1
|
Pavlovič A, Jílková T, Chamrád I, Lenobel R, Vrobel O, Tarkowski P. The carnivorous rainbow plant Byblis filifolia Planch. secretes digestive enzymes in response to prey capture independently of jasmonates. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:549-557. [PMID: 40387350 PMCID: PMC12096042 DOI: 10.1111/plb.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/19/2025] [Indexed: 05/20/2025]
Abstract
Carnivorous plants from the order Caryophyllales co-opted plant phytohormones from a group of jasmonates to regulate digestive enzyme activity. However, not all genera of carnivorous plants have been thoroughly explored, and the digestive physiology of Australian carnivorous rainbow plants of the genus Byblis (order Lamiales) is poorly understood. Here, we investigated the composition of digestive enzymes in the secreted fluid of Byblis filifolia using LC/MS, measured enzyme activity, and analysed tissue phytohormone levels after experimental feeding with fruit flies and coronatine application. Several hydrolytic digestive enzymes were identified in the secreted digestive fluid, the levels of which clearly increased in the presence of insect prey. However, in contrast to the sundew Drosera capensis, endogenous jasmonates do not accumulate, and coronatine, a molecular mimic of jasmonates, is unable to trigger enzyme secretion. Our results showed that B. filifolia is fully carnivorous, with its own digestive enzyme repertoire. However, in contrast to carnivorous genera from the Caryophyllales order, these enzymes are not regulated by jasmonates. This indicates that jasmonates have not been repeatedly co-opted to regulate digestive enzyme activity during the evolution of carnivorous plants.
Collapse
Affiliation(s)
- A. Pavlovič
- Department of Biophysics, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
| | - T. Jílková
- Department of Biophysics, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
| | - I. Chamrád
- Laboratory of Growth Regulators, Faculty of SciencePalacký University in Olomouc and Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | - R. Lenobel
- Laboratory of Growth Regulators, Faculty of SciencePalacký University in Olomouc and Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | - O. Vrobel
- Czech Advanced Technology and Research Institute (CATRIN)Palacký University in OlomoucOlomoucCzech Republic
- Czech Agrifood Research Center, Genetic Resources of Vegetables and Special CropsOlomoucCzech Republic
| | - P. Tarkowski
- Czech Advanced Technology and Research Institute (CATRIN)Palacký University in OlomoucOlomoucCzech Republic
- Czech Agrifood Research Center, Genetic Resources of Vegetables and Special CropsOlomoucCzech Republic
| |
Collapse
|
2
|
Bui H, Andersson S, Sola-Carvajal A, De Marchi T, Vähäkangas E, Holopainen M, House AH, Rovenko BM, Englund JI, Kasper M, Kuuluvainen E, Käkelä R, Hietakangas V, Niméus E, Katajisto P. Glucose-6-phosphate-dehydrogenase on old peroxisomes maintains self-renewal of epithelial stem cells after asymmetric cell division. Nat Commun 2025; 16:3932. [PMID: 40287409 PMCID: PMC12033372 DOI: 10.1038/s41467-025-58752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Selective inheritance of sub-cellular components has emerged as a mechanism guiding stem cell fate after asymmetric cell divisions. Peroxisomes play a crucial role in multiple metabolic processes such as fatty acid metabolism and reactive oxygen species detoxification, but the apportioning of peroxisomes during stem cell division remains understudied. Here, we develop a mouse model and labeling technique to follow the dynamics of distinct peroxisome age-classes, and find that old peroxisomes are inherited by the daughter cell retaining full stem cell potency in mammary and epidermal stem cell divisions. Old peroxisomes carry Glucose-6-phosphate-dehydrogenase, whose specific location on the peroxisomal membrane promotes stem cell function by facilitating peroxisomal ether lipid synthesis. Our study demonstrates age-selective apportioning of peroxisomes in vivo, and unveils how functional heterogeneity of peroxisomes is utilized by asymmetrically dividing cells to metabolically divert the fate of the two daughter cells.
Collapse
Grants
- ERC, #677809, and #101045009 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- #266869, #304591, #312436, #320185 Academy of Finland (Suomen Akatemia)
- 2018-03078, 2018-02963, 2022-01304 Vetenskapsrådet (Swedish Research Council)
- 190634, 180681, and 222499 Cancerfonden (Swedish Cancer Society)
- KAW 2014.0207 and 20220054 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- Syöpäjärjestöt (Cancer Society of Finland)
- Chan Zuckerberg Initiative MET-0000000418 Center for Innovative Medicine CIMED Sigrid Juselius Foundation
- Finnish Cultural Foundation | Uudenmaan Rahasto (Uusimaa Regional Fund)
- Maud Kuistilan Muistosäätiö (Maud Kuistila Memorial Foundation)
- Doctoral Programme in Biomedicine at the University of Helsinki
Collapse
Affiliation(s)
- Hien Bui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Simon Andersson
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Agustin Sola-Carvajal
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Tommaso De Marchi
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
| | - Eliisa Vähäkangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
- Stem cells and metabolism research program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Andrew H House
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Bohdana M Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Emma Niméus
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
- Department of Surgery, Skåne University Hospital, 22242, Lund, Sweden
| | - Pekka Katajisto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland.
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
3
|
Komatsu S, Misaki H, Zhu W, Yamaguchi H, Hitachi K, Tsuchida K, Higashitani A. The Growth of Soybean ( Glycine max) Under Salt Stress Is Modulated in Simulated Microgravity Conditions. Cells 2025; 14:541. [PMID: 40214494 PMCID: PMC11988762 DOI: 10.3390/cells14070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
The role of a simulated microgravity environment on soybean growth was investigated. The root grew more under simulated microgravity conditions than in the presence of gravity. However, root shortening due to salt stress did not occur in simulated microgravity conditions. To reveal these mechanisms by simulated microgravity environment on soybean root, a proteomic analysis was conducted. Proteomic analysis revealed that among 1547 proteins, the abundances of proteins related to phytohormone, oxidative stress, ubiquitin/proteasome system, cell organization, and cell wall organization were altered under stimulated microgravity compared with gravity. Membrane-localized proteins and redox-related proteins were inversely correlated in protein numbers due to salt stress under gravity and the simulated microgravity condition. Proteins identified by proteomics were validated for protein accumulation by immunoblot analysis. Superoxide dismutase and ascorbate peroxidases, which are reactive oxygen species-scavenging proteins, increased in soybean root under salt stress but not in the simulated microgravity conditions even under stress. The accumulation of 45 kDa aquaporin and 70 kDa calnexin in soybean root under salt stress were increased in the simulated microgravity conditions compared to gravity. These findings suggest that soybean growth under salt stress may be regulated through improved water permeability, mitigation of reactive oxygen species production, and restoration of protein folding under simulated microgravity conditions.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Haruka Misaki
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Wei Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China;
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan (K.T.)
| | - Kunihiro Tsuchida
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan (K.T.)
| | | |
Collapse
|
4
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Wasserman JS, Kurimchak AM, Herrera-Montávez C, Doyle GA, Fox BD, Kodikara IKM, Hu X, Hu J, Jin J, Duncan JS. Characterization of MEK1/2 Degraders Uncovers a Kinase-Independent Role for MEK1/2 in the Stabilization and Maturation of CRAF. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642495. [PMID: 40161716 PMCID: PMC11952388 DOI: 10.1101/2025.03.11.642495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Altered MAPK signaling frequently occurs in human disease. MEK1 and MEK2 (MEK1/2) are central protein kinases in the MAPK signaling cascade that phosphorylate ERK1/2 promoting cell growth. MEK1/2 degraders offer a strategy to characterize both kinase-dependent and independent functions of MEK1/2. Here, we discovered that MEK1/2 degradation, but not kinase inhibition, caused the subsequent degradation of upstream kinase CRAF via a cell-intrinsic mechanism. MEK1/2 binding to CRAF, but not MEK1/2 catalytic activity, was required for CRAF protein stability and maturation to a functional kinase. In the absence of MEK1/2, a minor pool of newly synthesized immature CRAF that had anti-apoptotic functions remained. Finally, we showed that a stable primed CRAF-MEK1/2 signaling complex existed in cells that required RAS binding to potentiate MEK-ERK phosphorylation. Together, we've discovered a previously unrecognized kinase-independent function of MEK1/2, while contextualizing MEK1/2 as an integral component of the CRAF activation cycle beyond the conventional CRAF-MEK kinase-substrate paradigm.
