1
|
Fang S, Yang Y, Zhang X, Yang Z, Zhang M, Zhao Y, Zhang C, Yu F, Wang YF, Zhang P. Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis. NATURE PLANTS 2025:10.1038/s41477-024-01895-6. [PMID: 39838070 DOI: 10.1038/s41477-024-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation. Further molecular dynamic simulation and AlphaFold prediction support an open conformation. AtPHO1;H1 forms a domain-swapped homodimer that involves both the transmembrane ERD1/XPR1/SYG1 (EXS) domain and the cytoplasmic SYG1/Pho81/XPR1 (SPX) domain. The EXS domain presented by the SPX-EXS family represents a novel protein fold, and an independent substrate transport pathway and substrate-binding site are present in each EXS domain. Two gating residues, Trp719 and Tyr610, are identified above the substrate-binding site to control opening and closing of the pathway. The SPX domain features positively charged patches and/or residues at the dimer interface to accommodate inositol hexakisphosphate molecules, whose binding mediates dimerization and enhances AtPHO1;H1 activity. In addition, a C-terminal tail is required for AtPHO1;H1 activity. On the basis of structural and functional analysis, a working model for Pi efflux mediated by AtPHO1;H1 and its homologues was postulated, suggesting a channel-like mechanism. This study not only reveals the molecular and regulatory mechanism underlying Pi transport mediated by the unique SPX-EXS family, but also provides potential for crop engineering to enhance phosphorus-use efficiency in sustainable agriculture.
Collapse
Affiliation(s)
- Sunzhenhe Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhao
- Shanghai Normal University, Shanghai, China
| | - Chensi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Yu
- Shanghai Normal University, Shanghai, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Rahmati S, Zandi F, Ahmadi K, Adeli A, Rastegarpanah N, Amanlou M, Vaziri B. Computational structure-based design of antiviral peptides as potential protein-protein interaction inhibitors of rabies virus phosphoprotein and human LC8. Heliyon 2025; 11:e41520. [PMID: 39845016 PMCID: PMC11750543 DOI: 10.1016/j.heliyon.2024.e41520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Rabies is a serious zoonotic disease caused by the rabies virus (RABV). Despite the successful development of vaccines and efforts made in drug discovery, rabies is incurable. Therefore, development of novel drugs is of interest to the scientific community. Antiviral peptides can be designed based on the known structures of viral proteins and their biological targets. Cytoplasmic dynein light chain LC8, one of the first identified host partners of RABV phosphoprotein (RABV P), is an essential factor for RABV transcription and replication. As part of the search for new potential drugs against rabies, we used structure-based drug design using the in silico tools. The binding site of LC8 with RABV P was used for peptide design. Four potential peptide inhibitors (Pep1-4) were selected, modeled, and docked with RABV P. The highest binding affinity was observed for the RABV P-Pep2 complex. Molecular dynamics (MD) simulations were performed and the stability of the peptides and complexes was confirmed. Finally, Pep2 can be used as a potential candidate for peptide-based antiviral therapy against RABV. The identified small peptides may prevent RABV infection based on the results of the current investigation. Further in vitro and in vivo studies are needed to confirm these results.
Collapse
Affiliation(s)
- Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Department of Medical Biotechnology, School of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Niloofar Rastegarpanah
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Uychoco P, Majorek KA, Ives AN, Le VTB, Caro De Silva PL, Paurus VL, Attah IK, Lipton MS, Minor W, Kuhn ML. Structural, functional, and regulatory evaluation of a cysteine post-translationally modified Gcn5-related N-acetyltransferase. Biochem Biophys Res Commun 2025; 748:151299. [PMID: 39826527 DOI: 10.1016/j.bbrc.2025.151299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Polyamines within the cell are tightly regulated by spermidine/spermine N-acetyltransferase (SSAT) enzymes. While several SSATs have been investigated in different bacterial species, there is still a significant gap in knowledge about which proteins are functional SSATs in many organisms. For example, while it is known that Pseudomonas aeruginosa synthesizes the polyamine spermidine, the SSAT that acetylates this molecule and its importance in regulating intracellular polyamines remains unknown. We previously identified a candidate Gcn5-related N-acetyltransferase (GNAT) protein from P. aeruginosa (PA2271) that could fulfill this role since it acetylates spermidine, but no further studies were conducted. Here, we explored the structure/function relationship of the PA2271 protein by determining its X-ray crystal structure and performing enzyme kinetics assays. We also identified active site residues that are essential for catalysis and substrate binding. As the study progressed, we encountered results that led us to explore the importance of four cysteine residues on enzyme activity and disulfide bond formation or modification of cysteine residues. We found these cysteine residues in PA2271 are important for protein solubility and activity, and there is an interrelationship between cysteine residues that contribute to these effects. Furthermore, we also found disulfide bonds could form between C121 and C165 and speculate that these residues may contribute to redox regulation of PA2271 protein activity.
Collapse
Affiliation(s)
- Patricia Uychoco
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, USA
| | - Karolina A Majorek
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA, USA
| | - Ashley N Ives
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Van Thi Bich Le
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, USA
| | - Pamela L Caro De Silva
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, USA
| | - Vanessa L Paurus
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Isaac Kwame Attah
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Wladek Minor
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA, USA
| | - Misty L Kuhn
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, USA; Pacific Northwest National Laboratory, Earth and Biological Sciences Division, Richland, WA, USA.
| |
Collapse
|
4
|
Wang S, Zhu K, Liu P. Effect of Fold-Promoting Mutation and Signal Peptide Screening on Recombinant Glucan 1,4-Alpha-maltohydrolase Secretion in Pichia pastoris. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05145-5. [PMID: 39777640 DOI: 10.1007/s12010-024-05145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Glucan 1,4-alpha-maltohydrolase (3.2.1.133, GMH) is an important biocatalyst in the baking industry, which could delay the retrogradation of bread and improve its cold-storage durability. In the present study, a newly cloned Thgmh was characterized and secreted by Pichia pastoris (Komagataella pastoris). After computationally assisted rational design that promotes peptide folding, the maltogenic activity in supernatant was enhanced 1.6-fold in comparison with the base strain. The signal leading sequence screening and the gene dosage increment further improved secretion by approximately 6.4-fold. The purified rationally designed ThGMHs exhibited maximal activity against soluble starch at pH 7.0 and 60 ℃, and maltose is the main catalytic product. In a 5-L bioreactor, conventional fed-batch fermentation resulted in 6130 U mL-1 extracellular maltogenic activity. Therefore, a promising strain for GMH production was developed, which provides a useful reference for the secretory production of other industrial enzymes.
Collapse
Affiliation(s)
- Siyi Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kai Zhu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Pulin Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
5
|
Muniyandi A, Hartman GD, Sishtla K, Rai R, Gomes C, Day K, Song Y, Masters AR, Quinney SK, Qi X, Woods H, Boulton ME, Meyer JS, Vilseck JZ, Georgiadis MM, Kelley MR, Corson TW. Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor. Angiogenesis 2025; 28:11. [PMID: 39756006 DOI: 10.1007/s10456-024-09966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV). Here, we set out to further explore Ref-1 in neovascular eye disease. Ref-1 was highly expressed in human nAMD, murine laser-induced CNV and Vldlr-/- mouse subretinal neovascularization (SRN). Ref-1's interaction with a redox-specific small molecule inhibitor, APX2009, was shown by NMR and docking. This compound blocks crucial angiogenic features in multiple endothelial cell types. APX2009 also ameliorated murine laser-induced choroidal neovascularization (L-CNV) when delivered intravitreally. Moreover, systemic APX2009 reduced murine SRN and downregulated the expression of Ref-1 redox regulated HIF-1α target carbonic anhydrase 9 (CA9) in the Vldlr-/- mouse model. Our data validate the redox function of Ref-1 as a critical regulator of ocular angiogenesis, indicating that inhibition of Ref-1 holds therapeutic potential for treating nAMD.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Kamakshi Sishtla
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Ratan Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Day
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Song
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R Masters
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Quinney
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hailey Woods
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason S Meyer
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Timothy W Corson
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Kurniyati K, Clark ND, Wang H, Deng Y, Sze CW, Visser MB, Malkowski MG, Li C. A bipartite bacterial virulence factor targets the complement system and neutrophil activation. EMBO J 2025:10.1038/s44318-024-00342-8. [PMID: 39753953 DOI: 10.1038/s44318-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units. The N-terminal fragment has two immunoglobulin-like domains and binds with high affinity to the major neutrophil chemokine receptors FPR1 and CXCR1, blocking N-formyl-Met-Leu-Phe- and IL-8-induced neutrophil chemotaxis and activation. The C-terminal fragment functions as a cysteine protease with a unique proteolytic activity and structure, which degrades several components of the complement system, such as C3 and C3b. Murine infection studies further reveal a critical T-Mac role in tissue damage and inflammation caused by bacterial infection. Collectively, these results disclose a novel innate immunity-evasion strategy, and open avenues for investigating the role of cysteine proteases and immunoglobulin-like domains of gram-positive and -negative bacterial pathogens.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Hongxia Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yijie Deng
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dentistry, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Balıkçı E, Günl F, Carrique L, Keown JR, Fodor E, Grimes JM. Structure of the Nipah virus polymerase complex. EMBO J 2025; 44:563-586. [PMID: 39739115 PMCID: PMC11730344 DOI: 10.1038/s44318-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
Nipah virus is a highly virulent zoonotic paramyxovirus causing severe respiratory and neurological disease. Despite its lethality, there is no approved treatment for Nipah virus infection. The viral polymerase complex, composed of the polymerase (L) and phosphoprotein (P), replicates and transcribes the viral RNA genome. Here, we describe structures of the Nipah virus L-P polymerase complex and the L-protein's Connecting Domain (CD). The cryo-electron microscopy L-P complex structure reveals the organization of the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L-protein, and shows how the P-protein, which forms a tetramer, interacts with the RdRp-domain of the L-protein. The crystal structure of the CD-domain alone reveals binding of three Mg ions. Modelling of this domain onto an AlphaFold 3 model of an RNA-L-P complex suggests a catalytic role for one Mg ion in mRNA capping. These findings offer insights into the structural details of the L-P polymerase complex and the molecular interactions between L-protein and P-protein, shedding light on the mechanisms of the replication machinery. This work will underpin efforts to develop antiviral drugs that target the polymerase complex of Nipah virus.
