1
|
Reyer A, Bazihizina N, Jaślan J, Scherzer S, Schäfer N, Jaślan D, Becker D, Müller TD, Pommerrenig B, Neuhaus HE, Marten I, Hedrich R. Sugar beet PMT5a and STP13 carriers suitable for proton-driven plasma membrane sucrose and glucose import in taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2219-2232. [PMID: 38602250 DOI: 10.1111/tpj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Collapse
Affiliation(s)
- Antonella Reyer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadia Bazihizina
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, 50019, Sesto Fiorentino, Italy
| | - Justyna Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Dawid Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians-Universität, 80336, Munich, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Thomas D Müller
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, 06484, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| |
Collapse
|
2
|
Kobayashi NI, Takagi H, Yang X, Nishizawa-Yokoi A, Segawa T, Hoshina T, Oonishi T, Suzuki H, Iwata R, Toki S, Nakanishi TM, Tanoi K. Mutations in RZF1, a zinc-finger protein, reduce magnesium uptake in roots and translocation to shoots in rice. PLANT PHYSIOLOGY 2023; 192:342-355. [PMID: 36718554 PMCID: PMC10152673 DOI: 10.1093/plphys/kiad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Magnesium (Mg) homeostasis is critical for maintaining many biological processes, but little information is available to comprehend the molecular mechanisms regulating Mg concentration in rice (Oryza sativa). To make up for the lack of information, we aimed to identify mutants defective in Mg homeostasis through a forward genetic approach. As a result of the screening of 2,825 M2 seedlings mutated by ion-beam irradiation, we found a rice mutant that showed reduced Mg content in leaves and slightly increased Mg content in roots. Radiotracer 28Mg experiments showed that this mutant, named low-magnesium content 1 (LMGC1), has decreased Mg2+ influx in the root and Mg2+ translocation from root to shoot. Consequently, LMGC1 is sensitive to the low Mg condition and prone to develop chlorosis in the young mature leaf. The MutMap method identified a 7.4-kbp deletion in the LMGC1 genome leading to a loss of two genes. Genome editing using CRISPR-Cas9 further revealed that one of the two lost genes, a gene belonging to the RanBP2-type zinc-finger family that we named RanBP2-TYPE ZINC FINGER1 (OsRZF1), was the causal gene of the low Mg phenotype. OsRZF1 is a nuclear protein and may have a fundamental role in maintaining Mg homeostasis in rice plants.
Collapse
Affiliation(s)
- Natsuko I Kobayashi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Xiaoyu Yang
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
| | - Tenta Segawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Tatsuaki Hoshina
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Oonishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Hisashi Suzuki
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan
| | - Tomoko M Nakanishi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Keitaro Tanoi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Liu S, Long J, Zhang L, Gao J, Dong T, Wang Y, Peng C. Arabidopsis sucrose transporter 4 (AtSUC4) is involved in high sucrose-mediated inhibition of root elongation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Siwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Liding Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Jiayu Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Tiantian Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Ying Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Changcao Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
4
|
Halkier BA, Xu D. The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism. Nat Prod Rep 2022; 39:1483-1491. [PMID: 35481602 DOI: 10.1039/d2np00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.
Collapse
Affiliation(s)
- Barbara Ann Halkier
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Deyang Xu
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022; 12:biom12020205. [PMID: 35204707 PMCID: PMC8961523 DOI: 10.3390/biom12020205] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant–pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.
Collapse
Affiliation(s)
- Jialei Ji
- Correspondence: ; Tel.: +86-10-82108756
| | | | | | | | | | | | | |
Collapse
|
6
|
Li R, Zheng W, Jiang M, Zhang H. A review of starch biosynthesis in cereal crops and its potential breeding applications in rice ( Oryza Sativa L.). PeerJ 2022; 9:e12678. [PMID: 35036154 PMCID: PMC8710062 DOI: 10.7717/peerj.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Starch provides primary storage of carbohydrates, accounting for approximately 85% of the dry weight of cereal endosperm. Cereal seeds contribute to maximum annual starch production and provide the primary food for humans and livestock worldwide. However, the growing demand for starch in food and industry and the increasing loss of arable land with urbanization emphasizes the urgency to understand starch biosynthesis and its regulation. Here, we first summarized the regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid more attention to how transcriptional factors (TFs) systematically respond to various stimulants via the regulation of the enzymes during starch biosynthesis. Finally, some strategies to improve cereal yield and quality were put forward based on the previous reports. This review would collectively help to design future studies on starch biosynthesis in cereal crops.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China.,College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
7
|
Guo Y, Song H, Zhao Y, Qin X, Cao Y, Zhang L. Switch from symplasmic to aspoplasmic phloem unloading in Xanthoceras sorbifolia fruit and sucrose influx XsSWEET10 as a key candidate for Sugar transport. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111089. [PMID: 34763874 DOI: 10.1016/j.plantsci.2021.111089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The process of phloem unloading and post-unloading transport of photoassimilate is critical to crop output. Xanthoceras sorbifolia is a woody oil species with great biomass energy prospects in China; however, underproduction of seeds seriously restricts its development. Here, our cytological studies by ultrastructural observation revealed that the sieve element-companion cell complex in carpellary bundle was symplasmically interconnected with surrounding parenchyma cells at the early and late fruit developmental stages, whereas it was symplasmically isolated at middle stage. Consistently, real-time imaging showed that fluorescent tracer 6(5)carboxyfluorescein was confined to phloem strands at middle stage but released into surrounding parenchymal cells at early and late stages. Enzymatic assay showed that sucrose synthase act as the key enzyme catalyzing the progress of Suc degradation post-unloading pathway whether in pericarp or in seed, while vacuolar acid invertase and neutral invertase play compensation roles in sucrose decomposition. Sugar transporter XsSWEET10 had a high expression profile in fruit, especially at middle stage. XsSWEET10 is a plasma membrane-localized protein and heterologous expression in SUC2-deficient yeast strain SUSY7/ura3 confirmed its ability to uptake sucrose. These findings approved the transition from symplasmic to apoplasmic phloem unloading in Xanthoceras sorbifolia fruit and XsSWEET10 as a key candidate in sugar transport.
