1
|
Piálek J, Ďureje Ľ, Hiadlovská Z, Kreisinger J, Aghová T, Bryjová A, Čížková D, de Bellocq JG, Hejlová H, Janotová K, Martincová I, Orth A, Piálková J, Pospíšilová I, Rousková L, Bímová BV, Pfeifle C, Tautz D, Bonhomme F, Forejt J, Macholán M, Klusáčková P. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. Sci Rep 2025; 15:12060. [PMID: 40199997 PMCID: PMC11978780 DOI: 10.1038/s41598-025-86505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/10/2025] [Indexed: 04/10/2025] Open
Abstract
The house mouse, Mus musculus, is a widely used animal model in biomedical research, with classical laboratory strains (CLS) being the most frequently employed. However, the limited genetic variability in CLS hinders their applicability in evolutionary studies. Wild-derived strains (WDS), on the other hand, provide a suitable resource for such investigations. This study quantifies genetic and phenotypic data of 101 WDS representing 5 species, 3 subspecies, and 8 natural Y consomic strains and compares them with CLS. Genetic variability was estimated using whole mtDNA sequences, the Prdm9 gene, and copy number variation at two sex chromosome-linked genes. WDS exhibit a large natural variation with up to 2173 polymorphic sites in mitogenomes, whereas CLS display 92 sites. Moreover, while CLS have two Prdm9 alleles, WDS harbour 46 different alleles. Although CLS resemble M. m. domesticus and M. m. musculus WDS, they differ from them in 10 and 14 out of 16 phenotypic traits, respectively. The results suggest that WDS can be a useful tool in evolutionary and biomedical studies with great potential for medical applications.
Collapse
Affiliation(s)
- Jaroslav Piálek
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Aghová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Bryjová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Dagmar Čížková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Hejlová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Janotová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- ZOO Prague, Prague, Czech Republic
| | - Annie Orth
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jana Piálková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Pospíšilová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Rousková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Barbora Vošlajerová Bímová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - François Bonhomme
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Jiří Forejt
- Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Klusáčková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Shastry A, Wilkinson MS, Miller DM, Kuriakose M, Veeneman JLMH, Smith MR, Hindmarch CCT, Dunham-Snary KJ. Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease. Redox Biol 2025; 81:103541. [PMID: 39983345 PMCID: PMC11893332 DOI: 10.1016/j.redox.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
RATIONALE Excess consumption of sugar- and fat-rich foods has heightened the prevalence of cardiometabolic disease, which remains a driver of cardiovascular disease- and type II diabetes-related mortality globally. Skeletal muscle insulin resistance is an early feature of cardiometabolic disease and is a precursor to diabetes. Insulin resistance risk varies with self-reported race, whereby African-Americans have a greater risk of diabetes development relative to their White counterparts. Self-reported race is strongly associated with mitochondrial DNA (mtDNA) haplogroups, and previous reports have noted marked differences in bioenergetic and metabolic parameters in cells belonging to distinct mtDNA haplogroups, but the mechanism of these associations remains unknown. Additionally, distinguishing nuclear DNA (nDNA) and mtDNA contributions to cardiometabolic disease remains challenging in humans. The Mitochondrial-Nuclear eXchange (MNX) mouse model enables in vivo preclinical investigation of the role of mtDNA in cardiometabolic disease development, and has been implemented in studies of insulin resistance, fatty liver disease, and obesity in previous reports. METHODS Six-week-old male C57nDNA:C57mtDNA and C3HnDNA:C3HmtDNA wild-type mice, and C57nDNA:C3HmtDNA and C3HnDNA:C57mtDNA MNX mice, were fed sucrose-matched high-fat (45% kcal fat) or control diet (10% kcal fat) until 12 weeks of age (n = 5/group). Mice were weighed weekly and total body fat was collected at euthanasia. Gastrocnemius skeletal muscle and plasma metabolomes were characterized using untargeted dual-chromatography mass spectrometry; both hydrophilic interaction liquid chromatography (HILIC) and C18 columns were used, in positive- and negative-ion modes, respectively. RESULTS Comparative analyses between nDNA-matched wild-type and MNX strains demonstrated significantly increased body fat percentage in mice possessing C57mtDNA regardless of nDNA background. High-fat diet in mice possessing C57mtDNA was associated with differential abundance of phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamines, and glucose. Conversely, high-fat diet in mice possessing C3HmtDNA was associated with differential abundance of phosphatidylcholines, cardiolipins, and alanine. Glycerophospholipid metabolism and beta-alanine signaling pathways were enriched in skeletal muscle and plasma, indicating mtDNA-directed priming of mitochondria towards oxidative stress and increased fatty acid oxidation in C57nDNA:C57mtDNA wild-type and C3HnDNA:C57mtDNA MNX mice, relative to their nDNA-matched counterparts. In mtDNA-matched mice, C57mtDNA was associated with metabolite co-expression related to the pentose phosphate pathway and sugar-related metabolism; C3HmtDNA was associated with branched chain amino acid metabolite co-expression. CONCLUSIONS These results reveal novel nDNA-mtDNA interactions that drive significant changes in metabolite levels. Alterations to key metabolites involved in mitochondrial bioenergetic dysfunction and electron transport chain activity are implicated in elevated beta-oxidation during high-fat diet feeding; abnormally elevated rates of beta-oxidation may be a key driver of insulin resistance. The results reported here support the hypothesis that mtDNA influences cardiometabolic disease-susceptibility by modulating mitochondrial function and metabolic pathways.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dalia M Miller
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Michelle Kuriakose
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew Ryan Smith
- Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA; Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Xu C, Dong J, Shi X, Rui J, Chen M, Lu W, Zhang A, Wang S, Teng Z, Ye X. Engineered microalgae for photo-sonodynamic synergistic therapy in breast cancer treatment. Acta Biomater 2025; 193:531-544. [PMID: 39709158 DOI: 10.1016/j.actbio.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Dynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy. The resulting Chl-MOF can be used as an oxygenator for O2 generation through Chl-mediated photosynthesis, alleviating tumor hypoxia. Furthermore, Chl-MOF produces reactive oxygen species (ROS) during laser and ultrasound (US) irradiation, further augmenting the photo-sonodynamic effects and enhancing tumor cell apoptosis. Owing to the high mobility of Chl, cellular uptake efficiency and accumulation in deep tumor sites are 5.2-fold and 3.3-fold higher, respectively, for Chl-MOF than for the MOF. Owing to the immunomodulatory effects of Chl, Chl-MOF can increase natural killer (NK) cell cytotoxic activity, increase dendritic cell (DC) antigen-presenting ability, reverse the establishment of an immunosuppressive tumor microenvironment (TME), and induce a relatively strong antitumor immune response. Chl-MOF can effectively reduce breast cancer size by 88.8 % in vitro and in vivo via synergistic photo-sonodynamic therapy and immunotherapy. These intriguing properties of the combination of Chl and MOF provide promising platform for cancer theranostic applications. STATEMENT OF SIGNIFICANCE: : • Chl acts as an O2 generator for alleviating hypoxia in tumors. • The high mobility of Chl resulted in 3.3-folds higher tumor accumulation. • The Chl-MOF can induce synergistic photo-sonodynamic effects and a relatively strong antitumor immune response. • Chl-MOF effectively reduce breast cancer size by 88.8 % via synergistic therapies.
Collapse
Affiliation(s)
- Chaoli Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China
| | - Jinhao Dong
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Xuzhi Shi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Jiaxin Rui
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Meng Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Aihua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China.
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China.