Collapse
Affiliation(s)
- Esra Balıkçı
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Franziska Günl
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Jeremy R Keown
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Chen M, Su Q, Shi Y. Molecular mechanism of IgE-mediated FcεRI activation. Nature 2025; 637:453-460. [PMID: 39442557 DOI: 10.1038/s41586-024-08229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Allergic diseases affect more than a quarter of individuals in industrialized countries, and are a major public health concern1,2. The high-affinity Fc receptor for immunoglobulin E (FcεRI), which is mainly present on mast cells and basophils, has a crucial role in allergic diseases3-5. Monomeric immunoglobulin E (IgE) binding to FcεRI regulates mast cell survival, differentiation and maturation6-8. However, the underlying molecular mechanism remains unclear. Here we demonstrate that prior to IgE binding, FcεRI exists mostly as a homodimer on human mast cell membranes. The structure of human FcεRI confirms the dimeric organization, with each promoter comprising one α subunit, one β subunit and two γ subunits. The transmembrane helices of the α subunits form a layered arrangement with those of the γ and β subunits. The dimeric interface is mediated by a four-helix bundle of the α and γ subunits at the intracellular juxtamembrane region. Cholesterol-like molecules embedded within the transmembrane domain may stabilize the dimeric assembly. Upon IgE binding, the dimeric FcεRI dissociates into two protomers, each of which binds to an IgE molecule. This process elicits transcriptional activation of Egr1, Egr3 and Ccl2 in rat basophils, which can be attenuated by inhibiting the FcεRI dimer-to-monomer transition. Collectively, our study reveals the mechanism of antigen-independent, IgE-mediated FcεRI activation.
Collapse
Affiliation(s)
- Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China.
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Goretzki B, Khoshouei M, Schröder M, Penner P, Egger L, Stephan C, Argoti D, Dierlamm N, Rada JM, Kapps S, Müller CS, Thiel Z, Mutlu M, Tschopp C, Furkert D, Freuler F, Haenni S, Tenaillon L, Knapp B, Hinniger A, Hoppe P, Schmidt E, Gutmann S, Iurlaro M, Ryzhakov G, Fernández C. Dual BACH1 regulation by complementary SCF-type E3 ligases. Cell 2024; 187:7585-7602.e25. [PMID: 39657677 DOI: 10.1016/j.cell.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Broad-complex, tramtrack, and bric-à-brac domain (BTB) and CNC homolog 1 (BACH1) is a key regulator of the cellular oxidative stress response and an oncogene that undergoes tight post-translational control by two distinct F-box ubiquitin ligases, SCFFBXO22 and SCFFBXL17. However, how both ligases recognize BACH1 under oxidative stress is unclear. In our study, we elucidate the mechanism by which FBXO22 recognizes a quaternary degron in a domain-swapped β-sheet of the BACH1 BTB dimer. Cancer-associated mutations and cysteine modifications destabilize the degron and impair FBXO22 binding but simultaneously expose an otherwise shielded degron in the dimer interface, allowing FBXL17 to recognize BACH1 as a monomer. These findings shed light on a ligase switch mechanism that enables post-translational regulation of BACH1 by complementary ligases depending on the stability of its BTB domain. Our results provide mechanistic insights into the oxidative stress response and may spur therapeutic approaches for targeting oxidative stress-related disorders and cancer.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland.
| | - Maryam Khoshouei
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Martin Schröder
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Patrick Penner
- Global Discovery Chemistry, Novartis Biomedical Research, Basel, Switzerland
| | - Luca Egger
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Christine Stephan
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Dayana Argoti
- Global Discovery Chemistry, Novartis Biomedical Research, Emeryville, CA, USA
| | - Nele Dierlamm
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Jimena Maria Rada
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Sandra Kapps
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Zacharias Thiel
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Merve Mutlu
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Claude Tschopp
- Disease Area Immunology, Novartis Biomedical Research, Basel, Switzerland
| | - David Furkert
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Felix Freuler
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Simon Haenni
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Laurent Tenaillon
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Britta Knapp
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Philipp Hoppe
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Enrico Schmidt
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Sascha Gutmann
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Mario Iurlaro
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Grigory Ryzhakov
- Disease Area Immunology, Novartis Biomedical Research, Basel, Switzerland
| | - César Fernández
- Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland.
| |
Collapse
|
10
|
Gu Y, Li H, Deep A, Enustun E, Zhang D, Corbett KD. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. Mol Cell 2024:S1097-2765(24)00999-7. [PMID: 39742666 DOI: 10.1016/j.molcel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD). We find that B. cereus Shedu cleaves near DNA ends with a 3' single-stranded overhang, likely enabling it to specifically degrade the DNA injected by certain bacteriophages. Bioinformatic analysis of Shedu homologs reveals a conserved nuclease domain with remarkably diverse N-terminal regulatory domains: we identify 79 distinct NTD types falling into eight broad classes, including those with predicted nucleic acid binding, enzymatic, and other activities. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse NTDs that likely respond to a range of signals.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Huan Li
- Department of Biology, Saint Louis University, Saint Louis, MO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eray Enustun
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Cordero C, Mehta KPM, Weaver TM, Ling JA, Freudenthal BD, Cortez D, Roberts SA. Contributing factors to the oxidation-induced mutational landscape in human cells. Nat Commun 2024; 15:10722. [PMID: 39715760 DOI: 10.1038/s41467-024-55497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO3)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO3-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
Collapse
Affiliation(s)
- Cameron Cordero
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA.
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Justin A Ling
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Steven A Roberts
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
12
|
Bhuyan P, Bharali V, Basumatary S, Lego A, Sarma J, Borbora D. Computational analysis of MYC gene variants: structural and functional impact of non-synonymous SNPs. J Appl Genet 2024:10.1007/s13353-024-00929-1. [PMID: 39673052 DOI: 10.1007/s13353-024-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024]
Abstract
The MYC proto-oncogene encodes a basic helix-loop-helix leucine zipper (HLH-LZ) transcription factor, acting as a master regulator of genes involved in cellular proliferation, differentiation, and immune surveillance. Dysregulation of MYC is implicated in over 70% of human cancers, driving oncogenic processes through altered gene expression and disrupted cellular functions. Non-synonymous single nucleotide polymorphisms (nsSNPs) within coding regions can significantly impact protein structure and function, leading to abnormal cellular behaviours. This study employed 29 in silico tools to systematically evaluate the deleteriousness of nsSNPs within the MYC gene. These tools assessed the variants' effects on protein structure, disease association, functional domains, and post-translational modification sites. This study investigated if these variants may disrupt protein-protein interactions, critical for MYC's oncogenic roles and normal cellular functions. Our analysis identified 21 nsSNPs that were predicted to be deleterious and pathogenic. These variants correspond to residues D63H, D63Y, P74L, P75L, N375D, N375I, E378K, E378Q, E378A, E378G, E378V, R379P, R381K, R381T, R382W, L392P, R393C, R393H, R393P, L411H, and L411P. Stability assessments indicated that these variants could destabilise the MYC protein. None of the variants affected post-translational modifications. Protein-protein interaction and docking analysis revealed that variants within bHLH and LZ domains may disrupt MYC/MAX binding, potentially impacting MYC's oncogenic activity and transcriptional regulation. This computational assessment enhances our understanding of genetic variations within the MYC gene and prioritises candidate nsSNPs for experimental validation and therapeutic exploration.