Collapse
Affiliation(s)
- Yuxiao Guo
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Huifang Song
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yangyang Zhao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Xuejing Qin
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yibo Cao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Lingyun Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
8
|
Li R, Jiang M, Zheng W, Zhang H. GUN4-mediated tetrapyrrole metabolites regulates starch biosynthesis during early seed development in rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Löwe H, Kremling A. In-Depth Computational Analysis of Natural and Artificial Carbon Fixation Pathways. BIODESIGN RESEARCH 2021; 2021:9898316. [PMID: 37849946 PMCID: PMC10521678 DOI: 10.34133/2021/9898316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 10/19/2023] Open
Abstract
In the recent years, engineering new-to-nature CO2- and C1-fixing metabolic pathways made a leap forward. New, artificial pathways promise higher yields and activity than natural ones like the Calvin-Benson-Bassham (CBB) cycle. The question remains how to best predict their in vivo performance and what actually makes one pathway "better" than another. In this context, we explore aerobic carbon fixation pathways by a computational approach and compare them based on their specific activity and yield on methanol, formate, and CO2/H2 considering the kinetics and thermodynamics of the reactions. Besides pathways found in nature or implemented in the laboratory, this included two completely new cycles with favorable features: the reductive citramalyl-CoA cycle and the 2-hydroxyglutarate-reverse tricarboxylic acid cycle. A comprehensive kinetic data set was collected for all enzymes of all pathways, and missing kinetic data were sampled with the Parameter Balancing algorithm. Kinetic and thermodynamic data were fed to the Enzyme Cost Minimization algorithm to check for respective inconsistencies and calculate pathway-specific activities. The specific activities of the reductive glycine pathway, the CETCH cycle, and the new reductive citramalyl-CoA cycle were predicted to match the best natural cycles with superior product-substrate yield. However, the CBB cycle performed better in terms of activity compared to the alternative pathways than previously thought. We make an argument that stoichiometric yield is likely not the most important design criterion of the CBB cycle. Still, alternative carbon fixation pathways were paretooptimal for specific activity and product-substrate yield in simulations with C1 substrates and CO2/H2 and therefore hold great potential for future applications in Industrial Biotechnology and Synthetic Biology.
Collapse
Affiliation(s)
- Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Germany
| | | |
Collapse
|
10
|
Zeng R, Chen T, Wang X, Cao J, Li X, Xu X, Chen L, Xia Q, Dong Y, Huang L, Wang L, Zhang J, Zhang L. Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:601771. [PMID: 34276712 PMCID: PMC8283264 DOI: 10.3389/fpls.2021.601771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Waterlogging has negative effects on crop yield. Physiological and transcriptome data of two peanut cultivars [Zhongkaihua 1 (ZKH 1) and Huayu 39 (HY 39)] were studied under normal water supply and waterlogging stress for 5 or 10 days at the flowering stage. The results showed that the main stem height, the number of lateral branches, lateral branch length, and the stem diameter increased under waterlogging stress, followed by an increase in dry matter accumulation, which was correlated with the increase in the soil and plant analysis development (SPAD) and net photosynthetic rate (Pn) and the upregulation of genes related to porphyrin and chlorophyll metabolism and photosynthesis. However, the imbalance of the source-sink relationship under waterlogging was the main cause of yield loss, and waterlogging caused an increase in the sucrose and soluble sugar contents and a decrease in the starch content; it also decreased the activities of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS), which may be due to the changes in the expression of genes related to starch and sucrose metabolism. However, the imbalance of the source-sink relationship led to the accumulation of photosynthate in the stems and leaves, which resulted in the decrease of the ratio of pod dry weight to total dry weight (PDW/TDW) and yield. Compared with ZKH 1, the PDW of HY 39 decreased more probably because more photosynthate accumulated in the stem and leaves of HY 39 and could not be effectively transported to the pod.
Collapse
Affiliation(s)
- Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xi Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lei Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qing Xia
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yonglong Dong
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Luping Huang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Leidi Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Jialei Zhang
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Zhang L, Wang L, Zhang J, Song C, Li Y, Li J, Lu M. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth. TREE PHYSIOLOGY 2021; 41:882-899. [PMID: 33147625 DOI: 10.1093/treephys/tpaa145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In trees, wood formation needs carbon import from the photosynthetic source tissues. Sugar transporters play important roles in carbohydrate transport into wood-forming cells. Sugars will eventually be exported transporters (SWEETs) play essential roles in many physiological processes. However, the roles of this family in the growth and development of woody plants have not been systematically investigated. In this study, 27 SWEET genes were identified in the Populus trichocarpa genome. These SWEET genes were classified into four clades based on their phylogenetic relationships, gene structures, conserved motifs and chromosomal locations. Representative SWEET members from each clade were selected for further studies. The PagSWEETs of Populus alba × Populus glandulosa were localized to plasma membrane, vacuolar, endoplasmic reticulum or Golgi. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that PagSWEETs have distinct expression patterns in various tissues, and PagSWEET5, 7, 10b, 10c, 15b, 17a and 17c exhibited high expression levels in stems. PagSWEET7 is localized to the cytoplasmic membrane and specifically expressed in the phloem as detected by histochemical GUS ($\beta $ - glucuronidase) assays. Xylem production and xylem sugar content were greater in developing wood of PagSWEET7 overexpression than wild-type lines. Collectively, these results provide valuable information for further investigating functions of PagSWEET genes, and identify PagSWEET7 as a candidate gene for using biotechnology to modify the wood formation in poplar.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- College of Agricultural and Biological engineering, Heze University, Heze, Shandong 274015, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Subtropical Forestry, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Cai Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Non-wood Forest Product of State Forestry Administration, School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Subtropical Forestry, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
12
|
Conneely LJ, Mauleon R, Mieog J, Barkla BJ, Kretzschmar T. Characterization of the Cannabis sativa glandular trichome proteome. PLoS One 2021; 16:e0242633. [PMID: 33793557 PMCID: PMC8016307 DOI: 10.1371/journal.pone.0242633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis sativa has been cultivated since antiquity as a source of fibre, food and medicine. The recent resurgence of C. sativa as a cash crop is mainly driven by the medicinal and therapeutic properties of its resin, which contains compounds that interact with the human endocannabinoid system. Compared to other medicinal crops of similar value, however, little is known about the biology of C. sativa. Glandular trichomes are small hair-like projections made up of stalk and head tissue and are responsible for the production of the resin in C. sativa. Trichome productivity, as determined by C. sativa resin yield and composition, is only beginning to be understood at the molecular level. In this study the proteomes of glandular trichome stalks and heads, were investigated and compared to the proteome of the whole flower tissue, to help further elucidate C. sativa glandular trichome biochemistry. The data suggested that the floral tissue acts as a major source of carbon and energy to the glandular trichome head sink tissue, supplying sugars which drive secondary metabolite biosynthesis. The trichome stalk seems to play only a limited role in secondary metabolism and acts as both source and sink.
