1
|
Sint Jago SC, Bahabry R, Schreiber AM, Homola J, Ngyuen T, Meijia F, Allendorfer JB, Lubin FD. Aerobic exercise alters DNA hydroxymethylation levels in an experimental rodent model of temporal lobe epilepsy. Epilepsy Behav Rep 2023; 25:100642. [PMID: 38323091 PMCID: PMC10844942 DOI: 10.1016/j.ebr.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.
Collapse
Affiliation(s)
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | | | - Julia Homola
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Tram Ngyuen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Fernando Meijia
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Jane B. Allendorfer
- Department of Neurobiology, University of Alabama at Birmingham, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
2
|
Beard DC, Zhang X, Wu DY, Martin JR, Erickson A, Boua JV, Hamagami N, Swift RG, McCullough KB, Ge X, Bell-Hensley A, Zheng H, Palmer CW, Fuhler NA, Lawrence AB, Hill CA, Papouin T, Noguchi KK, McAlinden A, Garbow JR, Dougherty JD, Maloney SE, Gabel HW. Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional deficits. Cell Rep 2023; 42:113411. [PMID: 37952155 PMCID: PMC10843706 DOI: 10.1016/j.celrep.2023.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.
Collapse
Affiliation(s)
- Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jane Valeriane Boua
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G Swift
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Zheng
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cory W Palmer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin B Lawrence
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Hoolehan W, Kulpa AM, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 2023; 16:45. [PMID: 37953264 PMCID: PMC10642035 DOI: 10.1186/s13072-023-00522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.
Collapse
Affiliation(s)
- Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Walker Hoolehan
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adam M Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Signal B, Pérez Suárez TG, Taberlay PC, Woodhouse A. Cellular specificity is key to deciphering epigenetic changes underlying Alzheimer's disease. Neurobiol Dis 2023; 186:106284. [PMID: 37683959 DOI: 10.1016/j.nbd.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Different cell types in the brain play distinct roles in Alzheimer's disease (AD) progression. Late onset AD (LOAD) is a complex disease, with a large genetic component, but many risk loci fall in non-coding genome regions. Epigenetics implicates the non-coding genome with control of gene expression. The epigenome is highly cell-type specific and dynamically responds to the environment. Therefore, epigenetic mechanisms are well placed to explain genetic and environmental factors that are associated with AD. However, given this cellular specificity, purified cell populations or single cells need to be profiled to avoid effect masking. Here we review the current state of cell-type specific genome-wide profiling in LOAD, covering DNA methylation (CpG, CpH, and hydroxymethylation), histone modifications, and chromatin changes. To date, these data reveal that distinct cell types contribute and react differently to AD progression through epigenetic alterations. This review addresses the current gap in prior bulk-tissue derived work by spotlighting cell-specific changes that govern the complex interplay of cells throughout disease progression and are critical in understanding and developing effective treatments for AD.
Collapse
Affiliation(s)
- Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | | | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
5
|
Van Norden M, Falls Z, Mandloi S, Segal B, Baysal B, Samudrala R, Elkin PL. The Role of C-to-U RNA Editing in Human Biodiversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.550344. [PMID: 37577456 PMCID: PMC10418052 DOI: 10.1101/2023.07.31.550344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Intra-organism biodiversity is thought to arise from epigenetic modification of our constituent genes and post-translational modifications after mRNA is translated into proteins. We have found that post-transcriptional modification, also known as RNA editing, is also responsible for a significant amount of our biodiversity, substantively expanding this story. The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosines to uracils (C>U) in specific stem-loop structures.1,2 We used RNAsee (RNA site editing evaluation), a tool developed to predict the locations of APOBEC3A/G RNA editing sites, to determine whether known single nucleotide polymorphisms (SNPs) in DNA could be replicated in RNA via RNA editing. About 4.5% of non-synonymous SNPs which result in C>U changes in RNA, and about 5.4% of such SNPs labelled as pathogenic, were identified as probable sites for APOBEC3A/G editing. This suggests that the variant proteins created by these DNA mutations may also be created by transient RNA editing, with the potential to affect human health. Those SNPs identified as potential APOBEC3A/G-mediated RNA editing sites were disproportionately associated with cardiovascular diseases, digestive system diseases, and musculoskeletal diseases. Future work should focus on common sites of RNA editing, any variant proteins created by these RNA editing sites, and the effects of these variants on protein diversity and human health. Classically, our biodiversity is thought to come from our constitutive genetics, epigenetic phenomenon, transcriptional differences, and post-translational modification of proteins. Here, we have shown evidence that RNA editing, often stimulated by environmental factors, could account for a significant degree of the protein biodiversity leading to human disease. In an era where worries about our changing environment are ever increasing, from the warming of our climate to the emergence of new diseases to the infiltration of microplastics and pollutants into our bodies, understanding how environmentally sensitive mechanisms like RNA editing affect our own cells is essential.
Collapse
Affiliation(s)
- Melissa Van Norden
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Sapan Mandloi
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Brahm Segal
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Roswell Park Cancer Center
| | | | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Peter L Elkin
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Department of Veterans Affairs, VA Western New York Healthcare System, Buffalo, NY, USA
- Faculty of Engineering, University of Southern Denmark
| |
Collapse
|
6
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543497. [PMID: 37333391 PMCID: PMC10274634 DOI: 10.1101/2023.06.05.543497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. This is especially true as for DNA modifications where most data are derived from bisulfite sequencing that cannot differentiate between DNA methylation and hydroxymethylation. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation of gene expression between neurons and glia. Results After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT whole genome oxidative bisulfite sequencing to assess the neuronal translatome and epigenome in the hippocampus of young mice (3 months old). These data were then compared to microglial and astrocytic data from NuTRAP models. When comparing the different cell types, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, with limited differences occurring within proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of mCG with gene expression within the gene body while a positive relationship between distal promoter and gene body hmCG and gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. Conclusions In this study, we identified differential usage of DNA modifications across CNS cell types, and assessed the relationship between DNA modifications and gene expression in neurons and glia. Despite having different global levels, the general modification-gene expression relationship was conserved across cell types. The enrichment of differential modifications in gene bodies and distal regulatory elements, but not proximal promoters, across cell types highlights epigenomic patterning in these regions as potentially greater determinants of cell identity.
Collapse
Affiliation(s)
- Kyla B. Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kevin D. Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - David R. Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Willard M. Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
7
|
Beard DC, Zhang X, Wu DY, Martin JR, Hamagami N, Swift RG, McCullough KB, Ge X, Bell-Hensley A, Zheng H, Lawrence AB, Hill CA, Papouin T, McAlinden A, Garbow JR, Dougherty JD, Maloney SE, Gabel HW. Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530041. [PMID: 36909558 PMCID: PMC10002657 DOI: 10.1101/2023.02.27.530041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.
