMC6904214 DOI: 10.7554/elife.49826] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.
Collapse
Affiliation(s)
- Lucie Bastin-Héline
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Arthur de Fouchier
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fotini Koutroumpa
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Gabriela Caballero-Vidal
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Stefania Robakiewicz
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Christelle Monsempes
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Marie-Christine François
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Tatiana Ribeyre
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Annick Maria
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Thomas Chertemps
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Anne de Cian
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Nicolas Montagné
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
37
|
Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, Qian W, Rota-Stabelli O, Yang N, Wang S, Wang G, Zhang G, Guo J, Gu LA, Chen L, Xing L, Xi Y, Liu F, Lin K, Guo M, Liu W, He K, Tian R, Jacquin-Joly E, Franck P, Siegwart M, Ometto L, Anfora G, Blaxter M, Meslin C, Nguyen P, Dalíková M, Marec F, Olivares J, Maugin S, Shen J, Liu J, Guo J, Luo J, Liu B, Fan W, Feng L, Zhao X, Peng X, Wang K, Liu L, Zhan H, Liu W, Shi G, Jiang C, Jin J, Xian X, Lu S, Ye M, Li M, Yang M, Xiong R, Walters JR, Li F. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat Commun 2019; 10:4237. [PMID: 31530873 PMCID: PMC6748993 DOI: 10.1038/s41467-019-12175-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/20/2019] [Indexed: 01/27/2023] Open
Abstract
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion. The codling moth, Cydia pomonella, is one of the major pests of pome fruit (apples and pears) and walnuts. Here, the authors sequence and analyze its genome, providing insights on olfactory and detoxification processes that may underlie its worldwide expansion.
Collapse
Affiliation(s)
- Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rui Tang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maohua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wanqiang Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Custom, Shanghai, 200135, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liuqi Aloy Gu
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66046, USA
| | - Longfei Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longsheng Xing
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Xi
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feiling Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kejian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruizheng Tian
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | | | - Pierre Franck
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Myriam Siegwart
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Lino Ometto
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy.,Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Gianfranco Anfora
- Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010, San Michele all'Adige (TN), Italy.,Centre Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige (TN), Italy
| | - Mark Blaxter
- Edinburgh Genomics, and Institute of Evolutionary Biology, School of Biological Sciences, The King's Buildings, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Camille Meslin
- INRA, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Martina Dalíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jérôme Olivares
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Sandrine Maugin
- INRA, Plantes et Systèmes de culture Horticole, 228 route de l'Aérodrome, 84914, Avignon Cedex 09, France
| | - Jianru Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinding Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinmeng Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiapeng Luo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Likai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Xianxin Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Peng
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Kang Wang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Lang Liu
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Yangling, 712100, China
| | - Haixia Zhan
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoliang Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunyan Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sha Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mingli Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Minglu Yang
- Xinjiang Production & Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang, Tarim University, Alar, 843300, China
| | - Renci Xiong
- Xinjiang Production & Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang, Tarim University, Alar, 843300, China