Collapse
Affiliation(s)
- Plabita Bhuyan
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Varshabi Bharali
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Sangju Basumatary
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Aido Lego
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Juman Sarma
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Debasish Borbora
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
- Institutional Biotech Hub, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
13
|
Fasoulis R, Paliouras G, Kavraki LE. RankMHC: Learning to Rank Class-I Peptide-MHC Structural Models. J Chem Inf Model 2024; 64:8729-8742. [PMID: 39555889 PMCID: PMC11633655 DOI: 10.1021/acs.jcim.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The binding of peptides to class-I Major Histocompability Complex (MHC) receptors and their subsequent recognition downstream by T-cell receptors are crucial processes for most multicellular organisms to be able to fight various diseases. Thus, the identification of peptide antigens that can elicit an immune response is of immense importance for developing successful therapies for bacterial and viral infections, even cancer. Recently, studies have demonstrated the importance of peptide-MHC (pMHC) structural analysis, with pMHC structural modeling methods gradually becoming more popular in peptide antigen identification workflows. Most of the pMHC structural modeling tools provide an ensemble of candidate peptide poses in the MHC-I cleft, each associated with a score stemming from a scoring function, with the top scoring pose assumed to be the most representative of the ensemble. However, identifying the binding mode, that is, the peptide pose from the ensemble that is closer to an unavailable native structure, is not trivial. Oftentimes, the peptide poses characterized as best by a protein-ligand scoring function are not the ones that are the most representative of the actual structure. In this work, we frame the peptide binding pose identification problem as a Learning-to-Rank (LTR) problem. We present RankMHC, an LTR-based pMHC binding mode identification predictor, which is specifically trained to predict the most accurate ranking of an ensemble of pMHC conformations. RankMHC outperforms classical peptide-ligand scoring functions, as well as previous Machine Learning (ML)-based binding pose predictors. We further demonstrate that RankMHC can be used with many pMHC structural modeling tools that use different structural modeling protocols.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Georgios Paliouras
- Institute
of Informatics and Telecommunications, NCSR
Demokritos, Athens 15341, Greece
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
- Ken
Kennedy Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Kedari A, Iheozor-Ejiofor R, Salminen P, Uğurlu H, Mäkelä AR, Levanov L, Vapalahti O, Hytönen VP, Saksela K, Rissanen I. Structural insight into rabies virus neutralization revealed by an engineered antibody scaffold. Structure 2024; 32:2220-2230.e4. [PMID: 39471803 DOI: 10.1016/j.str.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Host-cell entry of the highly pathogenic rabies virus (RABV) is mediated by glycoprotein (G) spikes, which also comprise the primary target for the humoral immune response. RABV glycoprotein (RABV-G) displays several antigenic sites that are targeted by neutralizing monoclonal antibodies (mAbs). In this study, we determined the epitope of a potently neutralizing human mAb, CR57, which we engineered into a diabody format to facilitate crystallization. We report the crystal structure of the CR57 diabody alone at 2.38 Å resolution, and in complex with RABV-G domain III at 2.70 Å resolution. The CR57-RABV-G structure reveals critical interactions at the antigen interface, which target the conserved "KLCGVL" peptide and residues proximal to it on RABV-G. Structural analysis combined with a cell-cell fusion assay demonstrates that CR57 effectively inhibits RABV-G-mediated fusion by obstructing the fusogenic transitions of the spike protein. Altogether, this investigation provides a structural perspective on RABV inhibition by a potently neutralizing human antibody.
Collapse
MESH Headings
- Rabies virus/immunology
- Rabies virus/chemistry
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Humans
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Models, Molecular
- Crystallography, X-Ray
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Protein Engineering/methods
- Epitopes/chemistry
- Epitopes/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Protein Binding
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
Collapse
Affiliation(s)
- Ashwini Kedari
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Petja Salminen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Anna R Mäkelä
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
15
|
An N, Huang X, Yang Z, Zhang M, Ma M, Yu F, Jing L, Du B, Wang YF, Zhang X, Zhang P. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. NATURE PLANTS 2024; 10:2052-2061. [PMID: 39496849 DOI: 10.1038/s41477-024-01839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Jasmonates (JAs) are a class of oxylipin phytohormones including jasmonic acid (JA) and derivatives that regulate plant growth, development and biotic and abiotic stress. A number of transporters have been identified to be responsible for the cellular and subcellular translocation of JAs. However, the mechanistic understanding of how these transporters specifically recognize and transport JAs is scarce. Here we determined the cryogenic electron microscopy structure of JA exporter AtABCG16 in inward-facing apo, JA-bound and occluded conformations, and outward-facing post translocation conformation. AtABCG16 structure forms a homodimer, and each monomer contains a nucleotide-binding domain, a transmembrane domain and an extracellular domain. Structural analyses together with biochemical and plant physiological experiments revealed the molecular mechanism by which AtABCG16 specifically recognizes and transports JA. Structural analyses also revealed that AtABCG16 features a unique bifurcated substrate translocation pathway, which is composed of two independent substrate entrances, two substrate-binding pockets and a shared apoplastic cavity. In addition, residue Phe608 from each monomer is disclosed to function as a gate along the translocation pathway controlling the accessing of substrate JA from the cytoplasm or apoplast. Based on the structural and biochemical analyses, a working model of AtABCG16-mediated JA transport is proposed, which diversifies the molecular mechanisms of ABC transporters.
Collapse
Affiliation(s)
- Ning An
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Fang Yu
- Shanghai Normal University, Shanghai, China
| | - Lianyan Jing
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boya Du
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Saha S, Jain BP, Ghosh DK, Ranjan A. Conformational plasticity links structural instability of NAA10 F128I and NAA10 F128L mutants to their catalytic deregulation. Comput Struct Biotechnol J 2024; 23:4047-4063. [PMID: 39610905 PMCID: PMC11603127 DOI: 10.1016/j.csbj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The acetylation of proteins' N-terminal amino groups by the N-acetyltransferase complexes plays a crucial role in modulating the spatial stability and functional activities of diverse human proteins. Mutations disrupting the stability and function of NAA10 result in X-linked rare genetic disorders. In this study, we conducted a global analysis of the impact of fifteen disease-associated missense mutations in NAA10. The analyses revealed that mutations in specific residues, such as Y43, V107, V111, and F128, predictably disrupted interactions essential for NAA10 stability, while most mutations (except R79C, A111W, Q129P, and N178K) expectedly led to structural destabilization. Mutations in many conserved residues within short linear motifs and post-translational modification sites were predicted to affect NAA10 functionality and regulation. All mutations were classified as pathogenic, with F128I and F128L identified as the most destabilizing mutations. The findings show that the F128L and F128I mutations employ different mechanisms for the loss of catalytic activities of NAA10F128L and NAA10F128I due to their structural instability. These two mutations induce distinct folding energy states that differentially modulate the structures of different regions of NAA10F128L and NAA10F128I. Specifically, the predicted instability caused by the F128I mutation results in decreased flexibility within the substrate-binding region, impairing the substrate peptide binding ability of NAA10F128I. Conversely, F128L is predicted to reduce the flexibility of the region containing the acetyl-CoA binding residues in NAA10F128L. Our study provides insights into the mechanism of catalytic inactivation of mutants of NAA10, particularly elucidating the mechanistic features of the structural and functional pathogenicity of the F128L and F128I mutations.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Badepally NG, de Moura TR, Purta E, Baulin EF, Bujnicki JM. Cryo-EM Structure of raiA ncRNA From Clostridium Reveals a New RNA 3D Fold. J Mol Biol 2024; 436:168833. [PMID: 39454748 DOI: 10.1016/j.jmb.2024.168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Advancements in genome-wide sequence analysis have led to the discovery of numerous novel bacterial non-coding RNAs (ncRNAs). These ncRNAs have been categorized into various RNA families and classes based on their size, structure, function, and evolutionary relationships. One such ncRNA family, raiA, is notably abundant in the bacterial phyla Firmicutes and Actinobacteria and is remarkably well-conserved across many Gram-positive bacteria. In this study, we integrated cryo-electron microscopy single-particle analysis with computational modeling and biochemical techniques to elucidate the structural characteristics of raiA from Clostridium sp. CAG 138. Our findings reveal the globular 3D fold of raiA, providing valuable structural insights. This analysis paves the way for future investigations into the functional properties of raiA, potentially uncovering new regulatory mechanisms in bacterial ncRNAs.
Collapse
Affiliation(s)
- Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
18
|
Chen YJ, Iyer SV, Hsieh DCC, Li B, Elias HK, Wang T, Li J, Ganbold M, Lien MC, Peng YC, Xie XP, Jayewickreme CD, van den Brink MRM, Brady SF, Lim SK, Parada LF. Gliocidin is a nicotinamide-mimetic prodrug that targets glioblastoma. Nature 2024; 636:466-473. [PMID: 39567689 DOI: 10.1038/s41586-024-08224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma is incurable and in urgent need of improved therapeutics1. Here we identify a small compound, gliocidin, that kills glioblastoma cells while sparing non-tumour replicative cells. Gliocidin activity targets a de novo purine synthesis vulnerability in glioblastoma through indirect inhibition of inosine monophosphate dehydrogenase 2 (IMPDH2). IMPDH2 blockade reduces intracellular guanine nucleotide levels, causing nucleotide imbalance, replication stress and tumour cell death2. Gliocidin is a prodrug that is anabolized into its tumoricidal metabolite, gliocidin-adenine dinucleotide (GAD), by the enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) of the NAD+ salvage pathway. The cryo-electron microscopy structure of GAD together with IMPDH2 demonstrates its entry, deformation and blockade of the NAD+ pocket3. In vivo, gliocidin penetrates the blood-brain barrier and extends the survival of mice with orthotopic glioblastoma. The DNA alkylating agent temozolomide induces Nmnat1 expression, causing synergistic tumour cell killing and additional survival benefit in orthotopic patient-derived xenograft models. This study brings gliocidin to light as a prodrug with the potential to improve the survival of patients with glioblastoma.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Swathi V Iyer
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Chun-Cheng Hsieh
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Buren Li
- Structure Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harold K Elias
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Tao Wang
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Jing Li
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mungunsarnai Ganbold
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle C Lien
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chun Peng
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuanhua P Xie
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenura D Jayewickreme
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - S Kyun Lim
- KOBIOLABS, Inc., Seongnam-si, South Korea
| | - Luis F Parada
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Dikunova A, Noskova N, Overbeck JH, Polak M, Stelzig D, Zapletal D, Kubicek K, Novacek J, Sprangers R, Stefl R. Assembly of the Xrn2/Rat1-Rai1-Rtt103 termination complexes in mesophilic and thermophilic organisms. Structure 2024:S0969-2126(24)00500-8. [PMID: 39657659 DOI: 10.1016/j.str.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The 5'-3' exoribonuclease Xrn2, known as Rat1 in yeasts, terminates mRNA transcription by RNA polymerase II (RNAPII). In the torpedo model of termination, the activity of Xrn2/Rat1 is enhanced by Rai1, which is recruited to the termination site by Rtt103, an adaptor protein binding to the RNAPII C-terminal domain (CTD). The overall architecture of the Xrn2/Rat1-Rai1-Rtt103 complex remains unknown. We combined structural biology methods to characterize the torpedo complex from Saccharomyces cerevisiae and Chaetomium thermophilum. Comparison of the structures from these organisms revealed a conserved protein core fold of the subunits, but significant variability in their interaction interfaces. We found that in the mesophile, Rtt103 utilizes an unstructured region to augment a Rai1 β-sheet, while in the thermophile Rtt103 binds to a C-terminal helix of Rai1 via its CTD-interacting domain with an α-helical fold. These different torpedo complex assemblies reflect adaptations to the environment and impact complex recruitment to RNAPII.
