1
|
Kenney SM, M’ikanatha NM, Ganda E. Antimicrobial Resistance and Zoonotic Potential of Nontyphoidal Salmonella From Household Dogs. Zoonoses Public Health 2025; 72:84-94. [PMID: 39547953 PMCID: PMC11698641 DOI: 10.1111/zph.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Companion animals, like household dogs, are an overlooked transmission point for zoonotic pathogens such as nontyphoidal Salmonella (NTS). Given the proximity of dogs to humans and the use of critically important antibiotics in companion animal medicine, household dogs represent a risk for the spread of antimicrobial-resistant (AMR) Salmonella. METHODS AND RESULTS To this end, we aimed to leverage existing biosurveillance infrastructure to investigate AMR and the zoonotic potential of NTS isolated from dogs and humans. We identified all NTS strains isolated from domestic dogs via the Veterinary Laboratory Investigation and Response Network between May 2017 and March 2023 (N = 87), and spatiotemporally matched strains isolated from humans in the NCBI Pathogen Isolate Browser (N = 77). These 164 strains, collected from 17 states in the United States, formed the basis of our analysis. Strains isolated from dogs comprised diverse serovars, with most being clinically relevant to human health. All strains possessed AMR determinants for drug classes deemed critically or highly important by the World Health Organization. We identified sixteen NTS isolates from humans closely related to ≥1 of six dog-associated strains. CONCLUSIONS Collectively, our data emphasize the importance of antimicrobial stewardship and sustained biosurveillance beyond human- and agriculture-associated veterinary medicine, using a One-Health framework that accounts for all transmission points including companion animals.
Collapse
Affiliation(s)
- Sophia M. Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nkuchia M. M’ikanatha
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Chen F, Zhang X, Zheng J, Tang Y, Fan X, Huang Y, Jia H, Yang X. Molecular Characterization of Whole Genome Sequencing of Salmonella spp. in Shapingba District, Chongqing, China, 2016-2023. Foodborne Pathog Dis 2025. [PMID: 39836015 DOI: 10.1089/fpd.2024.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
In recent years, Salmonella infection is a major global public health concern, particularly in food safety. This study analyzed the genomes of 102 Salmonella strains isolated between 2016 and 2023 from food, foodborne disease patients, and food poisoning incidents, focusing on their molecular characteristics, antibiotic resistance genes (ARGs), and virulence genes. S. enterica serovar Enteritidis (37.3%) and S. enterica serovar Typhimurium (21.6%, including its monophasic variant 1,4,[5],12:i:-) were the main strains among 22 serotypes. Multilocus sequence typing revealed 23 sequence types (STs), with ST11, ST19, and ST34 as the most prevalent. All strains carried at least 24 ARGs. Detection rates for aac(6')-Iy, blaTEM-1, and sul2 ranged from 44.1% to 63.7%, mainly in S. Enteritidis and S. Typhimurium. Rates for qnrS1, sul1, and aadA were 12.8% to 16.7%, while mcr-1 appeared in one ST34 S. Typhimurium strain. All strains contained at least 98 virulence genes. The genes pefABCD, mig-5, and spvBCD were in 48.0% of strains, while rck was found in 36.3%, mainly linked to S. Enteritidis and S. Typhimurium. The tssM gene was found in 37.3% of the strains, exclusively in S. Enteritidis. Core genome single nucleotide polymorphisms (cgSNPs) analysis grouped the strains into nine clusters, with 75.5% belonging to three major groups. Food poisoning event 1 was correlated with cluster 3, while events 2 and 3 were linked to cluster 1. Across events, SNP differences among strains were ≤6. Strains with SNP differences ≤10 were also found in other clusters. This method is promising for tracking sporadic cases and identifying potential foodborne safety incidents. Salmonella strains in the region exhibit substantial genetic diversity, demonstrating the efficacy of cgSNPs analysis for source tracking. Ongoing surveillance is essential given the prevalence of ARGs and virulence genes. This study provides a data foundation for local Salmonella epidemiology.
Collapse
Affiliation(s)
- Fei Chen
- Chongqing Shapingba District Center for Disease Control and Prevention, Chongqing, China
| | - Xin Zhang
- Chongqing Shapingba District Center for Disease Control and Prevention, Chongqing, China
| | - Jie Zheng
- College of Public Health, Southwest Medical University, Luzhou, China
| | - Yu Tang
- Chongqing Shapingba District Center for Disease Control and Prevention, Chongqing, China
| | - Xiaoxia Fan
- Chongqing Shapingba District Center for Disease Control and Prevention, Chongqing, China
| | - Yulan Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Haihong Jia
- China Railway Chengdu Bureau Group Co., Ltd., Chengdu Center For Disease Control and Prevention, Chengdu, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Zhang S, Ma W, Zhang X, Cui W, Liu Y, Tian X, Wang Q, Luo Y. Polysaccharide lyase PL3.3 possibly potentiating Clostridioides difficile clinical symptoms based on complete genome analysis of RT046/ST35 and RT012/ST54. Int Microbiol 2025:10.1007/s10123-025-00634-x. [PMID: 39833587 DOI: 10.1007/s10123-025-00634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Clostridioides difficile has rapidly become a major cause of nosocomial infectious diarrhea worldwide due to the misuse of antibiotics. Our previous study confirmed that RT046/ST35 strain is associated with more severe clinical symptoms compared to RT012/ST54 strain. We conducted genome comparison of the RT046/ST35 and RT012/ST54 strains using whole-genome sequencing technology. The RT046/ST35 strain had a genome length of 7,869,254 bp with a GC content of 29.49%. The original length of the RT012/ST54 strain was 7,499,568 bp with a GC content of 29.64%. Additionally, we detected plasmid1 in the RT046/ST54 strain. We found that the RT046/ST35 strain had more genomic islands compared to the RT012/ST54 strain, and we identified polysaccharide lyase (PL) in the region around 2.2 M. Furthermore, we discovered that the increased severity of clinical symptoms in the RT046/ST35 strain compared to the RT012/ST54 strain was unrelated to virulence factors and emphasized the potential crucial role of PL in RT046/ST35. There were almost no differences in eggNOG annotation and KEGG annotation between RT046/ST35 and RT012/ST54. RT046/ST35 had more mRNA processes in GO annotation. In conclusion, our study suggests that the core factor contributing to the more serious clinical symptoms of the RT046/ST35 strain compared to the RT012/ST54 strain is possibly PL.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Wen Ma
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Xin Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Youhan Liu
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Xuewen Tian
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Qinglu Wang
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China.
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China.
| |
Collapse
|
4
|
Shao D, Ju X, Wu Y, Zhang Y, Yan Z, Li Y, Wang L, Parkhill J, Walsh TR, Wu C, Shen J, Wang Y, Zhang R, Shen Y. Quaternary Ammonium Compounds: A New Driver and Hidden Threat for mcr-1 Prevalence in Hospital Wastewater and Human Feces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39818750 DOI: 10.1021/acs.est.4c11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The emergence of mobile colistin resistance gene mcr-1 has attracted global attention. The prevalence of mcr-1-positive Escherichia coli (MCRPEC) in humans largely decreased following the ban of colistin as an animal growth promoter in China. However, the prevalence of MCRPEC in the hospital environment and the relationship between disinfectants and mcr-1 remain unclear. We found that MCRPEC prevalence was low in the feces of healthy humans attending physical examinations in six hospitals (4.6%, 71/1532) but high in hospital wastewater (50.0%, 27/54). mcr-1 was mainly located on IncI2 (63.0% in wastewater and 62.0% in feces) and IncHI2 plasmids (18.5% in wastewater and 21.1% in feces). High similarity of the mcr-1 context and its carrying plasmids was observed in human and wastewater MCRPEC, with several isolates clustering together. The coexistence of the ESBL gene blaCTX-M with mcr-1 occurred in 19.7% of IncI2 plasmids. Notably, 60.0% of IncHI2 plasmids exhibited co-occurrence of mcr-1 with the disinfectant resistance gene (DRG) qacEΔ1, conferring resistance to quaternary ammonium compounds (QACs). We revealed that QACs, rather than the other two types of disinfectants─ortho-phthalaldehyde (OPA) and povidone-iodine (PVP-I)─select for plasmids carrying both qacEΔ1 and mcr-1 and elevate their conjugative transfer frequency. Monitoring of DRGs in MCRPEC and managing disinfectant use are urgently needed in healthcare settings to mitigate the spread of colistin resistance from hospital environments to inpatients.
Collapse
Affiliation(s)
- Dongyan Shao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Ju
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yuchen Wu
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yanyan Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Zelin Yan
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yifei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Timothy R Walsh
- Department of Biology, University of Oxford, Oxford OX1 3SZ, U.K
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Yingbo Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Xiao K, Pan Q, Wu Y, Ding Y, Wu Q, Zhang J, Wang Z, Liu Z, Wang W, Wang J. Application of a novel phage vB_CjeM_WX1 to control Campylobacter jejuni in foods. Int J Food Microbiol 2025; 427:110975. [PMID: 39550792 DOI: 10.1016/j.ijfoodmicro.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Campylobacter jejuni is one of the leading causes of human gastroenteritis. Phage biocontrol is recognized as a natural, environmentally friendly technique that effectively targets pathogens in various foods. In this study, a novel C. jejuni phage named vB_CjeM_WX1 (WX1) was isolated from chicken feces. According to the morphology and genomic analysis, the phage belongs to the Eucampyvirinae genus within the subfamily of Caudoviricetes WX1 exhibited favorable physiological characteristics, as it could maintain its activity even under extreme conditions such as high temperatures (70 °C), acidity (pH = 4), alkalinity (pH = 12), NaCl concentration (1000 mM) and was UV-resistant for 50 min. WX1 could lyse 35 strains of C. jejuni, all of which are highly virulent and multi-drug resistant. Among them, 10 strains of C. jejuni exhibit strong biofilm formation, a critical factor in bacterial persistence and resistance to environmental stressors. The lysis rate of WX1 reached up to 47.3 % in 76 strains of C. jejuni. Phage WX1 inhibited the growth of multi-drug resistant, high virulence and strong biofilm C. jejuni 178-2B in NZCYM broth, as well as greatly reduced biofilm formation on stainless-steel, polyethylene surfaces, and glass. Moreover, phage WX1 decreased the number of C. jejuni in chicken skin to below the detection limit within 48 h. Therefore, phage WX1 can be used in food processing environments and poultry farming, both primary production and during slaughter with a great prospect.