| | - James R Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66046, USA.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics 2019; 20:690. [PMID: 31477011 PMCID: PMC6720082 DOI: 10.1186/s12864-019-6054-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background Olfaction and gustation underlie behaviors that are crucial for insect fitness, such as host and mate selection. The detection of semiochemicals is mediated via proteins from large and rapidly evolving chemosensory gene families; however, the links between a species’ ecology and the diversification of these genes remain poorly understood. Hence, we annotated the chemosensory genes from genomes of select wood-boring coleopterans, and compared the gene repertoires from stenophagous species with those from polyphagous species. Results We annotated 86 odorant receptors (ORs), 60 gustatory receptors (GRs), 57 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 36 odorant binding proteins (OBPs), and 11 chemosensory proteins (CSPs) in the mountain pine beetle (Dendroctonus ponderosae), and 47 ORs, 30 GRs, 31 IRs, 4 SNMPs, 12 OBPs, and 14 CSPs in the emerald ash borer (Agrilus planipennis). Four SNMPs and 17 CSPs were annotated in the polyphagous wood-borer Anoplophora glabripennis. The gene repertoires in the stenophagous D. ponderosae and A. planipennis are reduced compared with those in the polyphagous A. glabripennis and T. castaneum, which is largely manifested through small gene lineage expansions and entire lineage losses. Alternative splicing of GR genes was limited in D. ponderosae and apparently absent in A. planipennis, which also seems to have lost one carbon dioxide receptor (GR1). A. planipennis has two SNMPs, which are related to SNMP3 in T. castaneum. D. ponderosae has two alternatively spliced OBP genes, a novel OBP “tetramer”, and as many as eleven IR75 members. Simple orthology was generally rare in beetles; however, we found one clade with orthologues of putative bitter-taste GRs (named the “GR215 clade”), and conservation of IR60a from Drosophila melanogaster. Conclusions Our genome annotations represent important quantitative and qualitative improvements of the original datasets derived from transcriptomes of D. ponderosae and A. planipennis, facilitating evolutionary analysis of chemosensory genes in the Coleoptera where only a few genomes were previously annotated. Our analysis suggests a correlation between chemosensory gene content and host specificity in beetles. Future studies should include additional species to consolidate this correlation, and functionally characterize identified proteins as an important step towards improved control of these pests. Electronic supplementary material The online version of this article (10.1186/s12864-019-6054-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 rue du P.E.P.S, Stn. Sainte-Foy, P.O. Box 10380, Québec, QC, G1V 4C7, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, pavillon Alexandre-Vachon, 1045, av. de la Médecine, local 3428, Québec, QC, G1V 0A6, Canada
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| |
Collapse
|
39
|
Durand N, Pottier MA, Siaussat D, Bozzolan F, Maïbèche M, Chertemps T. Glutathione-S-Transferases in the Olfactory Organ of the Noctuid Moth Spodoptera littoralis, Diversity and Conservation of Chemosensory Clades. Front Physiol 2018; 9:1283. [PMID: 30319435 PMCID: PMC6171564 DOI: 10.3389/fphys.2018.01283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/27/2018] [Indexed: 01/11/2023] Open
Abstract
Glutathione-S-transferases (GSTs) are conjugating enzymes involved in the detoxification of a wide range of xenobiotic compounds. The expression of GSTs as well as their activities have been also highlighted in the olfactory organs of several species, including insects, where they could play a role in the signal termination and in odorant clearance. Using a transcriptomic approach, we identified 33 putative GSTs expressed in the antennae of the cotton leafworm Spodoptera littoralis. We established their expression patterns and revealed four olfactory-enriched genes in adults. In order to investigate the evolution of antennal GST repertoires in moths, we re-annotated antennal transcripts corresponding to GSTs in two moth and one coleopteran species. We performed a large phylogenetic analysis that revealed an unsuspected structural—and potentially functional—diversity of GSTs within the olfactory organ of insects. This led us to identify a conserved clade containing most of the already identified antennal-specific and antennal-enriched GSTs from moths. In addition, for all the sequences from this clade, we were able to identify a signal peptide, which is an unusual structural feature for GSTs. Taken together, these data highlight the diversity and evolution of GSTs in the olfactory organ of a pest species and more generally in the olfactory system of moths, and also the conservation of putative extracellular members across multiple insect orders.
Collapse
Affiliation(s)
- Nicolas Durand
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Marie-Anne Pottier
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - David Siaussat
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Martine Maïbèche
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
40
|
Yuvaraj JK, Andersson MN, Zhang DD, Löfstedt C. Antennal Transcriptome Analysis of the Chemosensory Gene Families From Trichoptera and Basal Lepidoptera. Front Physiol 2018; 9:1365. [PMID: 30319455 PMCID: PMC6171000 DOI: 10.3389/fphys.2018.01365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