Collapse
Affiliation(s)
- Jason S Wasserman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Carlos Herrera-Montávez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Glenn A Doyle
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Brandon D Fox
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ishadi K M Kodikara
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
6
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster EG, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. Genes Dev 2025; 39:gad.352535.124. [PMID: 40086876 PMCID: PMC11960778 DOI: 10.1101/gad.352535.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the "cell within a cell" structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni and colleagues demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and enhances spore resistance to the oxidant hypochlorite.
Collapse
Affiliation(s)
- Eammon P Riley
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Jelani A Lyda
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Joseph Sugie
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Iqra R Kasu
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Sumedha Ravishankar
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London WC2R 2LS, United Kingdom
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | | | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
7
|
Marx C, Qing X, Gong Y, Kirkpatrick J, Siniuk K, Beznoussenko GV, Kidiyoor G, Kirtay M, Buder K, Koch P, Westermann M, Bruhn C, Brown E, Xu X, Foiani M, Wang ZQ. DNA damage response regulator ATR licenses PINK1-mediated mitophagy. Nucleic Acids Res 2025; 53:gkaf178. [PMID: 40105243 PMCID: PMC11920799 DOI: 10.1093/nar/gkaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Defective DNA damage response (DDR) and mitochondrial dysfunction are a major etiology of tissue impairment and aging. Mitochondrial autophagy (mitophagy) is a mitochondrial quality control (MQC) mechanism to selectively eliminate dysfunctional mitochondria. ATR (ataxia-telangiectasia and Rad3-related) is a key DDR regulator playing a pivotal role in DNA replication stress response and genomic stability. Paradoxically, the human Seckel syndrome caused by ATR mutations exhibits premature aging and neuropathies, suggesting a role of ATR in nonreplicating tissues. Here, we report a previously unknown yet direct role of ATR at mitochondria. We find that ATR and PINK1 (PTEN-induced kinase 1) dock at the mitochondrial translocase TOM/TIM complex, where ATR interacts directly with and thereby stabilizes PINK1. ATR deletion silences mitophagy initiation thereby altering oxidative phosphorylation functionality resulting in reactive oxygen species overproduction that attack cytosolic macromolecules, in both cells and brain tissues, prior to nuclear DNA. This study discloses ATR as an integrated component of the PINK1-mediated MQC program to ensure mitochondrial fitness. Together with its DDR function, ATR safeguards mitochondrial and genomic integrity under physiological and genotoxic conditions.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute (PEI), Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Xiaobing Qing
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Yamin Gong
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | | | | | - Murat Kirtay
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Katrin Buder
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Christopher Bruhn
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eric J Brown
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Xingzhi Xu
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstraße 18k, 07743 Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
8
|
Villari G, Gioelli N, Gino M, Zhang H, Hodge K, Cordero F, Zanivan S, Zhu J, Serini G. Luminescent sensing of conformational integrin activation in living cells. Cell Rep 2025; 44:115319. [PMID: 39964812 PMCID: PMC11861568 DOI: 10.1016/j.celrep.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Integrins are major receptors for secreted extracellular matrix, playing crucial roles in physiological and pathological contexts, such as angiogenesis and cancer. Regulation of the transition between inactive and active conformation is key for integrins to fulfill their functions, and pharmacological control of those dynamics may have therapeutic applications. We create and validate a prototypic luminescent β1 integrin activation sensor (β1IAS) by introducing a split luciferase into an activation reporting site between the βI and the hybrid domains. As a recombinant protein in both solution and living cells, β1IAS accurately reports β1 integrin activation in response to (bio)chemical and physical stimuli. A short interfering RNA (siRNA) high-throughput screening on live β1IAS knockin endothelial cells unveils hitherto unknown regulators of β1 integrin activation, such as β1 integrin inhibitors E3 ligase Pja2 and vascular endothelial growth factor B (VEGF-B). This split-luciferase-based strategy provides an in situ label-free measurement of integrin activation and may be applicable to other β integrins and receptors.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Marta Gino
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy.
| |
Collapse
|
9
|
Subramanian V, Juhr D, Giansanti P, Grumbach IM. Long-Term Effects of Radiation Therapy on Cerebral Microvessel Proteome: A Six-Month Post-Exposure Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632491. [PMID: 39868171 PMCID: PMC11760261 DOI: 10.1101/2025.01.13.632491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Radiation therapy (RT) treats primary and metastatic brain tumors, with about one million Americans surviving beyond six months post-treatment. However, up to 90% of survivors experience RT-induced cognitive impairment. Emerging evidence links cognitive decline to RT-induced endothelial dysfunction in brain microvessels, yet in vivo studies of endothelial injury remain limited. Investigating the molecular and cellular pathways connecting RT, endothelial dysfunction, and cognitive impairment is vital for developing targeted interventions. This study examines proteomic changes in cerebral microvessels following RT. Methods We conducted a comprehensive quantitative analysis comparing the proteome in cerebral microvessels from five control mice and five irradiated mice (12 Gy) 6 months after RT. Bioinformatics analyses included gene ontology (GO) enrichment, Mitocarta analysis, Ingenuity Pathway Analysis (IPA), and iPathwayGuide. Predictions from the analyses were validated by western blotting. Results Our data identified significant dysregulation of 414 proteins following RT, with 157 upregulated and 257 downregulated. Gene ontology analysis indicated that the majority of the dysregulated proteins were part of various metabolic pathways. Cross referencing with Mitocarta revealed a significant presence of mitochondrial proteins among the dysregulated proteins, indicating potential mitochondrial metabolic dysfunction. Further investigation with IPA analysis uncovered 76 enriched canonical pathways, 34 transcription regulators, 6 nuclear receptors, and 5 growth factors involved in RT-induced damage responses in cerebral microvessels. IPA canonical pathway analysis predicted mitochondrial dysfunction due to inhibition of various metabolic pathways in the irradiated group. Validation with western blotting confirmed the bioinformatics predictions from the proteomic dataset. Conclusions Our data show significant proteomic changes in cerebral microvessels 6 months post-radiation, including oxidative phosphorylation, the TCA cycle, and glycolysis, suggesting metabolic mechanisms of RT-induced microvascular dysfunction.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa
| | - Denise Juhr
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System, Iowa City, IA
| |
Collapse
|
10
|
Tibocha-Bonilla JD, Lyda J, Riley E, Pogliano K, Zengler K. Deciphering metabolic differentiation during Bacillus subtilis sporulation. Nat Commun 2025; 16:129. [PMID: 39747067 PMCID: PMC11695771 DOI: 10.1038/s41467-024-55586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation in B. subtilis, and provides a foundation for future studies of metabolic differentiation.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Jelani Lyda
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Eammon Riley
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Ginkgo Bioworks, Inc., Boston, MA, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
11
|
Morey‐Yagi SR, Hashida Y, Okamoto M, Odahara M, Suzuki T, Thagun C, Foong CP, Numata K. Expression of spider silk protein in tobacco improves drought tolerance with minimal effects on its mechanotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17213. [PMID: 39866095 PMCID: PMC11771620 DOI: 10.1111/tpj.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood. Since glycine-rich proteins play key roles in plants, we evaluated the effects of a glycine-rich spider silk protein on plant mechanical properties (mechanotype) and physiology. We generated tobacco (Nicotiana tabacum) plants producing a nucleus- or plastid-encoded partial component of dragline silk, MaSp1 (major ampullate spidroin-1; MaSp1-tobacco), containing six repetitive glycine-rich and polyalanine tandem domains. MaSp1 accumulation had minimal effect on leaf mechanical properties, but improved drought tolerance. Transcriptome analysis of drought-stressed MaSp1-tobacco revealed the upregulation of genes involved in stress response, antioxidant activity, cellular metabolism and homeostasis, and phenylpropanoid biosynthesis. The effects of drought treatment differed between the nucleus- and the plastid-encoded MaSp1-tobacco, with the latter showing a stronger transcriptomic response and a higher total antioxidant status (TAS). Well-watered MaSp1-tobacco displayed elevated levels of the stress phytohormone ABA, leading to stomatal closure, reduced water loss, activation of stress response, and increased TAS. We show that the moderately enhanced ABA content in these plants plays a pivotal role in drought tolerance, alongside, ABA priming, which causes overall adjustments in multiple drought tolerance mechanisms. Thus, our findings highlight the potential of utilizing glycine-rich spider silk proteins to enhance plant resilience to drought.