Collapse
Affiliation(s)
- Kaishan Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Qiqi Pan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Yu Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Yu Ding
- Department of Food Science and Technology, College of Life Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Zhi Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Zekun Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Weisong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Uzzal Hossain M, Khan Tanvir N, Naimur Rahman ABZ, Mahmud Chowdhury Z, Shahadat Hossain M, Dey S, Bhattacharjee A, Ahammad I, Salma Zohora U, Hashem A, Chandra Das K, Ara Keya C, Salimullah M. From sequence to significance: A thorough investigation of the distinctive genome features uncovered in C. Werkmanii strain NIB003. Gene 2025; 933:148965. [PMID: 39332601 DOI: 10.1016/j.gene.2024.148965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Citrobacter werkmanii (C. werkmanii), an opportunistic urinary bacterium that causes diarrhea, is poorly understood. Our research focuses on genetic features that are crucial to disease development, such as pathogenic interactions, antibiotic resistance, virulence genes and genetic variation. Following its morphological, biochemical, and molecular identification, the whole genome of C. werkmanii strain NIB003 was sequenced in Bangladesh for the first time. Despite having around 80% whole genome conservation, the research shows that the Bangladeshi strain forms a separate phylogenetic cluster. This emphasises the genetic variability within C. werkmanii, resulting in particular modifications at the strain level and changes in its ability to cause disease. The results of the genetic diversity analysis indicate that the Bangladeshi sequenced genome is more diverse than the other strains due to the existence of unique features, such as the presence of t-RNA binding domain and N-6 adenine-specific DNA methylases.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Neyamat Khan Tanvir
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A B Z Naimur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Md Shahadat Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shajib Dey
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Umme Salma Zohora
- Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Md Salimullah
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh.
| |
Collapse
|
7
|
Bogaerts B, Van Braekel J, Van Uffelen A, D'aes J, Godfroid M, Delcourt T, Kelchtermans M, Milis K, Goeders N, De Keersmaecker SCJ, Roosens NHC, Winand R, Vanneste K. Galaxy @Sciensano: a comprehensive bioinformatics portal for genomics-based microbial typing, characterization, and outbreak detection. BMC Genomics 2025; 26:20. [PMID: 39780046 PMCID: PMC11715294 DOI: 10.1186/s12864-024-11182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The influx of whole genome sequencing (WGS) data in the public health and clinical diagnostic sectors has created a need for data analysis methods and bioinformatics expertise, which can be a bottleneck for many laboratories. At Sciensano, the Belgian national public health institute, an intuitive and user-friendly bioinformatics tool portal was implemented using Galaxy, an open-source platform for data analysis and workflow creation. The Galaxy @Sciensano instance is available to both internal and external scientists and offers a wide range of tools provided by the community, complemented by over 50 custom tools and pipelines developed in-house. The tool selection is currently focused primarily on the analysis of WGS data generated using Illumina sequencing for microbial pathogen typing, characterization and outbreak detection, but it also addresses specific use cases for other data types. Our Galaxy instance includes several custom-developed 'push-button' pipelines, which are user-friendly and intuitive stand-alone tools that perform complete characterization of bacterial isolates based on WGS data and generate interactive HTML output reports with key findings. These pipelines include quality control, de novo assembly, sequence typing, antimicrobial resistance prediction and several relevant species-specific assays. They are tailored for pathogens with active genomic surveillance programs, and clinical relevance, such as Escherichia coli, Listeria monocytogenes, Salmonella spp. and Mycobacterium tuberculosis. These tools and pipelines utilize internationally recognized databases such as PubMLST, EnteroBase, and the NCBI National Database of Antibiotic Resistant Organisms, which are automatically synchronized on a regular basis to ensure up-to-date results. Many of these pipelines are part of the routine activities of Belgian national reference centers and laboratories, some of which use them under ISO accreditation. This resource is publicly available for noncommercial use at https://galaxy.sciensano.be/ and can help other laboratories establish reliable, traceable and reproducible bioinformatics analyses for pathogens encountered in public health settings.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Jolien D'aes
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Maxime Godfroid
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Thomas Delcourt
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Kato Milis
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Nathalie Goeders
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.
| |
Collapse
|
8
|
Zhou S, Liu B, Zheng D, Chen L, Yang J. VFDB 2025: an integrated resource for exploring anti-virulence compounds. Nucleic Acids Res 2025; 53:D871-D877. [PMID: 39470738 PMCID: PMC11701737 DOI: 10.1093/nar/gkae968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024] Open
Abstract
With the escalating crisis of bacterial multidrug resistance, anti-virulence therapeutic strategies have emerged as a highly promising alternative to conventional antibiotic treatments. Anti-virulence compounds are specifically designed to target virulence factors (VFs), disarming pathogens without affecting bacterial growth and thus reduce the selective pressure for resistance development. However, due to the complexity of bacterial pathogenesis, no anti-virulence small molecules have been approved for clinical use thus far, despite the documentation of hundreds of potential candidates. To provide valuable reference resources for drug design, repurposing, and target selection, the virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) has systematically collected public data on anti-virulence compounds through extensive literature mining, and further integrated this information with its existing knowledge of bacterial VFs. To date, the VFDB has curated a comprehensive dataset of 902 anti-virulence compounds across 17 superclasses reported by 262 studies worldwide. By cross-linking the current knowledge of bacterial VFs with information on relevant compounds (e.g. classification, chemical structure, molecular targets and mechanisms of action), the VFDB aims to bridge the gap between chemists and microbiologists, providing crucial insights for the development of innovative and effective antibacterial therapies to combat bacterial infections and address antibiotic resistance.
Collapse
Affiliation(s)
- Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
9
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Tree M, Lam TJGM, McDougall S, Beggs DS, Robertson ID, Barnes AL, Chopra A, Ram R, Stockman CA, Kent TC, Aleri JW. Epidemiology of antimicrobial resistance in commensal Escherichia coli from healthy dairy cattle on a Mediterranean pasture-based system of Australia: A cross-sectional study. J Dairy Sci 2025; 108:803-820. [PMID: 39369890 DOI: 10.3168/jds.2024-25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to determine the prevalence of antimicrobial resistance (AMR) in commensal Escherichia coli from healthy lactating cows and calves in the Mediterranean pasture-based feeding dairy system of Western Australia (WA). Fecal samples were collected from healthy adult lactating cows and healthy calves from dairy farms in WA. Presumptive commensal E. coli was isolated from these samples and confirmed using matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Broth microdilution was used to assess the prevalence and the phenotypic AMR profiles of the E. coli isolates to 8 antimicrobial agents of dairy industry and human importance. The minimum inhibitory concentration for each isolate was interpreted using the epidemiologic cutoff (ECOFF) and Clinical and Laboratory Standards Institute breakpoints. Genomic characterization provided multilocus sequence types and AMR genes for a selection of isolates categorized as nonwild type (NWT) by ECOFF values for the combination of ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. From a total of 1,117 fecal samples (633 adult, 484 calf) collected across 26 randomly selected farms, 891 commensal E. coli isolates were recovered (541 adult, 350 calf). Commensal E. coli classified as NWT was highest for ampicillin for both adult (68.8%; 95% CI [64.7, 72.7]) and calf feces (67.1%; 95% CI [62.0, 72.0]). A large proportion of tetracycline NWT and trimethoprim-sulfamethoxazole NWT organisms were also identified from calf feces, being 44.0% (95% CI [38.7, 49.4]) and 24.6% (95% CI [20.2, 29.4]), respectively. Clinical resistance prevalence was low, being higher for calves than for adult feces for ampicillin (adult: 7.8%, 95% CI [5.7, 10.3]; calf: 30.0%, 95% CI [25.2, 35.1]), tetracycline (adult: 6.3%, 95% CI [4.4, 8.7]; calf: 40.3%, 95% CI [35.1, 45.6]), and trimethoprim-sulfamethoxazole (adult: 2.6%, 95% CI [1.4, 4.3]; calf: 22.0%, 95% CI [17.7, 26.7]). Commensal E. coli originating from calf feces was significantly higher in NWT prevalence compared with adult feces for ciprofloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. The overall number of antimicrobials an isolate was classified as NWT toward varied among farms and was significantly higher for isolates originating from calf rather than adult feces. The strain type and sampling source of the commensal E. coli investigated were both associated with the commonality of the resultant resistance genome. Clinical resistance and NWT classification were highest for ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, all antimicrobials commonly used in the treatment of dairy cattle in Australia. Although highly variable across farms, commensal E. coli isolated from healthy dairy calf feces had significantly higher NWT and multidrug resistance (MDR) prevalence compared with feces from healthy adult lactating dairy cows. The resistant genome identified in MDR isolates, although not always consistent with the phenotype, included QnrS1 and genes encoding AmpC β-lactamase and aminoglycoside phosphotransferase.
Collapse
Affiliation(s)
- M Tree
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - T J G M Lam
- GD Animal Health, Deventer, and Faculty of Veterinary Medicine Utrecht University, 3584 CS Utrecht, the Netherlands
| | - S McDougall
- Cognosco, Anexa Veterinary Services, Morrinsville 3340, New Zealand
| | - D S Beggs
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - I D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - A L Barnes
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - A Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - R Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - C A Stockman
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - T C Kent
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, Murdoch, WA 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
Li X, Zheng W, Hao T, Yang T, Gao X, Zhang X. Massilia shenzhen sp. nov., isolated from blood of one premature infant, causing sepsis. Diagn Microbiol Infect Dis 2025; 111:116566. [PMID: 39490257 DOI: 10.1016/j.diagmicrobio.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
This study explores a premature infant with respiratory failure and pneumonia, suggestive of neonatal sepsis. Despite initially negative clinical specimens, blood testing revealed a pathogen. MALDI-TOF-MS and physiological tests initially failed to identify it accurately. Subsequent analysis of the 16S rRNA gene, housekeeping genes, and whole genome sequencing placed it in the genus Massilia. Average Nucleotide Identities (ANIs) indicated 88.47 % similarity with the type strain of Massilia norwichensis. Detailed characterization showed it as Gram-negative, aerobic, flagellated, measuring 0.45-0.55 × 1.75-2.40 μm. Major fatty acids included C16:0, C16:1ω7c, C18:1ω7c, and cyclo-C17:0. Minimum inhibitory concentrations to ceftazidime, penicillin, and meropenem were <0.032 μg/mL, ≤0.75 μg/mL, and <0.002 μg/mL respectively. Phylogenetic analysis, fatty acid composition, and physiological parameters confirmed it as Massilia shenzhen sp. nov., with strain GZ0329T. Given limited research on Massilia drug resistance, ceftazidime and imipenem show promise in treating Massilia infections.
Collapse
Affiliation(s)
- Xinying Li
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Road, 232000 Huainan, PR China; Medical Laboratory of Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, Guangdong 518005, PR China
| | - Wenxuan Zheng
- Medical Laboratory of Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, Guangdong 518005, PR China
| | - Tongyu Hao
- Medical Laboratory of Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, Guangdong 518005, PR China
| | - Ting Yang
- Medical Laboratory of Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, Guangdong 518005, PR China
| | - Xiaojuan Gao
- Medical Laboratory of Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, Guangdong 518005, PR China.
| | - Xiuming Zhang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Road, 232000 Huainan, PR China; Department of Medical Laboratory, The University of Hong Kong - Shenzhen Hospital, 518053, PR China.
| |
Collapse
|
12
|
Bloomfield SJ, Hildebrand F, Zomer AL, Palau R, Mather AE. Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. Microb Genom 2025; 11. [PMID: 39752189 DOI: 10.1099/mgen.0.001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture.
Collapse
Affiliation(s)
- Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Cai K, Xu M, Liu L, Zhao H. Molecular Epidemiology and Antimicrobial Resistance of Klebsiella pneumoniae Strains Isolated From Dairy Cows in Xinjiang, China. Vet Med Sci 2025; 11:e70120. [PMID: 39582476 PMCID: PMC11586637 DOI: 10.1002/vms3.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/20/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is an opportunistic pathogen that causes severe infections in humans and animals. Nonetheless, little is known about the molecular epidemiology of mastitis-associated K. pneumoniae in dairy cows. OBJECTIVES This cross-sectional study investigated the epidemiology and antimicrobial resistance (AMR) of K. pneumoniae in 700 milk samples collected from cows with and without mastitis in seven dairy farms in Xinjiang, China. METHODS K. pneumoniae was identified by PCR amplification of the khe gene and the automated VITEK 2 Compact System. Resistance against 18 antimicrobial agents was analysed by broth microdilution. Forty-four new strains were sequenced by whole-genome sequencing (WGS). WGS data were searched for the presence of AMR and virulence genes. Genotypic characterization was performed by multilocus sequence typing and the analysis of wzi allele types and K and O antigens. RESULTS K. pneumoniae isolates were found in 131 samples (18.7%). The prevalence of K. pneumoniae in cows with clinical and subclinical mastitis was higher than that in healthy cows (27.1%, 23.2% and 7.3%, respectively). WGS identified 27 wzi allele types, 16 K antigen serotypes, 6 O antigen serotypes and 25 sequence types. Phylogenetic analysis showed high genomic diversity in K. pneumoniae. The rate of resistance to tetracycline and cefazolin was 39.7% and 31.3%, and the multidrug resistance rate was 26.7%. Thirty-nine AMR genes conferring resistance to nine antibiotic classes and 57 virulence genes were identified in new isolates. AMR and virulence genes were more prevalent in known human isolates than in new isolates. CONCLUSIONS These results improve our understanding of the epidemiology and resistance status of mastitis-associated K. pneumoniae strains. The emergence and spread of multidrug-resistant K. pneumoniae strains threaten food safety and public health.