Collapse
Affiliation(s)
- Diana C. Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y. Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jenna R. Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G. Swift
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B. McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Zheng
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin B. Lawrence
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Cheryl A. Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W. Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Chatterton Z, Lamichhane P, Ahmadi Rastegar D, Fitzpatrick L, Lebhar H, Marquis C, Halliday G, Kwok JB. Single-cell DNA methylation sequencing by combinatorial indexing and enzymatic DNA methylation conversion. Cell Biosci 2023; 13:2. [PMID: 36600255 PMCID: PMC9811750 DOI: 10.1186/s13578-022-00938-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific processes. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA methylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) with enzymatic conversion (sciEM) of unmethylated cytosines. RESULTS The sciEM method facilitates DNA methylation profiling of single-cells that is highly correlated with single-cell bisulfite-based workflows (r2 > 0.99) whilst improving sequencing alignment rates, reducing adapter contamination and over-estimation of DNA methylation levels (CpG and non-CpG). As proof-of-concept we perform sciEM analysis of the temporal lobe, motor cortex, hippocampus and cerebellum of the human brain to resolve single-cell DNA methylation of all major cell-types. CONCLUSION To our knowledge sciEM represents the first non-bisulfite single-cell DNA methylation sequencing approach with single-base resolution.
Collapse
Affiliation(s)
- Zac Chatterton
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Praves Lamichhane
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Diba Ahmadi Rastegar
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Lauren Fitzpatrick
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Hélène Lebhar
- grid.1005.40000 0004 4902 0432Recombinant Products Facility, University of New South Wales, Kensington, Australia
| | - Christopher Marquis
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Australia
| | - Glenda Halliday
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
9
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
10
|
Kular L, Klose D, Urdánoz-Casado A, Ewing E, Planell N, Gomez-Cabrero D, Needhamsen M, Jagodic M. Epigenetic clock indicates accelerated aging in glial cells of progressive multiple sclerosis patients. Front Aging Neurosci 2022; 14:926468. [PMID: 36092807 PMCID: PMC9454196 DOI: 10.3389/fnagi.2022.926468] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS) characterized by irreversible disability at later progressive stages. A growing body of evidence suggests that disease progression depends on age and inflammation within the CNS. We aimed to investigate epigenetic aging in bulk brain tissue and sorted nuclei from MS patients using DNA methylation-based epigenetic clocks. Methods We applied Horvath’s multi-tissue and Shireby’s brain-specific Cortical clock on bulk brain tissue (n = 46), sorted neuronal (n = 54), and glial nuclei (n = 66) from post-mortem brain tissue of progressive MS patients and controls. Results We found a significant increase in age acceleration residuals, corresponding to 3.6 years, in glial cells of MS patients compared to controls (P = 0.0024) using the Cortical clock, which held after adjustment for covariates (Padj = 0.0263). The 4.8-year age acceleration found in MS neurons (P = 0.0054) did not withstand adjustment for covariates and no significant difference in age acceleration residuals was observed in bulk brain tissue between MS patients and controls. Conclusion While the findings warrant replication in larger cohorts, our study suggests that glial cells of progressive MS patients exhibit accelerated biological aging.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Lara Kular,
| | - Dennis Klose
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Amaya Urdánoz-Casado
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Neuroepigenetics Laboratory, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nuria Planell
- Translational Bioinformatics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Maja Jagodic,
| |
Collapse
|
11
|
DNA Methylation Profiles of GAD1 in Human Cerebral Organoids of Autism Indicate Disrupted Epigenetic Regulation during Early Development. Int J Mol Sci 2022; 23:ijms23169188. [PMID: 36012452 PMCID: PMC9408997 DOI: 10.3390/ijms23169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation profiling has become a promising approach towards identifying biomarkers of neuropsychiatric disorders including autism spectrum disorder (ASD). Epigenetic markers capture genetic risk factors and diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathologies. We analysed the differential methylation profile of a regulatory region of the GAD1 gene using cerebral organoids generated from induced pluripotent stem cells (iPSCs) from adults with a diagnosis of ASD and from age- and gender-matched healthy individuals. Both groups showed high levels of methylation across the majority of CpG sites within the profiled GAD1 region of interest. The ASD group exhibited a higher number of unique DNA methylation patterns compared to controls and an increased CpG-wise variance. We detected six differentially methylated CpG sites in ASD, three of which reside within a methylation-dependent transcription factor binding site. In ASD, GAD1 is subject to differential methylation patterns that may not only influence its expression, but may also indicate variable epigenetic regulation among cells.
Collapse
|
12
|
Cell-type-specific epigenetic effects of early life stress on the brain. Transl Psychiatry 2022; 12:326. [PMID: 35948532 PMCID: PMC9365848 DOI: 10.1038/s41398-022-02076-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
Early life stress (ELS) induces long-term phenotypic adaptations that contribute to increased vulnerability to a host of neuropsychiatric disorders. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, are a proposed link between environmental stressors, alterations in gene expression, and phenotypes. Epigenetic modifications play a primary role in shaping functional differences between cell types and can be modified by environmental perturbations, especially in early development. Together with contributions from genetic variation, epigenetic mechanisms orchestrate patterns of gene expression within specific cell types that contribute to phenotypic variation between individuals. To date, many studies have provided insights into epigenetic changes resulting from ELS. However, most of these studies have examined heterogenous brain tissue, despite evidence of cell-type-specific epigenetic modifications in phenotypes associated with ELS. In this review, we focus on rodent and human studies that have examined epigenetic modifications induced by ELS in select cell types isolated from the brain or associated with genes that have cell-type-restricted expression in neurons, microglia, astrocytes, and oligodendrocytes. Although significant challenges remain, future studies using these approaches can enable important mechanistic insight into the role of epigenetic variation in the effects of ELS on brain function.
Collapse
|
13
|
Berger TC, Taubøll E, Heuser K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Front Cell Neurosci 2022; 16:931356. [PMID: 35936496 PMCID: PMC9353008 DOI: 10.3389/fncel.2022.931356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizures—the process of epileptogenesis—could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis.
Collapse
Affiliation(s)
- Toni Christoph Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Toni Christoph Berger
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Kjell Heuser
| |
Collapse
|
14
|
Cellular and genetic drivers of RNA editing variation in the human brain. Nat Commun 2022; 13:2997. [PMID: 35637184 PMCID: PMC9151768 DOI: 10.1038/s41467-022-30531-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects. Here the authors provide a deep catalogue of cell-specific A-to-I editing sites in the human cortex. Thousands of sites are enriched and elevated in neurons relative to glial cells, and are genetically regulated across multiple brain regions.