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| |
Collapse
|
4
|
Han L, Pendleton A, Singh A, Xu R, Scott SA, Palma JA, Diebold P, Malarney KP, Brito IL, Chang PV. Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases. Cell Chem Biol 2025; 32:145-156.e9. [PMID: 38889717 PMCID: PMC11632149 DOI: 10.1016/j.chembiol.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raymond Xu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha A Scott
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jaymee A Palma
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peter Diebold
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Baldwin JG, Heuser-Loy C, Saha T, Schelker RC, Slavkovic-Lukic D, Strieder N, Hernandez-Lopez I, Rana N, Barden M, Mastrogiovanni F, Martín-Santos A, Raimondi A, Brohawn P, Higgs BW, Gebhard C, Kapoor V, Telford WG, Gautam S, Xydia M, Beckhove P, Frischholz S, Schober K, Kontarakis Z, Corn JE, Iannacone M, Inverso D, Rehli M, Fioravanti J, Sengupta S, Gattinoni L. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell 2024; 187:6614-6630.e21. [PMID: 39276774 PMCID: PMC11623344 DOI: 10.1016/j.cell.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
Collapse
Affiliation(s)
- Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nicholas Strieder
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip Brohawn
- Translational Science and Experimental Medicine, Early R&I, AstraZeneca, Gaithersburg, MD, USA
| | | | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Veena Kapoor
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Xydia
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; University of Regensburg, Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Sina Frischholz
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, ETH Zürich, University of Zürich, Zürich 8057, Switzerland
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; University of Regensburg, Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
He J, Li J, Zhao L, Jiang T, Ma L, Bu Y. The complete mitochondrial genome of the shield-faced leaf-nosed bat from Yunnan Province in China. Mitochondrial DNA B Resour 2024; 9:1044-1047. [PMID: 39135643 PMCID: PMC11318485 DOI: 10.1080/23802359.2024.2389936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024] Open
Abstract
In this study, we sequenced the complete mitochondrial genome of the shield-faced leaf-nosed bat (Hipposideros lylei Thomas, 1914) using the Illumina platform. The mitochondrial genome of H. lylei is 16,856 bp in length, encoding 37 genes, which include 13 protein-coding genes, 22 tRNA genes, two rRNA genes, one replication start, and one non-coding control region (D-loop) of 417 bp in length. It has a G + C content of 42.0%, lower than the A + T content, indicating an obvious AT base preference. Phylogenetic analyses revealed that H. lylei clusters with three species of the genus Hipposideros in one branch and is relatively closely related to H. armiger and H. larvatus.
Collapse
Affiliation(s)
- Jingying He
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jing Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liming Zhao
- Henan Fisheries Technology Extension Center, Zhengzhou, China
| | - Tiantian Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liqun Ma
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanzhen Bu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
7
|
Marino F, Wang D, Merrihew GE, MacCoss MJ, Dubal DB. A second X chromosome improves cognition in aging male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605328. [PMID: 39091744 PMCID: PMC11291180 DOI: 10.1101/2024.07.26.605328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Women show resilience to cognitive aging, in the absence of dementia, in many populations. To dissect sex differences, we utilized the FCG and XY* mouse models. Female gonads and sex chromosomes improved cognition in aging mice of both sexes. Further, presence of a second X in male and female mice conferred cognitive resilience while its absence in females blocked it. In the hippocampal proteome of aging female mice, the second X increased proteins involved in synaptogenesis signaling - a potential pathway to improved cognition.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, US
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, US
| |
Collapse
|
8
|
Jiang T, He J, Li J, Zhao L, Niu H, Bu Y. Analysis of the complete mitochondrial genome sequence of Hipposideros pratti. Mitochondrial DNA B Resour 2024; 9:902-906. [PMID: 39055531 PMCID: PMC11271134 DOI: 10.1080/23802359.2024.2381806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
In order to explore the characteristics of the mitochondrial genome sequence of Pratt's leaf-nosed bat (Hipposideros pratti Thomas 1891) and understand their phylogenetic status in Chiroptera, this study determined the mitochondrial genome sequences of H. pratti from five regions in China using high-throughput sequencing technology, sequence assembly, and genome annotation. The results showed that these sequences contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region, all exhibiting a significant AT bias. Based on the phylogenetic tree constructed using 13 protein-coding genes from 15 Chiroptera species, the study found that H. pratti from the five regions clustered together, and then clustered with H. lylei into a single clade. Meanwhile, H. pratti from Jiangxi, Fujian, and Guangdong regions of China showed closer genetic relationships, while H. pratti from Yunnan and Henan regions of China exhibited closer genetic relationships. This study not only supplemented the mitochondrial genome database of H. pratti but also laid a foundation for genetic variation, molecular classification, and evolutionary studies of H. pratti.
Collapse
Affiliation(s)
- Tiantian Jiang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jingying He
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jing Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Liming Zhao
- Henan Fisheries Technology Extension Center, Zhengzhou, Henan, China
| | - Hongxing Niu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Yanzhen Bu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Rodriguez-Caro F, Moore EC, Good JM. Evolution of parent-of-origin effects on placental gene expression in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554674. [PMID: 37662315 PMCID: PMC10473692 DOI: 10.1101/2023.08.24.554674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.
Collapse
|
10
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
11
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
12
|
Xuan R, Gao J, Lin Q, Yue W, Liu T, Hu S, Song G. Mitochondrial DNA Diversity of Mesocricetus auratus and Other Cricetinae Species among Cricetidae Family. Biochem Genet 2022; 60:1881-1894. [PMID: 35122557 PMCID: PMC8817650 DOI: 10.1007/s10528-022-10195-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
Unique anatomical and physiological features have made hamster species desirable research models. Comparative genomics and phylogenetic analysis of the hamster family members to clarify their evolution and genetic relationship, can provide a genetic basis for the comprehension of the variable research results obtained using different hamster models. The Syrian golden hamster (Mesocricetus auratus) is the most widely used species. In this study, we sequenced the complete mitochondrial genome (mitogenome) of M. auratus, compared it with the mitogenome of other Cricetinae subfamily species, and defined its phylogenetic position in the Cricetidae family. Our results show that the mitogenome organization, gene arrangement, base composition, and genetic analysis of the protein coding genes (PCGs) of M. auratus are similar to those observed in previous reports on Cricetinae species. Nonetheless, our analysis clarifies some striking differences of M. auratus relative to other subfamily members, namely distinct codon usage frequency of TAT (Tyr), AAT (Asn), and GAA (Glu) and the presence of the conserved sequence block 3 (CSB-3) in the control region of M. auratus mitogenome and other hamsters (not found in Arvicolinae). These results suggest the particularity of amino acid codon usage bias of M. auratus and special regulatory signals for the heavy strand replication in Cricetinae. Additionally, Bayesian inference/maximum likelihood (BI/ML) tree shows that Cricetinae and Arvicolinae are sister taxa sharing a common ancestor, and Neotominae split prior to the split between Cricetinae and Arvicolinae. Our results support taxonomy revisions in Cricetulus kamensis and Cricetulus migratorius, and further revision is needed within the other two subfamilies. Among the hamster research models, Cricetulus griseus is the species with highest sequence similarity and closer genetic relationship with M. auratus. Our results show mitochondrial DNA diversity of M. auratus and other Cricetinae species and provide genetic basis for judgement of different hamster models, promoting the development and usage of hamsters with regional characteristics.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiang Lin
- Key Laboratory of Genome Information and Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Wenbin Yue
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Tianfu Liu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Songnian Hu
- Key Laboratory of Genome Information and Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells. Sci Rep 2022; 12:10730. [PMID: 35750721 PMCID: PMC9232517 DOI: 10.1038/s41598-022-14414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20-35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Collapse
|
14
|
Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells. Sci Rep 2022; 12:5122. [PMID: 35332189 PMCID: PMC8948238 DOI: 10.1038/s41598-022-08747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Ocular cells are highly dependent on mitochondrial function due to their high demand of energy supply and their constant exposure to oxidative stress. Indeed, mitochondrial dysfunction is highly implicated in various acute, chronic, and genetic disorders of the visual system. It has recently been shown that mitochondrial transplantation (MitoPlant) temporarily protects retinal ganglion cells (RGCs) from cell death during ocular ischemia. Here, we characterized MitoPlant dynamics in retinal ganglion precursor-like cells, in steady state and under oxidative stress. We developed a new method for detection of transplanted mitochondria using qPCR, based on a difference in the mtDNA sequence of C57BL/6 and BALB/c mouse strains. Using this approach, we show internalization of exogenous mitochondria already three hours after transplantation, and a decline in mitochondrial content after twenty four hours. Interestingly, exposure of target cells to moderate oxidative stress prior to MitoPlant dramatically enhanced mitochondrial uptake and extended the survival of mitochondria in recipient cells by more than three fold. Understanding the factors that regulate the exogenous mitochondrial uptake and their survival may promote the application of MitoPlant for treatment of chronic and genetic mitochondrial diseases.
