1
|
Wang H, Zhao Q, Zhang Y, Ma J, Lei M, Zhang Z, Xue H, Liu J, Sun Z, Xu J, Zhai Y, Wang Y, Cai M, Zhu W, Liu F. Shared genetic architecture of cortical thickness alterations in major depressive disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111121. [PMID: 39154931 DOI: 10.1016/j.pnpbp.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and schizophrenia (SCZ) are heritable brain disorders characterized by alterations in cortical thickness. However, the shared genetic basis for cortical thickness changes in these disorders remains unclear. METHODS We conducted a systematic literature search on cortical thickness in MDD and SCZ through PubMed and Web of Science. A coordinate-based meta-analysis was performed to identify cortical thickness changes. Additionally, utilizing summary statistics from the largest genome-wide association studies for depression (Ncase = 268,615, Ncontrol = 667,123) and SCZ (Ncase = 53,386, Ncontrol = 77,258), we explored shared genomic loci using conjunctional false discovery rate (conjFDR) analysis. Transcriptome-neuroimaging association analysis was then employed to identify shared genes associated with cortical thickness alterations, and enrichment analysis was finally carried out to elucidate the biological significance of these genes. RESULTS Our search yielded 34 MDD (Ncase = 1621, Ncontrol = 1507) and 19 SCZ (Ncase = 1170, Ncontrol = 1043) neuroimaging studies for cortical thickness meta-analysis. Specific alterations in the left supplementary motor area were observed in MDD, while SCZ exhibited widespread reductions in various brain regions, particularly in the frontal and temporal areas. The conjFDR approach identified 357 genomic loci jointly associated with MDD and SCZ. Within these loci, 55 genes were found to be associated with cortical thickness alterations in both disorders. Enrichment analysis revealed their involvement in nervous system development, apoptosis, and cell communication. CONCLUSION This study revealed the shared genetic architecture underlying cortical thickness alterations in MDD and SCZ, providing insights into common neurobiological pathways. The identified genes and pathways may serve as potential transdiagnostic markers, informing precision medicine approaches in psychiatric care.
Collapse
Affiliation(s)
- He Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijing Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minghuan Lei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhihui Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiawei Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Zhai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450000, China.
| | - Wenshuang Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
2
|
Ding C, Sun Y, Li K, Xie S, Yan H, Li P, Yan J, Chen J, Wang H, Wang H, Chen Y, Yang Y, Lv L, Zhang H, Lu L, Zhang D, Chen Y, Zhang Z, Jiang T, Liu B. Disorder-specific neurodynamic features in schizophrenia inferred by neurodynamic embedded contrastive variational autoencoder model. Transl Psychiatry 2024; 14:496. [PMID: 39695106 DOI: 10.1038/s41398-024-03200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
Collapse
Affiliation(s)
- Chaoyue Ding
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuqing Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Kunchi Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, 311100, China.
- Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
3
|
Dory EK, Gueta A, Loterstein Y, Moshe L, Matas D, Koren L, Weller A. Intergenerational transfer of binge eating-like behavior: The additive impact of juvenile stress. Appetite 2024; 203:107713. [PMID: 39396762 DOI: 10.1016/j.appet.2024.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Binge eating (BE) is consuming large amounts of food in a short time, while experiencing loss of control over eating behavior. BE can be hereditary, and juvenile stress (JS) may contribute to its onset. We examined the impact of JS on BE-like behavior, in an animal model of intergenerational BE. Twenty-four female Wistar rats received 2-h access to palatable food (PF) three or five times a week (3 TW or 5 TW) for 4 weeks, followed by the open field test (OFT). At postnatal day (PND)27-29, female offspring either underwent JS (O-JSC) or not (O-CC). At PND51-53, offspring's stress levels were assessed behaviorally. At PND70-85, offspring received 2-h access to PF three times a week to assess their BE-like tendency. Hair samples were collected afterwards. Compared to 5 TW, 3 TW had a greater binge size. In the elevated plus maze and dark\light box, in O-JSC, offspring of 3 TW (O-3TW) spent less time in the open arms and lit area compared to O-5TW. O-3TW consumed more PF than O-5TW. O-JSC consumed more than O-CC. O-3TW-JSC had higher hair CORT levels than O-3TW-CC and O-5TW-JSC. This study highlights the interplay between maternal and offspring experiences, allowing for the study of underlying mechanisms.