Collapse
Affiliation(s)
- Kuojun Cai
- College of Veterinary MedicineXinjiang Agricultural UniversityUrumqiXinjiangChina
- Urumqi Animal Disease Control and Diagnosis CenterUrumqiXinjiangChina
| | - Min Xu
- Urumqi Dairy AssociationUrumqiXinjiangChina
| | - Lu Liu
- College of Veterinary MedicineXinjiang Agricultural UniversityUrumqiXinjiangChina
| | - Hongqiong Zhao
- College of Veterinary MedicineXinjiang Agricultural UniversityUrumqiXinjiangChina
| |
Collapse
|
14
|
Kleine LM, Kanu EM, Grebe T, Sesay DM, Loismann H, Sesay M, Theiler T, Rudolf V, Mellmann A, Kalkman LC, Grobusch MP, Schaumburg F. Nasopharyngeal carriage of Staphylococcus aureus in a rural population, Sierra Leone. Int J Med Microbiol 2024; 318:151643. [PMID: 39756087 DOI: 10.1016/j.ijmm.2024.151643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Nasopharyngeal colonization with Staphylococcus aureus is a risk factor for subsequent infection. Isolates from colonization can therefore provide important information on virulence factors and antimicrobial resistance when data from clinical isolates are lacking. The aim of this study was to assess colonization rates, resistance patterns and selected virulence factors of S. aureus from rural Sierra Leone. METHODS Residents of randomly selected houses in Masanga, Sierra Leone were included in a cross-sectional study (8-11/2023). Participants were tested for nasopharyngeal S. aureus colonization using selective culture media. Risk factors for colonization were documented in a standardized questionnaire. Isolates were genotyped and tested for antimicrobial susceptibility and selected virulence factors (e.g. Panton-Valentine leukocidin, capsular types). RESULTS Of 300 participants (62.7 % females, median age: 16 years), 168 (56 %) were colonized with S. aureus-related complex; six participants carried two different S. aureus genotypes, resulting in a total number of 174 isolates. Resistance to penicillin was predominant (97.1 %, 169/174), followed by tetracycline (66.1 %, 115/174), co-trimoxazole (56.9 %, 99/174) and oxacillin (24.1 %, 42/174, all mecA-positive, mostly associated with ST8/PVL-negative). PVL gene was detected in 21.3 % of isolates (37/174) mainly associated with ST15 and ST152. Except for past use of antimicrobials (p = 0.019), no specific risk factors such as comorbidities including hemoglobin variants were associated with S. aureus nasopharyngeal colonization. CONCLUSION The prevalence of methicillin-resistant and PVL-positive methicillin-susceptible S. aureus (MRSA/MSSA) is high in a rural community of asymptomatic carriers in Sierra Leone. Measures to contain the spread of MRSA, also in the community, are needed.
Collapse
Affiliation(s)
- Lisa Maria Kleine
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Emmanuel Marx Kanu
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Tobias Grebe
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | | | - Henning Loismann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Maxwell Sesay
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone
| | - Tom Theiler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Viktoria Rudolf
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Laura C Kalkman
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin P Grobusch
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands; Institute of Tropical Medicine & Deutsches Zentrum für Infektionsforschung, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales, Lambaréné, Gabon; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany; Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone
| |
Collapse
|
15
|
Kalinich CC, Gonzalez FL, Osmaston A, Breban MI, Distefano I, Leon C, Sheen P, Zimic M, Coronel J, Tan G, Crudu V, Ciobanu N, Codreanu A, Solano W, Ráez J, Allicock OM, Chaguza C, Wyllie AL, Brandt M, Weinberger DM, Sobkowiak B, Cohen T, Grandjean L, Grubaugh ND, Redmond SN. Tiled Amplicon Sequencing Enables Culture-free Whole-Genome Sequencing of Pathogenic Bacteria From Clinical Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629550. [PMID: 39763738 PMCID: PMC11702625 DOI: 10.1101/2024.12.19.629550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method led to its implementation in academic and public health laboratories across the world and adaptation to a broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes, for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates and turnaround times. The need to culture poses particular problems for medically important bacteria such as Mycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept, we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of drug resistance without culturing. Development of this work in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for multiple drugs in parallel, enabling earlier intervention for high priority pathogens.
Collapse
Affiliation(s)
- Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Freddy L Gonzalez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Alice Osmaston
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isabel Distefano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Candy Leon
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Grace Tan
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
| | | | | | | | | | - Jimena Ráez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Benjamin Sobkowiak
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Seth N Redmond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Agudelo-Romero P, Caparros-Martin JA, Sharma A, Saladié M, Sly PD, Stick SM, O'Gara F. Virome assembly reveals draft genomes of native Pseudomonas phages isolated from a paediatric bronchoalveolar lavage sample. Microbiol Resour Announc 2024:e0103024. [PMID: 39704517 DOI: 10.1128/mra.01030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
We present lung virome data recovered through shotgun metagenomics in bronchoalveolar lavage fluid from an infant with cystic fibrosis, who tested positive for Stenotrophomonas maltophilia infection. Using a bioinformatic pipeline for virus characterization in shotgun metagenomic data, we identified five viral contigs representing Pseudomonas phages classified as Caudoviricetes.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- European Virus Bioinformatics Center, Friedrich-Schiller-Universitat Jena, Thuringia, Germany
| | - Jose A Caparros-Martin
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
- UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Abhinav Sharma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Montserrat Saladié
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Stephen M Stick
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Wang S, Jin S, Zhu X, Li Y, Pan X. Whole Genome Sequencing of a Non-O1/O139-Group Vibrio cholerae Isolated from a Patient with a Bloodstream Infection. Infect Drug Resist 2024; 17:5629-5637. [PMID: 39722734 PMCID: PMC11668919 DOI: 10.2147/idr.s500969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background Diarrhea caused by non-O1/O139-group V. cholerae (NOVC) tends to be mild and can be readily overlooked. In this report, a NOVC strain designated XXM was isolated from the blood of a 68-year-old male undergoing surgical treatment for a bile duct malignancy in October 2023. Methods XXM was identified through a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Virulence genes were detected using a V. cholerae ctxA/ctxB virulence gene dual real-time fluorescent PCR kit. AST-GN13 and AST-GN334 cards were used to test the resistance against 16 antibiotics with a Vitek2 compact system. The genomic and phylogenetic characteristics of XXM were established through whole genome sequencing (WGS). Results Serum agglutination tests revealed the isolate to be a non-O1/non-O139 strain. The strain was sensitive to all 16 tested antibiotics and did not carry the ctxA/ctxB gene. MLST analyses identified the XXM strain as ST1538. WGS analyses identified 8 classes of virulence genes with different functions. A total of 3.541 bacterial genes, including 3.482 from V. cholerae, were annoted using the Non-Redundant Protein Sequence (NR) database. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses annotated 32 genes including 17 key proteins involved in the V. cholerae biofilm pathway. Comparative analyses using the Pathogen Host Interactions Database (PHI) identified the YbeY gene. Evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) was used to annotate 3280 genes in 21 categories. Phylogenetic analyses revealed that strain XXM was closely related to V. cholerae strain Man9. Conclusion The XXM carries multiple virulence genes, and this genomic analysis of the XXM in comparison with other NOVC strains provides important information for an improved understanding of the pathogenicity of NOVC in clinical samples.
Collapse
Affiliation(s)
- Sipei Wang
- Department of Clinical Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People’s Republic of China
| | - Shanshan Jin
- Department of Clinical Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People’s Republic of China
| | - Xiangjin Zhu
- Department of Clinical Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People’s Republic of China
| | - Yuan Li
- Department of Clinical Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People’s Republic of China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Yan Z, Miao C, Liu L, Fu Y, Liu X, Li H, Kuang L, Cui Y, Jiang Y. Antibiotic susceptibility testing and molecular characterization based on whole-genome sequencing of Streptococcus pneumoniae isolates from pediatric infections at the National Regional Medical Center of Southwest China during the COVID-19 pandemic. Front Public Health 2024; 12:1490401. [PMID: 39720806 PMCID: PMC11666559 DOI: 10.3389/fpubh.2024.1490401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Background Streptococcus pneumoniae is a transmitted respiratory pathogen that causes high morbidity and mortality in children, especially those under 5 years of age. During the implementation of population control measures for COVID-19 in mainland China, the Streptococcus pneumoniae detection rate in pediatric patients decreased. However, with the second wave of the COVID-19 pandemic (2022), the incidence of pneumococcal disease (PD) and even invasive pneumococcal disease (IPD) began to rise again. Methods This study was conducted from August 2022 to September 2023 at a national regional medical center based mainly in West China Second University Hospital, Sichuan University. The demographic and clinical characteristics of S. pneumoniae-infected pediatric patients were analyzed. All S. pneumoniae isolates were subjected to standardized clinical sample inoculation, culture, subculture, and identification procedures. Next-generation sequencing and analysis were used to determine serotypes and sequence types (STs) and evaluate antibiotic resistance- and virulence-related genes. Antimicrobial susceptibility was determined in AST dishes via the broth microdilution method. Results The prevalent serotypes in the IPD patients were 14, 6A, and 23F, and the prevalent serotypes in the NIPD patients were 19F and 6A. A significant difference in the proportion of patients with serotype 14 was noted between the two groups. A total of 23 STs were identified and classified into 13 different GPSC lineages, including 4 novel STs (ST18449, ST18451, ST18464 and ST18466) and 1 novel allele (ddl1209). According to the interpretation breakpoints for non-meningitis infections, the resistance/nonsusceptibility rates of invasive isolates were as follows: penicillin (0.0%/8.3%), amoxicillin (0.0%/0.0%), cefotaxime (8.3%/16.6%), ceftriaxone (8.3%/8.3%), and cefepime (0.0%/8.3%). The resistance/nonsusceptibility rates of invasive isolates according to the meningitis breakpoints were as follows: penicillin (100.0%), cefotaxime (16.7%/33.4%), ceftriaxone (8.3%/50.0%), and cefepime (8.3%/66.7%). All the isolates were susceptible to rifampicin, levofloxacin, moxifloxacin, linezolid and vancomycin. In addition, the characteristics of the antibiotic resistance-related genes and virulence genes of serotype 19F were significantly different from those of the other serotypes. Conclusion These data provide valuable information for understanding pediatric pneumococcal disease during the second outbreak of COVID-19 in Southwest China and will contribute to the prevention and treatment of S. pneumoniae infection.
Collapse
Affiliation(s)
- Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yunhan Fu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Chengdu Hi-Tech Zone Hospital for Women and Children (Chengdu Hi-Tech Zone Hospital for Maternal and Child Healthcare), Chengdu, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Ma Z, Zeng W, Liu H, Chen H, Ye L, Liu S, Qian C, Zhou T, Cao J. Characterization of novel sequence type 12531 and O8:H7 serotype carbapenem-resistant Escherichia coli with strong swimming and intestinal epithelial cell barrier migration abilities. Antimicrob Agents Chemother 2024; 68:e0080524. [PMID: 39440955 PMCID: PMC11619422 DOI: 10.1128/aac.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae have become widely prevalent globally because of antibiotic misuse and the spread of drug-resistant plasmids, where carbapenem-resistant Escherichia coli (CREC) is one of the most common and prevalent pathogens. Furthermore, E. coli has been identified as a member of normal gut flora and does not cause disease under normal circumstances. However, certain strains of E. coli, due to the expression of virulence genes, can cause severe intestinal and extra-intestinal infections. Therefore, clinically, drug resistance and pathogenic E. coli strains are significantly challenging to treat. In this study, a novel CREC strain DC8855 was isolated from the ascites of a patient with intestinal perforation, identified as a novel sequence type 12531 (ST12531) and an unreported serotype O8:H7. It was revealed that the resistance of ST12531 CREC was predominantly conferred by an IncFII(K) plasmid carrying blaNDM-4. Furthermore, phylogenetic analysis indicated that this is the first discovery of such plasmids in China and the first identification in E. coli. Moreover, regarding virulence, the swimming assays, qRT-PCR, and in vitro intestinal barrier model indicated that DC8855 had significantly higher motility, flagella gene expression, and intestinal epithelial cell barrier migration ability than the other sequence types CREC strains (ST167 and ST410). In conclusion, this study identified novel CREC which was multidrug resistant as well as enteropathogenic and therefore requires continuous monitoring.