Collapse
|
15
|
Lechuga-Vieco AV, Latorre-Pellicer A, Calvo E, Torroja C, Pellico J, Acín-Pérez R, García-Gil ML, Santos A, Bagwan N, Bonzon-Kulichenko E, Magni R, Benito M, Justo-Méndez R, Simon AK, Sánchez-Cabo F, Vázquez J, Ruíz-Cabello J, Enríquez JA. Heteroplasmy of Wild Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation 2022; 145:1084-1101. [PMID: 35236094 PMCID: PMC8969846 DOI: 10.1161/circulationaha.121.056286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is uniparentally transmitted and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of more than one mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent non-pathological mtDNAs heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. Methods: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiological and phenotyping techniques. We focused on in vivo imaging techniques for non-invasive assessment of cardiac and pulmonary energy metabolism. Results: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. Conclusions: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.
Collapse
Affiliation(s)
- Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ana Latorre-Pellicer
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, ISS-Aragon, Zaragoza, Spain
| | - Enrique Calvo
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Carlos Torroja
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Juan Pellico
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rebeca Acín-Pérez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - María Luisa García-Gil
- Centro Nacional de Microscopia Electrónica (ICTS-CNME), Universidad Complutense de Madrid, Madrid, Spain
| | - Arnoldo Santos
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain; ITC, Ingeniería y Técnicas Clínicas, Madrid, Spain
| | - Navratan Bagwan
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Raquel Justo-Méndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | | | - Jesús Vázquez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Ruíz-Cabello
- CIC biomaGUNE, 2014, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Spain; Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
16
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
He Q, He X, Xiao Y, Zhao Q, Ye Z, Cui L, Chen Y, Guan MX. Tissue-specific expression atlas of murine mitochondrial tRNAs. J Biol Chem 2021; 297:100960. [PMID: 34265302 PMCID: PMC8342785 DOI: 10.1016/j.jbc.2021.100960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.
Collapse
Affiliation(s)
- Qiufen He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiong Zhao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Center for Mitochondrial Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Division of Mitochondrial Biomedicine, Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Ma JY, Feng X, Xie FY, Li S, Chen LN, Luo SM, Yin S, Ou XH. Double-strand breaks induce short-scale DNA replication and damage amplification in the fully grown mouse oocytes. Genetics 2021; 218:iyab054. [PMID: 33792683 PMCID: PMC8225347 DOI: 10.1093/genetics/iyab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2'-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xie Feng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng-Yun Xie
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei-Ning Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
19
|
Hanaki S, Habara M, Masaki T, Maeda K, Sato Y, Nakanishi M, Shimada M. PP1 regulatory subunit NIPP1 regulates transcription of E2F1 target genes following DNA damage. Cancer Sci 2021; 112:2739-2752. [PMID: 33939241 PMCID: PMC8253265 DOI: 10.1111/cas.14924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
DNA damage induces transcriptional repression of E2F1 target genes and a reduction in histone H3‐Thr11 phosphorylation (H3‐pThr11) at E2F1 target gene promoters. Dephosphorylation of H3‐pThr11 is partly mediated by Chk1 kinase and protein phosphatase 1γ (PP1γ) phosphatase. Here, we isolated NIPP1 as a regulator of PP1γ‐mediated H3‐pThr11 by surveying nearly 200 PP1 interactor proteins. We found that NIPP1 inhibits PP1γ‐mediated dephosphorylation of H3‐pThr11 both in vivo and in vitro. By generating NIPP1‐depleted cells, we showed that NIPP1 is required for cell proliferation and the expression of E2F1 target genes. Upon DNA damage, activated protein kinase A (PKA) phosphorylated the NIPP1‐Ser199 residue, adjacent to the PP1 binding motif (RVxF), and triggered the dissociation of NIPP1 from PP1γ, leading to the activation of PP1γ. Furthermore, the inhibition of PKA activity led to the activation of E2F target genes. Statistical analysis confirmed that the expression of NIPP1 was positively correlated with E2F target genes. Taken together, these findings demonstrate that the PP1 regulatory subunit NIPP1 modulates E2F1 target genes by linking PKA and PP1γ during DNA damage.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Habara
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Takahiro Masaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Maeda
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Sato
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Nakanishi
- Division of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Midori Shimada
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
20
|
Kveštak D, Juranić Lisnić V, Lisnić B, Tomac J, Golemac M, Brizić I, Indenbirken D, Cokarić Brdovčak M, Bernardini G, Krstanović F, Rožmanić C, Grundhoff A, Krmpotić A, Britt WJ, Jonjić S. NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection. J Exp Med 2021; 218:e20201503. [PMID: 33630019 PMCID: PMC7918636 DOI: 10.1084/jem.20201503] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/11/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Congenital human cytomegalovirus (cHCMV) infection of the brain is associated with a wide range of neurocognitive sequelae. Using infection of newborn mice with mouse cytomegalovirus (MCMV) as a reliable model that recapitulates many aspects of cHCMV infection, including disseminated infection, CNS infection, altered neurodevelopment, and sensorineural hearing loss, we have previously shown that mitigation of inflammation prevented alterations in cerebellar development, suggesting that host inflammatory factors are key drivers of neurodevelopmental defects. Here, we show that MCMV infection causes a dramatic increase in the expression of the microglia-derived chemokines CXCL9/CXCL10, which recruit NK and ILC1 cells into the brain in a CXCR3-dependent manner. Surprisingly, brain-infiltrating innate immune cells not only were unable to control virus infection in the brain but also orchestrated pathological inflammatory responses, which lead to delays in cerebellar morphogenesis. Our results identify NK and ILC1 cells as the major mediators of immunopathology in response to virus infection in the developing CNS, which can be prevented by anti-IFN-γ antibodies.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/immunology
- Brain/pathology
- Brain/virology
- Chemokine CXCL10/genetics
- Chemokine CXCL10/immunology
- Chemokine CXCL10/metabolism
- Chemokine CXCL9/genetics
- Chemokine CXCL9/immunology
- Chemokine CXCL9/metabolism
- Cytomegalovirus/immunology
- Cytomegalovirus/physiology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/virology
- Gene Expression Regulation/immunology
- Humans
- Immunity, Innate/immunology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/virology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/immunology
- Microglia/metabolism
- Microglia/virology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Mice
Collapse
Affiliation(s)
- Daria Kveštak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Giovanni Bernardini
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - William J. Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
21
|
Scotece M, Rego-Pérez I, Lechuga-Vieco AV, Cortés AC, Jiménez-Gómez MC, Filgueira-Fernández P, Vaamonde-García C, Enríquez JA, Blanco FJ. Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis. Sci Rep 2021; 11:9112. [PMID: 33907208 PMCID: PMC8079696 DOI: 10.1038/s41598-021-88083-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
It has been suggested that mitochondrial dysfunction and mtDNA variations may contribute to osteoarthritis (OA) pathogenesis. However, the causative link to support this claim is lacking. Here, we surgically-induced OA in conplastic mice in order to evaluate the functional consequences of mtDNA haplotypes in their joint degeneration. BL/6NZB strain was developed with C57BL/6JOlaHsd nuclear genome and NZB/OlaHsdmtDNA while BL/6C57, which is the original, was developed with C57BL/6JOlaHsd nuclear genome and C57/OlaHsdmtDNA for comparison. The surgical DMM OA model was induced in both strains. Their knees were processed and examined for histopathological changes. Cartilage expression of markers of autophagy, apoptosis, oxidative stress and senescence were also analyzed by immunohistochemistry. The joints of BL/6NZB mice that were operated presented more cellularity together with a reduced OARSI histopathology score, subchondral bone, menisci score and synovitis compared to those of BL/6C57 mice. This was accompanied with higher autophagy and a lower apoptosis in the cartilage of BL/6NZB mice that were operated. Therefore, the study demonstrates the functional impact of non-pathological variants of mtDNA on OA process using a surgically-induced OA model. Conplastic (BL/6NZB ) mice develop less severe OA compared to the BL/6C57original strain. These findings demonstrate that mitochondria and mtDNA are critical targets for potential novel therapeutic approaches to treat osteoarthritis.