Collapse
Affiliation(s)
- Alzbeta Dikunova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Nikola Noskova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan H Overbeck
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Polak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - David Stelzig
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - David Zapletal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czechia; Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Jiri Novacek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
20
|
Wunderlich T, Deshpande C, Paasche L, Friedrich T, Diegmüller F, Haddad E, Kreienbaum C, Naseer H, Stebel S, Daus N, Leers J, Lan J, Trinh V, Vázquez O, Butter F, Bartkuhn M, Mackay J, Hake S. ZNF512B binds RBBP4 via a variant NuRD interaction motif and aggregates chromatin in a NuRD complex-independent manner. Nucleic Acids Res 2024; 52:12831-12849. [PMID: 39460621 PMCID: PMC11602157 DOI: 10.1093/nar/gkae926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The evolutionarily conserved histone variant H2A.Z plays a crucial role in various DNA-based processes, but the mechanisms underlying its activity are not completely understood. Recently, we identified the zinc finger (ZF) protein ZNF512B as a protein associated with H2A.Z, HMG20A and PWWP2A. Here, we report that high levels of ZNF512B expression lead to nuclear protein and chromatin aggregation foci that form in a manner that is dependent on the ZF domains of ZNF512B. Notably, we demonstrate ZNF512B binding to the nucleosome remodeling and deacetylase (NuRD) complex. We discover a conserved amino acid sequence within ZNF512B that resembles the NuRD-interaction motif (NIM) previously identified in FOG-1 and other transcriptional regulators. By solving the crystal structure of this motif bound to the NuRD component RBBP4 and by applying several biochemical and biophysical assays, we demonstrate that this internal NIM is both necessary and sufficient for robust and high-affinity NuRD binding. Transcriptome analyses and reporter assays identify ZNF512B as a repressor of gene expression that can act in both NuRD-dependent and -independent ways. Our study might have implications for diseases in which ZNF512B expression is deregulated, such as cancer and neurodegenerative diseases, and hints at the existence of more proteins as potential NuRD interactors.
Collapse
Affiliation(s)
- Tim Marius Wunderlich
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Chandrika Deshpande
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Felix Diegmüller
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Elias Haddad
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Carlotta Kreienbaum
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Haniya Naseer
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Sophie E Stebel
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Nadine Daus
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| |
Collapse
|
21
|
Petukhova N, Poluzerova A, Bug D, Nerubenko E, Kostareva A, Tsoy U, Dmitrieva R. USP8 Mutations Associated with Cushing's Disease Alter Protein Structure Dynamics. Int J Mol Sci 2024; 25:12697. [PMID: 39684405 DOI: 10.3390/ijms252312697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The adenomas in Cushing's disease frequently exhibit mutations in exon 14, within a binding motif for the regulatory protein 14-3-3 located between the catalytic domain (DUB), responsible for ubiquitin hydrolysis, and the WW-like domain that mediates autoinhibition, resulting in constantly active USP8. The exact molecular mechanism of deubiquitinase activity disruption in Cushing's disease remains unclear. To address this, Sanger sequencing of USP8 was performed to identify mutations in corticotropinomas. These mutations were subjected to computational screening, followed by molecular dynamics simulations to assess the structural alterations that might change the biological activity of USP8. Eight different variants of the USP8 gene were identified both within and outside the "hotspot" region. Six of these had previously been reported in Cushing's disease, while two were detected for the first time in our patients with CD. One of the two new variants, initially classified as benign during screening, was found in the neighboring SH3 binding motif at a distance of 20 amino acids. This variant demonstrated pathogenicity patterns similar to those of known pathogenic variants. All USP8 variants identified in our patients caused conformational changes in the USP8 protein in a similar manner. The identified mutations, despite differences in annotation results-including evolutionary conservation assessments, automated predictor data, and variations in localization within exon 14-exhibit similar patterns of protein conformational change. This suggests a pathogenic effect that contributes to the development of CD.
Collapse
Affiliation(s)
- Natalia Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, 197022 Saint Petersburg, Russia
| | | | - Dmitry Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, 197022 Saint Petersburg, Russia
| | - Elena Nerubenko
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Uliana Tsoy
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Renata Dmitrieva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
22
|
Batka AE, Thomas WC, Tudorica DA, Sayler RI, Marletta MA. Second-Sphere Histidine Catalytic Function in a Fungal Polysaccharide Monooxygenase. Biochemistry 2024. [PMID: 39563485 DOI: 10.1021/acs.biochem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Fungal polysaccharide monooxygenases (PMOs) oxidatively degrade cellulose and other carbohydrate polymers via a mononuclear copper active site using either O2 or H2O2 as a cosubstrate. Cellulose-active fungal PMOs in the auxiliary activity 9 (AA9) family have a conserved second-sphere hydrogen-bonding network consisting of histidine, glutamine, and tyrosine residues. The second-sphere histidine has been hypothesized to play a role in proton transfer in the O2-dependent PMO reaction. Here the role of the second-sphere histidine (H157) in an AA9 PMO, MtPMO9E, was investigated. This PMO is active on soluble cello-oligosaccharides such as cellohexaose (Glc6), thus enabling kinetic analysis with the point variants H157A and H157Q. The variants appeared to fold similarly to the wild-type (WT) enzyme and yet exhibited weaker affinity toward Glc6 than WT (WT KD = 20 ± 3 μM). The variants had comparable oxidase (O2 reduction to H2O2) activity to WT at all pH values tested. Using O2 as a cosubstrate, the variants were less active for Glc6 hydroxylation than WT, with H157A being the least active. Similarly, H157Q was competent for Glc6 hydroxylation with H2O2, but H157A was less active. Comparison of the crystal structures of H157Q and WT MtPMO9E reveals that a terminal heteroatom of Q157 overlays with Nε of H157. Altogether, the data suggest that H157 is not important for proton transfer, but support a role for H157 as a hydrogen-bond donor to diatomic-oxygen intermediates, thus facilitating catalysis with either O2 or H2O2.
Collapse
Affiliation(s)
- Allison E Batka
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - William C Thomas
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States
| | - Dan A Tudorica
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richard I Sayler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
McSweeney AM, Eruera AR, McKenzie-Goldsmith GM, Bouwer JC, Brown SHJ, Stubbing LA, Hubert JG, Shrestha R, Sparrow KJ, Brimble MA, Harris LD, Evans GB, Bostina M, Krause KL, Ward VK. Activity and cryo-EM structure of the polymerase domain of the human norovirus ProPol precursor. J Virol 2024; 98:e0119324. [PMID: 39475276 PMCID: PMC11575396 DOI: 10.1128/jvi.01193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Human norovirus (HuNV) is a leading cause of acute gastroenteritis worldwide with most infections caused by genogroup I and genogroup II (GII) viruses. Replication of HuNV generates both precursor and mature proteins during processing of the viral polyprotein that are essential to the viral lifecycle. One such precursor is protease-polymerase (ProPol), a multi-functional enzyme comprised of the norovirus protease and polymerase proteins. This work investigated HuNV ProPol by determining the de novo polymerase activity, protein structure, and antiviral inhibition profile. The GII ProPol de novo enzymatic efficiencies (kcat/Km) for RNA templates and ribonucleotides were equal or superior to those of mature GII Pol on all templates measured. Furthermore, GII ProPol was the only enzyme form active on a poly(A) template. The first structure of the polymerase domain of HuNV ProPol in the unliganded state was determined by cryo-electron microscopy at a resolution of 2.6 Å. The active site and overall architecture of ProPol are similar to those of mature Pol. In addition, both galidesivir triphosphate and PPNDS inhibited polymerase activity of GII ProPol, with respective half-maximal inhibitory concentration (IC50) values of 247.5 µM and 3.8 µM. In both instances, the IC50 obtained with ProPol was greater than that of mature Pol, indicating that ProPol can exhibit different responses to antivirals. This study provides evidence that HuNV ProPol possesses overlapping and unique enzyme properties compared with mature Pol and will aid our understanding of the replication cycle of the virus.IMPORTANCEDespite human norovirus (HuNV) being a leading cause of acute gastroenteritis, the molecular mechanisms surrounding replication are not well understood. Reports have shown that HuNV replication generates precursor proteins from the viral polyprotein, one of which is the protease-polymerase (ProPol). This precursor is important for viral replication; however, the polymerase activity and structural differences between the precursor and mature forms of the polymerase remain to be determined. We show that substrate specificity and polymerase activity of ProPol overlap with, but is distinct from, the mature polymerase. We employ cryo-electron microscopy to resolve the first structure of the polymerase domain of ProPol. This shows a polymerase architecture similar to mature Pol, indicating that the interaction of the precursor with substrates likely defines its activity. We also show that ProPol responds differently to antivirals than mature polymerase. Altogether, these findings enhance our understanding of the function of the important norovirus ProPol precursor.