Collapse
Affiliation(s)
- Lee James Conneely
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jos Mieog
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
13
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
14
|
Goeschl JD, Han L. A Proposed Drought Response Equation Added to the Münch-Horwitz Theory of Phloem Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:505153. [PMID: 33250905 PMCID: PMC7672028 DOI: 10.3389/fpls.2020.505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Theoretical and experimental evidence for an effect of sieve tube turgor pressure on the mechanisms of phloem unloading near the root tips during moderate levels of drought stress is reviewed. An additional, simplified equation is proposed relating decreased turgor pressure to decreased rate kinetics of membrane bound transporters. The effect of such a mechanism would be to decrease phloem transport speed, but increase concentration and pressure, and thus prevent or delay negative pressure in the phloem. Experimental evidence shows this mechanism precedes and exceeds a reduction in stomatal conductance.
Collapse
Affiliation(s)
- John D. Goeschl
- Department of Industrial and Systems Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
| | - Lifeng Han
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Xu H, Zou Q, Yang G, Jiang S, Fang H, Wang Y, Zhang J, Zhang Z, Wang N, Chen X. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. HORTICULTURE RESEARCH 2020; 7:72. [PMID: 32377362 PMCID: PMC7195469 DOI: 10.1038/s41438-020-0294-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 05/20/2023]
Abstract
Anthocyanin biosynthesis and sugar metabolism are important processes during plant growth, but the molecular interactions underlying these pathways are still unclear. In this work, we analyzed the anthocyanin and soluble sugar contents, as well as the transcript levels of transcription factors that are known to be related to the biosynthesis of anthocyanin in 'Hongcui 1' apple flesh during fruit development. Overexpression of MdMYB6 in red-fleshed calli was found to reduce anthocyanin content and result in downregulated expression of the MdANS and MdGSTF12 proteins. Yeast one-hybrid and electrophoretic mobility shift analyses showed that MdMYB6 could directly bind to the promoters of MdANS and MdGSTF12, indicating that MdMYB6 could inhibit anthocyanin biosynthesis by regulating MdANS and MdGSTF12. Overexpression of MdTMT1 in the Arabidopsis tmt1 mutant restored the glucose and fructose contents to the wild-type levels, while overexpression of MdTMT1 in red-fleshed calli increased the contents of glucose and fructose but reduced the contents of UDP-glucose, UDP-galactose, and anthocyanin. Using a GUS reporter system, yeast one-hybrid, chromatin immunoprecipitation-PCR and electrophoretic mobility shift analyses, we found that MdMYB6 could bind to the promoter of MdTMT1, resulting in increased promoter activity. Overexpression of MdMYB6 in calli overexpressing MdTMT1 increased the expression of MdTMT1, which led to reduced contents of UDP-glucose and UDP-galactose and decreased anthocyanin content compared to those of the calli that overexpressed MdTMT1. This finding suggested that MdMYB6 could also inhibit anthocyanin biosynthesis by regulating MdTMT1 to decrease the contents of UDP-glucose and UDP-galactose. Taken together, these results showed that MdMYB6 and MdTMT1 play key roles in both anthocyanin biosynthesis and sugar transport.
Collapse
Affiliation(s)
- Haifeng Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Qi Zou
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Guanxian Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Shenghui Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Hongcheng Fang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Yicheng Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Jing Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Zongying Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Nan Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| |
Collapse
|
16
|
Ren R, Yue X, Li J, Xie S, Guo S, Zhang Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:321. [PMID: 32457764 PMCID: PMC7221319 DOI: 10.3389/fpls.2020.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
The sugar content of grape berries is affected by many factors. To explore the hexose content in different cultivars, the photosynthesis, vegetative, and reproductive biomass, as well as the enzyme activities and expression levels of genes related to sugar metabolism and sugar contents were measured. Samples were collected 70-110 days after anthesis (DAA), from Riesling (RI), Petit Manseng (PM), and Cabernet Sauvignon (CS) berries cultivated in the field. The results indicated that high expression levels of VvSWEET15 and VvSS3 and a high activity of sucrose synthase (SS) are associated with a higher hexose content in the berries of PM than in the berries of the other two cultivars. These genes promoted hexose accumulation in the berries by regulating sugar hydrolysis and transport. The results of this study indicate that active sugar hydrolysis and transport increase the hexose content of PM berries, which provides insights for grape berry quality improvement and breeding projects in wine production. Main Conclusion: The active VvSS3, sucrose synthase (SS), and VvSWEET15 increases the hexose content in Petit Manseng berries, which are associated with sugar hydrolysis and transport.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, China
| | - Junnan Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Gu J, Zeng Z, Wang Y, Lyu Y. Transcriptome Analysis of Carbohydrate Metabolism Genes and Molecular Regulation of Sucrose Transport Gene LoSUT on the Flowering Process of Developing Oriental Hybrid Lily 'Sorbonne' Bulb. Int J Mol Sci 2020; 21:ijms21093092. [PMID: 32349427 PMCID: PMC7247698 DOI: 10.3390/ijms21093092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