Collapse
Affiliation(s)
- Shamitha Rao Morey‐Yagi
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, WakoSaitama351‐0198Japan
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Yoichi Hashida
- Laboratory of Crop Science, Faculty of AgricultureTakasaki University of Health and Welfare54 Nakaorui‐machiTakasakiGunma370‐0033Japan
| | - Masanori Okamoto
- Plant Chemical Genetics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, TsurumiYokohamaKanagawa230‐0045Japan
| | - Masaki Odahara
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, WakoSaitama351‐0198Japan
| | - Takehiro Suzuki
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, WakoSaitama351‐0198Japan
| | - Chonprakun Thagun
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Choon Pin Foong
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, WakoSaitama351‐0198Japan
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| |
Collapse
|
12
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
13
|
Musabyimana JP, Musa S, Manti J, Distler U, Tenzer S, Ngwa CJ, Pradel G. The Plasmodium falciparum histone methyltransferase SET10 participates in a chromatin modulation network crucial for intraerythrocytic development. mSphere 2024; 9:e0049524. [PMID: 39445823 PMCID: PMC11580448 DOI: 10.1128/msphere.00495-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The lifecycle progression of the malaria parasite Plasmodium falciparum requires precise tuning of gene expression including histone methylation. The histone methyltransferase PfSET10 was previously described as an H3K4 methyltransferase involved in var gene regulation, making it a prominent antimalarial target. In this study, we investigated the role of PfSET10 in the blood stages of P. falciparum in more detail, using tagged PfSET10-knockout (KO) and -knockdown (KD) lines. We demonstrate a nuclear localization of PfSET10 with peak protein levels in schizonts. PfSET10 deficiency reduces intraerythrocytic growth but has no effect on gametocyte commitment and maturation. Screening of the PfSET10-KO line for histone methylation variations reveals that lack of PfSET10 renders the parasites unable to mark H3K18me1, while no reduction in the H3K4 methylation status could be observed. Comparative transcriptomic profiling of PfSET10-KO schizonts shows an upregulation of transcripts particularly encoding proteins linked to red blood cell remodeling and antigenic variation, suggesting a repressive function of the histone methylation mark. TurboID coupled with mass spectrometry further highlights an extensive nuclear PfSET10 interaction network with roles in transcriptional regulation and mRNA processing, DNA replication and repair, and chromatin remodeling. The main interactors of PfSET10 include ApiAP2 transcription factors, epigenetic regulators like PfHDAC1, chromatin modulators like PfMORC and PfISWI, mediators of RNA polymerase II, and DNA replication licensing factors. The combined data pinpoint PfSET10 as a histone methyltransferase essential for H3K18 methylation that regulates nucleic acid metabolic processes in the P. falciparum blood stages as part of a comprehensive chromatin modulation network.IMPORTANCEThe fine-tuned regulation of DNA replication and transcription is particularly crucial for the rapidly multiplying blood stages of malaria parasites and proteins involved in these processes represent important drug targets. This study demonstrates that contrary to previous reports the histone methyltransferase PfSET10 of the malaria parasite Plasmodium falciparum promotes the methylation of histone 3 at lysine K18, a histone mark to date not well understood. Deficiency of PfSET10 due to genetic knockout affects genes involved in intraerythrocytic development. Furthermore, in the nuclei of blood-stage parasites, PfSET10 interacts with various protein complexes crucial for DNA replication, remodeling, and repair, as well as for transcriptional regulation and mRNA processing. In summary, this study highlights PfSET10 as a methyltransferase affecting H3K18 methylation with critical functions in chromatin maintenance during the development of P. falciparum in red blood cells.
Collapse
Affiliation(s)
| | - Sherihan Musa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Janice Manti
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Delgado de la Herran H, Vecellio Reane D, Cheng Y, Katona M, Hosp F, Greotti E, Wettmarshausen J, Patron M, Mohr H, Prudente de Mello N, Chudenkova M, Gorza M, Walia S, Feng MSF, Leimpek A, Mielenz D, Pellegata NS, Langer T, Hajnóczky G, Mann M, Murgia M, Perocchi F. Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks. EMBO J 2024; 43:5288-5326. [PMID: 39261663 PMCID: PMC11535509 DOI: 10.1038/s44318-024-00219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake. We identify 89 high-confidence interactors that link MCUC to several mitochondrial complexes and pathways, half of which are associated with human disease. As a proof-of-concept, we validate the mitochondrial intermembrane space protein EFHD1 as a binding partner of the MCUC subunits MCU, EMRE, and MCUB. We further show a MICU1-dependent inhibitory effect of EFHD1 on calcium uptake. Next, we systematically survey compensatory mechanisms and functional consequences of mitochondrial calcium dyshomeostasis by analyzing the MCU interactome upon EMRE, MCUB, MICU1, or MICU2 knockdown. While silencing EMRE reduces MCU interconnectivity, MCUB loss-of-function leads to a wider interaction network. Our study provides a comprehensive and high-confidence resource to gain insights into players and mechanisms regulating mitochondrial calcium signaling and their relevance in human diseases.
Collapse
Affiliation(s)
- Hilda Delgado de la Herran
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Yiming Cheng
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Máté Katona
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Roche Pharma Research and Early Development, Large Molecule Research, Mass Spectrometry, Penzberg, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Jennifer Wettmarshausen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Maria Patron
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Hermine Mohr
- Institute of Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany
| | - Natalia Prudente de Mello
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Margarita Chudenkova
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Matteo Gorza
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Safal Walia
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Michael Sheng-Fu Feng
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Anja Leimpek
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, University of Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Natalia S Pellegata
- Institute of Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Thomas Langer
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany.
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
15
|
Huang HC, Huang YL, Chen YJ, Wu HY, Hsu CL, Kao HF, Liao BC, Hsieh MS, Lin NY, Liao YH, Chen HL, Chen CN, Chen TC, Wang CP, Yang TL, Huang MC, Lin MC, Lou PJ. The branched N-glycan of PD-L1 predicts immunotherapy responses in patients with recurrent/metastatic HNSCC. Oncogenesis 2024; 13:36. [PMID: 39353912 PMCID: PMC11445275 DOI: 10.1038/s41389-024-00532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment, but the lack of a reliable predictive biomarker for treatment response remains a challenge. Alpha-1,6-Mannosylglycoprotein 6-β-N-Acetylglucosaminyltransferase 5 (MGAT5) is a key regulator of complex N-glycan synthesis, and its dysregulation is associated with cancer progression. The lectin Phaseolus vulgaris leukoagglutinin (PHA-L) specifically binds to mature MGAT5 products. Previous studies have indicated elevated PHA-L staining in head and neck squamous cell carcinoma (HNSCC), which implies increased activity of MGAT5. However, the specific role of MGAT5 in HNSCC remains unclear. In this study, we found significantly higher PHA-L staining and MGAT5 expression in HNSCC tumors compared to adjacent non-tumor tissues. Using a mass spectrometry (MS)-based glycoproteomic approach, we identified 163 potential protein substrates of MGAT5. Functional analysis revealed that protein substrates of MGAT5 regulated pathways related to T cell proliferation and activation. We further discovered that PD-L1 was among the protein substrates of MGAT5, and the expression of MGAT5 protected tumor cells from cytotoxic T lymphocyte (CTL) killing. Treatment of nivolumab alleviated the protective effects of MGAT5 on CTL activity. Consistently, patients with MGAT5-positive tumors showed improved responses to immunotherapy compared to those with MGAT5-negative tumors. Using purified PD-L1 from HNSCC cells and a glycoproteomic approach, we further deciphered that the N35 and N200 sites carry the majority of complex N-glycans on PD-L1. Our findings highlight the critical role of MGAT5-mediated branched N-glycans on PD-L1 in modulating the interaction with the immune checkpoint receptor PD-1. Consequently, we propose that MGAT5 could serve as a biomarker to predict patients' responses to anti-PD-1 therapy. Furthermore, targeting the branched N-glycans at N35 and N200 of PD-L1 may lead to the development of novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Huai-Cheng Huang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Fong Kao
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Bin-Chi Liao
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hao Liao
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Lin Chen
- Department of Surgery, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Nan Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Martins AMA, D M Santos M, C Camillo-Andrade A, Leite AL, Souza JS, Sánchez S, Muotri AR, Carvalho PC, Yates JR. Integrating DIA Single-Cell Proteomics Data with the DiagnoMass Proteomic Hub for Biological Insights. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2308-2314. [PMID: 39258941 DOI: 10.1021/jasms.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Single-cell proteomics has emerged as a powerful technology for unraveling the complexities of cellular heterogeneity, enabling insights into individual cell functions and pathologies. One of the primary challenges in single-cell proteomics is data generation, where low mass spectral signals often preclude the triggering of MS2 events. This challenge is addressed by Data Independent Acquisition (DIA), a data acquisition strategy that does not depend on peptide ion isotopic signatures to generate an MS2 event. In this study, we present data generated from the integration of DIA single-cell proteomics with a version of the DiagnoMass Proteomic Hub that was adapted to handle DIA data. DiagnoMass employs a hierarchical clustering methodology that enables the identification of tandem mass spectral clusters that are discriminative of biological conditions, thereby reducing the reliance on search engine biases for identifications. Nevertheless, a search engine (in this work, DIA-NN) can be integrated with DiagnoMass for spectral annotation. We used single-cell proteomic data from iPSC-derived neuroprogenitor cell cultures as a test study of this integrated approach. We were able to differentiate between control and Rett Syndrome patient cells to discern the proteomic variances potentially contributing to the disease's pathology. Our research confirms that the DiagnoMass-DIA synergy significantly enhances the identification of discriminative proteomic signatures, highlighting critical biological variations such as the presence of unique spectra that could be related to Rett Syndrome pathology.