Collapse
|
15
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
16
|
Rodríguez-Campuzano AG, Hernández-Kelly LC, Ortega A. DNA Methylation-Dependent Gene Expression Regulation of Glutamate Transporters in Cultured Radial Glial Cells. Mol Neurobiol 2022; 59:1912-1924. [PMID: 35032319 DOI: 10.1007/s12035-022-02746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Exposure to xenobiotics has a significant impact in brain physiology that could be liked to an excitotoxic process induced by a massive release of the main excitatory neurotransmitter, L-glutamate. Overstimulation of extra-synaptic glutamate receptors, mainly of the N-methyl-D-aspartate subtype leads to a disturbance of intracellular calcium homeostasis that is critically involved in neuronal death. Hence, glutamate extracellular levels are tightly regulated through its uptake by glial glutamate transporters. It has been observed that glutamate regulates its own removal, both in the short-time frame via a transporter-mediated decrease in the uptake, and in the long-term through the transcriptional control of its gene expression, a process mediated by glutamate receptors that involves the Ca2+/diacylglycerol-dependent protein kinase and the transcription factor Ying Yang 1. Taking into consideration that this transcription factor is a member of the Polycomb complex and thus, part of repressive and activating chromatin remodeling factors, it might direct the interaction of DNA methyltransferases or dioxygenases of methylated cytosines to their target sequences. Here we explored the role of dynamic DNA methylation in the expression and function of glial glutamate transporters. To this end, we used the well-characterized models of primary cultures of chick cerebellar Bergmann glia cells and a human retina-derived Müller glia cell line. A time and dose-dependent increase in global DNA methylation was evident upon glutamate exposure. Under hypomethylation conditions, the glial glutamate transporter protein levels and uptake activity were increased. These results favor the notion that a dynamic DNA methylation program triggered by glutamate in glial cells modulates one of its major functions: glutamate removal.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México.
| |
Collapse
|
17
|
Rocks D, Jaric I, Tesfa L, Greally JM, Suzuki M, Kundakovic M. Cell type-specific chromatin accessibility analysis in the mouse and human brain. Epigenetics 2022; 17:202-219. [PMID: 33775205 PMCID: PMC8865312 DOI: 10.1080/15592294.2021.1896983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022] Open
Abstract
The Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) is becoming popular in the neuroscience field where chromatin regulation is thought to be involved in neurodevelopment, activity-dependent gene regulation, hormonal and environmental responses, and pathophysiology of neuropsychiatric disorders. The advantages of using ATAC-seq include a small amount of material needed, fast protocol, and the ability to capture a range of gene regulatory elements with a single assay. With increasing interest in chromatin research, it is an imperative to have feasible, reliable assays that are compatible with a range of neuroscience study designs. Here we tested three protocols for neuronal chromatin accessibility analysis, including a varying brain tissue freezing method followed by fluorescence-activated nuclei sorting (FANS) and ATAC-seq. Our study shows that the cryopreservation method impacts the number of open chromatin regions identified from frozen brain tissue using ATAC-seq. However, we show that all protocols generate consistent and robust data and enable the identification of functional regulatory elements in neuronal cells. Our study implies that the broad biological interpretation of chromatin accessibility data is not significantly affected by the freezing condition. We also reveal additional challenges of doing chromatin analysis on post-mortem human brain tissue. Overall, ATAC-seq coupled with FANS is a powerful method to capture cell-type-specific chromatin accessibility information in mouse and human brain. Our study provides alternative brain preservation methods that generate high-quality ATAC-seq data while fitting in different study designs, and further encourages the use of this method to uncover the role of epigenetic (dys)regulation in the brain.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Lydia Tesfa
- Flow Cytometry Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M. Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
18
|
Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Mol Psychiatry 2021; 26:3134-3151. [PMID: 33046833 PMCID: PMC8039060 DOI: 10.1038/s41380-020-00909-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence. We replicated this finding in an independent cohort and found similar results in the dorsal striatum from cocaine self-administering mice. Using epigenome editing and 3C assays, we demonstrated a causal relationship between methylation within the IRX2 gene body, CTCF protein binding, three-dimensional (3D) chromatin interaction, and gene expression. Together, these findings suggest that cocaine-related hypomethylation of IRX2 contributes to the development and maintenance of cocaine dependence through alterations in 3D chromatin structure in the caudate nucleus.
Collapse
|
19
|
Gu J, Barrera J, Yun Y, Murphy SK, Beach TG, Woltjer RL, Serrano GE, Kantor B, Chiba-Falek O. Cell-Type Specific Changes in DNA Methylation of SNCA Intron 1 in Synucleinopathy Brains. Front Neurosci 2021; 15:652226. [PMID: 33994928 PMCID: PMC8113398 DOI: 10.3389/fnins.2021.652226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy body (DLB) are the most common synucleinopathies. SNCA gene is a major genetic risk factor for these diseases group, and dysregulation of its expression has been implicated in the genetic etiologies of several synucleinopathies. DNA methylation at CpG island (CGI) within SNCA intron 1 has been suggested as a regulatory mechanism of SNCA expression, and changes in methylation levels at this region were associated with PD and DLB. However, the role of DNA methylation in the regulation of SNCA expression in a cell-type specific manner and its contribution to the pathogenesis of PD and DLB remain poorly understood, and the data are conflicting. Here, we employed a bisulfite pyrosequencing technique to profile the DNA methylation across SNCA intron 1 CGI in PD and DLB compared to age- and sex-matched normal control subjects. We analyzed homogenates of bulk post-mortem frozen frontal cortex samples and a subset of neuronal and glia nuclei sorted by the fluorescence-activated nuclei sorting (FANS) method. Bulk brain tissues showed no significant difference in the overall DNA methylation across SNCA intron 1 CGI region between the neuropathological groups. Sorted neuronal nuclei from PD frontal cortex showed significant lower levels of DNA methylation at this region compared to normal controls, but no differences between DLB and control, while sorted glia nuclei exhibited trends of decreased overall DNA methylation in DLB only. In conclusion, our data suggested disease-dependent cell-type specific differential DNA methylation within SNCA intron 1 CGI. These changes may affect SNCA dysregulation that presumably mediates disease-specific risk. Our results can be translated into the development of the SNCA intron 1 CGI region as an attractive therapeutics target for gene therapy in patients who suffer from synucleinopathies due to SNCA dysregulation.
Collapse
Affiliation(s)
- Jeffrey Gu
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Randy L. Woltjer
- Layton Aging and Alzheimer’s Disease Center, Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Boris Kantor
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
20
|
Rizzardi LF, Hickey PF, Idrizi A, Tryggvadóttir R, Callahan CM, Stephens KE, Taverna SD, Zhang H, Ramazanoglu S, Hansen KD, Feinberg AP. Human brain region-specific variably methylated regions are enriched for heritability of distinct neuropsychiatric traits. Genome Biol 2021; 22:116. [PMID: 33888138 PMCID: PMC8061076 DOI: 10.1186/s13059-021-02335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Peter F. Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Colin M. Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Sean D. Taverna
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
| | - Sinan Ramazanoglu
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - GTEx Consortium
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| |
Collapse
|
21
|
Berger TC, Vigeland MD, Hjorthaug HS, Nome CG, Taubøll E, Selmer KK, Heuser K. Differential Glial Activation in Early Epileptogenesis-Insights From Cell-Specific Analysis of DNA Methylation and Gene Expression in the Contralateral Hippocampus. Front Neurol 2020; 11:573575. [PMID: 33312155 PMCID: PMC7702971 DOI: 10.3389/fneur.2020.573575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aims: Morphological changes in mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) are well-characterized. Yet, it remains elusive whether these are a consequence of seizures or originate from a hitherto unknown underlying pathology. We recently published data on changes in gene expression and DNA methylation in the ipsilateral hippocampus (ILH) using the intracortical kainate mouse model of mTLE-HS. In order to explore the effects of epileptic activity alone and also to further disentangle what triggers morphological alterations, we investigated glial and neuronal changes in gene expression and DNA methylation in the contralateral hippocampus (CLH). Methods: The intracortical kainic acid mouse model of mTLE-HS was used to elicit status epilepticus. Hippocampi contralateral to the injection site from eight kainate-injected and eight sham mice were extracted and shock frozen at 24 h post-injection. Glial and neuronal nuclei were sorted by flow cytometry. Alterations in gene expression and DNA methylation were assessed using reduced representation bisulfite sequencing and RNA sequencing. The R package edgeR was used for statistical analysis. Results: The CLH featured substantial, mostly cell-specific changes in both gene expression and DNA methylation in glia and neurons. While changes in gene expression overlapped to a great degree between CLH and ILH, alterations in DNA methylation did not. In the CLH, we found a significantly lower number of glial genes up- and downregulated compared to previous results from the ILH. Furthermore, several genes and pathways potentially involved in anti-epileptogenic effects were upregulated in the CLH. By comparing gene expression data from the CLH to previous results from the ILH (featuring hippocampal sclerosis), we derive potential upstream targets for epileptogenesis, including glial Cox2 and Cxcl10. Conclusion: Despite the absence of morphological changes, the CLH displays substantial changes in gene expression and DNA methylation. We find that gene expression changes related to potential anti-epileptogenic effects seem to dominate compared to the pro-epileptogenic effects in the CLH and speculate whether this imbalance contributes to prevent morphological alterations like neuronal death and reactive gliosis.
