1
|
Zhao S, Zhao Y, Song K, Wang Y, Lu Y, Dong C, Zhang Y, Han Y. Analysis of Straw Degradation and Whole Genome of Acrophialophora multiforma. Curr Microbiol 2024; 81:429. [PMID: 39467849 DOI: 10.1007/s00284-024-03937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Lignin is one of the main components in plants, which can transform value-added bioenergy and chemicals. At the same time, due to the close combination of lignin and hemicellulose in the structure, it becomes a barrier for cellulose utilization. Therefore, the effective degradation of lignin is of great significance for the utilization of these resources. In this study, the lignin degrading ability of Acrophialophora multiforma strain GZUIFR 22.397 was preliminarily investigated through straw degradation experiments and enzyme activity determination. Then, the whole genome of strain A. multiforma GZUIFR 22.397 was sequentially analyzed and annotated through multiple gene function annotation databases to comprehensively evaluate its lignin degrading potential. The results showed that the weight loss of straw reached 5.98 ± 3.95%. Laccase activity was 77.49 ± 2.65 U/L, lignin peroxidase activity was 160.57 ± 29.07 U/L, and manganese peroxidase activity was 294.83 ± 3.77 U/L. The genome of A. multiforma strain GZUIFR 22.397 spans 33.81 megabases and encompasses 9,370 genes. Among these, 6,122 genes have been annotated in the Gene Ontology (GO), 2,286 in the Cluster of Orthologous Groups of proteins (KOG), 2,283 in the Kyoto Encyclopedia of Genes and Genomes (KEGG), and 603 in the Carbohydrate Active enZYmes Database (CAZy). Concurrently, the genome analysis predicted the presence of 9 genes for laccase, 2 genes for lignin peroxidase, and 2 genes for manganese peroxidase. In summary, these results indicated that A. multiforma GZUIFR 22.397 has lignin degrading ability, and laid the foundation for deciphering the molecular mechanism of A. multiforma GZUIFR 22.397 to degrade lignin.
Collapse
Affiliation(s)
- Shui Zhao
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yufeng Zhao
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Keyun Song
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanling Wang
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yingxia Lu
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanwei Zhang
- Key Laboratory of Ecology and Management ON Forest Fire in Higher Education Institutions of Guizhou Province/Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, Guizhou, China.
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Wu S, Morotti ALM, Yang J, Wang E, Tatsis EC. Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. MOLECULAR PLANT 2024; 17:1439-1457. [PMID: 39135343 DOI: 10.1016/j.molp.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Science, Shanghai 200032, China.
| |
Collapse
|
3
|
Chai S, Chong Y, Yin D, Qiu Q, Xu S, Yang G. Genomic insights into adaptation to bipedal saltation and desert-like habitats of jerboas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2003-2015. [PMID: 38902451 DOI: 10.1007/s11427-023-2516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 06/22/2024]
Abstract
Jerboas is a lineage of small rodents displaying atypical mouse-like morphology with elongated strong hindlimbs and short forelimbs. They have evolved obligate bipedal saltation and acute senses, and been well-adapted to vast desert-like habitats. Using a newly sequenced chromosome-scale genome of the Mongolian five-toed jerboa (Orientallactaga sibirica), our comparative genomic analyses and in vitro functional assays showed that the genetic innovations in both protein-coding and non-coding regions played an important role in jerboa morphological and physiological adaptation. Jerboa-specific amino acid substitutions, and segment insertions/deletions (indels) in conserved non-coding elements (CNEs) were found in components of proteoglycan biosynthesis pathway (XYLT1 and CHSY1), which plays an important role in limb development. Meanwhile, we found specific evolutionary changes functionally associated with energy or water metabolism (e.g., specific amino acid substitutions in ND5 and indels in CNEs physically near ROR2) and senses (e.g., expansion of vomeronasal receptors and the FAM136A gene family) in jerboas. Further dual-luciferase reporter assay verified that some of the CNEs with jerboa-specific segment indels exerted a significantly different influence on luciferase activity, suggesting changes in their regulatory function in jerboas. Our results revealed the potential molecular mechanisms underlying jerboa adaptation since the divergence from the Eocene-Oligocene transition, and provided more resources and new insights to enhance our understanding of the molecular basis underlying the phenotypic diversity and the environmental adaptation of mammals.
Collapse
Affiliation(s)
- Simin Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yujie Chong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Daiqing Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Zhang Y, Liu S, Mostert D, Yu H, Zhuo M, Li G, Zuo C, Haridas S, Webster K, Li M, Grigoriev IV, Yi G, Viljoen A, Li C, Ma LJ. Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes. Nat Microbiol 2024; 9:2232-2243. [PMID: 39152292 DOI: 10.1038/s41564-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases known. Foc race 1 (R1) decimated the Gros Michel-based banana (Musa acuminata) trade, and now Foc tropical race 4 (TR4) threatens global production of its replacement, the Cavendish banana. Here population genomics revealed that all Cavendish banana-infecting Foc race 4 strains share an evolutionary origin distinct from that of R1 strains. Although TR4 lacks accessory chromosomes, it contains accessory genes at the ends of some core chromosomes that are enriched for virulence and mitochondria-related functions. Meta-transcriptomics revealed the unique induction of the entire mitochondrion-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of a NO burst in TR4, suggesting that nitrosative pressure may contribute to virulence. Targeted mutagenesis demonstrated the functional importance of fungal NO production and the accessory gene SIX4 as virulence factors.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- NIH-National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture of Maoming sub-center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Stellenbosch, South Africa
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Plant Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mengxia Zhuo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture of Maoming sub-center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Cunwu Zuo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katie Webster
- Plant Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Minhui Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture of Maoming sub-center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture of Maoming sub-center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
5
|
Xie J, Liu X, Qin Z, Mei S, Tarafder E, Li C, Zeng X, Tian F. Evolution and related pathogenic genes of Pseudodiploöspora longispora on Morchella based on genomic characterization and comparative genomic analysis. Sci Rep 2024; 14:18588. [PMID: 39127740 PMCID: PMC11316761 DOI: 10.1038/s41598-024-69421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
True morels (Morchella) are globally renowned medicinal and edible mushrooms. White mold disease caused by fungi is the main disease of Morchella, which has the characteristics of wide incidence and strong destructiveness. The disparities observed in the isolation rates of different pathogens indicate their varying degrees of host adaptability and competitive survival abilities. In order to elucidate its potential mechanism, this study, the pathogen of white mold disease from Dafang county, Guizhou Province was isolated and purified, identified as Pseudodiploöspora longispora by morphological, molecular biological and pathogenicity tests. Furthermore, high-quality genome of P. longisporus (40.846 Mb) was assembled N50 of 3.09 Mb, predicts 7381 protein-coding genes. Phylogenetic analysis of single-copy homologous genes showed that P. longispora and Zelopaecilomyces penicillatus have the closest evolutionary relationship, diverging into two branches approximately 50 (44.3-61.4) MYA. Additionally, compared with the other two pathogens causing Morchella disease, Z. penicillatus and Cladobotryum protrusum, it was found that they had similar proportions of carbohydrate enzyme types and encoded abundant cell wall degrading enzymes, such as chitinase and glucanase, indicating their important role in disease development. Moreover, the secondary metabolite gene clusters of P. longispora and Z. penicillatus show a high degree of similarity to leucinostatin A and leucinostatin B (peptaibols). Furthermore, a gene cluster with synthetic toxic substance Ochratoxin A was also identified in P. longispora and C. protrusum, indicating that they may pose a potential threat to food safety. This study provides valuable insights into the genome of P. longispora, contributing to pathogenicity research.
Collapse
Affiliation(s)
- Jiangtao Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xue Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Zaili Qin
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Shihui Mei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China.
- Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China.
- Institute of Edible Mushroom, Guizhou University, Guiyang, China.