The quality of Lily cut flower was determined by the quality of bulbs. During the process of vernalization and flower bud differentiation, sugar massively accumulated in the bulb, which influenced the bulb development. However, the details of sugar genes’ regulation mechanism for these processes were not fully understood. Here, morphological physiology, transcriptomes and gene engineering technology were used to explore this physiological change. Seventy-two genes of 25 kinds of sugar metabolism-related genes were annotated after re-analyzing transcriptome data of Oriental hybrid lily ‘Sorbonne’ bulbs, which were generated on Hiseq Illumina 2000. The results showed that these genes were closely related to lily bulb vernalization and development. Combining gene expression pattern with gene co-expression network, five genes (Contig5669, Contig13319, Contig7715, Contig1420 and Contig87292) were considered to be the most potential signals, and the sucrose transporter gene (SUT) was the focus of this study. Carbohydrate transport pathway and genes’ regulation mechanism were inferred through a physiological and molecular test. SUT seemed to be the sugar sensor that could sense and regulate sugar concentration, which might have effects on other genes, such as FT, LFY and so on. LoSUT2 and LoSUT4 genes were cloned from Oriental hybrid lily ‘Sorbonne’ by RACE, which was the first time for these genes in Oriental hybrid lily ‘Sorbonne’. The physiological properties of these proteins were analyzed such as hydrophobicity and phosphorylation. In addition, secondary and tertiary structures of proteins were predicted, which indicated the two proteins were membrane proteins. Their cellular locations were verified through positioning the experiment of the fluorescent vector. They were highly expressed in cells around phloem, which illustrated the key role of these genes in sugar transport. Furthermore, transient expression assays showed that overexpressed LoSUT2 and LoSUT4 in Arabidopsis thaliana bloomed significantly earlier than the wild type and the expression of FT, SOC1 and LFY were also affected by LoSUT2 and LoSUT4, which indicated that LoSUT2 and LoSUT4 may regulate plants flowering time.
Collapse
|
18
|
Dreyer I, Gomez-Porras JL, Riedelsberger J. The potassium battery: a mobile energy source for transport processes in plant vascular tissues. THE NEW PHYTOLOGIST 2017; 216:1049-1053. [PMID: 28643868 DOI: 10.1111/nph.14667] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/12/2017] [Indexed: 05/26/2023]
Abstract
Contents 1049 I. 1049 II. 1050 III. 1050 IV. 1050 V. 1051 VI. 1051 VII. 1052 VIII. 1052 1053 References 1053 SUMMARY: Plant roots absorb potassium ions from the soil and transport them in the xylem via the transpiration stream to the shoots. There, in source tissues where sufficient chemical energy (ATP) is available, K+ is loaded into the phloem and then transported with the phloem stream to other parts of the plant; in part, transport is also back to the roots. This, at first sight, futile cycling of K+ has been uncovered to be part of a sophisticated mechanism that (1) enables the shoot to communicate its nutrient demand to the root, (2) contributes to the K+ nutrition of transport phloem tissues and (3) transports energy stored in the K+ gradient between phloem cytosol and the apoplast. This potassium battery can be tapped by opening AKT2-like potassium channels and then enables the ATP-independent energization of other transport processes, such as the reloading of sucrose. Insights into these mechanisms have only been possible by combining wet-lab and dry-lab experiments by means of computational cell biology modeling and simulations.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Judith Lucia Gomez-Porras
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Janin Riedelsberger
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
19
|
Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O’Connor SE, Goossens A, Halkier BA. Identification of Iridoid Glucoside Transporters in Catharanthus roseus. PLANT & CELL PHYSIOLOGY 2017; 58:1507-1518. [PMID: 28922750 PMCID: PMC5921532 DOI: 10.1093/pcp/pcx097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/06/2017] [Indexed: 05/02/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.
Collapse
Affiliation(s)
- Bo Larsen
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Victoria L. Fuller
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alex Van Moerkercke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Richard Payne
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Maite Colinas
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Sarah E. O’Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Barbara A. Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Corresponding author: E-mail, ; Fax, +45 35333333
| |
Collapse
|
20
|
Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep 2017; 7:3536. [PMID: 28615718 PMCID: PMC5471243 DOI: 10.1038/s41598-017-03872-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Sugars Will Eventually be Exported Transporters (SWEET) are a novel type of sugar transporter that plays crucial roles in multiple biological processes. From banana, for the first time, 25 SWEET genes which could be classified into four subfamilies were identified. Majority of MaSWEETs in each subfamily shared similar gene structures and conserved motifs. Comprehensive transcriptomic analysis of two banana genotypes revealed differential expression patterns of MaSWEETs in different tissues, at various stages of fruit development and ripening, and in response to abiotic and biotic stresses. More than 80% MaSWEETs were highly expressed in BaXi Jiao (BX, Musa acuminata AAA group, cv. Cavendish), in sharp contrast to Fen Jiao (FJ, M. acuminata AAB group) when pseudostem was first emerged. However, MaSWEETs in FJ showed elevated expression under cold, drought, salt, and fungal disease stresses, but not in BX. Interaction networks and co-expression assays further revealed that MaSWEET-mediated networks participate in fruit development signaling and abiotic/biotic stresses, which was strongly activated during early stage of fruit development in BX. This study provides new insights into the complex transcriptional regulation of SWEETs, as well as numerous candidate genes that promote early sugar transport to improve fruit quality and enhance stress resistance in banana.