Collapse
Affiliation(s)
- Toni C Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Kaja K Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Sandvika, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Roussarie JP, Rodriguez-Rodriguez P. Deciphering cell-type specific signal transduction in the brain: Challenges and promises. ADVANCES IN PHARMACOLOGY 2020; 90:145-171. [PMID: 33706931 DOI: 10.1016/bs.apha.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Signal transduction designates the set of molecular events that take place within a cell upon extracellular stimulation to mediate a functional outcome. Decades after the discovery that dopamine triggers opposing signaling pathways in D1- and D2-expressing medium spiny neurons, it is now clear that there are as many different flavors of signaling pathways in the brain as there are neuron types. One of the biggest challenges in molecular neuroscience is to elucidate cell-type specific signaling, in order to understand neurological diseases with regional vulnerability, but also to identify targets for precision drugs devoid of off-target effects. Here, we make a case for the importance of the study of neuron-type specific molecular characteristics. We then review the technologies that exist to study neurons in their full diversity and highlight their disease-relevant idiosyncrasies.
Collapse
Affiliation(s)
- Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States.
| | - Patricia Rodriguez-Rodriguez
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
23
|
Monti N, Cavallaro RA, Stoccoro A, Nicolia V, Scarpa S, Kovacs GG, Fiorenza MT, Lucarelli M, Aronica E, Ferrer I, Coppedè F, Troen AM, Fuso A. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 2020; 15:781-799. [PMID: 32019393 PMCID: PMC7518704 DOI: 10.1080/15592294.2020.1722917] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-β protein precursor (AβPP), to generate the amyloid-β (Aβ) peptides, involved in Alzheimer's Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and haematopoiesis. Gene-specific DNA methylation influences PSEN1 expression in AD animal models. Here we evaluated canonical and non-canonical cytosine methylation patterns of the PSEN1 5'-flanking during brain development and AD progression, in DNA extracted from the frontal cortex of AD transgenic mice (TgCRND8) and post-mortem human brain. Mapping CpG and non-CpG methylation revealed different methylation profiles in mice and humans. PSEN1 expression only correlated with DNA methylation in adult female mice. However, in post-mortem human brain, lower methylation, both at CpG and non-CpG sites, correlated closely with higher PSEN1 expression during brain development and in disease progression. PSEN1 methylation in blood DNA was significantly lower in AD patients than in controls. The present study is the first to demonstrate a temporal correlation between dynamic changes in PSEN1 CpG and non-CpG methylation patterns and mRNA expression during neurodevelopment and AD neurodegeneration. These observations were made possible by the use of an improved bisulphite methylation assay employing primers that are not biased towards non-CpG methylation. Our findings deepen the understanding of γ-secretase regulation and support the hypothesis that epigenetic changes can promote the pathophysiology of AD. Moreover, they suggest that PSEN1 DNA methylation in peripheral blood may provide a biomarker for AD.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vincenzina Nicolia
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Sigfrido Scarpa
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Isidre Ferrer
- Neuropathology, Service of Pathology, Bellvitge University Hospital, Barcelona, Spain
- CIBERNED, Hospitalet De Llobregat, University of Barcelona, Barcelona, Spain
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Aron M. Troen
- Nutrition and Brain Health Laboratory, the Institute of Biochemistry Food and Nutrition Science, the Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Vogel Ciernia A, Laufer BI, Hwang H, Dunaway KW, Mordaunt CE, Coulson RL, Yasui DH, LaSalle JM. Epigenomic Convergence of Neural-Immune Risk Factors in Neurodevelopmental Disorder Cortex. Cereb Cortex 2020; 30:640-655. [PMID: 31240313 PMCID: PMC7306174 DOI: 10.1093/cercor/bhz115] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 7-14% of all children in developed countries and are one of the leading causes of lifelong disability. Epigenetic modifications are poised at the interface between genes and environment and are predicted to reveal insight into NDD etiology. Whole-genome bisulfite sequencing was used to examine DNA cytosine methylation in 49 human cortex samples from 3 different NDDs (autism spectrum disorder, Rett syndrome, and Dup15q syndrome) and matched controls. Integration of methylation changes across NDDs with relevant genomic and genetic datasets revealed differentially methylated regions (DMRs) unique to each type of NDD but with shared regulatory functions in neurons and microglia. NDD DMRs were enriched within promoter regions and for transcription factor binding sites with identified methylation sensitivity. DMRs from all 3 disorders were enriched for ontologies related to nervous system development and genes with disrupted expression in brain from neurodevelopmental or neuropsychiatric disorders. Genes associated with NDD DMRs showed expression patterns indicating an important role for altered microglial function during brain development. These findings demonstrate an NDD epigenomic signature in human cortex that will aid in defining therapeutic targets and early biomarkers at the interface of genetic and environmental NDD risk factors.
Collapse
Affiliation(s)
- A Vogel Ciernia
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - B I Laufer
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - H Hwang
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - K W Dunaway
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - C E Mordaunt
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - R L Coulson
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - D H Yasui
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - J M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
Profiling haplotype specific CpG and CpH methylation within a schizophrenia GWAS locus on chromosome 14 in schizophrenia and healthy subjects. Sci Rep 2020; 10:4704. [PMID: 32170143 PMCID: PMC7069985 DOI: 10.1038/s41598-020-61671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Interrogating DNA methylation within schizophrenia risk loci holds promise to identify mechanisms by which genes influence the disease. Based on the hypothesis that allele specific methylation (ASM) of a single CpG, or perhaps CpH, might mediate or mark the effects of genetic variants on disease risk and phenotypes, we explored haplotype specific methylation levels of individual cytosines within a genomic region harbouring the BAG5, APOPT1 and KLC1 genes in peripheral blood of schizophrenia patients and healthy controls. Three DNA fragments located in promoter, intronic and intergenic areas were studied by single-molecule real-time bisulfite sequencing enabling the analysis of long reads of DNA with base-pair resolution and the determination of haplotypes directly from sequencing data. Among 1,012 cytosines studied, we did not find any site where methylation correlated with the disease or cognitive deficits after correction for multiple testing. At the same time, we determined the methylation profile associated with the schizophrenia risk haplotype within the KLC1 fourth intron and confirmed ASM for cytosines located in the vicinity of rs67899457. These genetically associated DNA methylation variations may be related to the pathophysiological mechanism differentiating the risk and non-risk haplotypes and merit further investigation.