Collapse
Affiliation(s)
- Aline M A Martins
- Departments of Molecular Medicine and Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz - Paraná, R. Professor Algacyr Munhoz Mader, 3775 Curitiba, PR, Brazil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Amanda C Camillo-Andrade
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz - Paraná, R. Professor Algacyr Munhoz Mader, 3775 Curitiba, PR, Brazil
| | - Aline Lima Leite
- Bruker Daltonics Corporation, USA, 40 Manning Rd, Billerica, Massachusetts 01821, United States
| | - Janaina Sena Souza
- Department of Pediatrics, Sanford Consortium for Regenerative Medicine, UCSD, 2880 Torrey Pines Scenic Dr, La Jolla, California 92037, United States
| | - Sandra Sánchez
- Department of Pediatrics, Sanford Consortium for Regenerative Medicine, UCSD, 2880 Torrey Pines Scenic Dr, La Jolla, California 92037, United States
| | - Alysson R Muotri
- Department of Pediatrics, Sanford Consortium for Regenerative Medicine, UCSD, 2880 Torrey Pines Scenic Dr, La Jolla, California 92037, United States
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz - Paraná, R. Professor Algacyr Munhoz Mader, 3775 Curitiba, PR, Brazil
| | - John R Yates
- Departments of Molecular Medicine and Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Greco F, Bertagna G, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Lipids associated with atherosclerotic plaque instability revealed by mass spectrometry imaging of human carotid arteries. Atherosclerosis 2024; 397:118555. [PMID: 39159550 DOI: 10.1016/j.atherosclerosis.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Lipids constitute one of the main components of atherosclerosis lesions and are the mediators of many mechanisms involved in plaque progression and stability. Here we tested the hypothesis that lipids known to be involved in plaque development exhibited associations with plaque vulnerability. We used spatial lipidomics to overcome plaque heterogeneity and to compare lipids from specific regions of symptomatic and asymptomatic human carotid atherosclerotic plaques. METHODS Carotid atherosclerotic plaques were collected from symptomatic and asymptomatic patients. Plaque lipids were analyzed with the spatial lipidomics technique matrix-assisted laser desorption/ionization mass spectrometry imaging, and histology and immunofluorescence were used to segment the plaques into histomolecularly distinct regions. RESULTS Macrophage-rich regions from symptomatic lesions were found to be enriched in phosphatidylcholines (synthesized to counteract excess free cholesterol), while the same region from asymptomatic plaques were enriched in polyunsaturated cholesteryl esters and triglycerides, characteristic of functional lipid droplets. Vascular smooth muscle cells (VSMCs) of the fibrous cap of asymptomatic plaques were enriched in lysophosphatidylcholines and cholesteryl esters, know to promote VSMC proliferation and migration, crucial for the buildup of the fibrous cap stabilizing the plaque. CONCLUSIONS The investigation of the region-specific lipid composition of symptomatic and asymptomatic human atherosclerotic plaques revealed specific lipid markers of plaque outcome, which could be linked to known biological characteristics of stable plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Centro Health and BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Bertagna
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Laura Quercioli
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Angela Pucci
- Department of Histopathology, University Hospital, Pisa, Italy
| | | | - Mauro Ferrari
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Fabio A Recchia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, USA; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy.
| |
Collapse
|
18
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
19
|
Tuomivaara ST, Teo CF, Jan YN, Wiita AP, Jan LY. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. Commun Biol 2024; 7:1060. [PMID: 39210032 PMCID: PMC11362511 DOI: 10.1038/s42003-024-06729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases. We applied SLAPSHOT and quantitative proteomics to examine the TMEM16F-dependent plasma membrane remodeling in WT and TMEM16F KO cells. Time-course data ranging from 1 to 30 min of calcium stimulation revealed co-regulation of known protein families, including the integrin and ICAM families, and identified proteins known to reside in intracellular organelles as occupants of the freshly deposited extracellularly exposed membrane. Our data provide the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome.
Collapse
Affiliation(s)
- Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
20
|
Fabrizi I, Flament S, Delhon C, Gourichon L, Vuillien M, Oueslati T, Auguste P, Rolando C, Bray F. Low-Invasive Sampling Method with Tape-Disc Sampling for the Taxonomic Identification of Archeological and Paleontological Bones by Proteomics. J Proteome Res 2024; 23:3404-3417. [PMID: 39042361 DOI: 10.1021/acs.jproteome.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.
Collapse
Affiliation(s)
- Isabelle Fabrizi
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Stéphanie Flament
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Claire Delhon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Lionel Gourichon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Manon Vuillien
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Tarek Oueslati
- Univ. Lille, CNRS UMR 8164─HALMA─Histoire, Archéologie et Littérature des Mondes Anciens, Lille F-59000, France
| | - Patrick Auguste
- Univ. Lille, CNRS UMR 8198─EEP─Evolution, Ecology and Paleontology, Lille F-59000, France
| | - Christian Rolando
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
- Shrieking Sixties, Villeneuve d'Ascq F-59650, France
| | - Fabrice Bray
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| |
Collapse
|
21
|
Qin S, Gao K, Tian Z. Comprehensive characterization of differential glycation in hepatocellular carcinoma using tissue proteomics with stable isotopic labeling. Anal Bioanal Chem 2024; 416:4531-4541. [PMID: 38922433 DOI: 10.1007/s00216-024-05392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
22
|
Dissanayake BM, Staudinger C, Ranathunge K, Munns R, Rupasinghe TW, Taylor NL, Millar AH. Metabolic adaptations leading to an enhanced lignification in wheat roots under salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1800-1815. [PMID: 38923138 DOI: 10.1111/tpj.16885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.
Collapse
Affiliation(s)
- Bhagya M Dissanayake
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Christiana Staudinger
- Institute of Agronomy, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
- Institute of Soil Research, Konrad-Lorenz-Strasse 24, Tulln, 3430, Austria
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Rana Munns
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | | | - Nicolas L Taylor
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Australian Plant Phenomics Network, The University Of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
23
|
Nookongbut P, Thiravetyan P, Salsabila S, Widiana A, Krobthong S, Yingchutrakul Y, Treesubsuntorn C. Application of Acinetobacter indicus to promote cigarette smoke particulate matter phytoremediation: removal efficiency and plant-microbe interactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52352-52370. [PMID: 39145908 DOI: 10.1007/s11356-024-34658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Particulate matter (PM) is one of the most hazardous atmospheric pollutants. Several plant species show high potential to reduce air pollutants and are widely used as green belts to provide clean outdoor spaces for human well-being. However, high PM concentrations cause physiological changes and stress in plants. In this study, 11 species of Thai native perennial plants were exposed to PM generated from tobacco smoke. Wrightia religiosa (Teijsm. & Binn.) Benth. ex Kurz, Bauhinia purpurea DC. ex Walp. and Tectona grandis L.f. reduced PM effectively (which is in the typical range of 43.95 to 52.97%) compared to other plant species. In addition, the responses of perennial plants under PM stress at the proteomic level were also evaluated. Proteomic analysis of these three plant species showed that plants respond negatively to high PM concentrations, such as reducing several photosynthetic-related proteins and increasing plant stress response proteins. To improve PM phytoremediation efficiency and reduce plant stress from PM, perennial plant-microbe interactions were investigated. W. religiosa was inoculated with Acinetobacter indicus PS1, and high biosurfactant-producing strains clearly showed a higher PM removal efficiency than non-inoculated plants (9.48, 9.5 and 12.6% for PM1.0, PM2.5 and PM10, respectively). Inoculating W. religiosa with A. indicus PS1 maintained chlorophyll a and b concentrations. Moreover, the malondialdehyde (MDA) concentration of W. religiosa inoculated with A. indicus PS1 was lower than that of non-inoculated W. religiosa. The leaf wax content (µg/cm2) and biosurfactant (µg/cm2) of W. religiosa inoculated with A. indicus PS1 were also higher than those of non-inoculated W. religiosa. This study clearly showed that inoculating plants with A. indicus PS1 can help plants remediate PM and improve their PM stress response.