- Tianiin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
6
|
Kim T, Lee JH, Seo HH, Moh SH, Choi SS, Kim J, Kim SG. Genome assembly of Hibiscus sabdariffa L. provides insights into metabolisms of medicinal natural products. G3 (BETHESDA, MD.) 2024; 14:jkae134. [PMID: 38995814 PMCID: PMC11304979 DOI: 10.1093/g3journal/jkae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Hibiscus sabdariffa L. is a widely cultivated herbaceous plant with diverse applications in food, tea, fiber, and medicine. In this study, we present a high-quality genome assembly of H. sabdariffa using more than 33 Gb of high-fidelity (HiFi) long-read sequencing data, corresponding to ∼20× depth of the genome. We obtained 3 genome assemblies of H. sabdariffa: 1 primary and 2 partially haplotype-resolved genome assemblies. These genome assemblies exhibit N50 contig lengths of 26.25, 11.96, and 14.50 Mb, with genome coverage of 141.3, 86.0, and 88.6%, respectively. We also utilized 26 Gb of total RNA sequencing data to predict 154k, 79k, and 87k genes in the respective assemblies. The completeness of the primary genome assembly and its predicted genes was confirmed by the benchmarking universal single-copy ortholog analysis with a completeness rate of 99.3%. Based on our high-quality genomic resources, we constructed genetic networks for phenylpropanoid and flavonoid metabolism and identified candidate biosynthetic genes, which are responsible for producing key intermediates of roselle-specific medicinal natural products. Our comprehensive genomic and functional analysis opens avenues for further exploration and application of valuable natural products in H. sabdariffa.
Collapse
Affiliation(s)
- Taein Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, 04513 Seoul, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Yuseong-gu, 34134 Daejeon, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| |
Collapse
|
7
|
Feng R, Wang H, Zhang X, Li T, Huang C, Zhang S, Sun M, Shi C, Hu J, Gou J. Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis. Sci Rep 2024; 14:18326. [PMID: 39112526 PMCID: PMC11306238 DOI: 10.1038/s41598-024-67510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.
Collapse
Affiliation(s)
- Ruichao Feng
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China.
| | - Xinghong Zhang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550081, People's Republic of China
| | - Tong Li
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Chunyang Huang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Meili Sun
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jingrong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China.
| |
Collapse
|
8
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
9
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Li R, Li X, Tang J, Xie C, Wang J. The Development of a Fluorescent Microsatellite Marker Assay for the Pitaya Canker Pathogen ( Neoscytalidium dimidiatum). Genes (Basel) 2024; 15:885. [PMID: 39062664 PMCID: PMC11275628 DOI: 10.3390/genes15070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Pitaya canker, caused by Neoscytalidium dimidiatum, is a destructive disease that significantly threatens the safety of the pitaya industry. The authors of previous studies have mainly focused on its biological characteristics and chemical control. However, there are no molecular markers available thus far that can be used for the population genetics study of this pathogen. In the present study, a draft genome of N. dimidiatum with a total length of 41.46 MB was assembled in which 9863 coding genes were predicted and annotated. In particular, the microsatellite sequences in the draft genome were investigated. To improve the successful screening rate of potentially polymorphic microsatellite makers, another five N. dimidiatum isolates were resequenced and assembled. A total of eight pairs of polymorphic microsatellite primers were screened out based on the polymorphic microsatellite loci after investigating the sequencing and resequencing assemblies of the six isolates. A total of thirteen representative isolates sampled from different pitaya plantations were genotyped in order to validate the polymorphism of the resulting eight markers. The results indicated that these markers were able to distinguish the isolates well. Lastly, a neighbor-joining tree of 35 isolates, sampled from different pitaya plantations located in different regions, was constructed according to the genotypes of the eight molecular markers. The developed tree indicated that these molecular markers had sufficient genotyping capabilities for our test panel of isolates. In summary, we developed a set of polymorphic microsatellite markers in the following study that can effectively genotype and distinguish N. dimidiatum isolates and be utilized in the population genetics study of N. dimidiatum.
Collapse
Affiliation(s)
- Rui Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Xi Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Jingcheng Tang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Changping Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Jianan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| |
Collapse
|
12
|
Jia Y, Zhang K, Cao J, Mao W. Correlation analysis of whole genome sequencing of a pathogenic Escherichia coli strain of Inner Mongolian origin. Sci Rep 2024; 14:15494. [PMID: 38969720 PMCID: PMC11226720 DOI: 10.1038/s41598-024-64256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.
Collapse
Affiliation(s)
- Yan Jia
- Xuzhou Vocational College of Bioengineering, Jiangsu, 221006, Xuzhou, China
| | - Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China
| | - Jinshan Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China.
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China.
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China.
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China.
| |
Collapse
|
13
|
Zhou W, Shi H, Wang Z, Huang Y, Ni L, Chen X, Liu Y, Li H, Li C, Liu Y. Identification of Highly Repetitive Enhancers with Long-range Regulation Potential in Barley via STARR-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae012. [PMID: 39167800 DOI: 10.1093/gpbjnl/qzae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/23/2024]
Abstract
Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active mark H3K4me3 and repressive mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ±100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This study specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.
Collapse
Affiliation(s)
- Wanlin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Ni
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xudong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haojie Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Zong X, Lou Y, Xia M, Zhao K, Chen J, Huang J, Yang S, Wang L. Recombination and repeat-induced point mutation landscapes reveal trade-offs between the sexual and asexual cycles of Magnaporthe oryzae. J Genet Genomics 2024; 51:723-734. [PMID: 38490361 DOI: 10.1016/j.jgg.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide. Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping. However, the pervasive clonal lineages of M. oryzae observed in natural fields contradict this expectation. A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation (RIP) in shaping its evolutionary trajectory is essential to bridge this knowledge gap. Here we systematically investigate the RIP and recombination landscapes in M. oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies. Our data reveal that the RIP can robustly capture the population history of M. oryzae, and we provide accurate estimations of the recombination and RIP rates across different M. oryzae clades. Significantly, our results highlight a parent-of-origin bias in both recombination and RIP rates, tightly associating with their sexual potential and variations of effector proteins. This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution. These findings provide unique insights into understanding the evolution of blast fungus.
Collapse
Affiliation(s)
- Xifang Zong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yaxin Lou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Mengshuang Xia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Kunyang Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Jingxuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210000, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210000, China.
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
15
|
Liu G, Chen C, Jiang Z, Liu Y, Wang X, Qiao L, Liu K, Han X. Characterization and the first complete genome sequence of a novel strain of Bergeyella porcorum isolated from pigs in China. BMC Microbiol 2024; 24:214. [PMID: 38886642 PMCID: PMC11181579 DOI: 10.1186/s12866-024-03366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chao Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhikang Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xianwen Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Lei Qiao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xianjie Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
16
|
Cao X, Gu L, Gao Z, Fan W, Zhang Q, Sheng J, Zhang Y, Sun Y. Pathogenicity and Genomic Characteristics Analysis of Pasteurella multocida Serotype A Isolated from Argali Hybrid Sheep. Microorganisms 2024; 12:1072. [PMID: 38930454 PMCID: PMC11205410 DOI: 10.3390/microorganisms12061072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory diseases arising from co-infections involving Pasteurella multocida (P. multocida) and Mycoplasma ovipneumoniae (Mo) pose a substantial threat to the sheep industry. This study focuses on the isolation and identification of the P. multocida strain extracted from the lung tissue of an argali hybrid sheep infected with Mo. Kunming mice were used as a model to assess the pathogenicity of P. multocida. Subsequently, whole genome sequencing (WGS) of P. multocida was conducted using the Illumina NovaSeq PE150 platform. The whole genome sequencing analysis involved the construction of an evolutionary tree to depict conserved genes and the generation of a genome circle diagram. P. multocida, identified as serotype A, was named P. multocida SHZ01. Our findings reveal that P. multocida SHZ01 infection induces pathological manifestations, including hemorrhage and edema, in mice. The phylogenetic tree of conserved genes analyzing P. multocida from different countries and different host sources indicates close relatedness between the P. multocida SHZ01 strain and the P. multocida 40540 strain (A:12), originating from turkeys in Denmark. The genome of P. multocida SHZ01 comprises 2,378,508 base pairs (bp) with a GC content of 40.89%. Notably, this strain, designated P. multocida, exhibits two distinct gene islands and harbors a total of 80 effector proteins associated with the Type III Secretion System (T3SS). The P. multocida SHZ01 strain harbors 82 virulence genes and 54 resistance genes. In the P. multocida SHZ01 strain, the proteins, genes, and related GO and KEGG pathways have been annotated. Exploring the relationship between these annotations and the pathogenicity of the P. multocida SHZ01 strain would be valuable. This study holds great significance in further understanding the pathogenesis and genetic characteristics of the sheep-derived P. multocida SHZ01 strain. Additionally, it contributes to our understanding of respiratory diseases in the context of co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (X.C.); (L.G.); (Z.G.); (W.F.); (Q.Z.); (J.S.)