Collapse
|
26
|
Urb M, Niinep K, Matsalu T, Kipper K, Herodes K, Zharkovsky A, Timmusk T, Anier K, Kalda A. The role of DNA methyltransferase activity in cocaine treatment and withdrawal in the nucleus accumbens of mice. Addict Biol 2020; 25:e12720. [PMID: 30730091 DOI: 10.1111/adb.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/02/2023]
Abstract
An increasing number of reports have provided crucial evidence that epigenetic modifications, such as DNA methylation, may be involved in initiating and establishing psychostimulant-induced stable changes at the cellular level by coordinating the expression of gene networks, which then manifests as long-term behavioral changes. In this study, we evaluated the enzyme activity of DNA methyltransferases (DNMTs) after cocaine treatment and during withdrawal. Furthermore, we studied how genetic or pharmacological inhibition of DNMTs in mouse nucleus accumbens (NAc) affects the induction and expression of cocaine-induced behavioral sensitization. Our results showed that after silencing Dnmt3a in the NAc during the induction phase of cocaine-induced sensitization, overall DNMT activity decreases, correlating negatively with behavioral sensitization. Reduced Dnmt3a mRNA during this phase was the largest contributing factor for decreased DNMT activity. Cocaine withdrawal and a challenge dose increased DNMT activity in the NAc, which was associated with the expression of behavioral sensitization. Long-term selective Dnmt3a transcription silencing in the NAc did not alter DNMT activity or the expression of cocaine-induced behavioral sensitization. However, bilateral intra-NAc injection of a non-specific inhibitor of DNMT (RG108) during withdrawal from cocaine decreased DNMT activity in the NAc and had a small effect on the expression of cocaine-induced behavioral sensitization. Thus, cocaine treatment and withdrawal is associated with biphasic changes in DNMT activity in the NAc, and the expression of behavioral sensitization decreases with non-selective inhibition of DNMT but not with selective silencing of Dnmt3a.
Collapse
Affiliation(s)
- Mari Urb
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Kerly Niinep
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Terje Matsalu
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Karin Kipper
- Institute of Chemistry, University of Tartu Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu Estonia
| | - Alexander Zharkovsky
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Tõnis Timmusk
- Institute of Chemistry and Biotechnology, Tallinn University of Technology Estonia
| | - Kaili Anier
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Anti Kalda
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| |
Collapse
|
27
|
Berger TC, Vigeland MD, Hjorthaug HS, Etholm L, Nome CG, Taubøll E, Heuser K, Selmer KK. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019; 14:e0226575. [PMID: 31887157 PMCID: PMC6936816 DOI: 10.1371/journal.pone.0226575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Mesial Temporal Lobe Epilepsy is characterized by progressive changes of both neurons and glia, also referred to as epileptogenesis. No curative treatment options, apart from surgery, are available. DNA methylation (DNAm) is a potential upstream mechanism in epileptogenesis and may serve as a novel therapeutic target. To our knowledge, this is the first study to investigate epilepsy-related DNAm, gene expression (GE) and their relationship, in neurons and glia. METHODS We used the intracortical kainic acid injection model to elicit status epilepticus. At 24 hours post injection, hippocampi from eight kainic acid- (KA) and eight saline-injected (SH) mice were extracted and shock frozen. Separation into neurons and glial nuclei was performed by flow cytometry. Changes in DNAm and gene expression were measured with reduced representation bisulfite sequencing (RRBS) and mRNA-sequencing (mRNAseq). Statistical analyses were performed in R with the edgeR package. RESULTS We observed fulminant DNAm- and GE changes in both neurons and glia at 24 hours after initiation of status epilepticus. The vast majority of these changes were specific for either neurons or glia. At several epilepsy-related genes, like HDAC11, SPP1, GAL, DRD1 and SV2C, significant differential methylation and differential gene expression coincided. CONCLUSION We found neuron- and glia-specific changes in DNAm and gene expression in early epileptogenesis. We detected single genetic loci in several epilepsy-related genes, where DNAm and GE changes coincide, worth further investigation. Further, our results may serve as an information source for neuronal and glial alterations in both DNAm and GE in early epileptogenesis.
Collapse
Affiliation(s)
- Toni C. Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S. Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Etholm
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Department of Neurology, Section for Neurophysiology, Oslo University Hospital, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Division of Clinical Neuroscience, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Böck J, Remmele CW, Dittrich M, Müller T, Kondova I, Persengiev S, Bontrop RE, Ade CP, Kraus TFJ, Giese A, El Hajj N, Schneider E, Haaf T. Cell Type and Species-specific Patterns in Neuronal and Non-neuronal Methylomes of Human and Chimpanzee Cortices. Cereb Cortex 2019; 28:3724-3739. [PMID: 30085031 PMCID: PMC6132288 DOI: 10.1093/cercor/bhy180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 12/04/2022] Open
Abstract
Epigenetic changes have likely contributed to the large size and enhanced cognitive abilities of the human brain which evolved within the last 2 million years after the human–chimpanzee split. Using reduced representation bisulfite sequencing, we have compared the methylomes of neuronal and non-neuronal cells from 3 human and 3 chimpanzee cortices. Differentially methylated regions (DMRs) with genome-wide significance were enriched in specific genomic regions. Intraspecific methylation differences between neuronal and non-neuronal cells were approximately 3 times more abundant than interspecific methylation differences between human and chimpanzee cell types. The vast majority (>90%) of human intraspecific DMRs (including DMRs in retrotransposons) were hypomethylated in neurons, compared with glia. Intraspecific DMRs were enriched in genes associated with different neuropsychiatric disorders. Interspecific DMRs were enriched in genes showing human-specific brain histone modifications. Human–chimpanzee methylation differences were much more frequent in non-neuronal cells (n. DMRs = 666) than in neurons (n. DMRs = 96). More than 95% of interspecific DMRs in glia were hypermethylated in humans. Although without an outgroup we cannot assign whether a change in methylation occurred in the human or chimpanzee lineage, our results are consistent with a wave of methylation affecting several hundred non-neuronal genes during human brain evolution.