Collapse
|
21
|
Wittek A, Dreyer I, Al-Rasheid KAS, Sauer N, Hedrich R, Geiger D. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:422-435. [PMID: 28296205 DOI: 10.1111/jipb.12535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
The biotrophic fungus Ustilago maydis causes corn smut disease, inducing tumor formation in its host Zea mays. Upon infection, the fungal hyphae invaginate the plasma membrane of infected maize cells, establishing an interface where pathogen and host are separated only by their plasma membranes. At this interface the fungal and maize sucrose transporters, UmSrt1 and ZmSUT1, compete for extracellular sucrose in the corn smut/maize pathosystem. Here we biophysically characterized ZmSUT1 and UmSrt1 in Xenopus oocytes with respect to their voltage-, pH- and substrate-dependence and determined affinities toward protons and sucrose. In contrast to ZmSUT1, UmSrt1 has a high affinity for sucrose and is relatively pH- and voltage-independent. Using these quantitative parameters, we developed a mathematical model to simulate the competition for extracellular sucrose at the contact zone between the fungus and the host plant. This approach revealed that UmSrt1 exploits the apoplastic sucrose resource, which forces the plant transporter into a sucrose export mode providing the fungus with sugar from the phloem. Importantly, the high sucrose concentration in the phloem appeared disadvantageous for the ZmSUT1, preventing sucrose recovery from the apoplastic space in the fungus/plant interface.
Collapse
Affiliation(s)
- Anke Wittek
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | | | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
22
|
Tran TM, Hampton CS, Brossard TW, Harmata M, Robertson JD, Jurisson SS, Braun DM. In vivo transport of three radioactive [ 18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:1-11. [PMID: 28300727 DOI: 10.1016/j.plaphy.2017.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 05/26/2023]
Abstract
Sucrose transporter (SUT) proteins translocate sucrose across cell membranes; however, mechanistic aspects of sucrose binding by SUTs are not well resolved. Specific hydroxyl groups in sucrose participate in hydrogen bonding with SUT proteins. We previously reported that substituting a radioactive fluorine-18 [18F] at the C-6' position within the fructosyl moiety of sucrose did not affect sucrose transport by the maize (Zea mays) ZmSUT1 protein. To determine how 18F substitution of hydroxyl groups at two other positions within sucrose, the C-1' in the fructosyl moiety or the C-6 in the glucosyl moiety, impact sucrose transport, we synthesized 1'-[F18]fluoro-1'-deoxysucrose and 6-[F18]fluoro-6-deoxysucrose ([18F]FDS) analogs. Each [18F]FDS derivative was independently introduced into wild-type or sut1 mutant plants, which are defective in sucrose phloem loading. All three (1'-, 6'-, and 6-) [18F]FDS derivatives were efficiently and equally translocated, similarly to carbon-14 [14C]-labeled sucrose. Hence, individually replacing the hydroxyl groups at these positions within sucrose does not interfere with substrate recognition, binding, or membrane transport processes, and hydroxyl groups at these three positions are not essential for hydrogen bonding between sucrose and ZmSUT1. [18F]FDS imaging afforded several advantages compared to [14C]-sucrose detection. We calculated that 1'-[18F]FDS was transported at approximately a rate of 0.90 ± 0.15 m.h-1 in wild-type leaves, and at 0.68 ± 0.25 m.h-1 in sut1 mutant leaves. Collectively, our data indicated that [18F]FDS analogs are valuable tools to probe sucrose-SUT interactions and to monitor sucrose transport in plants.
Collapse
Affiliation(s)
- Thu M Tran
- Plant Imaging Consortium, United States; Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, United States
| | - Carissa S Hampton
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Tom W Brossard
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - J David Robertson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Silvia S Jurisson
- Plant Imaging Consortium, United States; Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - David M Braun
- Plant Imaging Consortium, United States; Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
23
|
Secchi F, Pagliarani C, Zwieniecki MA. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. PLANT, CELL & ENVIRONMENT 2017; 40:858-871. [PMID: 27628165 DOI: 10.1111/pce.12831] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | | |
Collapse
|
24
|
Nieberl P, Ehrl C, Pommerrenig B, Graus D, Marten I, Jung B, Ludewig F, Koch W, Harms K, Flügge UI, Neuhaus HE, Hedrich R, Sauer N. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:315-326. [PMID: 28075052 DOI: 10.1111/plb.12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/07/2017] [Indexed: 05/08/2023]
Abstract
Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter. In contrast to the recently identified tonoplast-localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily. Transgenic Arabidopsis plants expressing the β-GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1-promoter showed GUS histochemical staining of their phloem; an anti-BvSUT1-antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers' yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton-coupled sucrose symporter in Xenopus laevis oocytes. Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks.
Collapse
Affiliation(s)
- P Nieberl
- Molecular Plant Physiology (MPP), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - C Ehrl
- Molecular Plant Physiology (MPP), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - B Pommerrenig
- Molecular Plant Physiology (MPP), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - D Graus
- Biophysics and Molecular Plant Physiology, University of Würzburg, Würzburg, Germany
| | - I Marten
- Biophysics and Molecular Plant Physiology, University of Würzburg, Würzburg, Germany
| | - B Jung
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - F Ludewig
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - W Koch
- KWS Saat AG, Einbeck, Germany
| | - K Harms
- SÜDZUCKER AG, CRDS, Obrigheim/Pfalz, Germany
| | - U-I Flügge
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - H E Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - R Hedrich
- Biophysics and Molecular Plant Physiology, University of Würzburg, Würzburg, Germany
| | - N Sauer
- Molecular Plant Physiology (MPP), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
H. Wegner L. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Secchi F, Zwieniecki MA. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. PLANT, CELL & ENVIRONMENT 2016; 39:2350-2360. [PMID: 27187245 DOI: 10.1111/pce.12767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 05/25/2023]
Abstract
Severe water stress constrains, or even stops, water transport in the xylem due to embolism formation. Previously, the xylem of poplar trees was shown to respond to embolism formation by accumulating carbohydrates in the xylem apoplast and dropping xylem sap pH. We hypothesize that these two processes may be functionally linked as lower pH activates acidic invertases degrading sucrose and inducing accumulation of monosaccharides in xylem apoplast. Using a novel in vivo method to measure xylem apoplast pH, we show that pH drops from ~6.2 to ~5.6 in stems of severely stressed plants and rises following recovery of stem water status. We also show that in a lower pH environment, sugars are continuously accumulating in the xylem apoplast. Apoplastic carbohydrate accumulation was reduced significantly in the presence of a proton pump blocker (orthovanadate). These observations suggest that a balance in sugar concentrations exists between the xylem apoplast and symplast that can be controlled by xylem pH and sugar concentration. We conclude that lower pH is related to loss of xylem transport function, eventually resulting in accumulation of sugars that primes stems for recovery from embolism when water stress is relieved.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy.
| | | |
Collapse
|
27
|
Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Sci Rep 2016; 6:29153. [PMID: 27356489 PMCID: PMC4928125 DOI: 10.1038/srep29153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.