Collapse
Affiliation(s)
- Alice M McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geena M McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - James C Bouwer
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Louise A Stubbing
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinu Shrestha
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Zhang J, Liu L, Li M, Liu H, Gong X, Tang Y, Zhang Y, Zhou X, Lin Z, Guo H, Pan L. Molecular Basis of the Recognition of the Active Rab8a by Optineurin. J Mol Biol 2024; 436:168811. [PMID: 39374890 DOI: 10.1016/j.jmb.2024.168811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Optineurin (OPTN), a multifunctional adaptor protein in mammals, plays critical roles in many cellular processes, such as vesicular trafficking and autophagy. Notably, mutations in optineurin are directly associated with many human diseases, such as amyotrophic lateral sclerosis (ALS). OPTN can specifically recognize Rab8a and the GTPase-activating protein TBC1D17, and facilitate the inactivation of Rab8a mediated by TBC1D17, but with poorly understood mechanism. Here, using biochemical and structural approaches, we systematically characterize the interaction between OPTN and Rab8a, revealing that OPTN selectively recognizes the GTP-bound active Rab8a through its leucine-zipper domain (LZD). The determined crystal structure of OPTN LZD in complex with the active Rab8a not only elucidates the detailed binding mechanism of OPTN with Rab8a but also uncovers a unique binding mode of Rab8a with its effectors. Furthermore, we demonstrate that the central coiled-coil domain of OPTN and the active Rab8a can simultaneously interact with the TBC domain of TBC1D17 to form a ternary complex. Finally, based on the OPTN LZD/Rab8a complex structure and relevant biochemical analyses, we also evaluate several known ALS-associated mutations found in the LZD of OPTN. Collectively, our findings provide mechanistic insights into the interaction of OPTN with Rab8a, expanding our understanding of the binding modes of Rab8a with its effectors and the potential etiology of diseases caused by OPTN mutations.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lei Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanbo Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lifeng Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
25
|
Abduljalil JM, Elfiky AA. Machine-Learning Approach to Identify Potential Dengue Virus Protease Inhibitors: A Computational Perspective. J Phys Chem B 2024; 128:11229-11242. [PMID: 39484814 DOI: 10.1021/acs.jpcb.4c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The global prevalence of dengue virus (DENV), a widespread flavivirus, has led to varied epidemiological impacts, economic burdens, and health consequences. The alarming increase in infections is exacerbated by the absence of approved antiviral agents against the DENV. Within flaviviruses, the NS3/NS2B serine protease plays a pivotal role in processing the viral polyprotein into distinct components, making it an attractive target for antiviral drug development. In this study, machine-learning (ML) techniques were employed to build predictive models for the screening of a library containing 32,000 protease inhibitors. Utilizing GNINA for structure-based virtual screening, the top potential candidates underwent a subsequent evaluation of their absorption, distribution, metabolism, excretion, and toxicity properties. Selected compounds were subjected to molecular dynamics simulations and binding free energy calculations via MM/GBSA. The results suggest that comp530 possesses binding potential to DENV protease as a noncovalent inhibitor with multiple positions for chemical substitutions, presenting opportunities for optimizing their selectivity and specificity. However, other compounds predicted via ML models may still provide a promising start for covalent inhibitors.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
26
|
Obergfell E, Hohmann U, Moretti A, Chen H, Hothorn M. Mechanistic Insights into the Function of 14-3-3 Proteins as Negative Regulators of Brassinosteroid Signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1674-1688. [PMID: 38783418 PMCID: PMC11558545 DOI: 10.1093/pcp/pcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Brassinosteroids (BRs) are vital plant steroid hormones sensed at the cell surface by a membrane signaling complex comprising the receptor kinase BRI1 and a SERK family co-receptor kinase. Activation of this complex lead to dissociation of the inhibitor protein BKI1 from the receptor and to differential phosphorylation of BZR1/BES1 transcription factors by the glycogen synthase kinase 3 protein BIN2. Many phosphoproteins of the BR signaling pathway, including BRI1, SERKs, BKI1 and BZR1/BES1 can associate with 14-3-3 proteins. In this study, we use quantitative ligand binding assays to define the minimal 14-3-3 binding sites in the N-terminal lobe of the BRI1 kinase domain, in BKI1, and in BZR1 from Arabidopsis thaliana. All three motifs require to be phosphorylated to specifically bind 14-3-3s with mid- to low-micromolar affinity. BR signaling components display minimal isoform preference within the 14-3-3 non-ε subgroup. 14-3-3λ and 14-3-3 ω isoform complex crystal structures reveal that BKI1 and BZR1 bind as canonical type II 14-3-3 linear motifs. Disruption of key amino acids in the phosphopeptide binding site through mutation impairs the interaction of 14-3-3λ with all three linear motifs. Notably, quadruple loss-of-function mutants from the non-ε group exhibit gain-of-function BR signaling phenotypes, suggesting a role for 14-3-3 proteins as overall negative regulators of the BR pathway. Collectively, our work provides further mechanistic and genetic evidence for the regulatory role of 14-3-3 proteins at various stages of the BR signaling cascade.
Collapse
Affiliation(s)
- Elsa Obergfell
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Andrea Moretti
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Houming Chen
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
27
|
Qu X, An Q, Sayed H, Cui L, Mayo KH, Su J. Glucosyltransferase TeGSS from Thermosynechococcus elongatus produces an α-1,2-glucan. Int J Biol Macromol 2024; 280:136152. [PMID: 39357710 DOI: 10.1016/j.ijbiomac.2024.136152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Here, we enzymatically produced a novel α-1,2-glucan, glucosylsucrose, that has a chemical structure significantly different from that of other glucans. This structural difference suggests its potential to modulate new physiological activities compared to known glucans. The enzyme TeGSS catalyzes the synthesis of this α-1,2-glucan from sucrose and UDP-glucose (UDPG). Using NMR spectroscopy, we elucidated the chemical structures of TeGSS-synthesized glucosylsucrose tri-, tetra-, and penta-saccharides in which the monosaccharide units are linked by α-1,2-glycosidic bonds. We also report the crystal structures of TeGSS co-crystallized with UDP and glucosylsucrose tri- and tetra-saccharides. Site-directed mutagenesis of residues in and around the TeGSS catalytic center has allowed us to propose a concerted SNi mechanism of action. Finally, we developed an enzyme-coupled reaction involving TeGSS and SuSyAc that allows production of UDPG for the synthesis of α-1,2-glucan.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Qinghui An
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hend Sayed
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
28
|
Douradinha B. Computational strategies in Klebsiella pneumoniae vaccine design: navigating the landscape of in silico insights. Biotechnol Adv 2024; 76:108437. [PMID: 39216613 DOI: 10.1016/j.biotechadv.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses a grave threat to global public health, necessitating urgent strategies for vaccine development. In this context, computational tools have emerged as indispensable assets, offering unprecedented insights into klebsiellal biology and facilitating the design of effective vaccines. Here, a review of the application of computational methods in the development of K. pneumoniae vaccines is presented, elucidating the transformative impact of in silico approaches. Through a systematic exploration of bioinformatics, structural biology, and immunoinformatics techniques, the complex landscape of K. pneumoniae pathogenesis and antigenicity was unravelled. Key insights into virulence factors, antigen discovery, and immune response mechanisms are discussed, highlighting the pivotal role of computational tools in accelerating vaccine development efforts. Advancements in epitope prediction, antigen selection, and vaccine design optimisation are examined, highlighting the potential of in silico approaches to update vaccine development pipelines. Furthermore, challenges and future directions in leveraging computational tools to combat K. pneumoniae are discussed, emphasizing the importance of multidisciplinary collaboration and data integration. This review provides a comprehensive overview of the current state of computational contributions to K. pneumoniae vaccine development, offering insights into innovative strategies for addressing this urgent global health challenge.
Collapse
|
29
|
Sánchez Rodríguez F, Simpkin AJ, Chojnowski G, Keegan RM, Rigden DJ. Using deep-learning predictions reveals a large number of register errors in PDB depositions. IUCRJ 2024; 11:938-950. [PMID: 39387575 PMCID: PMC11533997 DOI: 10.1107/s2052252524009114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
The accuracy of the information in the Protein Data Bank (PDB) is of great importance for the myriad downstream applications that make use of protein structural information. Despite best efforts, the occasional introduction of errors is inevitable, especially where the experimental data are of limited resolution. A novel protein structure validation approach based on spotting inconsistencies between the residue contacts and distances observed in a structural model and those computationally predicted by methods such as AlphaFold2 has previously been established. It is particularly well suited to the detection of register errors. Importantly, this new approach is orthogonal to traditional methods based on stereochemistry or map-model agreement, and is resolution independent. Here, thousands of likely register errors are identified by scanning 3-5 Å resolution structures in the PDB. Unlike most methods, the application of this approach yields suggested corrections to the register of affected regions, which it is shown, even by limited implementation, lead to improved refinement statistics in the vast majority of cases. A few limitations and confounding factors such as fold-switching proteins are characterized, but this approach is expected to have broad application in spotting potential issues in current accessions and, through its implementation and distribution in CCP4, helping to ensure the accuracy of future depositions.