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (X.C.); (L.G.); (Z.G.); (W.F.); (Q.Z.); (J.S.)
| |
Collapse
|
17
|
Li Y, Yang T, Qiao J, Liang J, Li Z, Sa W, Shang Q. Whole-genome sequencing and evolutionary analysis of the wild edible mushroom, Morchella eohespera. Front Microbiol 2024; 14:1309703. [PMID: 38361578 PMCID: PMC10868677 DOI: 10.3389/fmicb.2023.1309703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Morels (Morchella, Ascomycota) are an extremely desired group of edible mushrooms with worldwide distribution. Morchella eohespera is a typical black morel species, belonging to the Elata clade of Morchella species. The biological and genetic studies of this mushroom are rare, largely hindering the studies of molecular breeding and evolutionary aspects. In this study, we performed de novo sequencing and assembly of the M. eohespera strain m200 genome using the third-generation nanopore sequencing platform. The whole-genome size of M. eohespera was 53.81 Mb with a contig N50 of 1.93 Mb, and the GC content was 47.70%. A total of 9,189 protein-coding genes were annotated. Molecular dating showed that M. eohespera differentiated from its relative M. conica at ~19.03 Mya (million years ago) in Burdigalian. Evolutionary analysis showed that 657 gene families were contracted and 244 gene families expanded in M. eohespera versus the related morel species. The non-coding RNA prediction results showed that there were 336 tRNAs, 76 rRNAs, and 45 snRNAs in the M. eohespera genome. Interestingly, there was a high degree of repetition (20.93%) in the M. eohespera genome, and the sizes of long interspersed nuclear elements, short interspersed nuclear elements, and long terminal repeats were 0.83 Mb, 0.009 Mb, and 4.56 Mb, respectively. Additionally, selection pressure analysis identified that a total of 492 genes in the M. eohespera genome have undergone signatures of positive selection. The results of this study provide new insights into the genome evolution of M. eohespera and lay the foundation for in-depth research into the molecular biology of the genus Morchella in the future.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jinxia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
18
|
Yang L, Jing Y, Cheng Z, Huang K, Yang X, Xiang D, Hilde LO, Zhang H, Liu Y. Draft genome sequence of Monascus ruber strain FM39-7. Microbiol Resour Announc 2024; 13:e0080523. [PMID: 38099680 DOI: 10.1128/mra.00805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024] Open
Abstract
In China, certain Monascus ruber strains are traditionally used as edible fungi. We sequenced the genome of M. ruber FM39-7 strain, an isolate from fermented rice. The genome is 25.89 Mb with a G + C content of 48.86%, containing 8485 annotated genes.
Collapse
Affiliation(s)
- Lei Yang
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Zhijun Cheng
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Ke Huang
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Xianhai Yang
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - LudwigSimaneka Omuwa Hilde
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology , Hangzhou, China
| | - Huilin Zhang
- China Tobacco Hunan Industrial Co. Ltd. , Changsha, China
| | - Yong Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology , Hangzhou, China
| |
Collapse
|
19
|
Jian J, Wu Z, Silva-Núñez A, Li X, Zheng X, Luo B, Liu Y, Fang X, Workman CT, Larsen TO, Hansen PJ, Sonnenschein EC. Long-read genome sequencing provides novel insights into the harmful algal bloom species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168042. [PMID: 37898203 DOI: 10.1016/j.scitotenv.2023.168042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms worldwide, which are often associated with massive fish-kills and subsequent economic losses. In here, we present nuclear and plastid genome assemblies using PacBio HiFi long reads and DNBseq short reads for the two P. parvum strains UTEX 2797 and CCMP 3037, representing producers of type A prymnesins. Our results show that the P. parvum strains have a moderate haptophyte genome size of 97.56 and 107.32 Mb. The genome assemblies present one of highest contiguous assembled contig sequences to date consisting of 463 and 362 contigs with a contig N50 of 596.99 kb and 968.39 kb for strain UTEX 2797 and CCMP 3037, respectively. The assembled contigs of UTEX 2797 and CCMP 3037 were anchored to 34 scaffolds, with a scaffold N50 of 5.35 Mb and 3.61 Mb, respectively, accounting for 93.2 % and 97.9 % of the total length. Each plastid genome comprises a circular contig. A total of 20,578 and 19,426 protein-coding genes were annotated for UTEX 2797 and CCMP 3037. The expanded gene family analysis showed that starch and sucrose metabolism, sulfur metabolism, energy metabolism and ABC transporters are involved in the evolution of P. parvum. Polyketide synthase (PKS) genes responsible for the production of secondary metabolites such as prymnesins displayed different expression patterns under nutrient limitation. Overlap with repeats and horizontal gene transfer may be two contributing factors to the high number of PKS genes found in this species. The two high quality P. parvum genomes will serve as valuable resources for ecological, genetic, and toxicological studies of haptophytes that can be used to monitor and potentially manage harmful blooms of ichthyotoxic P. parvum in the future.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Arisbe Silva-Núñez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| | - Xiaohui Li
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bei Luo
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Liu
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Department of Biosciences, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
20
|
Wang TT, Hu YL, Li YF, Kong XL, Li YM, Sun PY, Wang DX, Li YY, Zhang YZ, Han QL, Zhu XH, An QQ, Liu LL, Liu Y, Li HC. Polyketide synthases mutation in tuberculosis transmission revealed by whole genomic sequence, China, 2011-2019. Front Genet 2024; 14:1217255. [PMID: 38259610 PMCID: PMC10800454 DOI: 10.3389/fgene.2023.1217255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium tuberculosis (Mtb). Previous studies have primarily focused on the transmissibility of multidrug-resistant (MDR) or extensively drug-resistant (XDR) Mtb. However, variations in virulence across Mtb lineages may also account for differences in transmissibility. In Mtb, polyketide synthase (PKS) genes encode large multifunctional proteins which have been shown to be major mycobacterial virulence factors. Therefore, this study aimed to identify the role of PKS mutations in TB transmission and assess its risk and characteristics. Methods: Whole genome sequences (WGSs) data from 3,204 Mtb isolates was collected from 2011 to 2019 in China. Whole genome single nucleotide polymorphism (SNP) profiles were used for phylogenetic tree analysis. Putative transmission clusters (≤10 SNPs) were identified. To identify the role of PKS mutations in TB transmission, we compared SNPs in the PKS gene region between "clustered isolates" and "non-clustered isolates" in different lineages. Results: Cluster-associated mutations in ppsA, pks12, and pks13 were identified among different lineage isolates. They were statistically significant among clustered strains, indicating that they may enhance the transmissibility of Mtb. Conclusion: Overall, this study provides new insights into the function of PKS and its localization in M. tuberculosis. The study found that ppsA, pks12, and pks13 may contribute to disease progression and higher transmission of certain strains. We also discussed the prospective use of mutant ppsA, pks12, and pks13 genes as drug targets.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan-Long Hu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ya-Meng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Da-Xing Wang
- People’s Hospital of Huaiyin Jinan, Jinan, China
| | - Ying-Ying Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Zhen Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi-Lin Han
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue-Han Zhu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi-Qi An
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li-Li Liu
- People’s Hospital of Huaiyin Jinan, Jinan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huai-Chen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Zhang J, Wang J, Wang C. Whole Genome Sequencing and Comparative Analysis of the First Ehrlichia canis Isolate in China. Microorganisms 2024; 12:125. [PMID: 38257951 PMCID: PMC10820421 DOI: 10.3390/microorganisms12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Ehrlichia canis, a prominent tick-borne pathogen causing canine monocytic ehrlichiosis (CME), is one of the six recognized Ehrlichia species worldwide. Despite its widespread presence in ticks and host dogs in China, comprehensive genomic information about this pathogen remains limited. This study focuses on an in-depth analysis of E. canis YZ-1, isolated and cultured from an infected dog in China. The complete genome of E. canis YZ-1 was sequenced (1,314,789 bp, 1022 genes, 29% GC content, and 73% coding bases), systematically characterizing its genomic elements and functions. Comparative analysis with representative genomes of Ehrlichia species, including E. canis strain Jake, E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, and E. minasensis, revealed conserved genes, indicating potential evolutionary connections with E. ruminantium. The observed reduction in virulence-associated genes, coupled with a type IV secretion system (T4SS), suggests an intricate balance between pathogenicity and host adaptation. The close relationship with E. canis Jake and E. chaffeensis, alongside nuanced genomic variations with E. ruminantium and E. mineirensis, underscores the need to explore emerging strains and advancements in sequencing technologies continuously. This genetic insight opens avenues for innovative medications, studies on probiotic resistance, development of new detection markers, and progress in vaccine development for ehrlichiosis. Further investigations into the functional significance of identified genes and their role in host-pathogen interactions will contribute to a more holistic comprehension of Ehrlichia's biology and its implications for pathogenicity and transmission.