The chemosensory gene families of insects encode proteins that are crucial for host location, mate finding, oviposition, and avoidance behaviors. The insect peripheral chemosensory system comprises odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), and sensory neuron membrane proteins (SNMPs). These protein families have been identified from a large number of insect species, however, they still remain unidentified from several taxa that could provide important clues to their evolution. These taxa include older lepidopteran lineages and the sister order of Lepidoptera, Trichoptera (caddisflies). Studies of these insects should improve evolutionary analyses of insect chemoreception, and in particular shed light on the origin of certain lepidopteran protein subfamilies. These include the pheromone receptors (PRs) in the "PR clade", the pheromone binding proteins (PBPs), general odorant binding proteins (GOBPs), and certain presumably Lepidoptera-specific IR subfamilies. Hence, we analyzed antennal transcriptomes from Rhyacophila nubila (Trichoptera), Eriocrania semipurpurella, and Lampronia capitella (representing two old lepidopteran lineages). We report 37 ORs, 17 IRs, 9 GRs, 30 OBPs, 7 CSPs, and 2 SNMPs in R. nubila; 37 ORs, 17 IRs, 3 GRs, 23 OBPs, 14 CSPs, and 2 SNMPs in E. semipurpurella; and 53 ORs, 20 IRs, 5 GRs, 29 OBPs, 17 CSPs, and 3 SNMPs in L. capitella. We identified IR members of the "Lepidoptera-specific" subfamilies IR1 and IR87a also in R. nubila, demonstrating that these IRs also occur in Trichoptera. Members of the GOBP subfamily were only found in the two lepidopterans. ORs grouping within the PR clade, as well as PBPs, were only found in L. capitella, a species that in contrast to R. nubila and E. semipurpurella uses a so-called Type I pheromone similar to the pheromones of most species of the derived Lepidoptera (Ditrysia). Thus, in addition to providing increased coverage for evolutionary analyses of chemoreception in insects, our findings suggest that certain subfamilies of chemosensory genes have evolved in parallel with the transition of sex pheromone types in Lepidoptera. In addition, other chemoreceptor subfamilies show a broader taxonomic occurrence than hitherto acknowledged.
Collapse
Affiliation(s)
| | | | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
41
|
Köblös G, François MC, Monsempes C, Montagné N, Fónagy A, Jacquin-Joly E. Molecular Characterization of MbraOR16, a Candidate Sex Pheromone Receptor in Mamestra brassicae (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5106220. [PMID: 30247742 PMCID: PMC6151874 DOI: 10.1093/jisesa/iey090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous vegetables in Europe and Asia. Its sex pheromone has been characterized and is currently used as a lure to trap males; however, nothing is known about the molecular mechanisms of sex pheromone reception in male antennae. Using homology cloning and rapid amplification of cDNA ends-PCR strategies, we identified the first candidate pheromone receptor in this species. The transcript was specifically expressed in the antennae with a strong male bias. In situ hybridization experiments within the antennae revealed that the receptor-expressing cells were closely associated with the olfactory structures, especially the long trichoid sensilla known to be pheromone-sensitive. The deduced protein is predicted to adopt a seven-transmembrane structure, a hallmark of insect odorant receptors, and phylogenetically clustered in a clade that grouped a majority of the Lepidoptera pheromone receptors characterized to date. Taken together, our data support identification of a candidate pheromone receptor and provides a basis for better understanding how this species detects a signal critical for reproduction.
Collapse
Affiliation(s)
- Gabriella Köblös
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marie-Christine François
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Christelle Monsempes
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Nicolas Montagné
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Adrien Fónagy
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emmanuelle Jacquin-Joly
- Inra, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
42
|
Yuvaraj JK, Andersson MN, Corcoran JA, Anderbrant O, Löfstedt C. Functional characterization of odorant receptors from Lampronia capitella suggests a non-ditrysian origin of the lepidopteran pheromone receptor clade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 100:39-47. [PMID: 29894821 DOI: 10.1016/j.ibmb.2018.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The odorant receptors (ORs) of insects are crucial for host and mate recognition. In moths (Lepidoptera), specialized ORs are involved in male detection of the sex pheromone produced by females. Most moth sex pheromones are C10-C18 acetates, alcohols, and aldehydes (Type I pheromones), and most pheromone receptors (PRs) characterized to date are from higher Lepidoptera (Ditrysia), responding to these types of compounds. With few exceptions, functionally characterized PRs fall into what has been called the "PR-clade", which also contains receptors that have yet to be characterized. While it has been suggested that moth PRs have evolved from plant odor-detecting ORs, it is not known when receptors for Type I pheromones arose. This is largely due to a lack of functionally characterized PRs from non-ditrysian Lepidoptera. The currant shoot borer moth, Lampronia capitella (Prodoxidae), belongs to a non-ditrysian lineage, and uses Type I pheromone compounds. We identified 53 ORs from antennal transcriptomes of this species, and analyzed their phylogenetic relationships with known lepidopteran ORs. Using a HEK293 cell-based assay, we showed that three of the LcapORs with male-biased expression (based on FPKM values) respond to Type I pheromone compounds. Two of them responded to pheromone components of L. capitella and one to a structurally related compound. These PRs are the first from a non-ditrysian moth species reported to respond to Type I compounds. They belong to two of the more early-diverging subfamilies of the PR-clade for which a role in pheromone detection had not previously been demonstrated. Hence, our definition of the monophyletic lepidopteran PR-clade includes these receptors from a non-ditrysian species, based on functional support.