Collapse
Affiliation(s)
- Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
- Life ScienceDiamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
- Department of Chemistry, York Structural Biology LaboratoryUniversity of YorkYorkUnited Kingdom
| | - Adam J. Simpkin
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology LaboratoryHamburg Unit, Notkestrasse 8522607HamburgGermany
| | - Ronan M. Keegan
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| |
Collapse
|
30
|
Pintscher S, Pietras R, Mielecki B, Szwalec M, Wójcik-Augustyn A, Indyka P, Rawski M, Koziej Ł, Jaciuk M, Ważny G, Glatt S, Osyczka A. Molecular basis of plastoquinone reduction in plant cytochrome b 6f. NATURE PLANTS 2024; 10:1814-1825. [PMID: 39362993 PMCID: PMC11570496 DOI: 10.1038/s41477-024-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
A multi-subunit enzyme, cytochrome b6f (cytb6f), provides the crucial link between photosystems I and II in the photosynthetic membranes of higher plants, transferring electrons between plastoquinone (PQ) and plastocyanin. The atomic structure of cytb6f is known, but its detailed catalytic mechanism remains elusive. Here we present cryogenic electron microscopy structures of spinach cytb6f at 1.9 Å and 2.2 Å resolution, revealing an unexpected orientation of the substrate PQ in the haem ligand niche that forms the PQ reduction site (Qn). PQ, unlike Qn inhibitors, is not in direct contact with the haem. Instead, a water molecule is coordinated by one of the carbonyl groups of PQ and can act as the immediate proton donor for PQ. In addition, we identify water channels that connect Qn with the aqueous exterior of the enzyme, suggesting that the binding of PQ in Qn displaces water through these channels. The structures confirm large movements of the head domain of the iron-sulfur protein (ISP-HD) towards and away from the plastoquinol oxidation site (Qp) and define the unique position of ISP-HD when a Qp inhibitor (2,5-dibromo-3-methyl-6-isopropylbenzoquinone) is bound. This work identifies key conformational states of cytb6f, highlights fundamental differences between substrates and inhibitors and proposes a quinone-water exchange mechanism.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Grzegorz Ważny
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland.
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
31
|
Chang TS, Ding HY, Wang TY, Wu JY, Tsai PW, Suratos KS, Tayo LL, Liu GC, Ting HJ. In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside. Biotechnol Appl Biochem 2024. [PMID: 39449153 DOI: 10.1002/bab.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Guided by in silico analysis tools and biotransformation technology, new derivatives of natural compounds with heightened bioactivities can be explored and synthesized efficiently. In this study, in silico data mining and molecular docking analysis predicted that glucosides of skullcapflavone II (SKII) were new flavonoid compounds and had higher binding potential to oncogenic proteins than SKII. These benefits guided us to perform glycosylation of SKII by utilizing four glycoside hydrolases and five glycosyltransferases (GTs). Findings unveiled that exclusive glycosylation of SKII was achieved solely through the action of GTs, with Bacillus subtilis BsUGT489 exhibiting the highest catalytic glycosylation efficacy. Structure analysis determined the glycosylated product as a novel compound, skullcapflavone II-6'-O-β-glucoside (SKII-G). Significantly, the aqueous solubility of SKII-G exceeded its precursor, SKII, by 272-fold. Furthermore, SKII-G demonstrated noteworthy anti-melanoma activity against human A2058 cells, exhibiting an IC50 value surpassing that of SKII by 1.4-fold. Intriguingly, no substantial cytotoxic effects were observed in a murine macrophage cell line, RAW 264.7. This promising anti-melanoma activity without adverse effects on macrophages suggests that SKII-G could be a potential candidate for further preclinical and clinical studies. The in silico tool-guided synthesis of a new, highly soluble, and potent anti-melanoma glucoside, SKII-G, provides a rational design to facilitate the future discovery of new and bioactive compounds.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- School of Graduate Studies, Mapúa University, Manila, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati, Philippines
| | - Guan-Cheng Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
32
|
Cowie AE, Pereira JH, DeGiovanni A, McAndrew RP, Palayam M, Peek JO, Muchlinski AJ, Yoshikuni Y, Shabek N, Adams PD, Zerbe P. The crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase reveals active site features controlling catalytic specificity. J Biol Chem 2024; 300:107921. [PMID: 39454950 PMCID: PMC11599460 DOI: 10.1016/j.jbc.2024.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Diterpenoid natural products serve critical functions in plant development and ecological adaptation and many diterpenoids have economic value as bioproducts. The family of class II diterpene synthases catalyzes the committed reactions in diterpenoid biosynthesis, converting a common geranylgeranyl diphosphate precursor into different bicyclic prenyl diphosphate scaffolds. Enzymatic rearrangement and modification of these precursors generate the diversity of bioactive diterpenoids. We report the crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase, GrTPS2, at 2.1 Å of resolution. GrTPS2 catalyzes the committed reaction in the biosynthesis of grindelic acid, which represents the signature metabolite in species of gumweed (Grindelia spp., Asteraceae). Grindelic acid has been explored as a potential source for drug leads and biofuel production. The GrTPS2 crystal structure adopts the conserved three-domain fold of class II diterpene synthases featuring a functional active site in the γβ-domain and a vestigial ɑ-domain. Substrate docking into the active site of the GrTPS2 apo protein structure predicted catalytic amino acids. Biochemical characterization of protein variants identified residues with impact on enzyme activity and catalytic specificity. Specifically, mutagenesis of Y457 provided mechanistic insight into the position-specific deprotonation of the intermediary carbocation to form the characteristic 7,13 double bond of 7,13-copalyl diphosphate.
Collapse
Affiliation(s)
- Anna E Cowie
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andy DeGiovanni
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ryan P McAndrew
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA
| | - Malathy Palayam
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Jedidiah O Peek
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Andrew J Muchlinski
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Yasuo Yoshikuni
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
33
|
Avanzato VA, Bushmaker T, Oguntuyo KY, Yinda CK, Duyvesteyn HME, Stass R, Meade-White K, Rosenke R, Thomas T, van Doremalen N, Saturday G, Doores KJ, Lee B, Bowden TA, Munster VJ. A monoclonal antibody targeting the Nipah virus fusion glycoprotein apex imparts protection from disease. J Virol 2024; 98:e0063824. [PMID: 39240113 PMCID: PMC11494970 DOI: 10.1128/jvi.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F-Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.IMPORTANCENipah virus (NiV) is a highly lethal henipavirus (HNV) that causes severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, highlighting a need to develop countermeasures. The NiV surface displays the receptor binding protein (NiV-G, or RBP) and the fusion protein (NiV-F), which allow the virus to attach and enter cells. These proteins can be targeted by vaccines and antibodies to prevent disease. This work describes a neutralizing antibody (mAb92) that targets NiV-F. Structural characterization by cryo-electron microscopy analysis reveals where the antibody binds to NiV-F to neutralize the virus. This study also shows that prophylactic treatment of hamsters with mAb92 completely protected against developing NiV disease. This work shows how targeting NiV-F can be useful to preventing NiV disease, supporting future studies in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Victoria A. Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
34
|
Lu Y, Liang K, Zhan X. Structure of a step II catalytically activated spliceosome from Chlamydomonas reinhardtii. EMBO J 2024:10.1038/s44318-024-00274-3. [PMID: 39415054 DOI: 10.1038/s44318-024-00274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Pre-mRNA splicing, a fundamental step in eukaryotic gene expression, is executed by the spliceosomes. While there is extensive knowledge of the composition and structure of spliceosomes in yeasts and humans, the structural diversity of spliceosomes in non-canonical organisms remains unclear. Here, we present a cryo-EM structure of a step II catalytically activated spliceosome (C* complex) derived from the unicellular green alga Chlamydomonas reinhardtii at 2.6 Å resolution. This Chlamydomonas C* complex comprises 29 proteins and four RNA elements, creating a dynamic assembly that shares a similar overall architecture with yeast and human counterparts but also has unique features of its own. Distinctive structural characteristics include variations in protein compositions as well as some noteworthy RNA features. The splicing factor Prp17, with four fragments and a WD40 domain, is engaged in intricate interactions with multiple protein and RNA components. The structural elucidation of Chlamydomonas C* complex provides insights into the molecular mechanism of RNA splicing in plants and understanding splicing evolution in eukaryotes.
Collapse
Affiliation(s)
- Yichen Lu
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Ke Liang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
35
|
Joshi T, Demmer U, Schneider C, Glaser T, Warkentin E, Ermler U, Mack M. The Phosphatase RosC from Streptomyces davaonensis is Used for Roseoflavin Biosynthesis and has Evolved to Largely Prevent Dephosphorylation of the Important Cofactor Riboflavin-5'-phosphate. J Mol Biol 2024; 436:168734. [PMID: 39097184 DOI: 10.1016/j.jmb.2024.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The antibiotic roseoflavin is a riboflavin (vitamin B2) analog. One step of the roseoflavin biosynthetic pathway is catalyzed by the phosphatase RosC, which dephosphorylates 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) to 8-demethyl-8-amino-riboflavin (AF). RosC also catalyzes the potentially cell-damaging dephosphorylation of the AFP analog riboflavin-5'-phosphate also called "flavin mononucleotide" (FMN), however, with a lower efficiency. We performed X-ray structural analyses and mutagenesis studies on RosC from Streptomyces davaonensis to understand binding of the flavin substrates, the distinction between AFP and FMN and the catalytic mechanism of this enzyme. This work is the first structural analysis of an AFP phosphatase. Each monomer of the RosC dimer consists of an α/β-fold core, which is extended by three specific elongated strand-to-helix sections and a specific N-terminal helix. Altogether these segments envelope the flavin thereby forming a novel flavin-binding site. We propose that distinction between AFP and FMN is provided by substrate-induced rigidification of the four RosC specific supplementary segments mentioned above and by an interaction between the amino group at C8 of AFP and the β-carboxylate of D166. This key amino acid is involved in binding the ring system of AFP and positioning its ribitol phosphate part. Accordingly, site-specific exchanges at D166 disturbed the active site geometry of the enzyme and drastically reduced the catalytic activity. Based on the structure of the catalytic core we constructed a whole series of RosC variants but a disturbing, FMN dephosphorylating "killer enzyme", was not generated.