Collapse
Affiliation(s)
- Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lulu Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Sichen Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Hummel D, Juhasz J, Kamotsay K, Kristof K, Xavier BB, Koster SD, Szabo D, Kocsis B. Genomic Investigation and Comparative Analysis of European High-Risk Clone of Acinetobacter baumannii ST2. Microorganisms 2024; 12:2474. [PMID: 39770677 PMCID: PMC11728346 DOI: 10.3390/microorganisms12122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is a major concern in healthcare institutions worldwide. Several reports described the dissemination of A. baumannii high-risk clones that are responsible for a high number of difficult-to-treat infections. In our study, 19 multidrug-resistant A. baumannii strains from Budapest, Hungary, were investigated based on whole-genome sequencing (WGS). The obtained results were analysed together with data from 433 strains of A. baumannii from the Pathogenwatch database. WGS analysis of 19 A. baumannii strains detected that 12 belonged to ST2 and seven belonged to ST636. Among ST2 strains, 11 out of 12 carried either blaOXA-23 or blaOXA-58 genes; however, all strains of ST636 uniformly carried blaOXA-72 gene. All strains of ST2 and ST636 carried blaOXA-66 and blaADC-25 genes. Based on core genome multilocus sequence typing (cgMLST), 10 strains of ST2 belonged to cgMLST906, one strain to cgMLST458, and one strain to cgMLST1320; by contrast, all strains of ST636 belonged to cgMLST1178. Certain virulence determinants were present in all strains of both ST2 and ST636, namely, Ata, Bap, BfmRS, T2SS and PNAG. Interestingly, OmpA was present in all strains of ST2, but it was absent in all strains of ST636. Comparative analysis of 19 strains of this study and the collection of 433 isolates from Pathogenwatch database, proved a diverse clonal distribution of high-risk A. baumannii clones in Europe. The major clone in Europe is ST2, which is present all over the continent. However, ST636 has been mainly reported in Eastern Europe. Interestingly, cgMLSTs of ST2 correspond to the production of different beta-lactamases, namely, OXA-82 in cgMLST116, OXA-72 in cgMLST506, and cgMLST556, PER-1 in cgMLST456 and cgMLST1041. Our study demonstrates that the ST2 high-risk clone of A. baumannii is the most widespread in Europe; however, based on cgMLST analysis, a detailed detection of beta-lactamase production can be determined.
Collapse
Affiliation(s)
- David Hummel
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097 Budapest, Hungary
| | - Katalin Kristof
- Institute of Laboratory Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Antwerpen, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Sien De Koster
- Microbiology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
- Department of Neurosurgical and Neurointervention, Semmelweis University, 1085 Budapest, Hungary
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
21
|
Chen T, Wang Y, Chi X, Xiong L, Lu P, Wang X, Chen Y, Luo Q, Shen P, Xiao Y. Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae. Virulence 2024; 15:2349768. [PMID: 38736039 PMCID: PMC11093053 DOI: 10.1080/21505594.2024.2349768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
ST11 is the most common lineage among carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in Asia. Diverse morphotypes resulting from genetic mutations are associated with significant differences in microbial characteristics among K. pneumoniae isolates. Here, we investigated the genetic determinants and critical characteristics associated with distinct morphotypes of ST11 CRKP. An ST11-KL47 CRKP isolate carrying a pLVPK-like virulence plasmid was isolated from a patient with a bloodstream infection; the isolate had the "mcsw" morphotype. Two distinct morphotypes ("ntrd" and "msdw") were derived from this strain during in vitro passage. Whole genome sequencing was used to identify mutations that cause the distinct morphotypes of ST11 CRKP. Transmission electron microscopy, antimicrobial susceptibility tests, growth assays, biofilm formation, virulence assays, membrane permeability assays, and RNA-seq analysis were used to investigate the specific characteristics associated with different morphotypes of ST11 CRKP. Compared with the parental mcsw morphotype, the ntrd morphotype resulted from mutation of genes involved in capsular polysaccharide biosynthesis (wza, wzc, and wbaP), a result validated by gene knockout experiments. This morphotype showed capsule deficiency and lower virulence potential, but higher biofilm production. By contrast, the msdw morphotype displayed competition deficiency and increased susceptibility to chlorhexidine and polymyxin B. Further analyses indicated that these characteristics were caused by interruption of the sigma factor gene rpoN by insertion mutations and deletion of the rpoN gene, which attenuated membrane integrity presumably by downregulating the phage shock protein operon. These data expand current understanding of genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 CRKP.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
22
|
Cookson AL, Burgess S, Midwinter AC, Marshall JC, Moinet M, Rogers L, Fayaz A, Biggs PJ, Brightwell G. New Campylobacter Lineages in New Zealand Freshwater: Pathogenesis and Public Health Implications. Environ Microbiol 2024; 26:e70016. [PMID: 39680962 DOI: 10.1111/1462-2920.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
This study investigated the diversity of thermophilic Campylobacter species isolated from three New Zealand freshwater catchments affected by pastoral and urban activities. Utilising matrix-assisted laser desorption ionisation-time of flight and whole genome sequence analysis, the study identified Campylobacter jejuni (n = 46, 46.0%), C. coli (n = 39, 39%), C. lari (n = 4, 4.0%), and two novel Campylobacter species lineages (n = 11, 11%). Core genome sequence analysis provided evidence of prolonged persistence or continuous faecal shedding of closely related strains. The C. jejuni isolates displayed distinct sequence types (STs) associated with human, ruminant, and environmental sources, whereas the C. coli STs included waterborne ST3302 and ST7774. Recombination events affecting loci implicated in human pathogenesis and environmental persistence were observed, particularly in the cdtABC operon (encoding the cytolethal distending toxin) of non-human C. jejuni STs. A low diversity of antimicrobial resistance genes (aadE-Cc in C. coli), with genotype/phenotype concordance for tetracycline resistance (tetO) in three ST177 isolates, was noted. The data suggest the existence of two types of naturalised waterborne Campylobacter: environmentally persistent strains originating from waterbirds and new environmental species not linked to human campylobacteriosis. Identifying and understanding naturalised Campylobacter species is crucial for accurate waterborne public health risk assessments and the effective allocation of resources for water quality management.
Collapse
Affiliation(s)
- Adrian L Cookson
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Sara Burgess
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Anne C Midwinter
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan C Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Marie Moinet
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Lynn Rogers
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Ahmed Fayaz
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
23
|
Luo Y, Chen Y, Lin S, Hu H, Song X, Bian Q, Fang W, Lv H, Wang Q, Jiang J, Tang YW, Jin D. Genomic epidemiology of Clostridioides difficile sequence type 35 reveals intraspecies and interspecies clonal transmission. Emerg Microbes Infect 2024; 13:2408322. [PMID: 39305009 PMCID: PMC11443556 DOI: 10.1080/22221751.2024.2408322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Clostridioides difficile sequence type (ST) 35 has been found in humans and animals worldwide. However, its genomic epidemiology and clonal transmission have not been explored in detail. In this study, 176 C. difficile ST35 isolates from six countries were sequenced. Genomic diversity, clonal transmission and epidemiological data were analyzed. Sporulation and virulence capacities were measured. Four ribotypes (RT) were identified including RT046 (97.2%), RT656 (1.1%), RT427 (0.6%), and RT AI-78 (1.1%). Phylogenetic analysis of 176 ST35 genomes, along with 50 publicly available genomes, revealed two distinctive lineages without time-, region-, or source-dependent distribution. However, the distribution of antimicrobial resistance genes differed significantly between the two lineages. Nosocomial and communal transmission occurred in humans with the isolates differed by ≤ two core-genome single-nucleotide polymorphism (cgSNPs) and clonal circulation was found in pigs with the isolates differed by ≤ four cgSNPs. Notably, interspecies clonal transmission was identified among three patients with community acquired C. difficile infection and pigs with epidemiological links, differed by ≤ nine cgSNPs. Toxin B (TcdB) concentrations were significantly higher in human isolates compared to pig isolates, and ST35 isolates exhibited stronger sporulation capacities than other STs. Our study provided new genomic insights and epidemiological evidence of C. difficile ST35 intraspecies and interspecies clonal transmission, which can also be facilitated by its strong sporulation capacity.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Hui Hu
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Xiaojun Song
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| | - Qiao Bian
- Department of Public Health Emergency Response, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Huoyang Lv
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| | - Qin Wang
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Zhejiang, People's Republic of China
| | - Jianmin Jiang
- Department of Public Health Emergency Response, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, People's Republic of China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Locke T, Siribaddana S, Jayaweera JAAS, Suligoy CM, de Silva TI, Corrigan RM, Darton TC. A prospective cohort study to investigate the transmission and burden of Staphylococcus aureus in Sri Lanka. Microb Genom 2024; 10. [PMID: 39699586 DOI: 10.1099/mgen.0.001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of infection in both community and healthcare settings, and the household may be a central component linking these two environments. Strategies to prevent S. aureus transmission and thereby reduce the risk of infection must be informed by a detailed understanding of local epidemiology. These data are typically lacking in many low- and middle-income countries. Therefore, we aimed to investigate the circulation of infecting S. aureus strains in Sri Lanka, with a focus on the community and healthcare interface. A prospective longitudinal cohort study was performed between July and December 2021. Index patients with S. aureus infection and up to four of their household contacts were enrolled in the study. Colonization was assessed by sampling participants' nose and axilla at two time points over 3 months of follow-up. Whole-genome sequencing (WGS) was used to characterize isolates and assess strain similarity to identify transmission episodes and environmental clusters. A total of 153 participants were recruited, including 42 S. aureus-positive index patients and 111 household contacts. The baseline prevalence of S. aureus colonization amongst household contacts was 11.7% (13/111), of which 30.8% (4/13) were methicillin-resistant. A total of 88 S. aureus isolates underwent WGS and three multilocus sequence types predominated: ST672, ST5 and ST6. Each type had unique virulence characteristics but was identified in both community and healthcare environments. Colonization of household members with the index's infecting strain was not detected. S. aureus is a major cause of morbidity and mortality in low-resource settings such as Sri Lanka, yet little is known about risk factors and transmission networks. In this descriptive study, we have identified a small number of strains that appear to be well established and capable of causing both severe infection and asymptomatic colonization. Transmission of S. aureus did not appear to be occurring frequently in the household, and, therefore, preventative strategies that target high-risk groups may be more successful than universal community-based measures.