Collapse
Affiliation(s)
- Morena Scotece
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ignacio Rego-Pérez
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERES, C/Melchor Fernández-Almagro 3, 28029, Madrid, Spain
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, UK
| | - Alberto Centeno Cortés
- Centro Tecnológico de Formación Xerencia de Xestión Integrada A Coruña (XXIAC), A Coruña, Spain
| | | | - Purificación Filgueira-Fernández
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERFES, C/Melchor Fernández-Almagro 3, 28029, Madrid, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain.
- Universidade da Coruña (UDC), Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, A Coruña, Spain.
| |
Collapse
|
22
|
Schilf P, Künstner A, Olbrich M, Waschina S, Fuchs B, Galuska CE, Braun A, Neuschütz K, Seutter M, Bieber K, Hellberg L, Sina C, Laskay T, Rupp J, Ludwig RJ, Zillikens D, Busch H, Sadik CD, Hirose M, Ibrahim SM. A Mitochondrial Polymorphism Alters Immune Cell Metabolism and Protects Mice from Skin Inflammation. Int J Mol Sci 2021; 22:ijms22031006. [PMID: 33498298 PMCID: PMC7863969 DOI: 10.3390/ijms22031006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.
Collapse
Affiliation(s)
- Paul Schilf
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
| | - Axel Künstner
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
- Institute of Cardiogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Michael Olbrich
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany;
| | - Beate Fuchs
- Leibniz-Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Christina E. Galuska
- Leibniz-Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Anne Braun
- Department of Dermatology, University of Luebeck, 23562 Luebeck, Germany; (A.B.); (M.S.); (D.Z.); (C.D.S.)
| | - Kerstin Neuschütz
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
| | - Malte Seutter
- Department of Dermatology, University of Luebeck, 23562 Luebeck, Germany; (A.B.); (M.S.); (D.Z.); (C.D.S.)
| | - Katja Bieber
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
| | - Lars Hellberg
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23562 Luebeck, Germany; (L.H.); (T.L.); (J.R.)
| | - Christian Sina
- Institute of Nutritional Medicine, University of Luebeck, 23562 Luebeck, Germany;
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23562 Luebeck, Germany; (L.H.); (T.L.); (J.R.)
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23562 Luebeck, Germany; (L.H.); (T.L.); (J.R.)
| | - Ralf J. Ludwig
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Luebeck, 23562 Luebeck, Germany; (A.B.); (M.S.); (D.Z.); (C.D.S.)
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
| | - Hauke Busch
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
- Institute of Cardiogenetics, University of Luebeck, 23562 Luebeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, University of Luebeck, 23562 Luebeck, Germany; (A.B.); (M.S.); (D.Z.); (C.D.S.)
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
| | - Misa Hirose
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
- Correspondence: (M.H.); (S.M.I.)
| | - Saleh M. Ibrahim
- Luebeck Institute of Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany; (P.S.); (A.K.); (M.O.); (K.N.); (K.B.); (R.J.L.); (H.B.)
- Center for Research on Inflammation of the Skin (CRIS), University of Luebeck, 23562 Luebeck, Germany
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, 27272 Sharjah, UAE
- Correspondence: (M.H.); (S.M.I.)
| |
Collapse
|
23
|
Ishikawa K, Nakada K. Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease. Biochim Biophys Acta Gen Subj 2020; 1865:129835. [PMID: 33358867 DOI: 10.1016/j.bbagen.2020.129835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). SCOPE OF REVIEW This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. MAJOR CONCLUSIONS Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. GENERAL SIGNIFICANCE Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
24
|
Abstract
Most mammals rely on chemosensory cues for individual recognition, which is essential to many aspects of social behavior, such as maternal bonding, mate recognition, and inbreeding avoidance. Both volatile molecules and nonvolatile peptides secreted by individual conspecifics are detected by olfactory sensory neurons in the olfactory epithelium and the vomeronasal organ. The pertinent cues used for individual recognition remain largely unidentified. Here we show that nonformylated, but not N-formylated, mitochondrially encoded peptides-that is, the nine N-terminal amino acids of NADH dehydrogenases 1 and 2-can be used to convey strain-specific information among individual mice. We demonstrate that these nonformylated peptides are sufficient to induce a strain-selective pregnancy block. We also observed that the pregnancy block by an unfamiliar peptide derived from a male of a different strain was prevented by a memory formed at the time of mating with that male. Our findings also demonstrate that pregnancy-blocking chemosignals in the urine are maternally inherited, as evidenced by the production of reciprocal sons from two inbred strains and our test of their urine's ability to block pregnancy. We propose that this link between polymorphic mitochondrial peptides and individual recognition provides the molecular means to communicate an individual's maternal lineage and strain.
Collapse
|
25
|
Maligana N, Julius RS, Shivambu TC, Chimimba CT. Genetic identification of freely traded synanthropic invasive murid rodents in pet shops in Gauteng Province, South Africa. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1704632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ndivhuwo Maligana
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Rolanda S Julius
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Tinyiko C Shivambu
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Christian T Chimimba
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| |
Collapse
|
26
|
Brinker AE, Vivian CJ, Beadnell TC, Koestler DC, Teoh ST, Lunt SY, Welch DR. Mitochondrial Haplotype of the Host Stromal Microenvironment Alters Metastasis in a Non-cell Autonomous Manner. Cancer Res 2020; 80:1118-1129. [PMID: 31848195 PMCID: PMC7056497 DOI: 10.1158/0008-5472.can-19-2481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria contribute to tumor growth through multiple metabolic pathways, regulation of extracellular pH, calcium signaling, and apoptosis. Using the Mitochondrial Nuclear Exchange (MNX) mouse models, which pair nuclear genomes with different mitochondrial genomes, we previously showed that mitochondrial SNPs regulate mammary carcinoma tumorigenicity and metastatic potential in genetic crosses. Here, we tested the hypothesis that polymorphisms in stroma significantly affect tumorigenicity and experimental lung metastasis. Using syngeneic cancer cells (EO771 mammary carcinoma and B16-F10 melanoma cells) injected into wild-type and MNX mice (i.e., same nuclear DNA but different mitochondrial DNA), we showed mt-SNP-dependent increases (C3H/HeN) or decreases (C57BL/6J) in experimental metastasis. Superoxide scavenging reduced experimental metastasis. In addition, expression of lung nuclear-encoded genes changed specifically with mt-SNP. Thus, mitochondrial-nuclear cross-talk alters nuclear-encoded signaling pathways that mediate metastasis via both intrinsic and extrinsic mechanisms. SIGNIFICANCE: Stromal mitochondrial polymorphisms affect metastatic colonization through reactive oxygen species and mitochondrial-nuclear cross-talk.