Collapse
Affiliation(s)
- Elin Kachuki Dory
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Avi Gueta
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Yoni Loterstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Lital Moshe
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Devorah Matas
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Rossetti M, Stanca S, Panichi LB, Bongioanni P. Brain metabolic profiling of schizophrenia: a path towards a better understanding of the neuropathogenesis of psychosis. Metab Brain Dis 2024; 40:28. [PMID: 39570439 DOI: 10.1007/s11011-024-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Schizophrenia (SCZ) is a complex psychotic syndrome whose pathogenesis involves countless protagonists, none of which, to date, can fully explain how this disorder develops. In this narrative review, an overview of the biochemical impairment is offered according to several perspectives. Indeed, the metabolic framework behind SCZ dopaminergic hypotheses, glutamate - gamma-amynobutyric acid dysregulation, norepinephrine and serotonin, calcium channel dysfunction is addressed together with the energetic impairment, involving glucose and lipids in SCZ etiopathogenesis, in order to highlight the multilevel pathways affected in this neuropsychiatric disorder. Furthermore, neuroinflammation is analyzed, by virtue of its important role, widely investigated in recent years, in neurodegeneration. Tracing the neurotransmitter activity at the brain level by assessing the metabolic network behind the abovementioned molecules puts into light as unavoidable the need for future studies to adopt an integrate approach to address SCZ pathological and clinical picture. The combination of all these factors, essential in acquiring an overview on the complexity of SCZ pathophysiology represents a crucial step in the development of a more targeted management of SCZ patients.
Collapse
Affiliation(s)
- Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, Pisa, 56126, Italy
- NeuroCare Onlus, Pisa, 56100, Italy
| | - Stefano Stanca
- Department of Humanities, University of Naples Federico II, Via Porta di Massa 1, Naples, 80133, Italy.
| | - Leona Bokulic Panichi
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| |
Collapse
|
5
|
Wang K, Liu S, Huang D, Guan X, Chen N, Xiu M, Liu D, Huang Y. Onset age moderates the associations between neutrophil-to-lymphocyte ratio and clinical symptoms in first-episode patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:110. [PMID: 39562579 DOI: 10.1038/s41537-024-00522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
Patients with schizophrenia with early onset age have been shown to exhibit more severe negative symptoms. Genetic, biomarker, postmortem brain, and imaging studies indicate the involvement of immune abnormalities in the pathophysiology of schizophrenia. In this study, we examined the moderating role of early onset on the associations between clinical symptoms and neutrophil-to-lymphocyte ratio (NLR) in medication-naïve first-episode schizophrenia (MNFES). A total of 97 MNFES patients were recruited. Neutrophil (NEU), LYM, and NLR values were compared between early-onset (EO) and non-early-onset (non-EO) patients with schizophrenia to explore the potential influence of EO on the correlations between NLR and symptoms. The results showed no differences in NEU and NLR values between the EO and non-EO groups. In the EO group, NEU and NLR values significantly correlated with general psychopathology and total score (all p < 0.05), whereas lymphocyte counts were not correlated with symptoms of schizophrenia. NEU and NLR were not associated with symptoms in the non-EO group. Linear regression analysis in the EO group revealed that NEU or NLR values were a predictive biomarker for the clinical symptoms. Our study indicates that EO patients had greater severe negative symptoms compared with non-EO patients. In addition, onset age mediates the relationships of NEU and NLR values with clinical symptoms, suggesting that an immune disturbance, particularly increased innate immune response in EO patients, may be involved in the psychophysiology of schizophrenia.