Collapse
Affiliation(s)
- T Locke
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - S Siribaddana
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - J A A S Jayaweera
- Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - C M Suligoy
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - T I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| | - R M Corrigan
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Present address: The School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - T C Darton
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, The University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Sivori F, Cavallo I, Truglio M, De Maio F, Sanguinetti M, Fabrizio G, Licursi V, Francalancia M, Fraticelli F, La Greca I, Lucantoni F, Camera E, Mariano M, Ascenzioni F, Cristaudo A, Pimpinelli F, Di Domenico EG. Staphylococcus aureus colonizing the skin microbiota of adults with severe atopic dermatitis exhibits genomic diversity and convergence in biofilm traits. Biofilm 2024; 8:100222. [PMID: 39381779 PMCID: PMC11460521 DOI: 10.1016/j.bioflm.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder exacerbated by Staphylococcus aureus colonization. The specific factors that drive S. aureus overgrowth and persistence in AD remain poorly understood. This study analyzed skin barrier functions and microbiome diversity in lesional (LE) and non-lesional (NL) forearm sites of individuals with severe AD compared to healthy control subjects (HS). Notable differences were found in transepidermal water loss, stratum corneum hydration, and microbiome composition. Cutibacterium was more prevalent in HS, while S. aureus and S. lugdunensis were predominantly found in AD LE skin. The results highlighted that microbial balance depends on inter-species competition. Specifically, network analysis at the genus level demonstrated that overall bacterial correlations were higher in HS, indicating a more stable microbial community. Notably, network analysis at the species level revealed that S. aureus engaged in competitive interactions in NL and LE but not in HS. Whole-genome sequencing (WGS) showed considerable genetic diversity among S. aureus strains from AD. Despite this variability, the isolates exhibited convergence in key phenotypic traits such as adhesion and biofilm formation, which are crucial for microbial persistence. These common phenotypes suggest an adaptive evolution, driven by competition in the AD skin microenvironment, of S. aureus and underscoring the interplay between genetic diversity and phenotypic convergence in microbial adaptation.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Giorgia Fabrizio
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Fraticelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilenia La Greca
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Federica Lucantoni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Mariano
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Antonio Cristaudo
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Hu Y, Shen W, Lin D, Wu Y, Zhang Y, Zhou H, Zhang R. KPC variants conferring resistance to ceftazidime-avibactam in Pseudomonas aeruginosa strains. Microbiol Res 2024; 289:127893. [PMID: 39255583 DOI: 10.1016/j.micres.2024.127893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND This study aimed to characterize three KPC variants (KPC-33, KPC-100, and KPC-201) obtained from a clinical isolate of Pseudomonas aeruginosa (#700), along with two induced strains C109 and C108. METHODS Genomic DNAs of #700 (ST235), C109 (ST463), and C108 (ST1076) were sequenced using Illumina and Oxford Nanopore technologies. The transferability and stability of the plasmid was assessed through conjugation experiments and plasmid stability experiments, respectively. Minimum inhibitory concentrations of bacterial strains were determined using broth microdilution methods. In vitro induction was performed using ceftazidime-avibactam (CZA) at concentrations of 6/4 µg/ml. Linear genomic alignments were visualized using Easyfig, and protein structure modeling of the novel KPC variant (KPC-201) was conducted using PyMol. RESULTS The plasmids carrying the KPC variants in the three CZA-resistant strains (C109, C108, and #700) had sizes of 39,251 bp (KPC-100), 394,978 bp (KPC-201), and 48,994 bp (KPC-33). All three plasmids belonged to the IncP-like incompatibility (Inc) groups, and the plasmid exhibited relatively high plasmid stability, KPC-33 and KPC-201-harboring plasmids were successfully transferred to the recipient strain P. aeruginosa PAO1rifR. The genetic environments of the three blaKPC genes differed from each other. The mobile elements of the three blaKPC genes were as follows, TnAS1-IS26-ΔISKpn27-blaKPC-33-ISKpn6-IS26, IS6-ΔISKpn27-blaKPC-100-ISKpn6-IS26-Tn3-IS26, and IS6100-ISKpn27-blaKPC-201-ISKpn6-TnAS1. Notably, the length of ΔISKpn27 upstream of the blaKPC-33 and blaKPC-100 genes were remarkably short, measuring 114 bp and 56 bp, respectively, deviating significantly from typical lengths associated with ISKpn27 elements. Moreover, the novel KPC variant, KPC-201, featured a deletion of amino acids LDR at positions 161-163 in KPC-3, resulting in a looser pocket structure contributing to its avibactam resistance. CONCLUSIONS KPC-201, identified as a novel KPC variant, exhibits resistance to CZA. The presence of multiple mobile elements surrounding the blaKPC-variant genes on stable plasmids is concerning. Urgent preventive measures are crucial to curb its dissemination in clinical settings.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weiyi Shen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Di Lin
- Wangjiang Subdistrict Community Healthcare Center, Shangcheng District, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Zhao M, Guo B, Jiang S, Wang Y. Whole genome sequence data of ZEN-degrading strain Levilactobacillus brevis PYN10_6_2 isolated from Tenebrio molitor larval feces. Data Brief 2024; 57:110911. [PMID: 39309714 PMCID: PMC11416624 DOI: 10.1016/j.dib.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Levilactobacillus brevis PYN10_6_2, a lactic acid bacterial strain previously isolated from Tenebrio molitor larval feces, possesses the ability to convert zearalenone (ZEN) to α-/β-Zearalenol (α-/β-ZEL). However, the genes involved in the ZEN reduction reaction and the biosafety of this strain remain unknown. In this study, we sequenced, assembled, and annotated the whole genome of L. brevis PYN10_6_2. Genomic sequencing was conducted using short-read sequencing on the Illumina HiSeq X Ten platform and long-read sequencing on the PacBio RS II Single Molecule Real-Time (SMRT) platform. The assembled genome consisted of one circular chromosome, four circular plasmids, with a total size of 2,745,725 bp and a G + C content of 45.52 %. Annotation identified 2,660 coding sequences, 5 rRNAs, 66 tRNAs, and a single CRISPR locus. Average nucleotide identity (ANI) between L. brevis PYN10_6_2 and L. brevis DSM 20054T yielded a value of 98.94 %. Further in-depth analysis revealed 182 antibiotic resistance genes, 237 putative virulence genes, 2 prophages, and 10 genomic islands. Additionally, functional annotation through COG and KEGG databases revealed the presence of three genes encoding 3α- and 3β-hydroxysteroid dehydrogenase (3α-/3β-HSD) within the bacterial chromosome. This comprehensive genomic characterization provides valuable insights into the genetic basis of L. brevis PYN10_6_2's ZEN-reducing ability and its biosafety profile.
Collapse
Affiliation(s)
- Mengru Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Baoyuan Guo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Shuzhen Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Wang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100834, China
| |
Collapse
|
28
|
Rivu S, Hasib Shourav A, Ahmed S. Whole genome sequencing reveals circulation of potentially virulent Listeria innocua strains with novel genomic features in cattle farm environments in Dhaka, Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105692. [PMID: 39571669 DOI: 10.1016/j.meegid.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Through the last decade, Listeria spp. has been detected in food and environmental samples in Bangladesh. However, the genomic information of this bacterium that prevails in the country remains scarce. This study analyzed the complete genome sequences of two Listeria spp. isolates obtained from cow dung and their drinking water collected from a cattle farm in Dhaka, Bangladesh. Both the isolates were identified as Listeria innocua, which shared almost identical genomic features. The genome sequences demonstrated the presence of 13 virulence genes associated with invasion (iap/cwhA, gtcA, and lpeA), surface protein anchoring (lspA), adherence (fbpA, and lap), intracellular survival (lplA1, and prsA2), peptidoglycan modification (oatA, and pdgA), and heat stress (clpC, clpE, and clpP). Additionally, the gene fosX, conferring resistance to fosfomycin, and two copper resistance-associated genes, copC and csoR, were identified in both. The genome sequences also revealed two plasmid replicons, rep25 and rep32, along with three insertion sequences [ISLmo3 (CP022021), ISLmo7 (CP006611), ISS1N (M37395)]. Notably, a composite transposon [CN_8789_ISS1N (M37395)], was detected in both L. innocua isolates, representing the first documented occurrence of this particular composite transposon in any reported Listeria species. Furthermore, the genomes contained four prophage regions [Listeria phage LP-030-2 (NC_021539), Listeria phage vB_LmoS_188 (NC_028871), Listeria phage A118 (NC_003216) and Escherichia phage RCS47 (NC_042128)]. Two CRISPR arrays were also identified, one belonging to the family type II-A. Multilocus Sequence Typing (MLST) analysis classified the L. innocua isolates of the same sequence type, ST-637. Single nucleotide polymorphism (SNP) analysis uncovered the presence of 231-340 SNPs between the L. innocua isolates and their closely related global lineage. In contrast, only 42 SNPs were identified between the two isolates, suggesting a potential transmission of L. innocua between cow dung and cattle farm water. The presence of L. innocua isolates harboring virulence genes associated with ruminant infection in the cattle farm environment of Bangladesh raises significant concerns about the potential presence of other human and animal pathogens. This poses a serious threat to the cattle farming industry. Additionally, the genomic analysis of the L. innocua isolates enhances our understanding of the evolutionary dynamics of Listeria species.
Collapse
Affiliation(s)
- Supantha Rivu
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abiral Hasib Shourav
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh; Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, Fl 33620, USA
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
29
|
Farook NAM, Argimón S, Samat MNA, Salleh SA, Sulaiman S, Tan TL, Periyasamy P, Lau CL, Azami NAM, Raja Abd Rahman RMF, Ang MY, Neoh HM. Desiccation tolerance and reduced antibiotic resistance: Key drivers in ST239-III to ST22-IV MRSA clonal replacement at a Malaysian teaching hospital. Int J Med Microbiol 2024; 317:151638. [PMID: 39437562 DOI: 10.1016/j.ijmm.2024.151638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Molecular surveillance of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Hospital Canselor Tuanku Muhriz (HCTM), a Malaysian teaching hospital revealed clonal replacement events of SCCmec type III-SCCmercury to SCCmec type IV strains before the year 2017; however, the reasons behind this phenomenon are still unclear. This study aimed to identify factors associated with the clonal replacement using genomic sequencing and phenotypic investigations (antibiogram profiling, growth rate and desiccation tolerance determination, survival in vancomycin sub-minimum inhibitory concentration (MIC) determination) of representative HCTM MRSA strains isolated in four-year intervals from 2005 - 2017 (n = 16). HCTM Antimicrobial Stewardship (AMS) and Infection Prevention and Control (IPC) policies were also reviewed. Phylogenetic analyses revealed the presence of 3 major MRSA lineages: ST239-III, ST22-IV and ST6-IV; MRSAs with the same STs shared similar core and accessory genomes. Majority of the ST239-III strains isolated in earlier years of the surveillance (2005, 2009 and 2013) were resistant to many antibiotics and harboured multiple AMR and virulence genes compared to ST22-IV and ST6-IV strains (isolated in 2013 and 2017). Interestingly, ST22-IV and ST6-IV MRSAs grew significantly faster and were more resistant to desiccation than ST239-III (p < 0.05), even though the later clone survived better post-vancomycin exposure. Intriguingly, ST22-IV was outcompeted by ST239-III in broth co-cultures; though it survived better when desiccated together with ST239-III. Higher desiccation tolerance and fewer carriage of AMR genes by ST22-IV, together with reduction of antibiotic selection pressure in HCTM (due to AMS and IPC policies) during 2005 - 2017 may have provided the clone a competitive edge in replacing the previously dominant ST239-III in HCTM. This study highlights the importance of MRSA surveillance for a clearer picture of circulating clones and clonal changes. To our knowledge, this is the first genomic epidemiology study of MRSA in Malaysia, which will serve as baseline genomic data for future surveillance.