Collapse
Affiliation(s)
- Phitthaya Nookongbut
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Salma Salsabila
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Ana Widiana
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
24
|
Brunner S, Höring M, Liebisch G, Schweizer S, Scheiber J, Giansanti P, Hidrobo M, Hermeling S, Oeckl J, Prudente de Mello N, Perocchi F, Seeliger C, Strohmeyer A, Klingenspor M, Plagge J, Küster B, Burkhardt R, Janssen KP, Ecker J. Mitochondrial lipidomes are tissue specific - low cholesterol contents relate to UCP1 activity. Life Sci Alliance 2024; 7:e202402828. [PMID: 38843936 PMCID: PMC11157264 DOI: 10.26508/lsa.202402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.
Collapse
Affiliation(s)
- Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Schweizer
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | | | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry at the University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Hidrobo
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Sven Hermeling
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Natalia Prudente de Mello
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University, Munich, Germany
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Claudine Seeliger
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Akim Strohmeyer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Plagge
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich Germany
| | - Josef Ecker
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| |
Collapse
|
25
|
Subramanian V, Juhr D, Johnson LS, Yem JB, Giansanti P, Grumbach IM. Changes in the Proteome of the Circle of Willis during Aging Reveal Signatures of Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4887877. [PMID: 38962180 PMCID: PMC11221951 DOI: 10.1155/2024/4887877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Denise Juhr
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Lydia S. Johnson
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Justin B. Yem
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS@MRI)Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Free Radical and Radiation Biology ProgramDepartment of Radiation OncologyCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
26
|
Papadopoulos D, Ha SA, Fleischhauer D, Uhl L, Russell TJ, Mikicic I, Schneider K, Brem A, Valanju OR, Cossa G, Gallant P, Schuelein-Voelk C, Maric HM, Beli P, Büchel G, Vos SM, Eilers M. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Mol Cell 2024; 84:2070-2086.e20. [PMID: 38703770 DOI: 10.1016/j.molcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timothy J Russell
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Ivan Mikicic
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Katharina Schneider
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Annika Brem
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Omkar Rajendra Valanju
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schuelein-Voelk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Petra Beli
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
27
|
Captur G, Doykov I, Chung SC, Field E, Barnes A, Zhang E, Heenan I, Norrish G, Moon JC, Elliott PM, Heywood WE, Mills K, Kaski JP. Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004448. [PMID: 38847081 PMCID: PMC11188636 DOI: 10.1161/circgen.123.004448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM. METHODS Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health & Ageing, UCL, London, United Kingdom (G.C.)
- UCL Institute of Cardiovascular Science, UCL, London, United Kingdom (G.C., J.C.M., P.M.E.)
- The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, UCL, London, United Kingdom (G.C.)
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Sheng-Chia Chung
- UCL Institute of Health Informatics Research, Division of Infection and Immunity, London, United Kingdom (S.-C.C.)
| | - Ella Field
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Annabelle Barnes
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Enpei Zhang
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
- UCL Medical School, University College London, London, United Kingdom (E.Z.)
| | - Imogen Heenan
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Gabrielle Norrish
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - James C. Moon
- Barts Heart Centre, the Cardiovascular Magnetic Resonance Unit, London, United Kingdom (J.C.M.)
| | - Perry M. Elliott
- Barts Heart Centre, the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, London, United Kingdom (P.M.E.)
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| |
Collapse
|
28
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
29
|
Du B, Zhang Z, Jia L, Zhang H, Zhang S, Wang H, Cheng Z. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci Rep 2024; 14:12090. [PMID: 38802444 PMCID: PMC11130299 DOI: 10.1038/s41598-024-62710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Micropeptides hidden in long non-coding RNAs (lncRNAs) have been uncovered to program various cell-biological changes associated with malignant transformation-glioblastoma (GBM) cascade. Here, we identified and characterized a novel hidden micropeptide implicated in GBM. We screened potential candidate lncRNAs by establishing a workflow involving ribosome-bound lncRNAs, publicly available MS/MS data, and prognosis-related lncRNAs. Micropeptide expression was detected by western blot (WB), immunofluorescence (IF), and immunohistochemistry (IHC). Cell proliferation rate was assessed by calcein/PI staining and EdU assay. Proteins interacted with the micropeptide were analyzed by proteomics after co-immunoprecipitation (Co-IP). We discovered that lncRNA AF127577.4 indeed encoded an endogenous micropeptide, named AF127577.4-ORF. AF127577.4-ORF was associated with GBM clinical grade. In vitro, AF127577.4-ORF could suppress GBM cell proliferation. Moreover, AF127577.4-ORF reduced m6A methylation level of GBM cells. Mechanistically, AF127577.4-ORF diminished ERK2 interaction with m6A reader methyltransferase like 3 (METTL3) and downregulated phosphorylated ERK (p-ERK) level. The ERK inhibitor reduced p-ERK level and downregulated METTL3 protein expression. AF127577.4-ORF weakened the stability of METTL3 protein by ERK. Also, AF127577.4-ORF suppressed GBM cell proliferation via METTL3. Our study identifies a novel micropeptide AF127577.4-ORF hidden in a lncRNA, with a potent anti-proliferating function in GBM by diminishing METTL3 protein stability by reducing the ERK2/METTL3 interaction. This micropeptide may be beneficial for development of therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Baoshun Du
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Zheying Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China.
| | - Linlin Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 450053, Henan, People's Republic of China
| | - Huan Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Shuai Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Haijun Wang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhenguo Cheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| |
Collapse
|
30
|
Wang Y, Yuan R, Liang B, Zhang J, Wen Q, Chen H, Tian Y, Wen L, Zhou H. A "One-Step" Strategy for the Global Characterization of Core-Fucosylated Glycoproteome. JACS AU 2024; 4:2005-2018. [PMID: 38818065 PMCID: PMC11134376 DOI: 10.1021/jacsau.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Core fucosylation, a special type of N-linked glycosylation, is important in tumor proliferation, invasion, metastatic potential, and therapy resistance. However, the core-fucosylated glycoproteome has not been extensively profiled due to the low abundance and poor ionization efficiency of glycosylated peptides. Here, a "one-step" strategy has been described for protein core-fucosylation characterization in biological samples. Core-fucosylated peptides can be selectively labeled with a glycosylated probe, which is linked with a temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) polymer, by mutant endoglycosidase (EndoF3-D165A). The labeled probe can be further removed by wild-type endoglycosidase (EndoF3) in a traceless manner for mass spectrometry (MS) analysis. The feasibility and effectiveness of the "one-step" strategy are evaluated in bovine serum albumin (BSA) spiked with standard core-fucosylated peptides, H1299, and Jurkat cell lines. The "one-step" strategy is then employed to characterize core-fucosylated sites in human lung adenocarcinoma, resulting in the identification of 2494 core-fucosylated sites distributed on 1176 glycoproteins. Further data analysis reveals that 196 core-fucosylated sites are significantly upregulated in tumors, which may serve as potential drug development targets or diagnostic biomarkers. Together, this "one-step" strategy has great potential for use in global and in-depth analysis of the core-fucosylated glycoproteome to promote its mechanism research.