Collapse
Affiliation(s)
- Tanya Joshi
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Carmen Schneider
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Theresa Glaser
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Eberhard Warkentin
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| |
Collapse
|
36
|
Liang K, Zhan X, Li Y, Yang Y, Xie Y, Jin Z, Xu X, Zhang W, Lu Y, Zhang S, Zou Y, Feng S, Wu J, Yan Z. Conservation and specialization of the Ycf2-FtsHi chloroplast protein import motor in green algae. Cell 2024; 187:5638-5650.e18. [PMID: 39197449 DOI: 10.1016/j.cell.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The protein import motor in chloroplasts plays a pivotal role in their biogenesis and homeostasis by driving the translocation of preproteins into chloroplasts. While the Ycf2-FtsHi complex serves as the import motor in land plants, its evolutionary conservation, specialization, and mechanisms across photosynthetic organisms are largely unexplored. Here, we isolated and determined the cryogenic electron microscopy (cryo-EM) structures of the native Ycf2-FtsHi complex from Chlamydomonas reinhardtii, uncovering a complex composed of up to 19 subunits, including multiple green-algae-specific components. The heterohexameric AAA+ ATPase motor module is tilted, potentially facilitating preprotein handover from the translocon at the inner chloroplast membrane (TIC) complex. Preprotein interacts with Ycf2-FtsHi and enhances its ATPase activity in vitro. Integrating Ycf2-FtsHi and translocon at the outer chloroplast membrane (TOC)-TIC supercomplex structures reveals insights into their physical and functional interplay during preprotein translocation. By comparing these findings with those from land plants, our study establishes a structural foundation for understanding the assembly, function, evolutionary conservation, and diversity of chloroplast protein import motors.
Collapse
Affiliation(s)
- Ke Liang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoyan Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wenwen Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yang Lu
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
37
|
Liang K, Jin Z, Zhan X, Li Y, Xu Q, Xie Y, Yang Y, Wang S, Wu J, Yan Z. Structural insights into the chloroplast protein import in land plants. Cell 2024; 187:5651-5664.e18. [PMID: 39197452 DOI: 10.1016/j.cell.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaojie Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
38
|
Lokareddy RK, Hou CFD, Forti F, Iglesias SM, Li F, Pavlenok M, Horner DS, Niederweis M, Briani F, Cingolani G. Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor. Nat Commun 2024; 15:8482. [PMID: 39353939 PMCID: PMC11445570 DOI: 10.1038/s41467-024-52752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3398 amino acid virion-associated RNA polymerase (vRNAP). Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de novo structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of Pseudomonas aeruginosa but dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We determine that DEV vRNAP is part of a three-gene operon conserved in 191 Schitoviridae genomes. We propose these three proteins are ejected into the host to form a genome ejection motor spanning the cell envelope. We posit that the design principles of the DEV ejection apparatus are conserved in all Schitoviridae.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA
| | - Chun-Feng David Hou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Stephano M Iglesias
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA.
| |
Collapse
|
39
|
Medley BJ, Low KE, Irungu JDW, Kipchumba L, Daneshgar P, Liu L, Garber JM, Klassen L, Inglis GD, Boons GJ, Zandberg WF, Abbott DW, Boraston AB. A "terminal" case of glycan catabolism: Structural and enzymatic characterization of the sialidases of Clostridium perfringens. J Biol Chem 2024; 300:107750. [PMID: 39251137 PMCID: PMC11525138 DOI: 10.1016/j.jbc.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Sialic acids are commonly found on the terminal ends of biologically important carbohydrates, including intestinal mucin O-linked glycans. Pathogens such as Clostridium perfringens, the causative agent of necrotic enteritis in poultry and humans, have the ability to degrade host mucins and colonize the mucus layer, which involves removal of the terminal sialic acid by carbohydrate-active enzymes (CAZymes). Here, we present the structural and biochemical characterization of the GH33 catalytic domains of the three sialidases of C. perfringens and probe their substrate specificity. The catalytically active domains, which we refer to as NanHGH33, NanJGH33, and NanIGH33, displayed differential activity on various naturally occurring forms of sialic acid. We report the X-ray crystal structures of these domains in complex with relevant sialic acid variants revealing the molecular basis of how each catalytic domain accommodates different sialic acids. NanHGH33 displays a distinct preference for α-2,3-linked sialic acid, but can process α-2,6-linked sialic acid. NanJGH33 and NanIGH33 both exhibit the ability to process α-2,3- and α-2,6-linked sialic acid without any significant apparent preference. All three enzymes were sensitive to generic and commercially available sialidase inhibitors, which impeded sialidase activity in cultures as well as the growth of C. perfringens on sialylated glycans. The knowledge gained in these studies can be applied to in vivo models for C. perfringens growth and metabolism of mucin O-glycans, with a view toward future mitigation of bacterial colonization and infection of intestinal tissues.
Collapse
Affiliation(s)
- Brendon J Medley
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Kristin E Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Jackline D W Irungu
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Linus Kipchumba
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Parandis Daneshgar
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M Garber
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada; Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Leeann Klassen
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Wesley F Zandberg
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada.
| | - Alisdair B Boraston
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
40
|
Ahmad F, Gupta A, Marzook H, Woodgett JR, Saleh MA, Qaisar R. Natural compound screening predicts novel GSK-3 isoform-specific inhibitors. Biochimie 2024; 225:68-80. [PMID: 38723940 DOI: 10.1016/j.biochi.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Glycogen synthase kinase-3 (GSK-3) plays important roles in the pathogenesis of cardiovascular, metabolic, neurological disorders and cancer. Isoform-specific loss of either GSK-3α or GSK-3β often provides cytoprotective effects under such clinical conditions. However, available synthetic small molecule inhibitors are relatively non-specific, and their chronic use may lead to adverse effects. Therefore, screening for natural compound inhibitors to identify the isoform-specific inhibitors may provide improved clinical utility. Here, we screened 70 natural compounds to identify novel natural GSK-3 inhibitors employing comprehensive in silico and biochemical approaches. Molecular docking and pharmacokinetics analysis identified two natural compounds Psoralidin and Rosmarinic acid as potential GSK-3 inhibitors. Specifically, Psoralidin and Rosmarinic acid exhibited the highest binding affinities for GSK-3α and GSK-3β, respectively. Consistent with in silico findings, the kinase assay-driven IC50 revealed superior inhibitory effects of Psoralidin against GSK-3α (IC50 = 2.26 μM) vs. GSK-3β (IC50 = 4.23 μM) while Rosmarinic acid was found to be more potent against GSK-3β (IC50 = 2.24 μM) than GSK-3α (IC50 = 5.14 μM). Taken together, these studies show that the identified natural compounds may serve as GSK-3 inhibitors with Psoralidin serving as a better inhibitor for GSK-3α and Rosmarinic for GSK-3β isoform, respectively. Further characterization employing in vitro and preclinical models will be required to test the utility of these compounds as GSK-3 inhibitors for cardiometabolic and neurological disorders and cancers.
Collapse
Affiliation(s)
- Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
41
|
Xu K, Zhong J, Li J, Cao Y, Wei L. Structure features of Streptococcus pneumoniae FabG and virtual screening of allosteric inhibitors. Front Mol Biosci 2024; 11:1472252. [PMID: 39398278 PMCID: PMC11467476 DOI: 10.3389/fmolb.2024.1472252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus pneumoniae, a gram-positive bacterium, is responsible for diverse infections globally, and its antibiotic resistance presents significant challenges to medical advancements. It is imperative to employ various strategies to identify antibiotics. 3-oxoacyl-[acyl-carrier-protein] reductase (FabG) is a key component in the type II fatty acid synthase (FAS II) system, which is a developing target for new anti-streptococcal drugs. We first demonstrated the function of SpFabG in vivo and in vitro and the 2 Å SpFabG structure was elucidated using X-ray diffraction technique. It was observed that the NADPH binding promotes the transformation from tetramers to dimers in solution, suggesting dimers but not tetramer may be the active conformation. By comparing the structures of FabG homologues, we have identified the conserved tetramerization site and further confirmed the mechanism that the tetramerization site mutation leads to a loss of function and destabilization through mutagenesis experiments. Starting from 533,600 compounds, we proceeded with a sequential workflow involving pharmacophore-based virtual screening, molecular docking, and binding energy calculations. Combining all the structural analysis, we identified L1, L2 and L5 as a promising candidate for SpFabG inhibitor, based on the most stable binding mode in comparison to other evaluated inhibitors.
Collapse
Affiliation(s)
- Kaimin Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianliang Zhong
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yulu Cao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
42
|
Lopes FES, Souza PFN, Brito DMS, Mesquita FP, Montenegro RC, Amaral JL, Filho JHA, Freire VN, Cordeiro RA. In silico approach revealed the membrane receptor PHO36 as a new target for synthetic anticandidal peptides. Future Microbiol 2024; 19:1463-1473. [PMID: 39311513 PMCID: PMC11492706 DOI: 10.1080/17460913.2024.2398904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Aim: Synthetic antimicrobial peptides (SAMPs) present the potential to fight systemic fungal infections. Here, the PHO36 receptor from Candida albicans was analyzed by in silico tools as a possible target for three anticandidal SAMPs: RcAlb-PepIII, PepGAT and PepKAA.Materials & methods: Molecular docking, dynamics and quantum biochemistry were employed to understand the individual contribution of amino acid residues in the interaction region.Results: The results revealed that SAMPs strongly interact with the PHO36 by multiple high-energy interactions. This is the first study to employ quantum biochemistry to describe the interactions between SAMPs and the PHO36 receptor.Conclusion: This work contributes to understanding and identifying new molecular targets with medical importance that could be used to discover new drugs against systemic fungal infections.