Collapse
Affiliation(s)
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, United Kingdom
| | | | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | - Sunita Sulaiman
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Petrick Periyasamy
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Chee Lan Lau
- Department of Pharmacy, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | | | | | - Mia Yang Ang
- Department of Diagnostics & Allied Health Science, Faculty of Health & Life Sciences, Management & Science University, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia.
| |
Collapse
|
30
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
31
|
Vrenna G, Agosta M, Fox V, Rossitto M, Cortazzo V, Raimondi S, Lucignano B, Onori M, Mancinelli L, Pereyra Boza MDC, Fini V, Granaglia A, Lancella L, Carducci FIC, Tripiciano C, Villani A, Bernaschi P, Perno CF. Integrating Diagnostic Approaches in Infant Bacterial Meningitis Caused by a Non-K1 Escherichia coli: A Case Report. Antibiotics (Basel) 2024; 13:1144. [PMID: 39766534 PMCID: PMC11672694 DOI: 10.3390/antibiotics13121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Infant meningitis, particularly caused by Escherichia coli, remains a life-threatening condition, especially in premature and low-weight infants. Infections of the central nervous system can be fatal, necessitating prompt diagnosis and appropriate treatment. Acute infections caused by various pathogens, including E. coli, often present with similar clinical symptoms. The rapid identification of pathogens and their antimicrobial resistance mechanisms is critical for timely and effective treatment. We report the case of an 8-month-old patient who presented with fever, diarrhea, and convulsive seizures and was subsequently diagnosed with meningitis. Despite initial empirical treatment with ceftriaxone, the patient's condition worsened. METHODS At Bambino Gesù Children's Hospital, molecular diagnostic tools, including the FilmArray Meningitis/Encephalitis and Blood Culture Identification panels, were employed. RESULTS Although the Meningitis panel did not detect any pathogens due to the lack of the specific bacterial target, the off-label use of the Blood Culture Identification panel identified a non-K1 Escherichia coli strain carrying the CTX-M resistance gene, an extended-spectrum beta-lactamase (ESBL). Despite the rapid diagnostic approach and adjustment of antibiotic therapy, the patient succumbed to the infection due to the strain's high virulence and multidrug resistance. Whole-genome sequencing further characterized the strain, revealing that it belonged to the ST131 group, a highly resistant and virulent strain associated with sepsis. CONCLUSIONS This case highlights the importance of integrating advanced molecular diagnostics, such as whole-genome sequencing, with traditional methods to improve pathogen detection, especially in cases of emerging resistant strains that are not covered by standard diagnostic panels. It also emphasizes the need for the continuous adaptation of diagnostic tools to include non-K1 E. coli strains for more comprehensive and timely meningitis diagnosis.
Collapse
Affiliation(s)
- Gianluca Vrenna
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.V.); (M.R.)
| | - Marilena Agosta
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Valeria Fox
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.V.); (M.R.)
| | - Martina Rossitto
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.V.); (M.R.)
| | - Venere Cortazzo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Serena Raimondi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Barbara Lucignano
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Manuela Onori
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Livia Mancinelli
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Maria del Carmen Pereyra Boza
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Vanessa Fini
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Annarita Granaglia
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.L.); (F.I.C.C.); (C.T.)
| | | | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.L.); (F.I.C.C.); (C.T.)
| | - Alberto Villani
- General Pediatric and Infectious Disease Unit, Pediatric Emergency Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Paola Bernaschi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (V.C.); (S.R.); (B.L.); (M.O.); (L.M.); (M.d.C.P.B.); (V.F.); (A.G.); (P.B.); (C.F.P.)
| |
Collapse
|
32
|
Pongchaikul P, Romero R, Wongsurawat T, Jenjaroenpun P, Kruasuwan W, Mongkolsuk P, Vivithanaporn P, Thaipisuttikul I, Singsaneh A, Khamphakul J, Santanirand P, Kotchompoo K, Bhuwapathanapun M, Warintaksa P, Chaemsaithong P. Molecular evidence that GBS early neonatal sepsis results from ascending infection: comparative hybrid genomics analyses show that microorganisms in the vaginal ecosystem, amniotic fluid, chorioamniotic membranes, and neonatal blood are the same. J Perinat Med 2024; 52:977-990. [PMID: 39405032 PMCID: PMC11560570 DOI: 10.1515/jpm-2024-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 11/12/2024]
Abstract
OBJECTIVES Streptococcus agalactiae, or Group B Streptococcus (GBS), is a leading cause of neonatal sepsis. Materno-fetal transmission of the microorganisms present in the lower genital tract/perineum is considered to be the most frequent mode for acquisition of infection. It has also been proposed that, in a subset of cases, GBS causes acute chorioamnionitis, intraamniotic infection, and fetal/neonatal sepsis. However, the evidence to support this ascending pathway is derived from microbiologic studies that rely on cultivation methods, which do not have the resolution to determine if the microorganisms causing neonatal sepsis are the same as those found in the amniotic fluid and the vaginal ecosystem. METHODS We used whole genome sequencing of the microorganisms isolated from the vagina, amniotic fluid, chorioamniotic membranes, and neonatal blood (four isolates) in a case of early neonatal sepsis. Using hybrid genome assembly, we characterized the genomic features including virulence factors and antimicrobial resistance in four isolates from the same mother, placenta, and newborn. RESULTS Whole genome sequencing revealed that the microorganisms in the four clinical isolates corresponded to S. agalactiae sequence type 1, clonal complexes 1, and serotype Ib. Comparative genomic analysis illustrated similar DNA sequences of the four genomes. CONCLUSIONS This study presents the first evidence of the genomic similarity of microorganisms in the vaginal ecosystem, the space between the chorioamniotic membranes of the placenta, amniotic fluid, and neonatal blood.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L7 3EA, United Kingdom
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland 20892, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paninee Mongkolsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan 10540, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan 10540, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arunee Singsaneh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jakkrit Khamphakul
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Kanyaphat Kotchompoo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Maolee Bhuwapathanapun
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Puntabut Warintaksa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Lin G, Gao J, Zou J, Li D, Cui Y, Liu Y, Kong L, Liu S. Whole-Genome Sequence and Characterization of Ralstonia solanacearum MLY102 Isolated from Infected Tobacco Stalks. Genes (Basel) 2024; 15:1473. [PMID: 39596673 PMCID: PMC11593729 DOI: 10.3390/genes15111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bacterial wilt disease is a soil-borne disease caused by Ralstonia solanacearum that causes huge losses to crop economies worldwide. METHODS In this work, strain MLY102 was isolated and further identified as R. solanacearum from a diseased tobacco stalk. The genomic properties of MLY102 were explored by performing biochemical characterization, genome sequencing, compositional analysis, functional annotation and comparative genomic analysis. RESULTS MLY102 had a pinkish-red color in the center of the colony surrounded by a milky-white liquid with fluidity on TTC medium. The biochemical results revealed that MLY102 can utilize carbon sources, including D-glucose (dGLU), cane sugar (SAC) and D-trehalose dihydrate (dTRE). Genome sequencing through the DNBSEQ and PacBio platforms revealed a genome size of 5.72 Mb with a G+C content of 67.59%. The genome consists of a circular chromosome and a circular giant plasmid with 5283 protein-coding genes. A comparison of the genomes revealed that MLY102 is closely related to GMI1000 and CMR15 but has 498 special genes and 13 homologous genes in the species-specific gene family, indicating a high degree of genomic uniqueness. CONCLUSIONS The unique characteristics and genomic data of MLY102 can provide important reference values for the prevention and control of bacterial wilt disease.
Collapse
Affiliation(s)
- Guan Lin
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Juntao Gao
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Junxian Zou
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Denghui Li
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Yu Cui
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Yong Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Shiwang Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| |
Collapse
|
34
|
Sun Y, Hao Y, Wang Z, Wang H, Gao Y. Isolation, characterization, and whole genome sequencing analysis of Aeromonas veronii from Channa argus in China. Vet Res Commun 2024; 49:7. [PMID: 39546050 DOI: 10.1007/s11259-024-10594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
Aeromonas veronii has emerged as a significant pathogen that impacts both fish and mammals. Recently, an infectious disease characterized by multiple ulcers on the body surface with a high mortality rate occurred in Channa argus cultured in Jiangsu Province, China. A Gram-negative bacterial strain (Aer12) was isolated from the body surface of the diseased fish and identified as A. veronii by the physiological, biochemical, and 16 S rRNA gene analysis. Intra-peritoneal injection of Aer12 into the healthy C. argus resulted in the development of multiple ulcers on the body surface, and the histopathological results showed that muscle tissue rupture was the most severe symptom. Aer12 showed both protease and lipase activities with no β-hemolytic activity. Furthermore, Aer12 contained seven virulence genes (aer, act, alt, fla, ascV, aexT, and ela) and one antibiotic resistance gene (qnrS) identified by the PCR assay. The results of whole genome sequencing revealed that Aer12 had a circular chromosome that measured 4,719,428 bp. It comprised 4301 predicted protein-coding sequences (CDS) in addition to 31 rRNA, 124 tRNA, and 49 sRNA genes. Furthermore, a total of 676 virulence genes and 216 antibiotic resistance genes have been predicted. Aer12 was susceptible to 21 antibiotics, including ampicillin and erythromycin. The results of Chinese herbs susceptibility assay showed that Aer12 was highly susceptible to Sanguisorba officinalis, Galla chinensis, and Schisandra chinensis. The results of this study will serve as a reference for future research on the pathogenic mechanism of A. veronii and the prevention and control of bacterial diseases in C. argus farming.
Collapse
Affiliation(s)
- Yungui Sun
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zicheng Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China.
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China.
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, China.
| |
Collapse
|
35
|
Rivu S, Smith E, Stafford G, Ahmed S. Draft genome sequence of Listeria aquatica strain SG_BD1, isolated from a cow dung sample in Bangladesh. Microbiol Resour Announc 2024; 13:e0072924. [PMID: 39324813 PMCID: PMC11556104 DOI: 10.1128/mra.00729-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Here, we present the genome of Listeria aquatica strain SG_BD1, isolated from cow dung in Dhaka, Bangladesh, and assembled after Oxford Nanopore sequencing. The genome is 2,690,148 bp with 2,855 predicted coding DNA sequences, G + C content of 39.6%, and displays a putative virulence gene clpP and 9 CRISPRs.
Collapse
Affiliation(s)
- Supantha Rivu
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Elspeth Smith
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Graham Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
36
|
Hwang H, Salo G, Orth M, Podemski N, Erickson R, Jawahir S, Cebelinski E, Bekele N, Draxler B, Webb P, Verbrugge E, Klein JR, Schleiss MR, Hilt EE, Decuir M, Haan J. Complete genome sequences of sucrose non-fermenting non-O1/non-O139 Vibrio cholerae isolated from human soft tissue infection. Microbiol Resour Announc 2024; 13:e0018124. [PMID: 39382298 PMCID: PMC11556141 DOI: 10.1128/mra.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/26/2024] [Indexed: 10/10/2024] Open
Abstract
This paper describes the hybrid genome assembly of sucrose non-fermenting non-O1/non-O139 Vibrio cholerae isolated from human soft tissue infection. The hybrid assembled genome comprises two circular chromosomes with lengths of 3,001,999 bp and 1,264,051 bp, respectively, with a G + C content of 47.38%.