Collapse
Affiliation(s)
- Yuqiu Wang
- Department
of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Rui Yuan
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Bo Liang
- Department
of Hematology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Jing Zhang
- Department
of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qin Wen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Hongxu Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yinping Tian
- Carbohydrate-Based
Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Carbohydrate-Based
Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Zhou
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
31
|
Wei Q, Wu J, Liu F, Sun J, Kang W, Zhao M, Wang F, Zhang C, Xu S, Han B. Proteomics profiling of the honeybee parasite Tropilaelaps mercedesae across post-embryonic development. Sci Data 2024; 11:498. [PMID: 38750068 PMCID: PMC11096155 DOI: 10.1038/s41597-024-03355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Tropilaelaps mercedesae, an ectoparasitic mite of honeybees, is currently a severe health risk to Apis mellifera colonies in Asia and a potential threat to the global apiculture industry. However, our understanding of the physiological and developmental regulation of this pest remains significantly insufficient. Using ultra-high resolution mass spectrometry, we provide the first comprehensive proteomic profile of T. mercedesae spanning its entire post-embryonic ontogeny, including protonymphs, deutonymphs, mature adults, and reproductive mites. Consequently, a total of 4,422 T. mercedesae proteins were identified, of which 2,189 proteins were significantly differentially expressed (FDR < 0.05) throughout development and maturation. Our proteomic data provide an important resource for understanding the biology of T. mercedesae, and will contribute to further research and effective control of this devastating honeybee pest.
Collapse
Affiliation(s)
- Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
32
|
Sinha PR, Balasubramanian R, Hegde SR. Integrated sequence and -omic features reveal novel small proteome of Mycobacterium tuberculosis. Front Microbiol 2024; 15:1335310. [PMID: 38812687 PMCID: PMC11133741 DOI: 10.3389/fmicb.2024.1335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Bioinformatic studies on small proteins are under-represented due to difficulties in annotation posed by their small size. However, recent discoveries emphasize the functional significance of small proteins in cellular processes including cell signaling, metabolism, and adaptation to stress. In this study, we utilized a Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent predictions for the exponential and starvation conditions resulted in 695 potential smORFs. We examined the functional implications of these smORFs using homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in diverse growth conditions, and identifying protein domains. We provide evidence that some of these smORFs could be part of operons, or exist as upstream ORFs. This expanded data resource for the proteins of M. tuberculosis would aid in fine-tuning the existing protein and gene regulatory networks, thereby improving system-wide studies. The primary goal of this study was to uncover and characterize smORFs in M. tuberculosis through bioinformatic analysis, shedding light on their functional roles and genomic organization. Further investigation of these potential smORFs would provide valuable insights into the genome organization and functional diversity of the M. tuberculosis proteome.
Collapse
Affiliation(s)
| | | | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| |
Collapse
|
33
|
Wallner ES, Mair A, Handler D, McWhite C, Xu SL, Dolan L, Bergmann DC. Spatially resolved proteomics of the Arabidopsis stomatal lineage identifies polarity complexes for cell divisions and stomatal pores. Dev Cell 2024; 59:1096-1109.e5. [PMID: 38518768 DOI: 10.1016/j.devcel.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Cell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore-forming) and outward-facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling. Among differentially enriched proteins, we find kinases, putative microtubule-interacting proteins, and polar SOSEKIs with their effector ANGUSTIFOLIA. Using AI-facilitated protein structure prediction models, we identify potential protein-protein interaction interfaces among them. Functional and localization analyses of the polarity protein OPL2 and its putative interaction partners suggest a positive interaction with mitotic microtubules and a role in cytokinesis. This combination of proteomics and structural modeling with live-cell imaging provides insights into how polarity is rewired in different cell types and cell-cycle stages.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Gregor Mendel Institute, Dr. Bohr-Gasse 3, 1030 Wien, Austria; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| | - Andrea Mair
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | | | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shou-Ling Xu
- Carnegie Institution for Science, Stanford, CA 94305, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Liam Dolan
- Gregor Mendel Institute, Dr. Bohr-Gasse 3, 1030 Wien, Austria
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Wang J, Novick S. Peptide set test: a peptide-centric strategy to infer differentially expressed proteins. Bioinformatics 2024; 40:btae270. [PMID: 38632081 PMCID: PMC11074007 DOI: 10.1093/bioinformatics/btae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
MOTIVATION The clinical translation of mass spectrometry-based proteomics has been challenging due to limited statistical power caused by large technical variability and inter-patient heterogeneity. Bottom-up proteomics provides an indirect measurement of proteins through digested peptides. This raises the question whether peptide measurements can be used directly to better distinguish differentially expressed proteins. RESULTS We present a novel method called the peptide set test, which detects coordinated changes in the expression of peptides originating from the same protein and compares them to the rest of the peptidome. Applying our method to data from a published spike-in experiment and simulations demonstrates improved sensitivity without compromising precision, compared to aggregation-based approaches. Additionally, applying the peptide set test to compare the tumor proteomes of tamoxifen-sensitive and tamoxifen-resistant breast cancer patients reveals significant alterations in peptide levels of collagen XII, suggesting an association between collagen XII-mediated matrix reassembly and tamoxifen resistance. Our study establishes the peptide set test as a powerful peptide-centric strategy to infer differential expression in proteomics studies. AVAILABILITY AND IMPLEMENTATION Peptide set test (PepSetTest) is publicly available at https://github.com/JmWangBio/PepSetTest.
Collapse
Affiliation(s)
- Junmin Wang
- Data Sciences and Quantitative Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, United States
| | - Steven Novick
- Global Statistical Sciences, Eli Lilly, Indianapolis, IN 46285, United States
| |
Collapse
|
35
|
Diaz-Jimenez A, Ramos M, Helm B, Chocarro S, Frey DL, Agrawal S, Somogyi K, Klingmüller U, Lu J, Sotillo R. Concurrent inhibition of ALK and SRC kinases disrupts the ALK lung tumor cell proteome. Drug Resist Updat 2024; 74:101081. [PMID: 38521003 DOI: 10.1016/j.drup.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Barbara Helm
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Dario Lucas Frey
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Shubham Agrawal
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69120, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69120, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany.
| |
Collapse
|
36
|
Horvat N, Chocarro S, Marques O, Bauer TA, Qiu R, Diaz-Jimenez A, Helm B, Chen Y, Sawall S, Sparla R, Su L, Klingmüller U, Barz M, Hentze MW, Sotillo R, Muckenthaler MU. Superparamagnetic Iron Oxide Nanoparticles Reprogram the Tumor Microenvironment and Reduce Lung Cancer Regrowth after Crizotinib Treatment. ACS NANO 2024; 18:11025-11041. [PMID: 38626916 PMCID: PMC11064219 DOI: 10.1021/acsnano.3c08335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.
Collapse
Affiliation(s)
- Natalie
K. Horvat
- Department
of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Molecular
Medicine Partnership Unit (MMPU), Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Ruprecht
Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Sara Chocarro
- Division
of Molecular Thoracic Oncology, German Cancer
Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht
Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Oriana Marques
- Department
of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Molecular
Medicine Partnership Unit (MMPU), Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Tobias A. Bauer
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ruiyue Qiu
- Department
of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Alberto Diaz-Jimenez
- Division
of Molecular Thoracic Oncology, German Cancer
Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht
Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Barbara Helm
- Division
of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German
Center for Lung Research (DZL) and Translational Lung Research Center
Heidelberg (TRLC), 69120, Heidelberg, Germany
| | - Yuanyuan Chen
- Division
of Molecular Thoracic Oncology, German Cancer
Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- X-ray
Imaging and CT, German Cancer Research Center
(DKFZ), Im Neuenheimer
Feld 280, 69120, Heidelberg, Germany
| | - Richard Sparla
- Department
of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Lu Su
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ursula Klingmüller
- Division
of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German
Center for Lung Research (DZL) and Translational Lung Research Center
Heidelberg (TRLC), 69120, Heidelberg, Germany
- German
Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| | - Matthias Barz
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Matthias W. Hentze
- Molecular
Medicine Partnership Unit (MMPU), Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstr.1, 69117, Heidelberg, Germany
| | - Rocío Sotillo
- Division
of Molecular Thoracic Oncology, German Cancer
Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German
Center for Lung Research (DZL) and Translational Lung Research Center
Heidelberg (TRLC), 69120, Heidelberg, Germany
- German
Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| | - Martina U. Muckenthaler
- Department
of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Molecular
Medicine Partnership Unit (MMPU), Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- German
Center for Lung Research (DZL) and Translational Lung Research Center
Heidelberg (TRLC), 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, 69120, Heidelberg/Mannheim, Germany
| |
Collapse
|
37
|
Li J, Liu D, Zhang Y, Shen J, Dan W, Chen Z, Sun S. Site-Specific Analysis of Core and Antenna Fucosylation on Serum Glycoproteins. Anal Chem 2024; 96:5741-5745. [PMID: 38573003 DOI: 10.1021/acs.analchem.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fucosylation is an important structural feature of glycans and plays an essential role in the regulation of glycoprotein functions. Fucosylation can be classified into core- (CF) and antenna-fucosylation (AF, also known as (sialyl-) Lewis) based on the location on N-glycans, and they perform distinct biological functions. In this study, core- and antenna-fucosylated N-glycans on human serum glycoproteins that hold great clinical application values were systematically characterized at the site-specific level using StrucGP combined with the recently developed fucosylation assignment method. The results showed that fucosylation was widely distributed on serum glycoproteins, with 50% of fucosylated glycopeptides modified by AF N-glycans, 37% by CF N-glycans, and 13% by dual-fucosylated N-glycans. Interestingly, CF and AF N-glycans preferred to modify different groups of serum glycoproteins with different tissue origins and were involved in distinctive biological processes. Specifically, AF N-glycoproteins are mainly from the liver and participated in complement activation, blood coagulation, and endopeptidase activities, while CF N-glycoproteins originate from diverse tissues and are mainly involved in cell adhesion and signaling transduction. These data further enhanced our understanding of fucosylation on circulation glycoproteins.