Collapse
Affiliation(s)
- Francisco ES Lopes
- Department of Pathology, Faculty of Medicine, Federal University of Ceará, EP 60430-270, Brazil
| | - Pedro FN Souza
- Pharmacogenetics Laboratory, Drug Research & Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará 60430-275, Brazil
- National Institute of Science & Technology in Human Pathogenic Fungi, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific & Technological Development, Fortaleza, Ceará, Brazil
| | - Daiane MS Brito
- Pharmacogenetics Laboratory, Drug Research & Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará 60430-275, Brazil
| | - Felipe P Mesquita
- Pharmacogenetics Laboratory, Drug Research & Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará 60430-275, Brazil
| | - Raquel C Montenegro
- Pharmacogenetics Laboratory, Drug Research & Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará 60430-275, Brazil
| | - Jackson L Amaral
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - José HA Filho
- Department of Biological Science, State University of Rio Grande of North, Mossoró, Rio Grande do Norte, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Rossana A Cordeiro
- Department of Pathology, Faculty of Medicine, Federal University of Ceará, EP 60430-270, Brazil
| |
Collapse
|
43
|
Bayer T, Palm GJ, Berndt L, Meinert H, Branson Y, Schmidt L, Cziegler C, Somvilla I, Zurr C, Graf LG, Janke U, Badenhorst CPS, König S, Delcea M, Garscha U, Wei R, Lammers M, Bornscheuer UT. Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles. Angew Chem Int Ed Engl 2024; 63:e202404492. [PMID: 38948941 DOI: 10.1002/anie.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.
Collapse
Affiliation(s)
- Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yannick Branson
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Louis Schmidt
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ina Somvilla
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Celine Zurr
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Una Janke
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Stefanie König
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
44
|
Sang M, Yang Q, Guo J, Feng P, Ma W, Zhang W. Functional investigation of the SAM-dependent methyltransferase RdmB in anthracycline biosynthesis. Synth Syst Biotechnol 2024; 10:102-109. [PMID: 39308748 PMCID: PMC11415531 DOI: 10.1016/j.synbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
A novel sub-class of S-adenosyl-l-methionine (SAM)-dependent methyltransferases catalyze atypical chemical transformations in the biosynthesis of anthracyclines. Exemplified by RdmB from Streptomyces purpurascens, it was found with 10-decarboxylative hydroxylation activity on anthracyclines. We herein investigated the catalytic activities of RdmB and discovered a previously unknown 4-O-methylation activity. The site-directed mutagenesis studies proved that the residue at position R307 and N260 are vital for the decarboxylative hydroxylation and 4-O-methylation, respectively, which define two distinct catalytic centers in RdmB. Furthermore, the multifunctionality of RdmB activity was found as cofactor-dependent and stepwise. Our findings expand the versatility and importance of methyltransferases and should aid studies to enrich the structural diversity and bioactivities of anthracyclines.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Qingyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Wencheng Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| |
Collapse
|
45
|
Yanagisawa T, Murayama Y, Ehara H, Goto M, Aoki M, Sekine SI. Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex. Nat Commun 2024; 15:7854. [PMID: 39245712 PMCID: PMC11381523 DOI: 10.1038/s41467-024-52157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
The 5´-3´ exoribonuclease Rat1/Xrn2 is responsible for the termination of eukaryotic mRNA transcription by RNAPII. Rat1 forms a complex with its partner proteins, Rai1 and Rtt103, and acts as a "torpedo" to bind transcribing RNAPII and dissociate DNA/RNA from it. Here we report the cryo-electron microscopy structures of the Rat1-Rai1-Rtt103 complex and three Rat1-Rai1-associated RNAPII complexes (type-1, type-1b, and type-2) from the yeast, Komagataella phaffii. The Rat1-Rai1-Rtt103 structure revealed that Rat1 and Rai1 form a heterotetramer with a single Rtt103 bound between two Rai1 molecules. In the type-1 complex, Rat1-Rai1 forms a heterodimer and binds to the RNA exit site of RNAPII to extract RNA into the Rat1 exonuclease active site. This interaction changes the RNA path in favor of termination (the "pre-termination" state). The type-1b and type-2 complexes have no bound DNA/RNA, likely representing the "post-termination" states. These structures illustrate the termination mechanism of eukaryotic mRNA transcription.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuko Murayama
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mie Goto
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
46
|
Aguiar AJFC, de Medeiros WF, da Silva-Maia JK, Bezerra IWL, Piuvezam G, Morais AHDA. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int J Mol Sci 2024; 25:9646. [PMID: 39273592 PMCID: PMC11395041 DOI: 10.3390/ijms25179646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent with those predicted in the computational analysis. The review was framed by the question: "What peptides or proteins have been used to treat obesity in in silico studies?" and structured according to the acronym PECo. The systematic review protocol was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P, and all stages of the review adhered to these guidelines. Studies were sourced from the following databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria, 7 were included in this systematic review. The anti-obesity peptides identified originated from various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo reassessment and used molecular docking methodology in their in silico studies. Among the studies included in the review, 46.15% were classified as having an "uncertain risk of bias" in six of the thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably, all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The findings of this systematic review underscore the effectiveness of computational simulation as a screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the discovery of novel anti-obesity peptides.
Collapse
Affiliation(s)
- Ana Júlia Felipe Camelo Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Wendjilla Fortunato de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Ingrid Wilza Leal Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Grasiela Piuvezam
- Health Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| |
Collapse
|
47
|
Walker AA, Chin YKY, Guo S, Jin J, Wilbrink E, Goudarzi MH, Wirth H, Gordon E, Weirauch C, King GF. Structure and bioactivity of an insecticidal trans-defensin from assassin bug venom. Structure 2024; 32:1348-1357.e4. [PMID: 38889720 DOI: 10.1016/j.str.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evienne Wilbrink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Fontys University of Applied Sciences, Eindhoven 5612 AR, the Netherlands
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Hayden Wirth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Eric Gordon
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Christiane Weirauch
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| |
Collapse
|
48
|
Xue Y, Wu Z, Kang X. Crystal structure of the Rib domain of the cell-wall-anchored surface protein from Limosilactobacillus reuteri. Acta Crystallogr F Struct Biol Commun 2024; 80:228-233. [PMID: 39196706 PMCID: PMC11376279 DOI: 10.1107/s2053230x24007970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential β-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium Limosilactobacillus reuteri is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zhen Wu
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
49
|
McCarthy S, Gonen S. δ-Conotoxin Structure Prediction and Analysis through Large-Scale Comparative and Deep Learning Modeling Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404786. [PMID: 39033537 PMCID: PMC11425241 DOI: 10.1002/advs.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Indexed: 07/23/2024]
Abstract
The δ-conotoxins, a class of peptides produced in the venom of cone snails, are of interest due to their ability to inhibit the inactivation of voltage-gated sodium channels causing paralysis and other neurological responses, but difficulties in their isolation and synthesis have made structural characterization challenging. Taking advantage of recent breakthroughs in computational algorithms for structure prediction that have made modeling especially useful when experimental data is sparse, this work uses both the deep-learning-based algorithm AlphaFold and comparative modeling method RosettaCM to model and analyze 18 previously uncharacterized δ-conotoxins derived from piscivorous, vermivorous, and molluscivorous cone snails. The models provide useful insights into the structural aspects of these peptides and suggest features likely to be significant in influencing their binding and different pharmacological activities against their targets, with implications for drug development. Additionally, the described protocol provides a roadmap for the modeling of similar disulfide-rich peptides by these complementary methods.
Collapse
Affiliation(s)
- Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
50
|
Pérez-Niño JA, Guerra Y, Díaz-Salazar AJ, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Stable monomers in the ancestral sequence reconstruction of the last opisthokont common ancestor of dimeric triosephosphate isomerase. Protein Sci 2024; 33:e5134. [PMID: 39145435 PMCID: PMC11325190 DOI: 10.1002/pro.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs. Notably, calorimetric evidence indicated that ancestral TIM monomers are more structured than extant ones. To further increase confidence about the function, structure, and stability of the LOCATIM, in this work, we applied two different inference methodologies and the worst plausible case scenario for both of them, to infer four sequences of this ancestor and test the robustness of their physicochemical properties. The extensive biophysical characterization of the four reconstructed sequences of LOCATIM showed very similar hydrodynamic and spectroscopic properties, as well as ligand-binding energetics and catalytic parameters. Their 3D structures were also conserved. Although differences were observed in melting temperature, all LOCATIMs showed reversible urea-induced unfolding transitions, and for those that reached equilibrium, high conformational stability was estimated (ΔGTot = 40.6-46.2 kcal/mol). The stability of the inactive monomeric intermediates was also high (ΔGunf = 12.6-18.4 kcal/mol), resembling some protozoan TIMs rather than the unstable monomer observed in extant opisthokonts. A comparative analysis of the 3D structure of ancestral and extant TIMs shows a correlation between the higher stability of the ancestral monomers with the presence of several hydrogen bonds located in the "bottom" part of the barrel.
Collapse
Affiliation(s)
- Jorge Alejandro Pérez-Niño
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yasel Guerra
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - A Jessica Díaz-Salazar
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|