Collapse
Affiliation(s)
- Amanda E Brinker
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Carolyn J Vivian
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Devin C Koestler
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Biostatistics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| |
Collapse
|
27
|
Marco-Brualla J, Al-Wasaby S, Soler R, Romanos E, Conde B, Justo-Méndez R, Enríquez JA, Fernández-Silva P, Martínez-Lostao L, Villalba M, Moreno-Loshuertos R, Anel A. Mutations in the ND2 Subunit of Mitochondrial Complex I Are Sufficient to Confer Increased Tumorigenic and Metastatic Potential to Cancer Cells. Cancers (Basel) 2019; 11:E1027. [PMID: 31330915 PMCID: PMC6678765 DOI: 10.3390/cancers11071027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
Multiprotein complexes of the mitochondrial electron transport chain form associations to generate supercomplexes. The relationship between tumor cell ability to assemble mitochondrial supercomplexes, tumorigenesis and metastasis has not been studied thoroughly. The mitochondrial and metabolic differences between L929dt cells, which lost matrix attachment and MHC-I expression, and their parental cell line L929, were analyzed. L929dt cells have lower capacity to generate energy through OXPHOS and lower respiratory capacity than parental L929 cells. Most importantly, L929dt cells show defects in mitochondrial supercomplex assembly, especially in those that contain complex I. These defects correlate with mtDNA mutations in L929dt cells at the ND2 subunit of complex I and are accompanied by a glycolytic shift. In addition, L929dt cells show higher in vivo tumorigenic and metastatic potential than the parental cell line. Cybrids with L929dt mitochondria in L929 nuclear background reproduce all L929dt properties, demonstrating that mitochondrial mutations are responsible for the aggressive tumor phenotype. In spite of their higher tumorigenic potential, L929dt or mitochondrial L929dt cybrid cells are sensitive both in vitro and in vivo to the PDK1 inhibitor dichloroacetate, which favors OXPHOS, suggesting benefits for the use of metabolic inhibitors in the treatment of especially aggressive tumors.
Collapse
Affiliation(s)
- Joaquín Marco-Brualla
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Sameer Al-Wasaby
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Ruth Soler
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Eduardo Romanos
- Aragón Health Research Institute (IIS Aragón), Center for Research in Biomedicine, E-50009 Zaragoza, Spain
| | - Blanca Conde
- Department of Human Anatomy and Histology, Faculty of Medicine, Campus San Francisco Square, University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - José A Enríquez
- Carlos III National Center for Cardiovascular Research, 28029 Madrid, Spain
| | - Patricio Fernández-Silva
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - Martín Villalba
- The National Institute of Biomedical Research (INSERM), Centre Hospitalier Universitaire de Montpellier, The University of Montpellier, The Institute for Regenerative Medicine and Biotherapy, 34090 Montpellier, France
- IRMB, CHU Montpellier, 34090 Montpellier, France
| | - Raquel Moreno-Loshuertos
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain.
| | - Alberto Anel
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain.
| |
Collapse
|
28
|
Moura MT, Badaraco J, Sousa RV, Lucci CM, Rumpf R. Improved functional oocyte enucleation by actinomycin D for bovine somatic cell nuclear transfer. Reprod Fertil Dev 2019; 31:1321-1329. [PMID: 30986366 DOI: 10.1071/rd18164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) allows animal cloning but remains technically challenging. This study investigated limitations to functional oocyte enucleation by actinomycin D (AD) as a means of making SCNT easier to perform. Denuding oocytes or inhibiting transcription before AD treatment revealed that the toxicity of this compound during bovine oocyte maturation is mediated by cumulus cells. Exposure of denuded oocytes to higher concentrations of AD (5-20μgmL-1 ) and stepwise reductions of the incubation period (from 14.0 to 0.25h) led to complete inhibition of parthenogenetic development. Bovine SCNT using this improved AD enucleation protocol (NT(AD)) restored cleavage rates compared with rates in the parthenogenetic and SCNT controls (P(CTL) and NT(CTL) respectively). However, NT(AD) was associated with increased caspase-3 activity in cleavage stage embryos and did not recover blastocyst rates. The removal of AD-treated oocyte spindle before reconstruction (NT(AD+SR)) improved embryo development and reduced caspase-3 activity to levels similar to those in the P(CTL) and NT(CTL) groups. Furthermore, mid-term pregnancies were achieved using NT(AD+SR) blastocysts. In conclusion, improvements in AD functional enucleation for bovine SCNT circumvents most cellular roadblocks to early embryonic development and future investigations must focus on restoring blastocyst formation.
Collapse
Affiliation(s)
- Marcelo T Moura
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Laboratório de Biologia Celular, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil; and Corresponding author
| | - Jeferson Badaraco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Regivaldo V Sousa
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Carolina M Lucci
- Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil
| | - Rodolfo Rumpf
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Geneal Biotecnologia, Rodovia BR-050, Km 184, CEP 38038-050, Uberaba, MG, Brazil
| |
Collapse
|
29
|
Wiatrek DM, Candela ME, Sedmík J, Oppelt J, Keegan LP, O'Connell MA. Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein. RNA (NEW YORK, N.Y.) 2019; 25:713-726. [PMID: 30894411 PMCID: PMC6521600 DOI: 10.1261/rna.069625.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/16/2019] [Indexed: 05/27/2023]
Abstract
Viral and cellular double-stranded RNA (dsRNA) is recognized by cytosolic innate immune sensors, including RIG-I-like receptors. Some cytoplasmic dsRNA is commonly present in cells, and one source is mitochondrial dsRNA, which results from bidirectional transcription of mitochondrial DNA (mtDNA). Here we demonstrate that Trp53 mutant mouse embryonic fibroblasts contain immune-stimulating endogenous dsRNA of mitochondrial origin. We show that the immune response induced by this dsRNA is mediated via RIG-I-like receptors and leads to the expression of type I interferon and proinflammatory cytokine genes. The mitochondrial dsRNA is cleaved by RNase L, which cleaves all cellular RNA including mitochondrial mRNAs, increasing activation of RIG-I-like receptors. When mitochondrial transcription is interrupted there is a subsequent decrease in this immune-stimulatory dsRNA. Our results reveal that the role of p53 in innate immunity is even more versatile and complex than previously anticipated. Our study, therefore, sheds new light on the role of endogenous RNA in diseases featuring aberrant immune responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenosine Deaminase/deficiency
- Adenosine Deaminase/genetics
- Adenosine Deaminase/immunology
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Embryo, Mammalian
- Endoribonucleases/genetics
- Endoribonucleases/immunology
- Fibroblasts/cytology
- Fibroblasts/immunology
- Immunity, Innate/genetics
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Proteins/genetics
- Proteins/immunology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/immunology
- RNA-Binding Proteins
- Transcription, Genetic
- Transfection
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
| | | | - Jiří Sedmík
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Oppelt
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Liam P Keegan
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
| | | |
Collapse
|
30
|
Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev 2019; 37:643-653. [PMID: 30448881 DOI: 10.1007/s10555-018-9769-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor initiation, progression, and metastasis are tissue context-dependent processes. Cellular and non-cellular factors provide the selective microenvironment that determines the fate of the evolving tumor through mechanisms that include metabolic reprogramming. Genetic and epigenetic changes contribute to this reprogramming process, which is orchestrated through ongoing communication between the mitochondrial and nuclear genomes. Metabolic flexibility, in particular the ability to rapidly adjust the balance between glycolytic and mitochondrial energy production, is a hallmark of aggressive, invasive, and metastatic cancers. Tumor cells sustain damage to both nuclear and mitochondrial DNA during tumorigenesis and as a consequence of anticancer treatments. Nuclear and mitochondrial DNA mutations and polymorphisms are increasingly recognized as factors that influence metabolic reprogramming, tumorigenesis, and tumor progression. Severe mitochondrial DNA damage compromises mitochondrial respiration. When mitochondrial respiration drops below a cell-specific threshold, metabolic reprogramming and plasticity fail to compensate and tumor formation is compromised. In these scenarios, tumorigenesis can be restored by acquisition of respiring mitochondria from surrounding stromal cells. Thus, intercellular mitochondrial transfer has the potential to confer treatment resistance and to promote tumor progression and metastasis. Understanding the constraints of metabolic, and in particular bioenergetic reprogramming, and the role of intercellular mitochondrial transfer in tumorigenesis provides new insights into addressing tumor progression and treatment resistance in highly aggressive cancers.