Collapse
Affiliation(s)
- Jilei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jiawei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
22
|
Bai M, Jiang S, Chu S, Yu Y, Shan D, Liu C, Zong L, Liu Q, Liu N, Xu W, Mei Z, Jian J, Zhang C, Zhao S, Chiu TY, Simonsen HT. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience 2024; 13:giae025. [PMID: 38837945 PMCID: PMC11152176 DOI: 10.1093/gigascience/giae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.
Collapse
Affiliation(s)
- Mingzhou Bai
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230000, China
| | - Yangyang Yu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Dai Shan
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liang Zong
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Qun Liu
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Weisong Xu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Zhanlong Mei
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Jianbo Jian
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chi Zhang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shancen Zhao
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Tsan-Yu Chiu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Henrik Toft Simonsen
- Laboratoire Biotechnologies Végétales Plantes aromatiques et médicinales, Université Jean Monnet, St. Étienne 42023, France
| |
Collapse
|
23
|
Xu W, Zhu C, Gao X, Wu B, Xu H, Hu M, Zeng H, Gan X, Feng C, Zheng J, Bo J, He LS, Qiu Q, Wang W, He S, Wang K. Chromosome-level genome assembly of hadal snailfish reveals mechanisms of deep-sea adaptation in vertebrates. eLife 2023; 12:RP87198. [PMID: 38134226 PMCID: PMC10746142 DOI: 10.7554/elife.87198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.
Collapse
Affiliation(s)
- Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Han Xu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Mingliang Hu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Honghui Zeng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Xiaoni Gan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Jiangmin Zheng
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| | - Shunping He
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
- Institute of Deep-Sea Science and Engineering, Chinese Academy of SciencesSanyaChina
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
24
|
Wu B, Gao X, Hu M, Hu J, Lan T, Xue T, Xu W, Zhu C, Yuan Y, Zheng J, Qin T, Xin P, Li Y, Gong L, Feng C, He S, Liu H, Li H, Wang Q, Ma Z, Qiu Q, Wang K. Distinct and shared endothermic strategies in the heat producing tissues of tuna and other teleosts. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2629-2645. [PMID: 37273070 DOI: 10.1007/s11427-022-2312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 06/06/2023]
Abstract
Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.
Collapse
Affiliation(s)
- Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingling Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150006, China
| | - Tingfeng Xue
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiangmin Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tao Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peidong Xin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ye Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150006, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
25
|
Liao X, Zhu W, Zhou J, Li H, Xu X, Zhang B, Gao X. Repetitive DNA sequence detection and its role in the human genome. Commun Biol 2023; 6:954. [PMID: 37726397 PMCID: PMC10509279 DOI: 10.1038/s42003-023-05322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Repetitive DNA sequences playing critical roles in driving evolution, inducing variation, and regulating gene expression. In this review, we summarized the definition, arrangement, and structural characteristics of repeats. Besides, we introduced diverse biological functions of repeats and reviewed existing methods for automatic repeat detection, classification, and masking. Finally, we analyzed the type, structure, and regulation of repeats in the human genome and their role in the induction of complex diseases. We believe that this review will facilitate a comprehensive understanding of repeats and provide guidance for repeat annotation and in-depth exploration of its association with human diseases.
Collapse
Affiliation(s)
- Xingyu Liao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000, Yichang, P.R. China
| | - Juexiao Zhou
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Haoyang Li
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xiaopeng Xu
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
26
|
Kumar S, Agyeman-Duah E, Ujor VC. Whole-Genome Sequence and Fermentation Characteristics of Enterobacter hormaechei UW0SKVC1: A Promising Candidate for Detoxification of Lignocellulosic Biomass Hydrolysates and Production of Value-Added Chemicals. Bioengineering (Basel) 2023; 10:1090. [PMID: 37760192 PMCID: PMC10525534 DOI: 10.3390/bioengineering10091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Enterobacter hormaechei is part of the Enterobacter cloacae complex (ECC), which is widespread in nature. It is a facultative Gram-negative bacterium of medical and industrial importance. We assessed the metabolic and genetic repertoires of a new Enterobacter isolate. Here, we report the whole-genome sequence of a furfural- and 5-hydroxymethyl furfural (HMF)-tolerant strain of E. hormaechei (UW0SKVC1), which uses glucose, glycerol, xylose, lactose and arabinose as sole carbon sources. This strain exhibits high tolerance to furfural (IC50 = 34.2 mM; ~3.3 g/L) relative to Escherichia coli DH5α (IC50 = 26.0 mM; ~2.5 g/L). Furfural and HMF are predominantly converted to their less-toxic alcohols. E. hormaechei UW0SKVC1 produces 2,3-butanediol, acetoin, and acetol, among other compounds of industrial importance. E. hormaechei UW0SKVC1 produces as high as ~42 g/L 2,3-butanediol on 60 g/L glucose or lactose. The assembled genome consists of a 4,833,490-bp chromosome, with a GC content of 55.35%. Annotation of the assembled genome revealed 4586 coding sequences and 4516 protein-coding genes (average length 937-bp) involved in central metabolism, energy generation, biodegradation of xenobiotic compounds, production of assorted organic compounds, and drug resistance. E. hormaechei UW0SKVC1 shows considerable promise as a biocatalyst and a genetic repository of genes whose protein products may be harnessed for the efficient bioconversion of lignocellulosic biomass, abundant glycerol and lactose-replete whey permeate to value-added chemicals.
Collapse
Affiliation(s)
| | | | - Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA; (S.K.); (E.A.-D.)
| |
Collapse
|
27
|
Wu M, Zhu Y, Yang Y, Gong Y, Chen Z, Liao B, Xiong Y, Zhou X, Li Y. SVep1, a temperate phage of human oral commensal Streptococcus vestibularis. Front Microbiol 2023; 14:1256669. [PMID: 37779698 PMCID: PMC10536254 DOI: 10.3389/fmicb.2023.1256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bacteriophages play a vital role in the human oral microbiome, yet their precise impact on bacterial physiology and microbial communities remains relatively understudied due to the limited isolation and characterization of oral phages. To address this gap, the current study aimed to isolate and characterize novel oral phages. Methods To achieve this, oral bacteria were isolated using a culture-omics method from 30 samples collected from healthy individuals. These bacteria were then cultured in three different types of media under both aerobic and anaerobic conditions. The samples were subsequently subjected to full-length 16S rRNA gene sequencing for analysis. Subsequently, we performed the isolation of lytic and lysogenic phages targeting all these bacteria. Results In the initial step, a total of 75 bacterial strains were successfully isolated, representing 30 species and 9 genera. Among these strains, Streptococcus was found to have the highest number of species. Using a full-length 16S rRNA gene similarity threshold of 98.65%, 14 potential novel bacterial species were identified. In the subsequent phase, a temperate phage, which specifically targets the human oral commensal bacterium S. vestibularis strain SVE8, was isolated. The genome of S. vestibularis SVE8 consists of a 1.96-megabase chromosome, along with a 43,492-base pair prophage designated as SVep1. Annotation of SVep1 revealed the presence of 62 open reading frames (ORFs), with the majority of them associated with phage functions. However, it is worth noting that no plaque formation was observed in S. vestibularis SVE8 following lytic induction using mitomycin C. Phage particles were successfully isolated from the supernatant of mitomycin C-treated cultures of S. vestibularis SVE8, and examination using transmission electron microscopy confirmed that SVep1 is a siphovirus. Notably, phylogenetic analysis suggested a common ancestral origin between phage SVep1 and the cos-type phages found in S. thermophilus. Discussion The presence of SVep1 may confer immunity to S. vestibularis against infection by related phages and holds potential for being engineered as a genetic tool to regulate oral microbiome homeostasis and oral diseases.