Collapse
|
28
|
Budzinski IGF, Moon DH, Lindén P, Moritz T, Labate CA. Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2016; 7:932. [PMID: 27446160 PMCID: PMC4923158 DOI: 10.3389/fpls.2016.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/11/2016] [Indexed: 05/09/2023]
Abstract
Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD(+) for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree.
Collapse
Affiliation(s)
- Ilara G. F. Budzinski
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - David H. Moon
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Pernilla Lindén
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Carlos A. Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
- *Correspondence: Carlos A. Labate
| |
Collapse
|
29
|
Pokhilko A, Ebenhöh O. Mathematical modelling of diurnal regulation of carbohydrate allocation by osmo-related processes in plants. J R Soc Interface 2015; 12:20141357. [PMID: 25631572 PMCID: PMC4345503 DOI: 10.1098/rsif.2014.1357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plants synthesize sucrose in source tissues (mainly mature leafs) and supply it for growth of sink tissues (young leafs). Sucrose is derived from photosynthesis during daytime and from starch at night. Because the diurnal regulation of sucrose fluxes is not completely understood, we built a mathematical model designed to reproduce all key experimental observations. For this, assumptions were made about the molecular mechanisms underlying the regulations, which are all motivated by experimental facts. The key regulators in our model are two kinases (SnRK1 and osmo-sensitive kinase OsmK) under the control of the circadian clock. SnRK1 is activated in the night to prepare for regularly occurring carbon-limiting conditions, whereas OsmK is activated during the day to prepare for water deficit, which often occurs in the afternoon. Decrease of SnRK1 and increase of OsmK result in partitioning of carbon towards sucrose to supply growing sink tissues. Concomitantly, increasing levels of the growth regulator trehalose-6-phosphate stimulates the development of new sink tissues and thus sink demand, which further activates sucrose supply in a positive feedback loop. We propose that OsmK acts as a timer to measure the length of the photoperiod and suggest experiments how this hypothesis can be validated.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, King's College, Aberdeen, UK
| | - Oliver Ebenhöh
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, King's College, Aberdeen, UK Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, Dusseldorf 40225, Germany
| |
Collapse
|
30
|
Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq. PLoS One 2015; 10:e0137168. [PMID: 26355995 PMCID: PMC4565701 DOI: 10.1371/journal.pone.0137168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage.
Collapse
Affiliation(s)
- Hongzheng Sun
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yafan Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yanxiu Du
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 2015; 5:10835. [PMID: 26056784 PMCID: PMC4650646 DOI: 10.1038/srep10835] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Understanding the processes that regulate plant sink formation and development at the molecular level will contribute to the areas of crop breeding, food production and plant evolutionary studies. We report the annotation and analysis of the draft genome sequence of the radish Raphanus sativus var. hortensis (long and thick root radish) and transcriptome analysis during root development. Based on the hybrid assembly approach of next-generation sequencing, a total of 383 Mb (N50 scaffold: 138.17 kb) of sequences of the radish genome was constructed containing 54,357 genes. Syntenic and phylogenetic analyses indicated that divergence between Raphanus and Brassica coincide with the time of whole genome triplication (WGT), suggesting that WGT triggered diversification of Brassiceae crop plants. Further transcriptome analysis showed that the gene functions and pathways related to carbohydrate metabolism were prominently activated in thickening roots, particularly in cell proliferating tissues. Notably, the expression levels of sucrose synthase 1 (SUS1) were correlated with root thickening rates. We also identified the genes involved in pungency synthesis and their transcription factors.
Collapse
Affiliation(s)
- Yuki Mitsui
- Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Michihiko Shimomura
- Mitsubishi Space Software Co., Ltd., 1-6-1, Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Kenji Komatsu
- Junior College of Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Nobukazu Namiki
- Mitsubishi Space Software Co., Ltd., 1-6-1, Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Mari Shibata-Hatta
- Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Misaki Imai
- Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoshiyuki Mukai
- National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kanako Kurita
- National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tsutomu Kagami
- Sakata Seed Corporation, 2-7-1, Nakamachidai, Tuzuki-ku, Yokohama, 224-0041, Japan
| | - Akihito Wakatsuki
- Sakata Seed Corporation, 2-7-1, Nakamachidai, Tuzuki-ku, Yokohama, 224-0041, Japan
| | - Hajime Ohyanagi
- Mitsubishi Space Software Co., Ltd., 1-6-1, Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Hiroshi Ikawa
- Mitsubishi Space Software Co., Ltd., 1-6-1, Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Nobuhiro Minaka
- 1] Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan [2] National Institute for Agro-Environmental Science, 3-1-3, Tukuba, 305-8604, Japan
| | - Kunihiro Nakagawa
- Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yu Shiwa
- Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuji Sasaki
- 1] Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan [2] National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
32
|
Zanon L, Falchi R, Santi S, Vizzotto G. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types. PHYSIOLOGIA PLANTARUM 2015; 154:179-93. [PMID: 25348206 DOI: 10.1111/ppl.12304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 05/20/2023]
Abstract
Several complex physiological processes, which include long-distance translocation in the phloem and unloading in sink tissues, govern the partitioning of sugars in economically important organs, such as peach fruit. In this study, we took advantage of a symplastic tracer, carboxyfluorescein (CF), providing evidence for an apoplastic sucrose transfer in the early (SI) and middle (SIII) phases of peach fruit development. Moreover, using a combination of in situ hybridization and laser microdissection-assisted expression analysis, three putative sucrose transporters encoding genes (PpSUT1, PpSUT2, PpSUT4) were transcriptionally analyzed to relate their expression with sucrose storage in this organ. Our study revealed that PpSUT2 and PpSUT4 are the genes predominantly expressed in fruit flesh, and the detailed analysis of their expression pattern in the different cell types enabled us to suggest a specialized role in sucrose distribution. Both PpSUTs transporters could be involved in the retrieval of sucrose lost from the symplastic continuum of the phloem and, when expressed in parenchyma cells, they could be active in the import of sucrose into sink tissues, via symport from the apoplast. An alternative hypothesis has been proposed and discussed for PpSUT4 because of its putative tonoplastic localization. Taken together, our results provide new insights into the molecular mechanisms underpinning sucrose unloading and accumulation in peach fruit.