Collapse
Affiliation(s)
| | | | - Jacob A Corcoran
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - Olle Anderbrant
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | | |
Collapse
|
43
|
Tian Z, Sun L, Li Y, Quan L, Zhang H, Yan W, Yue Q, Qiu G. Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics 2018; 19:544. [PMID: 30029592 PMCID: PMC6053724 DOI: 10.1186/s12864-018-4900-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), poses a serious threat to a variety of fruits and causes significant economic loss owing to difficulties in its prevention and control. The olfactory sense is generally acknowledged to be a novel target for pest control. However, a systematic study of the olfactory genes expressed in C. sasakii has not been reported yet. Here, we reported the antennal transcriptome of C. sasakii using high-throughput sequencing and annotated the main chemosensory multi-gene families. RESULTS In the chemosensory gene families, 29 odorant-binding proteins, 13 chemosensory proteins, 1 sensory neuron membrane protein, 52 odorant receptors, 8 ionotropic receptors and 11 gustatory receptors were annotated in the C. sasakii antennal transcriptome. The number of olfactory genes obtained in our transcriptome was consistent with that identified in other lepidopteran insects, confirming that we basically accomplished the annotation of the chemosensory genes of C. sasakii in the adult antennal transcriptome. All sequences were annotated and analyzed by BLAST (basic local alignment search tool), and some chemosensory genes with specific functions were named according to the BLAST results and phylogenetic trees. Based on the expression profile in the transcriptome and phylogenetic analysis, differentially expressed genes (DEGs) were analyzed in both male and female adults. Finally, fluorescence quantitative real-time PCR was used to identify the male-specific or female-specific chemosensory genes that were putatively related to odor detection and recognition. Moreover, expression levels of OR33 and PBP2 were significantly higher in males than in females, indicating that these genes may interact with sex pheromones. We found some conserved antennal IRs and GRs involved in detecting sugar compounds (GR2, GR5, GR6, GR8) and carbon dioxide (GR1), which were also identified based on phylogenetic analysis. CONCLUSIONS There are 114 putative chemosensory proteins expressed in C. sasakii identified in this study. The identification of these proteins will make the molecular mechanism of odor recognition accessible.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Lina Sun
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Yanyan Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Linfa Quan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Huaijiang Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Wentao Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Qiang Yue
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China
| | - Guisheng Qiu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 South Street, Xinghai, Xingcheng, 125100, Liaoning, China.
| |
Collapse
|
44
|
Yuvaraj JK, Andersson MN, Anderbrant O, Löfstedt C. Diversity of olfactory structures: A comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron 2018; 111:9-18. [PMID: 29804006 DOI: 10.1016/j.micron.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
Abstract
The antenna is the main sensory organ of insects, housing different types of sensilla dedicated to detect chemical cues, motion, humidity and temperature. Sensilla are divided into different types based on their wall structure and morphology. Among the olfactory sensilla, there is an enormous variation in the numbers and morphological types present in different insect taxa. The reasons for this variation remain obscure, though there may be a correlation between sensillum morphology and the characteristics of the stimulus that the olfactory sensory neurons inside the sensillum detect. Here, we report the first comparative analysis of the morphology and ultrastructure of sensilla from Rhyacophila nubila (Rhyacophilidae: Trichoptera) and three species of Lepidoptera, Eriocrania semipurpurella (Eriocraniidae), Lampronia capitella (Prodoxidae), and Bicyclus anynana (Nymphalidae), which use different chemical types of pheromones. Our results, together with a thorough literature review, suggest a shift in major types of olfactory sensilla, from a high proportion of sensilla placodea or auricillica in Trichoptera and the most basal moth lineages (including Eriocraniidae), respectively, to sensilla trichodea in the more derived Lepidoptera (including Prodoxidae and the Ditrysia clade), which parallels the change in the types of sex pheromones used.
Collapse
Affiliation(s)
| | | | - Olle Anderbrant
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | |
Collapse
|