Collapse
Affiliation(s)
- P M Herst
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - C Grasso
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| |
Collapse
|
31
|
Codina A, Renauer PA, Wang G, Chow RD, Park JJ, Ye H, Zhang K, Dong MB, Gassaway B, Ye L, Errami Y, Shen L, Chang A, Jain D, Herbst RS, Bosenberg M, Rinehart J, Fan R, Chen S. Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo. Cell Syst 2019; 8:136-151.e7. [PMID: 30797773 DOI: 10.1016/j.cels.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/03/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
The genetic makeup of cancer cells directs oncogenesis and influences the tumor microenvironment. In this study, we massively profiled genes that functionally drive tumorigenesis using genome-scale in vivo CRISPR screens in hosts with different levels of immunocompetence. As a convergent hit from these screens, Prkar1a mutant cells are able to robustly outgrow as tumors in fully immunocompetent hosts. Functional interrogation showed that Prkar1a loss greatly altered the transcriptome and proteome involved in inflammatory and immune responses as well as extracellular protein production. Single-cell transcriptomic profiling and flow cytometry analysis mapped the tumor microenvironment of Prkar1a mutant tumors and revealed the transcriptomic alterations in host myeloid cells. Taken together, our data suggest that tumor-intrinsic mutations in Prkar1a lead to drastic alterations in the genetic program of cancer cells, thereby remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Adan Codina
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | - Paul A Renauer
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | - Guangchuan Wang
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ryan D Chow
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Hanghui Ye
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Kerou Zhang
- Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Brandon Gassaway
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Lupeng Ye
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Youssef Errami
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Li Shen
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Alan Chang
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roy S Herbst
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Smilow Cancer Hospital, 35 Park St, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jesse Rinehart
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Rong Fan
- Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA; Immunobiology Program, The Anlyan Center, 300 Cedar Street, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, Svec D, Hubackova S, Endaya B, Judasova K, Bezawork-Geleta A, Kluckova K, Chatre L, Zobalova R, Novakova A, Vanova K, Ezrova Z, Maghzal GJ, Magalhaes Novais S, Olsinova M, Krobova L, An YJ, Davidova E, Nahacka Z, Sobol M, Cunha-Oliveira T, Sandoval-Acuña C, Strnad H, Zhang T, Huynh T, Serafim TL, Hozak P, Sardao VA, Koopman WJH, Ricchetti M, Oliveira PJ, Kolar F, Kubista M, Truksa J, Dvorakova-Hortova K, Pacak K, Gurlich R, Stocker R, Zhou Y, Berridge MV, Park S, Dong L, Rohlena J, Neuzil J. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab 2019; 29:399-416.e10. [PMID: 30449682 PMCID: PMC7484595 DOI: 10.1016/j.cmet.2018.10.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/04/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.
Collapse
Affiliation(s)
- Martina Bajzikova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
| | - Ana R Coelho
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Sona Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Kristyna Judasova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | | | - Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Laurent Chatre
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Anna Novakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Katerina Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Zuzana Ezrova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Ghassan J Maghzal
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Silvia Magalhaes Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Marie Olsinova
- Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Linda Krobova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Yong Jin An
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Eliska Davidova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Margarita Sobol
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia
| | - Thanh Huynh
- Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Teresa L Serafim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Pavel Hozak
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vilma A Sardao
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Werner J H Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 Nijmegen, the Netherlands
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Katerina Dvorakova-Hortova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert Gurlich
- Third Faculty Hospital, Charles University, Prague, Czech Republic
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia
| | | | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.
| | - Lanfeng Dong
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
33
|
Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine 2018; 36:316-328. [PMID: 30232024 PMCID: PMC6197375 DOI: 10.1016/j.ebiom.2018.08.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023] Open
Abstract
We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.
Collapse
|
34
|
The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem 2018; 62:225-234. [PMID: 29880721 DOI: 10.1042/ebc20170096] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
mtDNA is a multicopy genome. When mutations exist, they can affect a varying proportion of the mtDNA present within every cell (heteroplasmy). Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation. This led to the genetic bottleneck hypothesis, explaining the rapid changes in allele frequency seen during transmission from one generation to the next. Although a physical reduction in mtDNA has been demonstrated in several species, a comprehensive understanding of the molecular mechanisms is yet to be revealed. Several questions remain, including the role of selection for and against specific alleles, whether all bottlenecks are the same, and precisely how the bottleneck is controlled during development. Although originally thought to be limited to the germline, there is evidence that bottlenecks exist in other cell types during development, perhaps explaining why different tissues in the same organism contain different levels of mutated mtDNA. Moreover, tissue-specific bottlenecks may occur throughout life in response to environmental influences, adding further complexity to the situation. Here we review key recent findings, and suggest ways forward that will hopefully advance our understanding of the role of mtDNA in human disease.
Collapse
|
35
|
Puckett EE, Micci‐Smith O, Munshi‐South J. Genomic analyses identify multiple Asian origins and deeply diverged mitochondrial clades in inbred brown rats ( Rattus norvegicus). Evol Appl 2018; 11:718-726. [PMID: 29875813 PMCID: PMC5979757 DOI: 10.1111/eva.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Over 500 strains of inbred brown rats (Rattus norvegicus) have been developed for use as a biomedical model organism. Most of these inbred lines were derived from the colony established at the Wistar Institute in 1906 or its descendants following worldwide distribution to research and breeding centers. The geographic source of the animals that founded the Wistar colony has been lost to history; thus, we compared 25 inbred rat strains to 326 wild rats from a global diversity dataset at 32 k SNPs, and 47 mitochondrial genomes to identify the source populations. We analyzed nuclear genomic data using principal component analyses and co-ancestry heat maps, and mitogenomes using phylogenetic trees and networks. In the nuclear genome, inbred rats clustered together indicating a single geographic origin for the strains studied and showed admixed ancestral variation with wild rats in eastern Asia and western North America. The Sprague Dawley derived, Wistar derived, and Brown Norway strains each had mitogenomes from different clades which diverged between 13 and 139 kya. Thus, we posit that rats originally collected for captive breeding had high mitochondrial diversity that became fixed through genetic drift and/or artificial selection. Our results show that these important medical models share common genomic ancestry from a few source populations, and opportunities exist to create new strains with diverse genomic backgrounds to provide novel insight into the genomic basis of disease phenotypes.