Collapse
Affiliation(s)
- Laura Zanon
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, 33100, Udine, Italy
| | - Rachele Falchi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, 33100, Udine, Italy
| | - Simonetta Santi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, 33100, Udine, Italy
| | - Giannina Vizzotto
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, 33100, Udine, Italy
| |
Collapse
|
33
|
Zhang J, Zhang X, Wang R, Li W. The plasma membrane-localised Ca(2+)-ATPase ACA8 plays a role in sucrose signalling involved in early seedling development in Arabidopsis. PLANT CELL REPORTS 2014; 33:755-66. [PMID: 24585188 DOI: 10.1007/s00299-014-1590-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 05/11/2023]
Abstract
Arabidopsis Ca (2+) -ATPase ACA8 plays a role in sucrose signalling during early seedling development by integrating developmental signals with carbon source availability. Calcium (Ca(2+)) is an essential signal transduction element in eukaryotic organisms. Changes in the levels of intracellular Ca(2+) affect multiple developmental processes in plants, including cell division, polar growth, and organogenesis. Here, we report that the plasma-membrane-localised Arabidopsis Ca(2+)-ATPase ACA8 plays a role in sucrose signalling during early seedling development. Disruption of the ACA8 gene elevated the expression of genes that encode transporters for Ca(2+) efflux. The seedlings that carried a T-DNA insertion mutation in ACA8 experienced water stress during early development. This response was unrelated to inadequate osmoregulatory responses and was most likely caused by disruption of cell membrane integrity and severe ion leakage. In addition, aca8-1 seedlings displayed a significant decline in photosynthetic performance and arrested root growth after removal of sucrose from the growth medium. The two phenomena resulted from impaired photosynthesis, reduced cell proliferation in the root meristem and the sucrose control of cell-cycle events. All of the stress-response phenotypes were rescued when expression of ACA8 was restored in aca8-1 mutant. Taken together, our results indicate that ACA8-mediated Ca(2+) signalling contributes to modulate early seedling development and coordinates root development with nutrient availability.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China,
| | | | | | | |
Collapse
|
34
|
Braun DM, Wang L, Ruan YL. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1713-35. [PMID: 24347463 DOI: 10.1093/jxb/ert416] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
35
|
Knoblauch M, Peters WS. Long-distance translocation of photosynthates: a primer. PHOTOSYNTHESIS RESEARCH 2013; 117:189-196. [PMID: 23754670 DOI: 10.1007/s11120-013-9867-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
The storage of light energy in chemical form through photosynthesis is the key process underlying life as we know it. To utilize photosynthates efficiently as structural materials or as fuel to drive endergonic processes, they have to be transported from where they are produced to where they are needed. In this primer, we provide an overview of basic biophysical concepts underlying our current understanding of the mechanisms of photosynthate long-distance transport, and briefly discuss current developments in the field.
Collapse
Affiliation(s)
- Michael Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA,
| | | |
Collapse
|
36
|
Schultz JC, Appel HM, Ferrieri AP, Arnold TM. Flexible resource allocation during plant defense responses. FRONTIERS IN PLANT SCIENCE 2013; 4:324. [PMID: 23986767 PMCID: PMC3749688 DOI: 10.3389/fpls.2013.00324] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/31/2013] [Indexed: 05/02/2023]
Abstract
Plants are organisms composed of modules connected by xylem and phloem transport streams. Attack by both insects and pathogens elicits sometimes rapid defense responses in the attacked module. We have also known for some time that proteins are often reallocated away from pathogen-infected tissues, while the same infection sites may draw carbohydrates to them. This has been interpreted as a tug of war in which the plant withdraws critical resources to block microbial growth while the microbes attempt to acquire more resources. Sink-source regulated transport among modules of critical resources, particularly carbon and nitrogen, is also altered in response to attack. Insects and jasmonate can increase local sink strength, drawing carbohydrates that support defense production. Shortly after attack, carbohydrates may also be drawn to the root. The rate and direction of movement of photosynthate or signals in phloem in response to attack is subject to constraints that include branching, degree of connection among tissues, distance between sources and sinks, proximity, strength, and number of competing sinks, and phloem loading/unloading regulators. Movement of materials (e.g., amino acids, signals) to or from attack sites in xylem is less well understood but is partly driven by transpiration. The root is an influential sink and may regulate sink-source interactions and transport above and below ground as well as between the plant and the rhizosphere and nearby, connected plants. Research on resource translocation in response to pathogens or herbivores has focused on biochemical mechanisms; whole-plant research is needed to determine which, if any, of these plant behaviors actually influence plant fitness.
Collapse
Affiliation(s)
- Jack C. Schultz
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Heidi M. Appel
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Abigail P. Ferrieri
- Department of Molecular Ecology, Max Planck Institute for Chemical EcologyJena, Germany
| | - Thomas M. Arnold
- Biochemistry and Molecular Biology Program, Department of Biology, Dickinson College, CarlislePA, USA
| |
Collapse
|
37
|
Ying W, Gaddam V, Harmata M. Chemical Synthesis of 1′-Deoxy-1′-fluorosucrose. Org Lett 2013; 15:2723-5. [DOI: 10.1021/ol401044h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weijiang Ying
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Vikram Gaddam
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
38
|
Gaddam V, Harmata M. Synthesis of 6'-deoxy-6'-fluorosucrose. Carbohydr Res 2013; 369:38-41. [PMID: 23391562 DOI: 10.1016/j.carres.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/26/2022]
Abstract
A facile synthesis of 6'-deoxy-6'-fluorosucrose has been developed. The title compound is available in six linear steps in 44% overall yield from commercially available sucrose. The synthesis involves rapid and convenient fluorination and deprotection conditions. This procedure would be very useful for the incorporation of radioactive [(18)F].