Collapse
Affiliation(s)
- Kuiyuan Wang
- Ganzhou City Key Laboratory of Mental Health, The Third People's Hospital of Ganzhou City, Ganzhou, China
| | - Shaohua Liu
- Ganzhou City Key Laboratory of Mental Health, The Third People's Hospital of Ganzhou City, Ganzhou, China
| | - Dan Huang
- Ganzhou City Key Laboratory of Mental Health, The Third People's Hospital of Ganzhou City, Ganzhou, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Nan Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| | - Dianying Liu
- Ganzhou City Key Laboratory of Mental Health, The Third People's Hospital of Ganzhou City, Ganzhou, China.
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Seguí-Grivé M, Jurado N, Navarrete A, Morelló C, Ortega E, Boluda M, Muntané G, Llaurador-Coll M, Vilella E, Gutiérrez-Zotes A. Influence of the typology and timing of childhood trauma in psychoticism. Arch Womens Ment Health 2024; 27:705-719. [PMID: 38656388 DOI: 10.1007/s00737-024-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Child maltreatment (CM) is associated with psychosis; however little is known about the frequency, type, and timing of abuse in the personality pathology domain of psychoticism (PSY) in the DSM-5. The purpose of this study was to analyze childhood trauma typology and frequency according to gender and to identify sensitive periods of susceptibility to CM in women with high PSY. METHODS The Maltreatment and Abuse Chronology Exposure (MACE) scale was used to evaluate the frequency, severity and timing of each type of maltreatment. The full sample consisted of 83 participants with different psychiatric diagnoses. Psychoticism was assessed with the DSM-5 Personality Inventory (PID-5). To identify the differences in CM exposure between the PSY+ (high psychoticism) and PSY- (low psychoticism) groups, the Mann-Whitney U test, the chi square test and random forest (RF) test were used. RESULTS Comparing PSY + and PSY-, revealed gender differences in the impact of abuse, with highly frequent and severe types of abuse, in women. In women, PSY + and PSY-, were differentiated especially in non-verbal emotional abuse, peer physical bullying and parental verbal abuse. Several periods with a major peak at age seven followed by peaks at age 17 and 12 years old were identified. CONCLUSION Increased exposure to CM occurs in women with PSY+. A sensitivity to CM exposure during early childhood and late adolescence could be a risk factor for psychoticism in women.
Collapse
Affiliation(s)
- M Seguí-Grivé
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - N Jurado
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - A Navarrete
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - C Morelló
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - E Ortega
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - M Boluda
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
| | - G Muntané
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M Llaurador-Coll
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
| | - E Vilella
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - A Gutiérrez-Zotes
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n. 43206, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain.
- Universitat Rovira i Virgili, Reus, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Campos JMB, de Aguiar da Costa M, de Rezende VL, Costa RRN, Ebs MFP, Behenck JP, de Roch Casagrande L, Venturini LM, Silveira PCL, Réus GZ, Gonçalves CL. Animal Model of Autism Induced by Valproic Acid Combined with Maternal Deprivation: Sex-Specific Effects on Inflammation and Oxidative Stress. Mol Neurobiol 2024:10.1007/s12035-024-04491-z. [PMID: 39316355 DOI: 10.1007/s12035-024-04491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) etiology probably involves a complex interplay of both genetic and environmental risk factors, which includes pre- and perinatal exposure to environmental stressors. Thus, this study evaluated the effects of prenatal exposure to valproic acid (VPA) combined with maternal deprivation (MD) on behavior, oxidative stress parameters, and inflammatory state at a central and systemic level in male and female rats. Pregnant Wistar rats were exposed to VPA during gestation, and the offspring were submitted to MD. Offspring were tested for locomotor and social behavior; rats were euthanized, where the cerebellum, posterior cortex, prefrontal cortex, and peripheric blood were collected for oxidative stress and inflammatory analysis. It was observed that young rats (25-30 days old) exposed only to VPA presented a lower social approach when compared to the control group. VPA + MD rats did not present the same deficit. Female rats exposed to VPA + MD presented oxidative stress in all brain areas analyzed. Male rats in the VPA and VPA + MD groups presented oxidative stress only in the cerebellum. Regarding inflammatory parameters, male rats exposed only to MD exhibited an increase in pro-inflammatory cytokines in the blood and in the cortex total. The same was observed in females exposed only to VPA. Animals exposed to VPA + MD showed no alterations in the cytokines analyzed. In summary, gestational (VPA) and perinatal (MD) insults can affect molecular mechanisms such as oxidative stress and inflammation differently depending on the sex and brain area analyzed. Combined exposition to VPA and MD triggers oxidative stress especially in female brains without evoking an inflammatory response.