Collapse
Affiliation(s)
- Jun Li
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Didi Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Yingjie Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Wei Dan
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| |
Collapse
|
38
|
Koh DI, Lee M, Park YS, Shin JS, Kim J, Ryu YS, Lee JH, Bae S, Lee MS, Hong JK, Jeong HR, Choi M, Hong SW, Kim DK, Lee HK, Kim B, Yoon YS, Jin DH. The Immune Suppressor IGSF1 as a Potential Target for Cancer Immunotherapy. Cancer Immunol Res 2024; 12:491-507. [PMID: 38289363 DOI: 10.1158/2326-6066.cir-23-0817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024]
Abstract
The development of first-generation immune-checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 ushered in a new era in anticancer therapy. Although immune-checkpoint blockade therapies have shown clinical success, a substantial number of patients yet fail to benefit. Many studies are under way to discover next-generation immunotherapeutic targets. Immunoglobulin superfamily member 1 (IGSF1) is a membrane glycoprotein proposed to regulate thyroid function. Despite containing 12 immunoglobin domains, a possible role for IGSF1, in immune response, remains unknown. Here, our studies revealed that IGSF1 is predominantly expressed in tumors but not normal tissues, and increased expression is observed in PD-L1low non-small cell lung cancer (NSCLC) cells as compared with PD-L1high cells. Subsequently, we developed and characterized an IGSF1-specific human monoclonal antibody, WM-A1, that effectively promoted antitumor immunity and overcame the limitations of first-generation immune-checkpoint inhibitors, likely via a distinct mechanism of action. We further demonstrated high WM-A1 efficacy in humanized peripheral blood mononuclear cells (PBMC), and syngeneic mouse models, finding additive efficacy in combination with an anti-PD-1 (a well-characterized checkpoint inhibitor). These findings support IGSF1 as an immune target that might complement existing cancer immunotherapeutics.
Collapse
Affiliation(s)
- Dong-In Koh
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Minki Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon Sun Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Sik Shin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Joseph Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yea Seong Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | | | | | - Mi So Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Jun Ki Hong
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Mingee Choi
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Dong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Bomi Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Yoo Sang Yoon
- Department of Thoracic and Cardiovascular Surgery, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Dong-Hoon Jin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
De Marchi T, Lai CF, Simmons GM, Goldsbrough I, Harrod A, Lam T, Buluwela L, Kjellström S, Brueffer C, Saal LH, Malmström J, Ali S, Niméus E. Proteomic profiling reveals that ESR1 mutations enhance cyclin-dependent kinase signaling. Sci Rep 2024; 14:6873. [PMID: 38519482 PMCID: PMC10959978 DOI: 10.1038/s41598-024-56412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Georgia M Simmons
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Isabella Goldsbrough
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alison Harrod
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Thai Lam
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Solvegatan 19, 22362, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry - BioMS, Lund, Sweden
| | - Christian Brueffer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, 22184, Lund, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
- Department of Surgery, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
40
|
Komatsu S, Nishiuchi T, Furuya T, Tani M. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress. J Proteomics 2024; 294:105073. [PMID: 38218429 DOI: 10.1016/j.jprot.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The irradiation with millimeter-wave (MMW) of wheat seeds promotes root growth under flooding stress; however, its role is not completely clarified. Nuclear proteomics was performed, to reveal the role of MMW irradiation in enhancing flooding tolerance. The purity of nuclear fractions purified from roots was verified. Histone, which is a protein marker for nuclear-purification efficiency, was enriched; and cytosolic ascorbate peroxidase was reduced in the nuclear fraction. The principal-component analysis of proteome displayed that the irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level by irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that MMW irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system. SIGNIFICANCE: To reveal the role of millimeter-wave irradiation in enhancing flooding tolerance in wheat, nuclear proteomics was performed. The principal-component analysis of proteome displayed that irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level with irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that millimeter-wave irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
41
|
Kausar R, Nishiuchi T, Komatsu S. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress. J Proteomics 2024; 294:105072. [PMID: 38218428 DOI: 10.1016/j.jprot.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
42
|
Billing AM, Kim YC, Gullaksen S, Schrage B, Raabe J, Hutzfeldt A, Demir F, Kovalenko E, Lassé M, Dugourd A, Fallegger R, Klampe B, Jaegers J, Li Q, Kravtsova O, Crespo-Masip M, Palermo A, Fenton RA, Hoxha E, Blankenberg S, Kirchhof P, Huber TB, Laugesen E, Zeller T, Chrysopoulou M, Saez-Rodriguez J, Magnussen C, Eschenhagen T, Staruschenko A, Siuzdak G, Poulsen PL, Schwab C, Cuello F, Vallon V, Rinschen MM. Metabolic Communication by SGLT2 Inhibition. Circulation 2024; 149:860-884. [PMID: 38152989 PMCID: PMC10922673 DOI: 10.1161/circulationaha.123.065517] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.
Collapse
Affiliation(s)
- Anja M. Billing
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Young Chul Kim
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Søren Gullaksen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
| | - Benedikt Schrage
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Janice Raabe
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Arvid Hutzfeldt
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Fatih Demir
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elina Kovalenko
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Moritz Lassé
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Johannes Jaegers
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Qing Li
- Engineering (Q.L., C.S.), Aarhus University, Denmark
| | - Olha Kravtsova
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Maria Crespo-Masip
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Amelia Palermo
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (A.P.)
| | - Robert A. Fenton
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elion Hoxha
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (P.K.)
| | - Tobias B. Huber
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Esben Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
- Diagnostic Centre, Silkeborg Regional Hospital, Denmark (E.L.)
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Maria Chrysopoulou
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Thomas Eschenhagen
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa (O.K., A.S.)