Collapse
Affiliation(s)
- Julia Böck
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Christian W Remmele
- Department of Bioinformatics, Julius Maximilians University Würzburg, Würzburg Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany.,Department of Bioinformatics, Julius Maximilians University Würzburg, Würzburg Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University Würzburg, Würzburg Germany
| | - Ivanela Kondova
- Biomedical Primate Research Center, 2288 GJ Rijswijk, The Netherlands
| | | | - Ronald E Bontrop
- Biomedical Primate Research Center, 2288 GJ Rijswijk, The Netherlands
| | - Carsten P Ade
- Institute of Biochemistry and Molecular Biology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Theo F J Kraus
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Munich, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
30
|
Ordoñez R, Martínez-Calle N, Agirre X, Prosper F. DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? Cancers (Basel) 2019; 11:cancers11101424. [PMID: 31554341 PMCID: PMC6827153 DOI: 10.3390/cancers11101424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, 31008 Pamplona, Spain.
| |
Collapse
|
31
|
Mendizabal I, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C, Huh I, Jeong H, Layman T, Tamminga CA, Preuss TM, Konopka G, Yi SV. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol 2019; 20:135. [PMID: 31288836 PMCID: PMC6617737 DOI: 10.1186/s13059-019-1747-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained from brain tissue of patients with schizophrenia and matched controls. RESULTS The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder. CONCLUSIONS Our results provide novel and comprehensive methylome and transcriptome data from distinct cell populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show reduced cell type epigenetic distinction in schizophrenia.
Collapse
Affiliation(s)
- Isabel Mendizabal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Noriyoshi Usui
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Toriumi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Paramita Chatterjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Connor Douglas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iksoo Huh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Nursing, The Research Institute of Nursing Science, Seoul National University, Seoul, 03080, South Korea
| | - Hyeonsoo Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thomas Layman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
32
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
de Boni L, Wüllner U. Epigenetic Analysis in Human Neurons: Considerations for Disease Modeling in PD. Front Neurosci 2019; 13:276. [PMID: 31024227 PMCID: PMC6460245 DOI: 10.3389/fnins.2019.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/08/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder next to Alzheimer’s disease. Most PD cases are considered to be sporadic and despite considerable scientific effort, the underlying cause(s) still remain(s) enigmatic. In particular, it is unknown to which extent epigenetic alterations contribute to the pathophysiology of this devastating disorder. This is partly due to the fact that appropriate PD models are not yet available. Moreover, epigenetic patterns and mechanisms are species specific and murine systems reflect only a few of the idiosyncrasies of human neurons. For several years now, patient-specific stem cell-derived neural and non-neural cells have been employed to overcome this limitation allowing the analysis and establishment of humanized disease models for PD. Thus, several studies tried to dissect epigenetic alterations such as aberrant DNA methylation or microRNA patterns using lund human mesencephalic cell lines or neurons derived from (patient-specific) induced pluripotent stem cells. These studies demonstrate that human neurons have the potential to be used as model systems for the study of epigenetic modifications in PD such as characterizing epigenetic changes, correlating epigenetic changes to gene expression alterations and hopefully using these insights for the development of novel therapeutics. However, more research is required to define the epigenetic (age-associated) landscape of human in vitro neurons and compare these to native neurons before they can be established as suitable models for epigenetic studies in PD. In this review, we summarize the knowledge about epigenetic studies performed on human neuronal PD models, and we discuss advantages and current limitations of these (stem cell-derived) neuronal models for the study of epigenetic alterations in PD.
Collapse
Affiliation(s)
- Laura de Boni
- Dementia Research Institute, University College London, London, United Kingdom
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, German Center for Neurologic Diseases, Bonn, Germany
| |
Collapse
|
34
|
Dyer M, Phipps AJ, Mitew S, Taberlay PC, Woodhouse A. Age, but Not Amyloidosis, Induced Changes in Global Levels of Histone Modifications in Susceptible and Disease-Resistant Neurons in Alzheimer's Disease Model Mice. Front Aging Neurosci 2019; 11:68. [PMID: 31001106 PMCID: PMC6456813 DOI: 10.3389/fnagi.2019.00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
There is increasing interest in the role of epigenetic alterations in Alzheimer’s disease (AD). The epigenome of every cell type is distinct, yet data regarding epigenetic change in specific cell types in aging and AD is limited. We investigated histone tail modifications in neuronal subtypes in wild-type and APP/PS1 mice at 3 (pre-pathology), 6 (pathology-onset) and 12 (pathology-rich) months of age. In neurofilament (NF)-positive pyramidal neurons (vulnerable to AD pathology), and in calretinin-labeled interneurons (resistant to AD pathology) there were no global alterations in histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 27 acetylation (H3K27ac) or histone 3 lysine 27 trimethylation (H3K27me3) in APP/PS1 compared to wild-type mice at any age. Interestingly, age-related changes in the presence of H3K27ac and H3K27me3 were detected in NF-labeled pyramidal neurons and calretinin-positive interneurons, respectively. These data suggest that the global levels of histone modifications change with age, whilst amyloid plaque deposition and its sequelae do not result in global alterations of H3K4me3, H3K27ac and H3K27me3 in NF-positive pyramidal neurons or calretinin-labeled interneurons.
Collapse
Affiliation(s)
- Marcus Dyer
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stanislaw Mitew
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
35
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Lioznova AV, Khamis AM, Artemov AV, Besedina E, Ramensky V, Bajic VB, Kulakovskiy IV, Medvedeva YA. CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics 2019; 20:102. [PMID: 30709331 PMCID: PMC6359853 DOI: 10.1186/s12864-018-5387-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. Results We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. Conclusions CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-5387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna V Lioznova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Elizaveta Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vasily Ramensky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
37
|
Rizzardi LF, Hickey PF, Rodriguez DiBlasi V, Tryggvadóttir R, Callahan CM, Idrizi A, Hansen KD, Feinberg AP. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nat Neurosci 2019; 22:307-316. [PMID: 30643296 PMCID: PMC6348048 DOI: 10.1038/s41593-018-0297-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications confer stable transcriptional patterns in the brain and both normal and abnormal brain function involve specialized brain regions. We examined DNA methylation by whole genome bisulfite sequencing in neuronal and non-neuronal populations from four brain regions (anterior cingulate gyrus, hippocampus, prefrontal cortex, and nucleus accumbens) as well as chromatin accessibility in the latter two. We find pronounced differences in CpG and non-CpG differentially methylated regions (CG- and CH-DMRs) only in neuronal cells across regions. While neuronal CH-DMRs were highly associated with differential gene expression, CG-DMRs were consistent with chromatin accessibility and enriched for regulatory regions. These CG-DMRs comprise ~12 Mb of the genome that is highly enriched for genomic regions associated with heritability of neuropsychiatric traits including addictive behavior, schizophrenia, and neuroticism, suggesting a mechanistic link between pathology and differential neuron-specific epigenetic regulation in distinct brain regions.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter F Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Varenka Rodriguez DiBlasi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin M Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kasper D Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
38
|