Collapse
Affiliation(s)
- Emily E. Puckett
- Louis Calder Center – Biological Field StationFordham UniversityArmonkNYUSA
| | - Olivia Micci‐Smith
- Louis Calder Center – Biological Field StationFordham UniversityArmonkNYUSA
| | - Jason Munshi‐South
- Louis Calder Center – Biological Field StationFordham UniversityArmonkNYUSA
| |
Collapse
|
36
|
Hirose M, Schilf P, Gupta Y, Zarse K, Künstner A, Fähnrich A, Busch H, Yin J, Wright MN, Ziegler A, Vallier M, Belheouane M, Baines JF, Tautz D, Johann K, Oelkrug R, Mittag J, Lehnert H, Othman A, Jöhren O, Schwaninger M, Prehn C, Adamski J, Shima K, Rupp J, Häsler R, Fuellen G, Köhling R, Ristow M, Ibrahim SM. Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Sci Rep 2018; 8:5872. [PMID: 29651131 PMCID: PMC5897405 DOI: 10.1038/s41598-018-24290-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) lead to heteroplasmy, i.e., the intracellular coexistence of wild-type and mutant mtDNA strands, which impact a wide spectrum of diseases but also physiological processes, including endurance exercise performance in athletes. However, the phenotypic consequences of limited levels of naturally arising heteroplasmy have not been experimentally studied to date. We hence generated a conplastic mouse strain carrying the mitochondrial genome of an AKR/J mouse strain (B6-mtAKR) in a C57BL/6 J nuclear genomic background, leading to >20% heteroplasmy in the origin of light-strand DNA replication (OriL). These conplastic mice demonstrate a shorter lifespan as well as dysregulation of multiple metabolic pathways, culminating in impaired glucose metabolism, compared to that of wild-type C57BL/6 J mice carrying lower levels of heteroplasmy. Our results indicate that physiologically relevant differences in mtDNA heteroplasmy levels at a single, functionally important site impair the metabolic health and lifespan in mice.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Junping Yin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Marvin N Wright
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Leibniz Institute for Prevention Research and Epidemiology, BIPS GmbH, Department Biometry and Data Management, Unit Statistical Methods in Genetics and Live-Course Epidemiology, Bremen, Germany
| | | | - Marie Vallier
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
- Institute for Experimental Medicine, Section of Evolutionary Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Kornelia Johann
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Center of Brain Behavior & Metabolism, Clinical Endocrinology and Metabolism, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Cornelia Prehn
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Kensuke Shima
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock University, Rostock, Germany
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
37
|
Wone BWM, Yim WC, Schutz H, Meek TH, Garland T. Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running. Mitochondrion 2018; 46:134-139. [PMID: 29626644 DOI: 10.1016/j.mito.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNAArg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (Fst = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (Fsc = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.
| | - Won C Yim
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Heidi Schutz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Biology Department, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Thomas H Meek
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; In Vivo Pharmacology Research Unit, Novo Nordisk, Seattle, WA 98109, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
38
|
Brinker AE, Vivian CJ, Koestler DC, Tsue TT, Jensen RA, Welch DR. Mitochondrial Haplotype Alters Mammary Cancer Tumorigenicity and Metastasis in an Oncogenic Driver-Dependent Manner. Cancer Res 2017; 77:6941-6949. [PMID: 29070615 DOI: 10.1158/0008-5472.can-17-2194] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Using a novel mouse model, a mitochondrial-nuclear exchange model termed MNX, we tested the hypothesis that inherited mitochondrial haplotypes alter primary tumor latency and metastatic efficiency. Male FVB/N-Tg(MMTVneu)202Mul/J (Her2) transgenic mice were bred to female MNX mice having FVB/NJ nuclear DNA with either FVB/NJ, C57BL/6J, or BALB/cJ mtDNA. Pups receiving the C57BL/6J or BALB/cJ mitochondrial genome (i.e., females crossed with Her2 males) showed significantly (P < 0.001) longer tumor latency (262 vs. 293 vs. 225 days), fewer pulmonary metastases (5 vs. 7 vs. 15), and differences in size of lung metastases (1.2 vs. 1.4 vs. 1.0 mm diameter) compared with FVB/NJ mtDNA. Although polyoma virus middle T-driven tumors showed altered primary and metastatic profiles in previous studies, depending upon nuclear and mtDNA haplotype, the magnitude and direction of changes were not the same in the HER2-driven mammary carcinomas. Collectively, these results establish mitochondrial polymorphisms as quantitative trait loci in mammary carcinogenesis, and they implicate distinct interactions between tumor drivers and mitochondria as critical modifiers of tumorigenicity and metastasis. Cancer Res; 77(24); 6941-9. ©2017 AACR.
Collapse
Affiliation(s)
- Amanda E Brinker
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn J Vivian
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, The University of Kansas Medical Center, Kansas City, Kansas.,The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
| | - Trevor T Tsue
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas. .,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas.,The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
39
|
Kelly PS, Clarke C, Costello A, Monger C, Meiller J, Dhiman H, Borth N, Betenbaugh MJ, Clynes M, Barron N. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells. Metab Eng 2017; 41:11-22. [DOI: 10.1016/j.ymben.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
40
|
Dong LF, Kovarova J, Bajzikova M, Bezawork-Geleta A, Svec D, Endaya B, Sachaphibulkij K, Coelho AR, Sebkova N, Ruzickova A, Tan AS, Kluckova K, Judasova K, Zamecnikova K, Rychtarcikova Z, Gopalan V, Andera L, Sobol M, Yan B, Pattnaik B, Bhatraju N, Truksa J, Stopka P, Hozak P, Lam AK, Sedlacek R, Oliveira PJ, Kubista M, Agrawal A, Dvorakova-Hortova K, Rohlena J, Berridge MV, Neuzil J. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 2017; 6. [PMID: 28195532 PMCID: PMC5367896 DOI: 10.7554/elife.22187] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI:http://dx.doi.org/10.7554/eLife.22187.001
Collapse
Affiliation(s)
- Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, Australia
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Bajzikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, Australia
| | | | - Ana R Coelho
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Natasa Sebkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Ruzickova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - An S Tan
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Judasova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Zamecnikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Zittau/Goerlitz University of Applied Sciences, Zittau, Germany
| | - Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vinod Gopalan
- School of Medical Science, Griffith University, Southport, Australia.,School of Medicine, Griffith University, Southport, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Margarita Sobol
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Bing Yan
- School of Medical Science, Griffith University, Southport, Australia
| | - Bijay Pattnaik
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Naveen Bhatraju
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Hozak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Alfred K Lam
- School of Medicine, Griffith University, Southport, Australia
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Mikael Kubista
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,TATAA Biocenter, Gothenburg, Sweden
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Katerina Dvorakova-Hortova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
41
|
Maltsev AN, Stakheev VV, Kotenkova EV. Role of invasions in formation of phylogeographic structure of house mouse (Mus musculus) in some areas of Russia and the near abroad. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2016. [DOI: 10.1134/s2075111716030061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc Natl Acad Sci U S A 2016; 113:E4276-85. [PMID: 27402764 DOI: 10.1073/pnas.1600537113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic information in mammalian mitochondrial DNA is densely packed; there are no introns and only one sizeable noncoding, or control, region containing key cis-elements for its replication and expression. Many molecules of mitochondrial DNA bear a third strand of DNA, known as "7S DNA," which forms a displacement (D-) loop in the control region. Here we show that many other molecules contain RNA as a third strand. The RNA of these R-loops maps to the control region of the mitochondrial DNA and is complementary to 7S DNA. Ribonuclease H1 is essential for mitochondrial DNA replication; it degrades RNA hybridized to DNA, so the R-loop is a potential substrate. In cells with a pathological variant of ribonuclease H1 associated with mitochondrial disease, R-loops are of low abundance, and there is mitochondrial DNA aggregation. These findings implicate ribonuclease H1 and RNA in the physical segregation of mitochondrial DNA, perturbation of which represents a previously unidentified disease mechanism.