Collapse
Affiliation(s)
- Miaomiao Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanpeng Zhu
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiong
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
- Department of Stomatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Wang T, Chen S, Niu Q, Xu G, Lu C, Zhang J. Genomic Sequence Resource of Talaromyces albobiverticillius, the Causative Pathogen of Pomegranate Pulp Rot Disease. J Fungi (Basel) 2023; 9:909. [PMID: 37755017 PMCID: PMC10533087 DOI: 10.3390/jof9090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Talaromyces albobiverticillius, a prominent pathogen responsible for pomegranate pulp rot disease, inflicts significant damage on Punica granatum L. Besides its pathogenicity, this fungus possesses the potential to produce substantial amounts of red pigments, making it promising for industrial applications. This study presents the genome annotation of T. albobiverticillius field strain Tp-2, isolated from pomegranates. The genome assembly, generated through a combination of Oxford Nanopore and Illumina sequencing reads, yielded a high-quality assembly with 14 contigs, featuring an N50 length of 4,594,200 bp. The complete genome of strain Tp-2 spans 38,354,882 bp, with a GC content of 45.78%. Importantly, the assembly exhibits remarkable integrity, with 98.3% of complete Benchmarking Universal Single-Copy Orthologs validating genome completeness. Genome prediction analysis reveals the presence of 10,380 protein-coding genes. To our knowledge, this study is the first report on the genome sequence of T. albobiverticillius, offering valuable insights into its genetic variation and molecular mechanisms of pigment production.
Collapse
Affiliation(s)
- Tan Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuchang Chen
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiuhong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guangling Xu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chenxu Lu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jin Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
29
|
Li Z, Hu JR, Li WH, Wang HC, Guo ZN, Cheng X, Cai LT, Shi CH. Characteristics of Epicoccum latusicollum as revealed by genomic and metabolic phenomic analysis, the causal agent of tobacco Epicoccus leaf spot. FRONTIERS IN PLANT SCIENCE 2023; 14:1199956. [PMID: 37828924 PMCID: PMC10565823 DOI: 10.3389/fpls.2023.1199956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 10/14/2023]
Abstract
Epicoccum latusicollum is a fungus that causes a severe foliar disease on flue-cured tobacco in southwest China, resulting in significant losses in tobacco yield and quality. To better understand the organism, researchers investigated its optimal growth conditions and metabolic versatility using a combination of traditional methods and the Biolog Phenotype MicroArray technique. The study found that E. latusicollum exhibited impressive metabolic versatility, being able to metabolize a majority of carbon, nitrogen, sulfur, and phosphorus sources tested, as well as adapt to different environmental conditions, including broad pH ranges and various osmolytes. The optimal medium for mycelial growth was alkyl ester agar medium, while oatmeal agar medium was optimal for sporulation, and the optimum temperature for mycelial growth was 25°C. The lethal temperature was 40°C. The study also identified arbutin and amygdalin as optimal carbon sources and Ala-Asp and Ala-Glu as optimal nitrogen sources for E. latusicollum. Furthermore, the genome of E. latusicollum strain T41 was sequenced using Illumina HiSeq and Pacific Biosciences technologies, with 10,821 genes predicted using Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. Analysis of the metabolic functions of phyllosphere microorganisms on diseased tobacco leaves affected by E. latusicollum using the Biolog Eco microplate revealed an inability to efficiently metabolize a total of 29 carbon sources, with only tween 40 showing some metabolizing ability. The study provides new insights into the structure and function of phyllosphere microbiota and highlights important challenges for future research, as well as a theoretical basis for the integrated control and breeding for disease resistance of tobacco Epicoccus leaf spot. This information can be useful in developing new strategies for disease control and management, as well as enhancing crop productivity and quality.
Collapse
Affiliation(s)
- Zhen Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Jing-rong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Zhen-ni Guo
- MGI Tech Co., Ltd Research and Development Centre for Laboratory Automation, Shenzhen, Guangzhou, China
| | - Xing Cheng
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Cai-hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
30
|
Liu Y, Liu T, Wang Y, Liu J, Liu B, Gong L, Lü Z, Liu L. Genome Sequencing Provides Novel Insights into Mudflat Burrowing Adaptations in Eel Goby Taenioides sp. (Teleost: Amblyopinae). Int J Mol Sci 2023; 24:12892. [PMID: 37629073 PMCID: PMC10454203 DOI: 10.3390/ijms241612892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Amblyopinae is one of the lineage of bony fish that preserves amphibious traits living in tidal mudflat habitats. In contrast to other active amphibious fish, Amblyopinae species adopt a seemly more passive lifestyle by living in deep burrows of mudflat to circumvent the typical negative effects associated with terrestriality. However, little is known about the genetic origin of these mudflat deep-burrowing adaptations in Amblyopinae. Here we sequenced the first genome of Amblyopinae species, Taenioides sp., to elucidate their mudflat deep-burrowing adaptations. Our results revealed an assembled genome size of 774.06 Mb with 23 pseudochromosomes anchored, which predicted 22,399 protein-coding genes. Phylogenetic analyses indicated that Taenioides sp. diverged from the active amphibious fish of mudskipper approximately 28.3 Ma ago. In addition, 185 and 977 putative gene families were identified to be under expansion, contraction and 172 genes were undergone positive selection in Taenioides sp., respectively. Enrichment categories of top candidate genes under significant expansion and selection were mainly associated with hematopoiesis or angiogenesis, DNA repairs and the immune response, possibly suggesting their involvement in the adaptation to the hypoxia and diverse pathogens typically observed in mudflat burrowing environments. Some carbohydrate/lipid metabolism, and insulin signaling genes were also remarkably alterated, illustrating physiological remolding associated with nutrient-limited subterranean environments. Interestingly, several genes related to visual perception (e.g., crystallins) have undergone apparent gene losses, pointing to their role in the small vestigial eyes development in Taenioides sp. Our work provide valuable resources for understanding the molecular mechanisms underlying mudflat deep-burrowing adaptations in Amblyopinae, as well as in other tidal burrowing teleosts.
Collapse
Affiliation(s)
- Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
31
|
Zhang T, Wei S, Liu Y, Cheng C, Ma J, Yue L, Gao Y, Cheng Y, Ren Y, Su S, Zhao X, Lu Z. Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil. Front Microbiol 2023; 14:1167293. [PMID: 37637133 PMCID: PMC10450921 DOI: 10.3389/fmicb.2023.1167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.
Collapse
Affiliation(s)
- Tianjiao Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yajie Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Chao Cheng
- School of Life Science, Jining Normal University, Ulanqab, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Linfang Yue
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Yanrong Gao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shaofeng Su
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
32
|
Ma X, Wang L, Yang F, Li J, Guo L, Guo Y, He S. Drug sensitivity and genome-wide analysis of two strains of Mycoplasma gallisepticum with different biofilm intensity. Front Microbiol 2023; 14:1196747. [PMID: 37621399 PMCID: PMC10445764 DOI: 10.3389/fmicb.2023.1196747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the major causative agents of chronic respiratory diseases in poultry. The biofilms of MG are highly correlated to its chronic infection. However data on genes involved in biofilm formation ability are still scarse. MG strains with distinct biofilm intensity were screened by crystal violet staining morphotyped and characterized for the drug sensitivity. Two MG strains NX-01 and NX-02 showed contrasted ability to biofilm formation. The biofilm formation ability of NX-01 strain was significantly higher than that of NX-02 strain (p < 0.01). The drug sensitivity test showed that the stronger the ability of MG stain to form biofilms, the weaker its sensitivity to 17 antibiotic drugs. Moreover, putative key genes related to biofilm formation were screened by genome-wide analysis. A total of 13 genes and proteins related to biofilm formation, including ManB, oppA, oppD, PDH, eno, RelA, msbA, deoA, gapA, rpoS, Adhesin P1 precursor, S-adenosine methionine synthetase, and methionyl tRNA synthetase were identified. There were five major discrepancies between the two isolated MG strains and the five NCBI-published MG strains. These findings provide potential targets for inhibiting the formation of biofilm of MG, and lay a foundation for treating chronic infection.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Li Wang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Fei Yang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jidong Li
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lei Guo
- Ningxia Xiaoming Agriculture and Animal Husbandry Co., Ltd., Yinchuan, China
| | - Yanan Guo
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shenghu He
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
33
|
Ma LJ, Zhang Y, Li C, Liu S, Liu C, Mostert D, Yu H, Haridas S, Webster K, Li M, Grigoriev I, Viljoen A, Yi G. Accessory genes in tropical race 4 contributed to the recent resurgence of the devastating disease of Fusarium wilt of banana. RESEARCH SQUARE 2023:rs.3.rs-3197485. [PMID: 37609348 PMCID: PMC10441461 DOI: 10.21203/rs.3.rs-3197485/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases recorded. Foc race 1 (R1) decimated the Gros Michel-based banana trade. Currently, tropical race 4 (TR4) is threatening the global production of its replacement cultivar, Cavendish banana. Population genomics and phylogenetics revealed that all Cavendish banana-infecting race 4 strains shared an evolutionary origin that is distinct from R1 strains. The TR4 genome lacks accessory or pathogenicity chromosomes, reported in other F. oxysporum genomes. Accessory genes-enriched for virulence and mitochondrial-related functions-are attached to ends of some core chromosomes. Meta-transcriptomics revealed the unique induction of the entire mitochondria-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of NO burst in TR4,suggesting the involvement of nitrosative pressure in its virulence. Targeted mutagenesis demonstrated the functional importance of accessory genes SIX1 and SIX4 as virulent factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Diane Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | - Igor Grigoriev
- US DOE Joint Genome Institute/ Lawrence Berkeley National Lab/ University of California Berkeley
| | - Altus Viljoen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | |
Collapse
|
34
|
Feng W, Zhou L, Zhao P, Du H, Diao C, Zhang Y, Liu Z, Jin W, Yu J, Han J, Okoth E, Mrode R, Liu JF. Comparative Genomic Analysis of Warthog and Sus Scrofa Identifies Adaptive Genes Associated with African Swine Fever. BIOLOGY 2023; 12:1001. [PMID: 37508430 PMCID: PMC10376286 DOI: 10.3390/biology12071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND As warthogs (Phacochoerus africanus) have innate immunity against African swine fever (ASF), it is critical to understand the evolutionary novelty of warthogs to explain their specific ASF resistance. METHODS Here, we present two completed new genomes of one warthog and one Kenyan domestic pig as fundamental genomic references to elucidate the genetic mechanisms of ASF tolerance. RESULTS Multiple genomic variations, including gene losses, independent contraction, and the expansion of specific gene families, likely molded the warthog genome to adapt to the environment. Importantly, the analysis of the presence and absence of genomic sequences revealed that the DNA sequence of the warthog genome had an absence of the gene lactate dehydrogenase B (LDHB) on chromosome 2 compared with the reference genome. The overexpression and siRNA of LDHB inhibited the replication of the African swine fever virus. Combined with large-scale sequencing data from 42 pigs worldwide, the contraction and expansion of tripartite motif-containing (TRIM) gene families revealed that TRIM family genes in the warthog genome are potentially responsible for its tolerance to ASF. CONCLUSION Our results will help improve the understanding of genetic resistance to ASF in pigs.