Li M, Santpere G, Kawasawa YI, Evgrafov OV, Gulden FO, Pochareddy S, Sunkin SM, Li Z, Shin Y, Zhu Y, Sousa AMM, Werling DM, Kitchen RR, Kang HJ, Pletikos M, Choi J, Muchnik S, Xu X, Wang D, Lorente-Galdos B, Liu S, Giusti-Rodríguez P, Won H, de Leeuw CA, Pardiñas AF, Hu M, Jin F, Li Y, Owen MJ, O’Donovan MC, Walters JTR, Posthuma D, Reimers MA, Levitt P, Weinberger DR, Hyde TM, Kleinman JE, Geschwind DH, Hawrylycz MJ, State MW, Sanders SJ, Sullivan PF, Gerstein MB, Lein ES, Knowles JA, Sestan N. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 2018; 362:eaat7615. [PMID: 30545854 PMCID: PMC6413317 DOI: 10.1126/science.aat7615] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA
| | - Forrest O. Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yurae Shin
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- National Research Foundation of Korea, Daejeon, South Korea
| | - Ying Zhu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - André M. M. Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Donna M. Werling
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert R. Kitchen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Hyo Jung Kang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, MA, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sydney Muchnik
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xuming Xu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daifeng Wang
- Department of Biomedical Informatics Stony Brook University, NY, USA
| | - Belen Lorente-Galdos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Shuang Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christiaan A. de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| | - Yun Li
- Department of Genetics and Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Mark A. Reimers
- Neuroscience Program and Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Pat Levitt
- Department of Pediatrics, Institute for the Developing Mind Keck School of Medicine of USC, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Matthew W. State
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J. Sanders
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
Kozlenkov A, Li J, Apontes P, Hurd YL, Byne WM, Koonin EV, Wegner M, Mukamel EA, Dracheva S. A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. SCIENCE ADVANCES 2018; 4:eaau6190. [PMID: 30263963 PMCID: PMC6157969 DOI: 10.1126/sciadv.aau6190] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 05/18/2023]
Abstract
Brain function depends on interaction of diverse cell types whose gene expression and identity are defined, in part, by epigenetic mechanisms. Neuronal DNA contains two major epigenetic modifications, methylcytosine (mC) and hydroxymethylcytosine (hmC), yet their cell type-specific landscapes and relationship with gene expression are poorly understood. We report high-resolution (h)mC analyses, together with transcriptome and histone modification profiling, in three major cell types in human prefrontal cortex: glutamatergic excitatory neurons, medial ganglionic eminence-derived γ-aminobutyric acid (GABA)ergic inhibitory neurons, and oligodendrocytes. We detected a unique association between hmC and gene expression in inhibitory neurons that differed significantly from the pattern in excitatory neurons and oligodendrocytes. We also found that risk loci associated with neuropsychiatric diseases were enriched near regions of reduced hmC in excitatory neurons and reduced mC in inhibitory neurons. Our findings indicate differential roles for mC and hmC in regulation of gene expression in different brain cell types, with implications for the etiology of human brain diseases.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junhao Li
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92037, USA
| | - Pasha Apontes
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Yasmin L. Hurd
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William M. Byne
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Eran A. Mukamel
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92037, USA
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
40
|
Glia-specific APOE epigenetic changes in the Alzheimer's disease brain. Brain Res 2018; 1698:179-186. [PMID: 30081037 DOI: 10.1016/j.brainres.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
The apolipoprotein E gene (APOE) is the strongest genetic risk factor for developing Alzheimer's disease (AD). Our recent identification of altered APOE DNA methylation in AD postmortem brain (PMB) prompted this follow-up study. Our goals were to (i) validate the AD-differential methylation of APOE in an independent PMB study cohort and (ii) determine the cellular populations (i.e., neuronal vs. non-neuronal) of AD PMB that contribute to this differential methylation. Here, we obtained an independent cohort of 57 PMB (42 AD and 15 controls) and quantified their APOE methylation levels from frontal lobe and cerebellar tissue. We also applied fluorescence-activated nuclei sorting (FANS) to separate neuronal nuclei from non-neuronal nuclei within the tissue of 15 AD and 14 control subjects. Bisulfite pyrosequencing was used to generate DNA methylation profiles of APOE from both bulk PMB and FANS nuclei. Our results provide independent validation that the APOE CGI holds lower DNA methylation levels in AD compared to control in frontal lobe but not cerebellar tissue. Our data also indicate that the non-neuronal cells of the AD brain, which are mainly composed of glia, are the main contributors to the lower APOE DNA methylation observed in AD PMB. Given that astrocytes are the primary producers of ApoE in the brain our results suggest that alteration of epigenetically regulated APOE expression in glia could be an important part of APOE's strong effect on AD risk.
Collapse
|
41
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
42
|
Cariaga-Martinez A, Gutiérrez K, Alelú-Paz R. Rethinking schizophrenia through the lens of evolution: shedding light on the enigma. RESEARCH IDEAS AND OUTCOMES 2018. [DOI: 10.3897/rio.4.e28459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia refers to a complex psychiatric illness characterized by the heterogenic presence of positive, negative and cognitive symptoms occurring in all human societies. The fact that the disorder lacks a unifying neuropathology, presents a decreased fecundity of the affected individuals and has a cross-culturally stable incidence rate, makes it necessary for an evolutionary explanation that fully accounts for the preservation of “schizophrenic genes” in the global human genepool, explaining the potential sex differences and the heterogeneous cognitive symptomatology of the disorder and is consistent with the neuropsychological, developmental and evolutionary findings regarding the human brain. Here we proposed a new evolutionary framework for schizophrenia that is consistent with findings presented in different dimensions, considering the disorder as a form of brain functioning that allows us to adapt to the environment and, ultimately, maintain the survival of the species. We focus on the epigenetic regulation of thalamic interneurons as a major player involved in the development of the clinical picture characteristic of schizophrenia.
Collapse
|
43
|
Wipfler K, Cornish AS, Guda C. Comparative molecular characterization of typical and exceptional responders in glioblastoma. Oncotarget 2018; 9:28421-28433. [PMID: 29983870 PMCID: PMC6033343 DOI: 10.18632/oncotarget.25420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and the deadliest type of primary brain tumor, with a median survival time of only 15 months despite aggressive treatment. Although most patients have an extremely poor prognosis, a relatively small number of patients survive far beyond the median survival time. Investigation of these exceptional responders has sparked a great deal of interest and is becoming an important focus in the field of cancer research. To investigate the molecular differences between typical and exceptional responders in GBM, comparative analyses of somatic mutations, copy number, methylation, and gene expression datasets from The Cancer Genome Atlas were performed, and the results of these analyses were integrated via gene ontology and pathway analyses to assess the functional significance of the differential aberrations. Less severe copy number loss of CDKN2A, lower expression of CXCL8, and FLG mutations are all associated with an exceptional response. Typical responders are characterized by upregulation of NF-κB signaling and of pro-inflammatory cytokines, while exceptional responders are characterized by upregulation of Alzheimer's and Parkinson's disease pathways as well as of genes involved in synaptic transmission. The upregulated pathways and processes in typical responders are consistently associated with more aggressive tumor phenotypes, while those in the exceptional responders suggest a retained ability in tumor cells to undergo cell death in response to treatment. With the upcoming launch of the National Cancer Institute's Exceptional Responders Initiative, similar studies with much larger sample sizes will likely become possible, hopefully providing even more insight into the molecular differences between typical and exceptional responders.