Collapse
|
43
|
Janda J, Nfonsam V, Calienes F, Sligh JE, Jandova J. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch Dermatol Res 2016; 308:239-48. [PMID: 26873374 DOI: 10.1007/s00403-016-1628-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 01/02/2023]
Abstract
Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.
Collapse
Affiliation(s)
- Jaroslav Janda
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA
| | - Valentine Nfonsam
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA.,Department of Surgery, Division of Surgical Oncology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ, 85724, USA
| | - Fernanda Calienes
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA
| | - James E Sligh
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA.,Department of Medicine, Division of Dermatology, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA
| | - Jana Jandova
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA. .,Department of Surgery, Division of Surgical Oncology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ, 85724, USA. .,Department of Medicine, Division of Dermatology, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ, 85724, USA.
| |
Collapse
|
44
|
Feeley KP, Bray AW, Westbrook DG, Johnson LW, Kesterson RA, Ballinger SW, Welch DR. Mitochondrial Genetics Regulate Breast Cancer Tumorigenicity and Metastatic Potential. Cancer Res 2016; 75:4429-36. [PMID: 26471915 DOI: 10.1158/0008-5472.can-15-0074] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current paradigms of carcinogenic risk suggest that genetic, hormonal, and environmental factors influence an individual's predilection for developing metastatic breast cancer. Investigations of tumor latency and metastasis in mice have illustrated differences between inbred strains, but the possibility that mitochondrial genetic inheritance may contribute to such differences in vivo has not been directly tested. In this study, we tested this hypothesis in mitochondrial-nuclear exchange mice we generated, where cohorts shared identical nuclear backgrounds but different mtDNA genomes on the background of the PyMT transgenic mouse model of spontaneous mammary carcinoma. In this setting, we found that primary tumor latency and metastasis segregated with mtDNA, suggesting that mtDNA influences disease progression to a far greater extent than previously appreciated. Our findings prompt further investigation into metabolic differences controlled by mitochondrial process as a basis for understanding tumor development and metastasis in individual subjects. Importantly, differences in mitochondrial DNA are sufficient to fundamentally alter disease course in the PyMT mouse mammary tumor model, suggesting that functional metabolic differences direct early tumor growth and metastatic efficiency.
Collapse
Affiliation(s)
- Kyle P Feeley
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander W Bray
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David G Westbrook
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Larry W Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
45
|
Kesterson RA, Johnson LW, Lambert LJ, Vivian JL, Welch DR, Ballinger SW. Generation of Mitochondrial-nuclear eXchange Mice via Pronuclear Transfer. Bio Protoc 2016; 6:e1976. [PMID: 27840835 DOI: 10.21769/bioprotoc.1976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The mitochondrial paradigm for common disease proposes that mitochondrial DNA (mtDNA) sequence variation can contribute to disease susceptibility and progression. To test this concept, we developed the Mitochondrial-nuclear eXchange (MNX) model, in which isolated embryonic pronuclei from one strain of species are implanted into an enucleated embryo of a different strain of the same species (e.g., C57BL/6 and C3H/HeN, Mus musculus), generating a re-constructed zygote harboring nuclear and mitochondrial genomes from different strains. Two-cell embryos are transferred to the ostia of oviducts in CD-1 pseudopregnant mice and developed to term. Nuclear genotype and mtDNA haplotype are verified in offspring, and females selected as founders for desired MNX colonies. By utilizing MNX models, many new avenues for the in vivo study for mitochondrial and nuclear genetics, or mito-Mendelian genetics, are now possible.
Collapse
Affiliation(s)
| | - Larry W Johnson
- Department of Genetics, University of Alabama, Birmingham, USA
| | - Laura J Lambert
- Department of Genetics, University of Alabama, Birmingham, USA
| | - Jay L Vivian
- Department of Pathology, University of Kansas Medical Center, Kansas City, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, USA
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, USA
| |
Collapse
|
46
|
Machado TS, Macabelli CH, Sangalli JR, Rodrigues TB, Smith LC, Meirelles FV, Chiaratti MR. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains. PLoS One 2015; 10:e0133650. [PMID: 26274500 PMCID: PMC4537288 DOI: 10.1371/journal.pone.0133650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.
Collapse
Affiliation(s)
- Thiago Simões Machado
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, 13565–905, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508–270, Brazil
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635–900, Brazil
| | - Carolina Habermann Macabelli
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, 13565–905, Brazil
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635–900, Brazil
| | - Juliano Rodrigues Sangalli
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508–270, Brazil
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635–900, Brazil
| | - Thiago Bittencourt Rodrigues
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, 13565–905, Brazil
| | - Lawrence Charles Smith
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508–270, Brazil
- Centre de recherche en reproduction animale, Faculté de Medecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada
| | - Flávio Vieira Meirelles
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508–270, Brazil
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635–900, Brazil
| | - Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, 13565–905, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508–270, Brazil
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635–900, Brazil
- * E-mail:
| |
Collapse
|
47
|
Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc Natl Acad Sci U S A 2015; 112:9334-9. [PMID: 26162680 DOI: 10.1073/pnas.1503653112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.
Collapse
|
48
|
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 2015; 21:671-89. [PMID: 25976758 DOI: 10.1093/humupd/dmv024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease. METHODS The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction. RESULTS Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing. CONCLUSIONS Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
49
|
Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, Berridge MV. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 2015; 21:81-94. [PMID: 25565207 DOI: 10.1016/j.cmet.2014.12.003] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/10/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Collapse
Affiliation(s)
- An S Tan
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - James W Baty
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | | | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Jacob Goodwin
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Martina Bajzikova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jaromira Kovarova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Martin Peterka
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Bing Yan
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | | | - Margarita Sobol
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Anatolyj Filimonenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Shani Stuart
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Magdalena Vondrusova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Katarina Kluckova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | | | - Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Pavel Hozak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - David Eccles
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
| | - Michael V Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.
| |
Collapse
|
50
|
Balakirev AE, Abramov AV, Rozhnov VV. Phylogenetic relationships in the Niviventer-Chiromyscus complex (Rodentia, Muridae) inferred from molecular data, with description of a new species. Zookeys 2014; 451:109-36. [PMID: 25493050 PMCID: PMC4258623 DOI: 10.3897/zookeys.451.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/03/2014] [Indexed: 12/05/2022] Open
Abstract
Based on molecular data for mitochondrial (Cyt b, COI) and nuclear (IRBP, GHR) genes, and morphological examinations of museum specimens, we examined diversity, species boundaries, and relationships within and between the murine genera Chiromyscus and Niviventer. Phylogenetic patterns recovered demonstrate that Niviventer sensu lato is not monophyletic but instead includes Chiromyscuschiropus, the only previously recognized species of Chiropus. To maintain the genera Niviventer and Chiropus as monophyletic lineages, the scope and definition of the genus Chiromyscus is revised to include at least three distinct species: Chiromyscuschiropus (the type species of Chiromyscus), Chiromyscuslangbianis (previously regarded as a species of Niviventer), and a new species, described in this paper under the name Chiromyscusthomasi sp. n.
Collapse
Affiliation(s)
- Alexander E. Balakirev
- Joint Russian-Vietnamese Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- A.N. Severtsov’s Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia
| | - Alexei V. Abramov
- Joint Russian-Vietnamese Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, Saint Petersburg 199034, Russia
| | - Viatcheslav V. Rozhnov
- Joint Russian-Vietnamese Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- A.N. Severtsov’s Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia
| |
Collapse
|