Collapse
Affiliation(s)
- Haejin Hwang
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Geraldine Salo
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Melanie Orth
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Nicole Podemski
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Ray Erickson
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Selina Jawahir
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Elizabeth Cebelinski
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Net Bekele
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Brooke Draxler
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Paul Webb
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Emily Verbrugge
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Julia R. Klein
- Department of Pediatrics, Pediatric Residency Training Program, University of Minnesota, Minneapolis, USA
| | - Mark R. Schleiss
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, USA
| | - Evann E. Hilt
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Marijke Decuir
- Foodborne, Waterborne, Vectorborne, and Zoonotic Disease Section, Infectious Disease Epidemiology, Prevention and Control Division, Minnesota Department of Health, Saint Paul, USA
| | - Jisun Haan
- Infectious Disease Laboratory Section, Public Health Laboratory, Minnesota Department of Health, Saint Paul, Minnesota, USA
| |
Collapse
|
37
|
De Sousa Violante M, Feurer C, Michel V, Romero K, Mallet L, Mistou MY, Cadel-Six S. Genomic diversity of Salmonella Typhimurium and its monophasic variant in pig and pork production in France. Microbiol Spectr 2024; 12:e0052624. [PMID: 39513704 PMCID: PMC11619346 DOI: 10.1128/spectrum.00526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Salmonella Typhimurium and its monophasic variant (Salmonella 4,[5],12:i:-) are among the most prevalent serovars worldwide. Even though these serovars have been the focus of many studies, their spread has not yet been investigated in French pig herds and slaughterhouses at a regional scale. Here, we characterized the genomic diversity of 188 Salmonella strains belonging to sequence type (ST) 19 and 34. These strains were isolated from pigs in metropolitan France between 2014 and 2019. Samples were collected from 10 regions, three of which together represent 75% of French pig production in 2020. To contextualize the French Salmonella genomes at a worldwide level, 193 ST 34 genomes from three continents and 14 countries were also included. This study revealed little diversity in ST 34 strains circulating in France, suggesting that one or two clones are spreading within pig herds and slaughterhouses. In silico virulence and antimicrobial resistance genes were investigated to understand the prevalence of these strains among farmed pigs and in the slaughterhouse environment. A comparison with ST 34 isolates from other countries highlighted the genomic specificity of the ST 34 monophasic variants in France, with some exceptions concerning isolates from bordering countries. This work provides new insights into the dynamics of S. Typhimurium and its monophasic variant sampled in French pig herds and slaughterhouses. IMPORTANCE Salmonellosis is a leading cause of bacterial infection in humans and animals around the world. This study provides a snapshot of the genomic diversity of one of the most prevalent Salmonella serovars (Salmonella Typhimurium and Salmonella 4,[5],12:i:-) circulating on French pig farms between 2013 and 2021. We investigated the link between geographical and genomic diversity. The analyses revealed little diversity of the strains, suggesting that one or two clones are spreading within French pig herds. We also in silico screened genetic elements that could explain the prevalence of these strains among farmed pigs and in the slaughterhouse environment. Finally, the comparison with isolates from other countries highlighted the genomic specificity of these two French sequence type 34 clones. This work provides new insights into the dynamics of S. Typhimurium and S. 4,[5],12:i:- sampled from pig herds and slaughterhouses in France, thus laying the foundations for future analyses.
Collapse
Affiliation(s)
- Madeleine De Sousa Violante
- MaIAGE, INRAE,
Université Paris-Saclay, Jouy-en-Josas, France
-
ACTALIA, La Roche-sur-Foron, Haute-Savoie, France
| | - Carole Feurer
-
IFIP–Institut du Porc, Pôle Viandes et Charcuteries, Pacé, France
| | | | - Karol Romero
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| | - Ludovic Mallet
-
Institut Universitaire du Cancer de Toulouse–Oncopole, Toulouse, Haute-Garonne, France
| | | | - Sabrina Cadel-Six
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
38
|
Lawal OU, Bryan N, Parreira VR, Anderson R, Chen Y, Precious M, Goodridge L. Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Microbiol Spectr 2024; 12:e0117124. [PMID: 39513706 PMCID: PMC11619367 DOI: 10.1128/spectrum.01171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health.
Collapse
Affiliation(s)
- Opeyemi U. Lawal
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Noah Bryan
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
- Bayview Secondary School, Richmond Hill, Ontario, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Rebecca Anderson
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Yanhong Chen
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Melinda Precious
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Szuplewska M, Sentkowska D, Lasek R, Decewicz P, Hałucha M, Funk Ł, Chmielowska C, Bartosik D. Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen Paracoccus yeei ( Alphaproteobacteria). Front Microbiol 2024; 15:1483110. [PMID: 39568992 PMCID: PMC11578231 DOI: 10.3389/fmicb.2024.1483110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Paracoccus yeei is the first species in the genus Paracoccus to be implicated in opportunistic infections in humans. As a result, P. yeei strains provide a valuable model for exploring how bacteria shift from a saprophytic to a pathogenic lifestyle, as well as for investigating the role of horizontally transferred DNA in this transition. In order to gain deeper insights into the unique characteristics of this bacterium and the molecular mechanisms underlying its opportunistic behavior, a comparative physiological and genomic analysis of P. yeei strains was performed. Results Complete genomic sequences of 7 P. yeei isolates (both clinical and environmental) were obtained and analyzed. All genomes have a multipartite structure comprising numerous extrachromosomal replicons (59 different ECRs in total), including large chromids of the DnaA-like and RepB families. Within the mobile part of the P. yeei genomes (ECRs and transposable elements, TEs), a novel non-autonomous MITE-type element was identified. Detailed genus-wide comparative genomic analysis permitted the identification of P. yeei-specific genes, including several putative virulence determinants. One of these, the URE gene cluster, determines the ureolytic activity of P. yeei strains-a unique feature among Paracoccus spp. This activity is induced by the inclusion of urea in the growth medium and is dependent on the presence of an intact nikR regulatory gene, which presumably regulates expression of nickel (urease cofactor) transporter genes. Discussion This in-depth comparative analysis provides a detailed insight into the structure, composition and properties of P. yeei genomes. Several predicted virulence determinants (including URE gene clusters) were identified within ECRs, indicating an important role for the flexible genome in determining the opportunistic properties of this bacterium.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Hałucha
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Funk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Bezzi A, Antri K, Bachtarzi MA, Martins-Simoes P, Youenou B, Gourari S, Nateche F, Tristan A. Molecular characterization of Staphylococcus aureus from nasal samples of healthy pet cats. Lett Appl Microbiol 2024; 77:ovae108. [PMID: 39521948 DOI: 10.1093/lambio/ovae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The objective of this study was to characterize Staphylococcus aureus isolates recovered from the nasal samples of healthy pet cats in Algiers province. A total of 138 nasal swabs were collected. Antimicrobial susceptibility was conducted using the disk-diffusion method and the VITEK-2 susceptibility system. Whole genome sequencing was performed to identify multiple-locus sequence typing, antimicrobial and virulence genes. Staphylococcus aureus isolates were detected in 23 cats. Among these, 11 were methicillin-resistant S. aureus (MRSA) (one isolate/sample). Three sequence types (ST6, ST5, and ST1) were identified in MRSA, with the predominance of ST6 (n = 7). Seven distinct STs [ST398, ST97, ST15, ST7, ST291, ST5043, and a new ST, (ST9219)] were detected in methicillin-sensitive S. aureus. All MRSA isolates harbored the mecA gene and SCCmec-type-IVa. MRSA exhibited resistance to tetracycline [n = 3/tet(L) and tet(M); n = 1/tet(K)], kanamycin-tobramycin [n = 3/ant(4')-Ia), amikacin-kanamycin (n = 1/aph(3')-IIIa], and erythromycin-clindamycin [n = 1/erm(C)]. Seven S. aureus isolates were multidrug resistant. All the isolates were negative for lukS/lukF-PV and tst-1 genes, while 20 isolates were IEC-positive. This study revealed a diversity of genetic lineages in S. aureus strains isolated from nasal samples of pet cats, including multidrug-resistant and toxigenic strains. The presence of IEC-positive S. aureus suggests possible human-animal transmission.
Collapse
Affiliation(s)
- Amel Bezzi
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology-Houari Boumediene, 16111 Bab Ezzouar, Algiers, Algeria
| | - Kenza Antri
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology-Houari Boumediene, 16111 Bab Ezzouar, Algiers, Algeria
| | - Mohamed Azzedine Bachtarzi
- Centre Hospitalier Universitaire Mustapha Bacha, Service de Microbiologie, 16000 Alger, Algérie
- Faculty of Pharmacy, University of Algiers Ben Youssef Ben Khadda, 16000 Algiers, Algeria
| | - Patricia Martins-Simoes
- Hospices Civils de Lyon, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, LyonF-69004, France
| | - Benjamin Youenou
- Hospices Civils de Lyon, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, LyonF-69004, France
| | - Samir Gourari
- Centre Hospitalier Universitaire Mustapha Bacha, Service de Microbiologie, 16000 Alger, Algérie
| | - Farida Nateche
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology-Houari Boumediene, 16111 Bab Ezzouar, Algiers, Algeria
| | - Anne Tristan
- Hospices Civils de Lyon, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, LyonF-69004, France
| |
Collapse
|
41
|
Nawrocki EM, Kudva IT, Dudley EG. Investigating the adherence factors of Escherichia coli at the bovine recto-anal junction. Microbiol Spectr 2024; 12:e0127024. [PMID: 39329486 PMCID: PMC11540155 DOI: 10.1128/spectrum.01270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC E. coli to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models. To identify a set of bovine-specific E. coli adherence factors, we used the primary RAJ squamous epithelial (RSE) cell-adherence assay to coculture RSE cells from healthy Holstein cattle with diverse E. coli strains from bovine and nonbovine sources. We hypothesized that a comparative genomic analysis of the strains would reveal factors associated with RSE adherence. After performing adherence assays with historical strains from the E. coli Reference Center (n = 62) and strains newly isolated from the RAJ (n = 15), we used the bioinformatic tool Roary to create a pangenome of this collection. We classified strains as either low or high adherence and using the Scoary program compiled a list of accessory genes correlated with the "high adherence" strains. While none of the correlations were statistically significant, several gene clusters were associated with the high-adherence phenotype, including two that encode uncharacterized proteins. We also demonstrated that non-STEC E. coli strains from the RAJ are more adherent than other isolates and can outcompete STEC in coculture with RSEs. Further analysis of adherence-associated gene clusters may lead to an improved understanding of the molecular mechanisms of RSE adherence and may help develop probiotics targeting STEC in cattle. IMPORTANCE E. coli strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that E. coli uses to adhere to cattle cells are largely unknown. Various strategies are used to control E. coli in livestock and limit the risk of outbreaks. These include vaccinating animals against common E. coli strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for E. coli adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic E. coli from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.
Collapse
Affiliation(s)
- Erin M. Nawrocki
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agriculture Research Service, U.S. Department of
Agriculture, Ames,
Iowa, USA
| | - Edward G. Dudley
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
- E. coli Reference
Center, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| |
Collapse
|
42
|
Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of Bifidobacterium spp. from breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int 2024; 196:115092. [PMID: 39614508 DOI: 10.1016/j.foodres.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Breast milk is the best source of nutrition for infants. Human milk oligosaccharides (HMOs) and the corresponding HMOs-consuming Bifidobacterium positively influence infant health. This study aims to isolate and characterize Bifidobacterium from breast milk of healthy Chinese mothers, identifying the most efficacious strains for inclusion in simulated maternal milk formulas. Nine Bifidobacterium strains (two of B. breve and seven of B. infantis) were isolated, exhibiting a broad spectrum of probiotic potential. This included tolerance to simulated infant gastrointestinal conditions, notable adhesion, antibacterial, antioxidant activities, and HMOs utilization ability. Lacto-N-Tetraose (LNT) is preferred in early growth among Bifidobacterium isolates. B. breve showed a preference for LNT, whereas B. infantis showed a preference for fucosylated HMOs, and displayed reduced utilization of sialylated HMOs. They also exhibited robust safety profiles, including no hemolytic activity, an appropriate D/L lactate-producing ratio, and non-toxicity in an acute oral toxicity assay on mice. It is noteworthy that B. breve N-90, O-147, B. infantis O-161 and R-1 exhibited anti-inflammatory effects in LPS-induced RAW 264.7 cells. Specifically, a notable reduction in TNF-α levels was observed in pre-treatment, while a decrease in IL-1β and IL-6 levels in co-treatment. B. breve N-90 and B. infantis R-1 were identified finally as promising probiotic candidates. Their whole-genome sequencing analysis confirmed presence of functional genes associated with gastrointestinal colonization, antioxidation, and glycoside hydrolase activity on HMOs. The annotation for antibiotic resistance and virulence genes concurred with phenotypes, further validating the safety. Breast milk is a good source for Bifidobacteria isolation, while Bifidobacteria utilize HMOs in a strain-dependent manner. The two selected strains, B. breve N-90 and B. infantis R-1, are potential candidates for inclusion in simulated maternal milk formulas and deserved further in vivo investigation for their health-promoting effects.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianhui Mo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Feng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiale Qin
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanghong Su
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Qiang Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Hui Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
43
|
Hershko Y, Slutzkin M, Barkan D, Adler A. Construction of core genome multi-locus sequence typing schemes for population structure analyses of Nocardia species. Res Microbiol 2024; 175:104246. [PMID: 39393617 DOI: 10.1016/j.resmic.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Nocardia, a member of the Actinobacteria phylum, populates diverse habitats globally, with certain species being the cause of various clinical infections in humans. There is paucity of data regarding the population structure of this genus and of established genomic-based phylogenetic methods. We examined the whole genome sequences of 193 isolates spanning five major pathogenic Nocardia species sourced from public databases, encompassing diverse geographic regions. Using the chewBBACA pipeline, a species-specific core genome multilocus sequence typing (cgMLST) schema was created for N. cyriacigeorgica, N. farcinica, N. brasiliensis, N. wallacei, and N. abscessus. Additional genomic features that were examined included virulence factor (VF) profile, total length and open-reading frame count, the core genome length and core gene count, and GC content. Our findings indicated that: (i) N. brasiliensis diverges significantly from the other four species, underscoring its distinct evolutionary trajectory; (ii) the population structures of all species were polyclonal, with phylogenetic clustering occurring in the minority of isolates; (iii) clonal complexes were largely restricted to specific geographical locations, rather than demonstrating a global distribution, and (iv) initial evidence suggests no direct common-source transmission amongst the studied strains. Our study establishes a comprehensive genome-based phylogenetic methodology for population structure of Nocardia species.