Collapse
Affiliation(s)
- Wen Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518107, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chenguang Diao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjiao Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Raphael Mrode
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Wang Q, Bao H, Li Z. Genomic comparison between two Inonotus hispidus strains isolated from growing in different tree species. Front Genet 2023; 14:1221491. [PMID: 37519891 PMCID: PMC10372432 DOI: 10.3389/fgene.2023.1221491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Inonotus hispidus mainly growing in broad-leaved trees, including Morus alba, Fraxinus mandshurica, and Ulmus macrocarpa etc. The fruiting body of I. hispidus growing in M. alba (hereafter as MA) is used as a traditional Chinese medicine "Sanghuang". However, differences between the genetic material basis of I. hispidus growing in other tree species have not been reported. Therefore, in this paper, the genomic comparison between MA and I. hispidus growing in F. mandshurica (hereafter as FM) were studied. The whole genome of MA monokaryon was sequenced by Illumina combined with Pac Bio platform. Next, genome assembly, genome component prediction and genome functional annotation were performed. Comparative genomics analysis was performed between FM monokaryon and MA monokaryon, using MA as the reference. The results showed that, MA had 24 contigs with a N50 length of 2.6 Mb. Specifically, 5,342, 6,564, 1,595, 383 and 123 genes were annotated from GO, KEGG, KOG, CAZymes and CYP450, respectively. Moreover, comparative genomics showed that, the coding genes and total number of genes annotated in different databases of FM were higher than that of MA. This study provides a foundation for the medicinal application of FM as MA from the perspective of genetic composition.
Collapse
Affiliation(s)
- Qingchun Wang
- Key Laboratory for Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, Jilin, China
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| | - Haiying Bao
- Key Laboratory for Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, Jilin, China
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhijun Li
- Key Laboratory for Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, Jilin, China
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
36
|
Jiang JP, Liu X, Liao YF, Shan J, Zhu YP, Liu CH. Genomic insights into Aspergillus sydowii 29R-4-F02: unraveling adaptive mechanisms in subseafloor coal-bearing sediment environments. Front Microbiol 2023; 14:1216714. [PMID: 37455735 PMCID: PMC10339353 DOI: 10.3389/fmicb.2023.1216714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Aspergillussydowii is an important filamentous fungus that inhabits diverse environments. However, investigations on the biology and genetics of A. sydowii in subseafloor sediments remain limited. Methods Here, we performed de novo sequencing and assembly of the A. sydowii 29R-4-F02 genome, an isolate obtained from approximately 2.4 km deep, 20-million-year-old coal-bearing sediments beneath the seafloor by employing the Nanopore sequencing platform. Results and Discussion The generated genome was 37.19 Mb with GC content of 50.05%. The final assembly consisted of 11 contigs with N50 of 4.6 Mb, encoding 12,488 putative genes. Notably, the subseafloor strain 29R-4-F02 showed a higher number of carbohydrate-active enzymes (CAZymes) and distinct genes related to vesicular fusion and autophagy compared to the terrestrial strain CBS593.65. Furthermore, 257 positively selected genes, including those involved in DNA repair and CAZymes were identified in subseafloor strain 29R-4-F02. These findings suggest that A. sydowii possesses a unique genetic repertoire enabling its survival in the extreme subseafloor environments over tens of millions of years.
Collapse
Affiliation(s)
- Jun-Peng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yi-Fan Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yu-Ping Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Deng L, Liu L, Fu T, Li C, Jin N, Zhang H, Li C, Liu Y, Zhao C. Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms 2023; 11:1620. [PMID: 37375122 DOI: 10.3390/microorganisms11061620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study aims to systematically evaluate the safety of a novel L. plantarum LPJZ-658 explored on whole-genome sequence analysis, safety, and probiotic properties assessment. Whole genome sequencing results demonstrated that L. plantarum LPJZ-658 consists of 3.26 Mbp with a GC content of 44.83%. A total of 3254 putative ORFs were identified. Of note, a putative bile saline hydrolase (BSH) (identity 70.4%) was found in its genome. In addition, the secondary metabolites were analyzed, and one secondary metabolite gene cluster was predicted to consist of 51 genes, which verified its safety and probiotic properties at the genome level. Additionally, L. plantarum LPJZ-658 exhibited non-toxic and non-hemolytic activity and was susceptible to various tested antibiotics, indicating that L. plantarum LPJZ-658 was safe for consumption. Moreover, the probiotic properties tests confirm that L. plantarum LPJZ-658 also exhibits tolerance to acid and bile salts, preferably hydrophobicity and auto-aggregation, and excellent antimicrobial activity against both Gram-positive and Gram-negative gastrointestinal pathogens. In conclusion, this study confirmed the safety and probiotic properties of L. plantarum LPJZ-658, suggesting it can be used as a potential probiotic candidate for human and animal applications.
Collapse
Affiliation(s)
- Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Tongyu Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yawen Liu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
38
|
Cai J, Muhammad I, Chen B, Xu P, Li Y, Xu H, Li K. Whole genome sequencing and analysis of Armillaria gallica Jzi34 symbiotic with Gastrodia elata. BMC Genomics 2023; 24:275. [PMID: 37217849 DOI: 10.1186/s12864-023-09384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Armillaria species are plant pathogens, but a few Armillaria species can establish a symbiotic relationship with Gastrodia elata, a rootless and leafless orchid, that is used as a Chinese herbal medicine. Armillaria is a nutrient source for the growth of G. elata. However, there are few reports on the molecular mechanism of symbiosis between Armillaria species and G. elata. The genome sequencing and analysis of Armillaria symbiotic with G. elata would provide genomic information for further studying the molecular mechanism of symbiosis. RESULTS The de novo genome assembly was performed with the PacBio Sequel platform and Illumina NovaSeq PE150 for the A. gallica Jzi34 strain, which was symbiotic with G. elata. Its genome assembly contained ~ 79.9 Mbp and consisted of 60 contigs with an N50 of 2,535,910 bp. There were only 4.1% repetitive sequences in the genome assembly. Functional annotation analysis revealed a total of 16,280 protein coding genes. Compared with the other five genomes of Armillaria, the carbohydrate enzyme gene family of the genome was significantly contracted, while it had the largest set of glycosyl transferase (GT) genes. It also had an expansion of auxiliary activity enzymes AA3-2 gene subfamily and cytochrome P450 genes. The synteny analysis result of P450 genes reveals that the evolutionary relationship of P450 proteins between A. gallica Jzi34 and other four Armillaria was complex. CONCLUSIONS These characteristics may be beneficial for establishing a symbiotic relationship with G. elata. These results explore the characteristics of A. gallica Jzi34 from a genomic perspective and provide an important genomic resource for further detailed study of Armillaria. This will help to further study the symbiotic mechanism between A. gallica and G. elata.