| | - Gary Siuzdak
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| | - Per L. Poulsen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Steno Diabetes Center (P.L.P.), Aarhus University, Denmark
| | | | - Friederike Cuello
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Markus M. Rinschen
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (M.M.R.), Aarhus University, Denmark
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| |
Collapse
|
43
|
Santi A, Kay EJ, Neilson LJ, McGarry L, Lilla S, Mullin M, Paul NR, Fercoq F, Koulouras G, Rodriguez Blanco G, Athineos D, Mason S, Hughes M, Thomson G, Kieffer Y, Nixon C, Blyth K, Mechta-Grigoriou F, Carlin LM, Zanivan S. Cancer-associated fibroblasts produce matrix-bound vesicles that influence endothelial cell function. Sci Signal 2024; 17:eade0580. [PMID: 38470957 DOI: 10.1126/scisignal.ade0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Emily J Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Lisa J Neilson
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Margaret Mullin
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikki R Paul
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | | | - Grigorios Koulouras
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Susan Mason
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Mark Hughes
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Gemma Thomson
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Yann Kieffer
- Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, 75005 Paris, France
- INSERM, U830, 75005 Paris, France
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Fatima Mechta-Grigoriou
- Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, 75005 Paris, France
- INSERM, U830, 75005 Paris, France
| | - Leo M Carlin
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
44
|
Lobas AA, Saei AA, Lyu H, Zubarev RA, Gorshkov MV. Chemical Proteomics Reveals that the Anticancer Drug Everolimus Affects the Ubiquitin-Proteasome System. ACS Pharmacol Transl Sci 2024; 7:787-796. [PMID: 38481686 PMCID: PMC10928898 DOI: 10.1021/acsptsci.3c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2025]
Abstract
Rapamycin is a natural antifungal, immunosuppressive, and antiproliferative compound that allosterically inhibits mTOR complex 1. The ubiquitin-proteasome system (UPS) responsible for protein turnover is usually not listed among the pathways affected by mTOR signaling. However, some previous studies have indicated the interplay between the UPS and mTOR. It has also been reported that rapamycin and its analogs can allosterically inhibit the proteasome itself. In this work, we studied the molecular effect of rapamycin and its analogs (rapalogs), everolimus and temsirolimus, on the A549 cell line by expression proteomics. The analysis of differentially expressed proteins showed that the cellular response to everolimus treatment is strikingly different from that to rapamycin and temsirolimus. In the cluster analysis, the effect of everolimus was similar to that of bortezomib, a well-established proteasome inhibitor. UPS-related pathways were enriched in the cluster of proteins specifically upregulated upon everolimus and bortezomib treatments, suggesting that both compounds have similar proteasome inhibition effects. In particular, the total amount of ubiquitin was significantly elevated in the samples treated with everolimus and bortezomib, and analysis of the polyubiquitination patterns revealed elevated intensities of the ubiquitin peptide with a GG modification at the K48 residue, consistent with a bottleneck in proteasomal protein degradation. Moreover, the everolimus treatment resulted in both ubiquitin phosphorylation and generation of a significant amount of semitryptic peptides, illustrating the increase in the protease activity. These observations suggest that everolimus affects the UPS in a unique way, and its mechanism of action is different from that of its close chemical analogs, rapamycin and temsirolimus.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.
L. Talrose Institute for Energy Problems of Chemical Physics, Federal
Research Center for Chemical Physics, Russian
Academy of Sciences, 119334 Moscow, Russia
| | - Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Center
for Translational Microbiome Research, Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Hezheng Lyu
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Roman A. Zubarev
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- The
National Medical Research Center for Endocrinology, 115478 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.
L. Talrose Institute for Energy Problems of Chemical Physics, Federal
Research Center for Chemical Physics, Russian
Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
45
|
Farrukh A, Musabyimana JP, Distler U, Mahlich VJ, Mueller J, Bick F, Tenzer S, Pradel G, Ngwa CJ. The Plasmodium falciparum CCCH zinc finger protein MD3 regulates male gametocytogenesis through its interaction with RNA-binding proteins. Mol Microbiol 2024; 121:543-564. [PMID: 38148574 DOI: 10.1111/mmi.15215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The transmission of malaria parasites to mosquitoes is dependent on the formation of gametocytes. Once fully matured, gametocytes are able to transform into gametes in the mosquito's midgut, a process accompanied with their egress from the enveloping erythrocyte. Gametocyte maturation and gametogenesis require a well-coordinated gene expression program that involves a wide spectrum of regulatory proteins, ranging from histone modifiers to transcription factors to RNA-binding proteins. Here, we investigated the role of the CCCH zinc finger protein MD3 in Plasmodium falciparum gametocytogenesis. MD3 was originally identified as an epigenetically regulated protein of immature gametocytes and recently shown to be involved in male development in a barcode-based screen in P. berghei. We report that MD3 is mainly present in the cytoplasm of immature male P. falciparum gametocytes. Parasites deficient of MD3 are impaired in gametocyte maturation and male gametocytogenesis. BioID analysis in combination with co-immunoprecipitation assays unveiled an interaction network of MD3 with RNA-binding proteins like PABP1 and ALBA3, with translational initiators, regulators and repressors like elF4G, PUF1, NOT1 and CITH, and with further regulators of gametocytogenesis, including ZNF4, MD1 and GD1. We conclude that MD3 is part of a regulator complex crucial for post-transcriptional fine-tuning of male gametocytogenesis.
Collapse
Affiliation(s)
- Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Vanessa Jil Mahlich
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Julius Mueller
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
46
|
Zhong Z, Wu M, Yang T, Nan X, Zhang S, Zhang L, Jin L. Integrated transcriptomic and proteomic analyses uncover the early response mechanisms of Catharanthus roseus under ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112862. [PMID: 38330691 DOI: 10.1016/j.jphotobiol.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tiancai Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaoyue Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Limin Jin
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, PR China.
| |
Collapse
|
47
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
48
|
Chervova A, Molliex A, Baymaz HI, Coux RX, Papadopoulou T, Mueller F, Hercul E, Fournier D, Dubois A, Gaiani N, Beli P, Festuccia N, Navarro P. Mitotic bookmarking redundancy by nuclear receptors in pluripotent cells. Nat Struct Mol Biol 2024; 31:513-522. [PMID: 38196033 PMCID: PMC10948359 DOI: 10.1038/s41594-023-01195-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.
Collapse
Affiliation(s)
- Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Amandine Molliex
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Thaleia Papadopoulou
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Florian Mueller
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Imaging and Modeling Unit, Paris, France
| | - Eslande Hercul
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - David Fournier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Agnès Dubois
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Nicolas Gaiani
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Petra Beli
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| |
Collapse
|
49
|
Zubeldia-Varela E, Ibáñez-Sandín MD, Gomez-Casado C, Pérez-Gordo M. Allergy-associated biomarkers in early life identified by Omics techniques. FRONTIERS IN ALLERGY 2024; 5:1359142. [PMID: 38464396 PMCID: PMC10920277 DOI: 10.3389/falgy.2024.1359142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The prevalence and severity of allergic diseases have increased over the last 30 years. Understanding the mechanisms responsible for these diseases is a major challenge in current allergology, as it is crucial for the transition towards precision medicine, which encompasses predictive, preventive, and personalized strategies. The urge to identify predictive biomarkers of allergy at early stages of life is crucial, especially in the context of major allergic diseases such as food allergy and atopic dermatitis. Identifying these biomarkers could enhance our understanding of the immature immune responses, improve allergy handling at early ages and pave the way for preventive and therapeutic approaches. This minireview aims to explore the relevance of three biomarker categories (proteome, microbiome, and metabolome) in early life. First, levels of some proteins emerge as potential indicators of mucosal health and metabolic status in certain allergic diseases. Second, bacterial taxonomy provides insight into the composition of the microbiota through high-throughput sequencing methods. Finally, metabolites, representing the end products of bacterial and host metabolic activity, serve as early indicators of changes in microbiota and host metabolism. This information could help to develop an extensive identification of biomarkers in AD and FA and their potential in translational personalized medicine in early life.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, H. Infantil Universitario Niño Jesús, FibHNJ, ARADyAL- RETICs Instituto de Salud Carlos III, IIS-P, Madrid, Spain
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Marina Pérez-Gordo
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
50
|
Dawson A, Zarou MM, Prasad B, Bittencourt-Silvestre J, Zerbst D, Himonas E, Hsieh YC, van Loon I, Blanco GR, Ianniciello A, Kerekes Z, Krishnan V, Agarwal P, Almasoudi H, McCluskey L, Hopcroft LEM, Scott MT, Baquero P, Dunn K, Vetrie D, Copland M, Bhatia R, Coffelt SB, Tiong OS, Wheadon H, Zanivan S, Kirschner K, Helgason GV. Leukaemia exposure alters the transcriptional profile and function of BCR::ABL1 negative macrophages in the bone marrow niche. Nat Commun 2024; 15:1090. [PMID: 38316788 PMCID: PMC10844594 DOI: 10.1038/s41467-024-45471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.
Collapse
Affiliation(s)
- Amy Dawson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Bodhayan Prasad
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Joana Bittencourt-Silvestre
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Désirée Zerbst
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ya-Ching Hsieh
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Isabel van Loon
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Zsombor Kerekes
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Vaidehi Krishnan
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Puneet Agarwal
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Kingdom of Saudi Arabia
| | - Laura McCluskey
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Pablo Baquero
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Dpto. de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, E-28805, Madrid, Spain
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Ravi Bhatia
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seth B Coffelt
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Ong Sin Tiong
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Sara Zanivan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Kristina Kirschner
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|