Collapse
Affiliation(s)
- Yizhak Hershko
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Israel.
| | - Matan Slutzkin
- Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| | - Amos Adler
- Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
44
|
Rao M, Teixeira JS, Flint A, Tamber S. Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada. J Food Prot 2024; 87:100374. [PMID: 39383948 DOI: 10.1016/j.jfp.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. Serratia spp., Aeromonas spp., and Rahnella spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 Aeromonas isolates. Based on AMR patterns, and species identity, a subset of ten Aeromonas strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.
Collapse
Affiliation(s)
- Mary Rao
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Januana S Teixeira
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
45
|
Su J, Yao B, Huang R, Liu X, Zhang Z, Zhang Y. Cross-Kingdom Pathogenesis of Pantoea alfalfae CQ10: Insights from Transcriptome and Proteome Analyses. Microorganisms 2024; 12:2197. [PMID: 39597586 PMCID: PMC11596184 DOI: 10.3390/microorganisms12112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
In grassland agroecosystems, some plant pathogenic bacteria can cause disease in animals. These strains are known as plant and animal cross-kingdom pathogenic bacteria. In this study, we established an alfalfa root infection model and a mouse model via the gavage administration of the Pantoea alfalfae CQ10 (CQ10) bacterial suspension. It was confirmed that the CQ10 strain caused bacterial leaf blight of alfalfa. Mice inoculated with 0.4 mL of 109 cfu/mL bacterial suspension developed clinical symptoms 48 h later, such as diminished vitality, tendencies to huddle, and lack of appetite, including severe lesions in stomach, liver, kidney, and spleen tissues. CQ10 strains were isolated from mouse feces at different time points of inoculation. Thus, CQ10 is a plant and animal cross-kingdom pathogenic bacterium. Transcriptome and proteome analyses showed that biofilm and iron uptake are important virulence factors of the pathogen CQ10, among which Bap and Lpp regulating biofilm are the key cross-kingdom virulence genes of CQ10. From an evolutionary perspective, insights gained from this dual animal-plant pathogen system may help to elucidate the molecular basis underlying the host specificity of bacterial pathogens. The result provides a theoretical basis for the risk assessment, prevention, and control strategies of new pathogenic bacteria entering a new region.
Collapse
Affiliation(s)
- Jing Su
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Bo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Rong Huang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Xiaoni Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
46
|
Sivori F, Cavallo I, Truglio M, Pelagalli L, Mariani V, Fabrizio G, Abril E, Santino I, Fradiani PA, Solmone M, Pimpinelli F, Toma L, Arcioni R, De Blasi RA, Di Domenico EG. Biofilm-mediated antibiotic tolerance in Staphylococcus aureus from spinal cord stimulation device-related infections. Microbiol Spectr 2024; 12:e0168324. [PMID: 39470274 PMCID: PMC11619394 DOI: 10.1128/spectrum.01683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Staphylococcus aureus is a predominant cause of infections in individuals with spinal cord stimulation (SCS) devices. Biofilm formation complicates these infections, commonly requiring both surgical and antibiotic treatments. This study explored the biofilm matrix composition and antimicrobial susceptibility of planktonic and biofilm-growing S. aureus isolates from individuals with SCS-related infections. Whole-genome sequencing (WGS) examined genotypes, virulome, resistome, and the pan-genome structure. The study also analyzed biofilm matrix composition, early surface adhesion, hemolytic activity, and antibiotic-susceptibility testing. WGS revealed genetic diversity among isolates. One isolate, though oxacillin susceptible, contained the mecA gene. The median number of virulence factor genes per isolate was 58. All isolates harbored the biofilm-related icaA/D genes. When assessing phenotypic characteristics, all strains demonstrated the ability to form biofilms in vitro. The antimicrobial susceptibility profile indicated that oxacillin, rifampin, and teicoplanin showed the highest efficacy against S. aureus biofilm. Conversely, high biofilm tolerance was observed for vancomycin, trimethoprim/sulfamethoxazole, and levofloxacin. These findings suggest that S. aureus isolates are highly virulent and produce robust biofilms. In cases of suspected biofilm infections caused by S. aureus, vancomycin should not be the primary choice due to its low activity against biofilm. Instead, oxacillin, rifampin, and teicoplanin appear to be more effective options to manage SCS infections.IMPORTANCESCS devices are increasingly used to manage chronic pain, but infections associated with these devices, particularly those caused by Staphylococcus aureus, present significant clinical challenges. These infections are often complicated by biofilm formation, which protects bacteria from immune responses and antibiotic treatments, making them difficult to eradicate. Understanding the genetic diversity, virulence, and biofilm characteristics of S. aureus isolates from SCS infections is critical to improving treatment strategies. Our study highlights the need to reconsider commonly used antibiotics like vancomycin, which shows reduced activity against biofilm-growing cells. Identifying more effective alternatives, such as oxacillin, rifampin, and teicoplanin, provides valuable insight for clinicians when managing biofilm-related S. aureus infections in patients with SCS implants. This research contributes to the growing evidence that biofilm formation is crucial in treating device-related infections, emphasizing the importance of tailoring antimicrobial strategies to the biofilm phenotype.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Lorella Pelagalli
- Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCR), Mascate, Oman
| | - Valerio Mariani
- Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale, Sapienza University, Rome, Italy
| | - Giorgia Fabrizio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| | - Elva Abril
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Iolanda Santino
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Microbiology Unit, Sant'Andrea Hospital, Rome, Italy
| | | | | | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Roberto Arcioni
- Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCR), Mascate, Oman
| | - Roberto Alberto De Blasi
- Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale, Sapienza University, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| |
Collapse
|
47
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
48
|
Xiao X, Singh A, Giometto A, Brito IL. Segatella clades adopt distinct roles within a single individual's gut. NPJ Biofilms Microbiomes 2024; 10:114. [PMID: 39465298 PMCID: PMC11514259 DOI: 10.1038/s41522-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Segatella is a prevalent genus within individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on its genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to Segatella isolates either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related Segatella isolates, extending this to host-microbe interactions.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
49
|
Cui M, Wang H, Li Z, Han N, Li J, Peng W, Zhang X, Zhao Q, Wang X. Phenotypic and Molecular Characterization of Staphylococcus aureus in Dairy Farms from Henan Province and the Inner Mongolia Autonomous Region, China. Microorganisms 2024; 12:2150. [PMID: 39597539 PMCID: PMC11596393 DOI: 10.3390/microorganisms12112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Staphylococcus aureus, a prevalent pathogen associated with infectious and foodborne diseases, is also a significant cause of intramammary infections in dairy farms. This study aimed to determine the phenotypic and molecular characterization of S. aureus in two different stock sizes of dairy farms in Henan province (HN) and the Inner Mongolia autonomous region (IM), China, through biofilm formation, antimicrobial resistance, virulence, and molecular type of S. aureus isolates. In HN, 74 S. aureus isolates (60.7%) were recovered from 122 bulk tank milk samples, while in IM, 24 S. aureus isolates (17.4%) were detected from 161 samples soured from various origins. Notably, 25.7% (19/74) of isolates in HN and 20.8% (5/24) in IM exhibited multidrug-resistant (MDR) phenotypes. Molecular typing revealed distinct patterns: ST97 (n = 32) and spa type t189 (n = 20) predominated in HN, whereas ST50 (n = 13) and spa type t518 (n = 11) were prevalent in IM. Additionally, three isolates harbored both tsst-1 and lukF-PV genes, and two MRSA strains displayed a MDR phenotype in raw milk samples from HN. Biofilm formation was observed in 91.8% strains. Phylogenetic analysis identified two subpopulations (lineages 1 and 2). Among them, cluster 6 in lineage 2 comprised S. aureus strains from three sources within a farm, suggesting potential cross contamination during different stages in IM. Remarkably, among 19 MDR isolates in HN, ST398 MSSA strains exhibited a higher multidrug resistance compared to non-ST398 MSSA strains. This study underscores the high prevalence and diverse characteristics of S. aureus in raw milk, necessitating enhanced surveillance and control measures to mitigate associated risk.
Collapse
Affiliation(s)
- Mingquan Cui
- China Institute of Veterinary Drug Control, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hejia Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zekun Li
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Ningning Han
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jie Li
- China Institute of Veterinary Drug Control, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenxiu Peng
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xiuying Zhang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qi Zhao
- China Institute of Veterinary Drug Control, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuan Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
50
|
Wojnarowski K, Cholewińska P, Steinbauer P, Lautwein T, Hussein W, Streb LM, Palić D. Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit. Pathogens 2024; 13:908. [PMID: 39452779 PMCID: PMC11510180 DOI: 10.3390/pathogens13100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Outbreaks of furunculosis cause significant losses in salmonid aquaculture worldwide. With a recent rise in antimicrobial resistance, regulatory measures to minimize the use of antibiotics in animal husbandry, including aquaculture, have increased scrutiny and availability of veterinary medical products to control this disease in production facilities. In such a regulatory environment, the utility of autogenous vaccines to assist with disease prevention and control as a veterinary-guided prophylactic measure is of high interest to the producers and veterinary services alike. However, evolving concepts of epidemiological units and epidemiological links need to be considered during approval and acceptance procedures for the application of autogenous vaccines in multiple aquaculture facilities. Here, we present the results of solid-state nanopore sequencing (Oxford Nanopore Technologies, ONT) performed on 54 isolates of Aeromonas salmonicida ssp. salmonicida sampled during clinical outbreaks of furunculosis in different aquaculture facilities from Bavaria, Germany, from 2017 to 2020. All of the performed analyses (phylogeny, single nucleotide polymorphism and 3D protein modeling for major immunogenic proteins) support a high probability that all studied isolates belong to the same epidemiological unit. Simultaneously, we describe a cost/effective method of whole genome analysis with the usage of ONT as a viable strategy to study outbreaks of other pathogens in the field of aquatic veterinary medicine for the purpose of developing the best autogenous vaccine candidates applicable to multiple aquaculture establishments.
Collapse
Affiliation(s)
- Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | - Paulina Cholewińska
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | | | - Tobias Lautwein
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Wanvisa Hussein
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | - Lisa-Marie Streb
- Helmholtz Munich, Research Unit Comparative Microbiome Analysis, 85764 Neuherberg, Germany;
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| |
Collapse
|