Collapse
Affiliation(s)
- Vikram Gaddam
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, United States
| | | |
Collapse
|
39
|
Sun Y, Ward JM. Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport. BMC BIOCHEMISTRY 2012; 13:26. [PMID: 23170937 PMCID: PMC3523064 DOI: 10.1186/1471-2091-13-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/05/2012] [Indexed: 01/06/2023]
Abstract
Background Plant sucrose uptake transporters (SUTs) are H+/sucrose symporters related to the major facilitator superfamily (MFS). SUTs are essential for plant growth but little is known about their transport mechanism. Recent work identified several conserved, charged amino acids within transmembrane spans (TMS) in SUTs that are essential for transport activity. Here we further evaluated the role of one of these positions, R188 in the fourth TMS of OsSUT1, a type II SUT. Results The OsSUT1(R188K) mutant, studied by expression in plants, yeast, and Xenopus oocytes, did not transport sucrose but showed a H+ leak that was blocked by sucrose. The H+ leak was also blocked by β-phenyl glucoside which is not translocated by OsSUT1. Replacing the corresponding Arg in type I and type III SUTs, AtSUC1(R163K) and LjSUT4(R169K), respectively, also resulted in loss of sucrose transport activity. Fluorination at the glucosyl 3 and 4 positions of α-phenyl glucoside greatly decreased transport by wild type OsSUT1 but did not affect the ability to block H+ leak in the R188K mutant. Conclusion OsSUT1 R188 appears to be essential for sucrose translocation but not for substrate interaction that blocks H+ leak. Therefore, we propose that an additional binding site functions in the initial recognition of substrates. The corresponding Arg in type I and III SUTs are equally important. We propose that R188 interacts with glucosyl 3-OH and 4-OH during translocation.
Collapse
Affiliation(s)
- Ye Sun
- Department of Plant Biology, University of Minnesota Twin Cities, St, Paul, MN 55108, USA
| | | |
Collapse
|
40
|
Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. MOLECULAR PLANT 2012; 5:1346-58. [PMID: 22930732 DOI: 10.1093/mp/sss079] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The identification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members in regard to their expression profiles in source leaves and sink roots and were characterized as functional H(+)/sucrose transporters. Physiological and molecular responses to phosphorus supply and inoculation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied by gene expression and sugar quantification analyses. Sucrose represents the main sugar transport form in M. truncatula and the expression profiles of MtSUT1-1, MtSUT2, and MtSUT4-1 highlight a fine-tuning regulation for beneficial sugar fluxes towards the fungal symbiont. Taken together, these results suggest distinct functions for proteins from the SUT1, SUT2, and SUT4 clades in plant and in biotrophic interactions.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Secchi F, Zwieniecki MA. Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. PLANT PHYSIOLOGY 2012; 160:955-64. [PMID: 22837359 PMCID: PMC3461568 DOI: 10.1104/pp.112.200824] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/25/2012] [Indexed: 05/02/2023]
Abstract
It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process.
Collapse
Affiliation(s)
- Francesca Secchi
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA.
| | | |
Collapse
|
42
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants. MOLECULAR PLANT 2012; 5:766-8. [PMID: 22815540 DOI: 10.1093/mp/sss054] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- R Frank Baker
- Division of Biological Sciences, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
44
|
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. TRENDS IN PLANT SCIENCE 2012; 17:413-22. [PMID: 22513109 DOI: 10.1016/j.tplants.2012.03.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 05/18/2023]
Abstract
Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant-fungal interaction functioning. Altogether these data highlight the need for a better comprehension of the mechanisms underlying sugar exchanges between fungi and their host plants.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Pickard WF. Münch without tears: a steady-state Münch-like model of phloem so simplified that it requires only algebra to predict the speed of translocation. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:531-537. [PMID: 32480804 DOI: 10.1071/fp12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/12/2012] [Indexed: 06/11/2023]
Abstract
The pressure-driven mass-flow hypothesis of phloem translocation associated with Ernst Münch has become hegemonic and has been mathematically modelled in many, many different fashions - but not, apparently, in one chosen so that it gives simple algebraic predictions of (i) the speed of translocation; (ii) the saccharide concentration at the source; and (iii) the pressure offset due to translocation. To overcome this deficit, the problem was drastically simplified by assuming that: (i) radial variations could be neglected; (ii) osmotic water uptake was restricted to sink and source regions of negligible thickness; (iii) there was a constant rate of saccharide loading at the source; and (iv) the sink strength was sufficient to lower the photosynthate concentration at the extreme distal end of the sieve tube to levels at which it becomes unimportant. The resulting system of quadratic algebraic equations was then solved for the translocation speed, which was shown to vary as the square-root of the loading rate. Also found were the offset of the intra-tube hydrostatic pressure and the sap saccharide concentration at the source, which, likewise, vary as the square-root of the loading rate.
Collapse
Affiliation(s)
- William F Pickard
- Department of Electrical and Systems Engineering, Washington University, St Louis, Missouri 63130, USA. Email
| |
Collapse
|
46
|
Wippel K, Sauer N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:669-79. [PMID: 22021573 PMCID: PMC3254675 DOI: 10.1093/jxb/err255] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/18/2023]
Abstract
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.
Collapse
Affiliation(s)
- Kathrin Wippel
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Secchi F, Gilbert ME, Zwieniecki MA. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. PLANT PHYSIOLOGY 2011; 157:1419-29. [PMID: 21951466 PMCID: PMC3252146 DOI: 10.1104/pp.111.185124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/26/2011] [Indexed: 05/18/2023]
Abstract
The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.
Collapse
Affiliation(s)
- Francesca Secchi
- Arnold Arboretum, Harvard University, Boston, Massachusetts 02131, USA.
| | | | | |
Collapse
|