Collapse
Affiliation(s)
- Kristin Wipfler
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam S. Cornish
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
44
|
Liu K, Xu C, Lei M, Yang A, Loppnau P, Hughes TR, Min J. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J Biol Chem 2018; 293:7344-7354. [PMID: 29567833 DOI: 10.1074/jbc.ra118.001785] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Cytosine methylation is a well-characterized epigenetic mark and occurs at both CG and non-CG sites in DNA. Both methylated CG (mCG)- and mCH (H = A, C, or T)-containing DNAs, especially mCAC-containing DNAs, are recognized by methyl-CpG-binding protein 2 (MeCP2) to regulate gene expression in neuron development. However, the molecular mechanism involved in the binding of methyl-CpG-binding domain (MBD) of MeCP2 to these different DNA motifs is unclear. Here, we systematically characterized the DNA-binding selectivities of the MBD domains in MeCP2 and MBD1-4 with isothermal titration calorimetry-based binding assays, mutagenesis studies, and X-ray crystallography. We found that the MBD domains of MeCP2 and MBD1-4 bind mCG-containing DNAs independently of the sequence identity outside the mCG dinucleotide. Moreover, some MBD domains bound to both methylated and unmethylated CA dinucleotide-containing DNAs, with a preference for the CAC sequence motif. We also found that the MBD domains bind to mCA or nonmethylated CA DNA by recognizing the complementary TG dinucleotide, which is consistent with an overlooked ligand of MeCP2, i.e. the matrix/scaffold attachment regions (MARs/SARs) with a consensus sequence of 5'-GGTGT-3' that was identified in early 1990s. Our results also explain why MeCP2 exhibits similar binding affinity to both mCA- and hmCA-containing dsDNAs. In summary, our results suggest that in addition to mCG sites, unmethylated CA or TG sites also serve as DNA-binding sites for MeCP2 and other MBD-containing proteins. This discovery expands the genome-wide activity of MBD-containing proteins in gene regulation.
Collapse
Affiliation(s)
- Ke Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ming Lei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
45
|
Doherty TS, Roth TL. Epigenetic Landscapes of the Adversity-Exposed Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:1-19. [PMID: 29933946 DOI: 10.1016/bs.pmbts.2017.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is understood that adversity during development has the power to alter behavioral trajectories, and the role of the epigenome in that relationship is currently under intense investigation. Several studies in both nonhuman animals and humans have established a link between early adversity and epigenetic regulation of genes heavily implicated in the stress response, plasticity and cognition, and psychiatric disorders such as depression and anxiety. Thus the relatively recent surge of studies centering on the epigenetic outcomes of stress has great potential to inform treatments and interventions for psychiatric disorder precipitated by early adversity. Here we review what we know and what we do not know, and suggest approaches to help further elucidate the relationship between early adversity, epigenetics, and behavior.
Collapse
Affiliation(s)
| | - Tania L Roth
- University of Delaware, Newark, DE, United States.
| |
Collapse
|
46
|
Mito M, Kadota M, Tanaka K, Furuta Y, Abe K, Iwasaki S, Nakagawa S. Cell Type-Specific Survey of Epigenetic Modifications by Tandem Chromatin Immunoprecipitation Sequencing. Sci Rep 2018; 8:1143. [PMID: 29348483 PMCID: PMC5773701 DOI: 10.1038/s41598-018-19494-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
The nervous system of higher eukaryotes is composed of numerous types of neurons and glia that together orchestrate complex neuronal responses. However, this complex pool of cells typically poses analytical challenges in investigating gene expression profiles and their epigenetic basis for specific cell types. Here, we developed a novel method that enables cell type-specific analyses of epigenetic modifications using tandem chromatin immunoprecipitation sequencing (tChIP-Seq). FLAG-tagged histone H2B, a constitutive chromatin component, was first expressed in Camk2a-positive pyramidal cortical neurons and used to purify chromatin in a cell type-specific manner. Subsequent chromatin immunoprecipitation using antibodies against H3K4me3-a chromatin modification mainly associated with active promoters-allowed us to survey the histone modifications in Camk2a-positive neurons. Indeed, tChIP-Seq identified hundreds of H3K4me3 modifications in promoter regions located upstream of genes associated with neuronal functions and genes with unknown functions in cortical neurons. tChIP-Seq provides a versatile approach to investigating the epigenetic modifications of particular cell types in vivo.
Collapse
Affiliation(s)
- Mari Mito
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mitsutaka Kadota
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kaori Tanaka
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, 351-0198, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
47
|
Jones MJ, Moore SR, Kobor MS. Principles and Challenges of Applying Epigenetic Epidemiology to Psychology. Annu Rev Psychol 2018; 69:459-485. [DOI: 10.1146/annurev-psych-122414-033653] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Sarah R. Moore
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
- Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
48
|
Qureshi IA, Mehler MF. Epigenetic mechanisms underlying nervous system diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:43-58. [PMID: 29325627 DOI: 10.1016/b978-0-444-63233-3.00005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences and Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities; Einstein Cancer Center; Ruth L. and David S. Gottesman Stem Cell Institute; and Center for Epigenomics and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
49
|
Abstract
The role of DNA methylation in brain development is an intense area of research because the brain has particularly high levels of CpG and mutations in many of the proteins involved in the establishment, maintenance, interpretation, and removal of DNA methylation impact brain development and/or function. These include DNA methyltransferase (DNMT), Ten-Eleven Translocation (TET), and Methyl-CpG binding proteins (MBPs). Recent advances in sequencing breadth and depth as well the detection of different forms of methylation have greatly expanded our understanding of the diversity of DNA methylation in the brain. The contributions of DNA methylation and associated proteins to embryonic and adult neurogenesis will be examined. Particular attention will be given to the impact on adult hippocampal neurogenesis (AHN), which is a key mechanism contributing to brain plasticity, learning, memory and mood regulation. DNA methylation influences multiple aspects of neurogenesis from stem cell maintenance and proliferation, fate specification, neuronal differentiation and maturation, and synaptogenesis. In addition, DNA methylation during neurogenesis has been shown to be responsive to many extrinsic signals, both under normal conditions and during disease and injury. Finally, crosstalk between DNA methylation, Methyl-DNA binding domain (MBD) proteins such as MeCP2 and MBD1 and histone modifying complexes is used as an example to illustrate the extensive interconnection between these epigenetic regulatory systems.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
50
|
Fullard JF, Giambartolomei C, Hauberg ME, Xu K, Voloudakis G, Shao Z, Bare C, Dudley JT, Mattheisen M, Robakis NK, Haroutunian V, Roussos P. Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Hum Mol Genet 2017; 26:1942-1951. [PMID: 28335009 DOI: 10.1093/hmg/ddx103] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/10/2017] [Indexed: 01/03/2023] Open
Abstract
Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.
Collapse
Affiliation(s)
- John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia Giambartolomei
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Biomedicine.,Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark.,The Lundbeck Foundation Initiative of Integrative Psychiatric Research (iPSYCH), Denmark
| | - Ke Xu
- Department of Genetics and Genomic Science and Institute for Multiscale Biology
| | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiping Shao
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience.,Center for Molecular Biology and Genetics of Neurodegeneration
| | - Christopher Bare
- Flow Cytometry Center of Research Excellence, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Science and Institute for Multiscale Biology
| | - Manuel Mattheisen
- Department of Biomedicine.,Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark.,The Lundbeck Foundation Initiative of Integrative Psychiatric Research (iPSYCH), Denmark
| | - Nikolaos K Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience.,Center for Molecular Biology and Genetics of Neurodegeneration
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|