Collapse
Affiliation(s)
- Jinlong Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ikram Muhammad
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Bilian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Peng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yiguo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
39
|
Li J, Wang L, Bible PW, Tu W, Zheng J, Jin P, Liu Y, Du J, Zheng J, Wang YH, Zhan Q. A chromosome-scale genome sequence of sudangrass (Sorghum sudanense) highlights the genome evolution and regulation of dhurrin biosynthesis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:60. [PMID: 36912984 DOI: 10.1007/s00122-023-04262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Sudangrass is more similar to US commercial sorghums than to cultivated sorghums from Africa sequence-wise and contain significantly lower dhurrin than sorghums. CYP79A1 is linked to dhurrin content in sorghum. Sudangrass [Sorghum sudanense (Piper) Stapf] is a hybrid between grain sorghum and its wild relative S. bicolor ssp. verticilliflorum and is grown as a forage crop due to its high biomass production and low dhurrin content compared to sorghum. In this study, we sequenced the sudangrass genome and showed that the assembled genome was 715.95 Mb with 35,243 protein-coding genes. Phylogenetic analysis with whole genome proteomes demonstrated that the sudangrass genome was more similar to US commercial sorghums than to its wild relatives and cultivated sorghums from Africa. We confirmed that at seedling stage, sudangrass accessions contained significantly lower dhurrin as measured by hydrocyanic acid potential (HCN-p) than cultivated sorghum accessions. Genome-wide association study identified a QTL most tightly associated with HCN-p and the linked SNPs were located in the 3' UTR of Sobic.001G012300 which encodes CYP79A1, the enzyme that catalyzes the first step of dhurrin biosynthesis. As in other grasses such as maize and rice, we also found that copia/gypsy long terminal repeat (LTR) retrotransposons were more abundant in cultivated than in wild sorghums, implying that crop domestication in the grasses was accompanied by increased copia/gypsy LTR retrotransposon insertions in the genomes.
Collapse
Affiliation(s)
- Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Paul W Bible
- College of Arts and Sciences, Department of Mathematics, Marian University, Indianapolis, IN, 46222, USA
| | - Wenmiao Tu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jian Zheng
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Peng Jin
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jiacheng Zheng
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Qiuwen Zhan
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China.
| |
Collapse
|
40
|
Yan C, Hao H, Feng H, Wang Z, Sha S, Li M, Wang L, Kang Z. Whole genome sequence of Cryptosphaeria pullmanensis, an important pathogenic fungus potentially threatening crop and forestry production. Genomics 2023; 115:110576. [PMID: 36758876 DOI: 10.1016/j.ygeno.2023.110576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Many fungal members of the Diatrypaceae family are pathogenic towards plants and are widely distributed globally. Cryptosphaeria pullmanensis is a pathogenic fungus that infects populus and walnut trees, causing their death. We sequenced the genome of C. pullmanensis based on a combination of Nanopore PromethION and Illumina NovaSeq PE150 platforms, and functionally annotated the sequences using a number of open-access databases. This is the first report of the genome-scale assembly and annotation for C. pullmanensis, the first species of the genus Cryptosphaeria to be sequenced. We obtained 13 contigs with an N50 contig size of 7,095,780 bp, a GC content ratio of 43.23% and a genome size of 56.72 Mb with 10,474 putative coding genes. Comparative genomic analysis against the genomes of seven Ascomycetes fungal strains was performed. Among the seven species tested, the Eutypa lata genome displayed the highest similarity to the C. pullmanensis genome in terms of collinearity and homologous gene content. This study has provided a genetic resource that offers extensive information and a framework for future investigations into the transcriptome, proteome, and metabonome of C. pullmanensis to understand its molecular pathogenesis.
Collapse
Affiliation(s)
- Chengcai Yan
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Haiting Hao
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Hongzu Feng
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Zhe Wang
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Shuaishuai Sha
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Meng Li
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Lan Wang
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China.
| | - Zhensheng Kang
- Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang/ Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China, Tarim University, Xinjiang, China.
| |
Collapse
|
41
|
Duan YN, Ma SR, Chen XS, Shen X, Yin CM, Mao ZQ. Genome Sequence Resource of Fusarium proliferatum f. sp. malus domestica MR5, the Causative Agent of Apple Replant Disease. PLANT DISEASE 2023; 107:903-907. [PMID: 36587236 DOI: 10.1094/pdis-06-22-1352-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Apple replant disease (ARD) caused by the fungal pathogen Fusarium proliferatum f. sp. malus domestica (Fpmd) MR5 brings annual losses to apple production within China. However, the genomic information of the pathogen is not yet available. Here, we obtained the whole-genome sequence of the highly virulent Fpmd MR5 using the Illumina PE150 platform. The genome size was 42.76 Mb and consisted of 9,047 genes. The GC content was 48.80%, and several genes potentially associated with pathogenicity were identified, such as carbohydrate-active enzymes, secreted proteins, and secondary metabolite gene clusters. There were 260 specific virulence factor genes, mainly related to fungal vegetative growth and the production of cell wall-degrading enzymes. These data will aid future studies investigating host-pathogen interactions and help us develop suitable disease management strategies.
Collapse
Affiliation(s)
- Y N Duan
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| | - S R Ma
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| | - X S Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| | - X Shen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| | - C M Yin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| | - Z Q Mao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, China
| |
Collapse
|
42
|
Xiao J, Liu Z, Sun S, Fan C, Wang D, Zhang D. Complete Genome Sequence of Pantoea agglomerans CHTF15, a Walnut Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:134-137. [PMID: 36693088 DOI: 10.1094/mpmi-10-22-0216-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The phytopathogen Pantoea agglomerans belongs to the Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Erwiniaceae in species classification. It causes disease symptoms in many plants such as corn, banana, and walnut. This study aimed to report the complete genome of P. agglomerans CHTF15, which represents the first whole-genome sequence of an isolate from diseased walnut leaves. The total length of the assembled genome was 4,820,607 bp, with an average GC content of 55.3%, including a circular chromosome and three circular plasmids, two of which were previously unreported sequences and one was announced previously. The CHTF15 genome helps understand the pathogenic mechanism of this important plant pathogen and provides an important theoretical basis for disease epidemic and field control. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Jiawen Xiao
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongmei Wang
- College of Life Science, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| |
Collapse
|
43
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Tao S, Qingbin M, Zhiling L, Caiyu S, Lixin L, Lilai L. Comparative genomics reveals cellobiose hydrolysis mechanism of Ruminiclostridium thermocellum M3, a cellulosic saccharification bacterium. Front Microbiol 2023; 13:1079279. [PMID: 36687593 PMCID: PMC9852859 DOI: 10.3389/fmicb.2022.1079279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 01/08/2023] Open
Abstract
The cellulosome of Ruminiclostridium thermocellum was one of the most efficient cellulase systems in nature. However, the product of cellulose degradation by R. thermocellum is cellobiose, which leads to the feedback inhibition of cellulosome, and it limits the R. thermocellum application in the field of cellulosic biomass consolidated bioprocessing (CBP) industry. In a previous study, R. thermocellum M3, which can hydrolyze cellulosic feedstocks into monosaccharides, was isolated from horse manure. In this study, the complete genome of R. thermocellum M3 was sequenced and assembled. The genome of R. thermocellum M3 was compared with the other R. thermocellum to reveal the mechanism of cellulosic saccharification by R. thermocellum M3. In addition, we predicted the key genes for the elimination of feedback inhibition of cellobiose in R. thermocellum. The results indicated that the whole genome sequence of R. thermocellum M3 consisted of 3.6 Mb of chromosomes with a 38.9% of GC%. To be specific, eight gene islands and 271 carbohydrate-active enzyme-encoded proteins were detected. Moreover, the results of gene function annotation showed that 2,071, 2,120, and 1,246 genes were annotated into the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively, and most of the genes were involved in carbohydrate metabolism and enzymatic catalysis. Different from other R. thermocellum, strain M3 has three proteins related to β-glucosidase, and the cellobiose hydrolysis was enhanced by the synergy of gene BglA and BglX. Meanwhile, the GH42 family, CBM36 family, and AA8 family might participate in cellobiose degradation.
Collapse
Affiliation(s)
- Sheng Tao
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China,*Correspondence: Sheng Tao,
| | - Meng Qingbin
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Li Zhiling
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China,Li Zhiling,
| | - Sun Caiyu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Li Lixin
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Liu Lilai
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| |
Collapse
|
45
|
Li Z, Shi CH, Huang Y, Wang HC, Li WH, Cai LT. Phenotypic analysis and genome sequence of Rhizopus oryzae strain Y5, the causal agent of tobacco pole rot. Front Microbiol 2023; 13:1031023. [PMID: 36687611 PMCID: PMC9846616 DOI: 10.3389/fmicb.2022.1031023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae is a destructive pathogen that frequently causes tobacco pole rot in curing chambers. Phenotypic characterization of the pathogen was conducted to provide basic biological and pathological information using Biolog Phenotype MicroArray (PM). In addition, the Y5 strain of R. oryzae was sequenced using Illumina HiSeq and Pacific Biosciences (PacBio) technologies. Using PM plates 1-8, 758 growth conditions were tested. Results indicated that R. oryzae could metabolize 54.21% of tested carbon sources, 86.84% of nitrogen sources, 100% of sulfur sources, and 98.31% of phosphorus sources. About 37 carbon compounds, including D-xylose, N-acetyl-D-glucosamine, D-sorbitol, β-methyl-D-glucoside, D-galactose, L-arabinose, and D-cellobiose, significantly supported the growth of the pathogen. PM 3 indicated the active nitrogen sources, including Gly-Asn, Ala-Asp., Ala-Gln, and uric acid. PM 6-8 showed 285 different nitrogen pathways, indicating that different combinations of different amino acids support the growth of the pathogen. Genome sequencing results showed that the R. oryzae Y5 strain had raw data assembled into 2,271 Mbp with an N50 value of 10,563 bp. A genome sequence of 50.3 Mb was polished and assembled into 53 contigs with an N50 length of 1,785,794 bp, maximum contig length of 3,223,184 bp, and a sum of contig lengths of 51,182,778 bp. A total of 12,680 protein-coding genes were predicted using the Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. The genome sequence and annotation resources of R. oryzae provided a reference for studying its biological characteristics, trait-specific genes, pathogen-host interaction, pathogen evolution, and population genetic diversity. The phenomics and genome of R. oryzae will provide insights into microfungal biology, pathogen evolution, and the genetic diversity of epidemics.
Collapse
Affiliation(s)
- Zhen Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Cai-hua Shi
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China,*Correspondence: Cai-hua Shi,
| | - Yang Huang
- China Tobacco Sichuan Industrial Corporation Technical Centre, Chengdu, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China,Han-cheng Wang,
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
46
|
Niu S, Gong W, Li Z, Zhang K, Wang G, Yu E, Xia Y, Tian J, Li H, Ni J, Xie J. Complete genome analysis of Pseudomonas furukawaii ZS1 isolated from grass carp ( Ctenopharyngodon idellus) culture water. Genome 2023; 66:11-20. [PMID: 36395476 DOI: 10.1139/gen-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
47
|
Li M, Wu B, Zhang P, Li Y, Xu W, Wang K, Qiu Q, Zhang J, Li J, Zhang C, Fan J, Feng C, Chen Z. Genomes of Two Flying Squid Species Provide Novel Sights into Adaptations of Cephalopods to Pelagic Life. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1053-1065. [PMID: 36216027 DOI: 10.1016/j.gpb.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Pelagic cephalopods have evolved a series of fascinating traits, such as excellent visual acuity, high-speed agility, and photophores for adaptation to open pelagic oceans. However, the genetic mechanisms underpinning these traits are not well understood. Thus, in this study, we obtained high-quality genomes of two purpleback flying squid species (Sthenoteuthis oualaniensis and Sthenoteuthis sp.), with sizes of 5450 Mb and 5651 Mb, respectively. Comparative genomic analyses revealed that the S-crystallin subfamily SL20-1 associated with visual acuity in the purpleback flying squid lineage was significantly expanded, and the evolution of high-speed agility for the species was accompanied by significant positive selection pressure on genes related to energy metabolism. These molecular signals might have contributed to the evolution of their adaptative predatory and anti-predatory traits. In addition, the transcriptomic analysis provided clear indications of the evolution of the photophores of purpleback flying squids, especially the recruitment of new genes and energy metabolism-related genes which may have played key functional roles in the process.
Collapse
Affiliation(s)
- Min Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ye Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jie Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chi Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jiangtao Fan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| |
Collapse
|
48
|
Hu S, Xu H, Meng X, Bai X, Xu J, Ji J, Ying C, Chen Y, Shen P, Zhou Y, Zheng B, Xiao Y. Population genomics of emerging Elizabethkingia anophelis pathogens reveals potential outbreak and rapid global dissemination. Emerg Microbes Infect 2022; 11:2590-2599. [PMID: 36197077 DOI: 10.1080/22221751.2022.2132880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elizabethkingia anophelis is an emerging species and have increasingly been reported to cause life-threatening infections and even outbreaks in humans. Nevertheless, there is little data regarding the E. anophelis geographical distribution, phylogenetic structure, and transmission across the globe, especially in Asia. We utilize whole genome sequencing (WGS) data to define a global population framework, phylogenetic structure, geographical distribution, and transmission evaluation of E. anophelis pathogens. The geographical distribution diagram revealed the emerging pathogenic bacteria already distributed in various countries worldwide, especially in the USA and China. Strikingly, phylogenetic analysis showed a part of our China original E. anophelis shared the same ancestor with the USA outbreak strain, which implies the possibility of localized outbreaks and global spread. These closer related strains also contained ICEEaI, which might insert into a disrupted DNA repair mutY gene and made the strain more liable to mutation and outbreak infection. BEAST analysis showed that the most recent common ancestor for ICEEaI E. anophelis was dated twelve years ago, and China might be the most likely recent source of this bacteria. Our study sheds light on the potential possibility of E. anophelis causing the large-scale outbreak and rapid global dissemination. Continued genomic surveillance of the dynamics of E. anophelis populations will generate further knowledge for optimizing future prevent global outbreak infections.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohua Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangxiang Bai
- Bioinformatics Institute, Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Junli Xu
- Bioinformatics Institute, Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiao Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
49
|
Genome-wide analysis of Keratinibaculum paraultunense strain KD-1 T and its key genes and metabolic pathways involved in the anaerobic degradation of feather keratin. Arch Microbiol 2022; 204:634. [PMID: 36127480 DOI: 10.1007/s00203-022-03226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Keratinibaculum paraultunense strain KD-1 T (= JCM 18769 T = DSM 26752 T) is a strictly anaerobic rod-shaped bacterium. Under optimal conditions, feather keratin can be completely degraded by strain KD-1 within 24 h. Genomic sequencing showed that the genome was a single circular chromosome consisting of 2,307,997 base pairs (bp), with an average G + C content of 29.8% and no plasmids. A total of 2308 genes were annotated, accounting for 88.87% of the genomic sequence, and 1495 genes were functionally annotated. Among these, genes Kpa0144, Kpa0540, and Kpa0541 encoding the thioredoxin family members were identified, and may encode the potential disulfide reductases, with redox activity for protein disulfide bonds. Two potential keratinase-encoding genes, Kpa1675 and Kpa2139, were also identified, and corresponded to the ability of strain KD-1 to hydrolyze keratin. Strain KD-1 encoded genes involved in the heterotrophic metabolic pathways of 14 amino acids and various carbohydrates. The metabolic pathways for amino acid and carbohydrate metabolism were mapped in strain KD-1 based on KEGG annotations. The complete genome of strain KD-1 provided fundamental data for the further investigation of its physiology and genetics.
Collapse
|
50
|
Liu K, Ding X, Wang G, Liu W. Complete Genome Sequencing of Halophilic Endophytic Aspergillus montevidensis, Strain ZYD4, Isolated from Alfalfa Stems Grown in Saline-Alkaline Soils. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:867-869. [PMID: 35822852 DOI: 10.1094/mpmi-12-21-0314-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wanting Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|