Collapse
Affiliation(s)
- José Marcelo Botancin Campos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Rosiane Ronchi Nascimento Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maria Fernanda Pedro Ebs
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
8
|
Nikolić T, Bogosavljević MV, Stojković T, Kanazir S, Lončarević-Vasiljković N, Radonjić NV, Popić J, Petronijević N. Effects of Antipsychotics on the Hypothalamus-Pituitary-Adrenal Axis in a Phencyclidine Animal Model of Schizophrenia. Cells 2024; 13:1425. [PMID: 39272997 PMCID: PMC11394463 DOI: 10.3390/cells13171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins. The perinatal administration of phencyclidine (PCP) to rodents represents an animal model of SCH. This study investigated the effects of perinatal PCP exposure and subsequent haloperidol/clozapine treatment on corticosterone levels measured by ELISA and the expression of GR-related proteins (GR, pGR, HSP70, HSP90, FKBP51, and 11β-Hydroxysteroid dehydrogenase-11β-HSD) determined by Western blot, in different brain regions of adult rats. Six groups of male rats were treated on the 2nd, 6th, 9th, and 12th postnatal days (PN), with either PCP or saline. Subsequently, one saline and one PCP group received haloperidol/clozapine from PN day 35 to PN day 100. The results showed altered GR sensitivity in the rat brain after PCP exposure, which decreased after haloperidol/clozapine treatment. These findings highlight disturbances in the HPA axis in a PCP-induced model of SCH and the potential protective effects of antipsychotics. To the best of our knowledge, this is the first study to investigate the effects of antipsychotic drugs on the HPA axis in a PCP animal model of SCH.
Collapse
Affiliation(s)
- Tatjana Nikolić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Tihomir Stojković
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- iNOVA4Health, NOVA Medical School|Faculdade Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Nevena V Radonjić
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jelena Popić
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nataša Petronijević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Ning C, Wu X, Zhao X, Lu Z, Yao X, Zhou T, Yi L, Sun Y, Wu S, Liu Z, Huang X, Gao L, Liu J. Epigenomic landscapes during prefrontal cortex development and aging in rhesus. Natl Sci Rev 2024; 11:nwae213. [PMID: 39183748 PMCID: PMC11342245 DOI: 10.1093/nsr/nwae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 08/27/2024] Open
Abstract
The prefrontal cortex (PFC) is essential for higher-level cognitive functions. How epigenetic dynamics participates in PFC development and aging is largely unknown. Here, we profiled epigenomic landscapes of rhesus monkey PFCs from prenatal to aging stages. The dynamics of chromatin states, including higher-order chromatin structure, chromatin interaction and histone modifications are coordinated to regulate stage-specific gene transcription, participating in distinct processes of neurodevelopment. Dramatic changes of epigenetic signals occur around the birth stage. Notably, genes involved in neuronal cell differentiation and layer specification are pre-configured by bivalent promoters. We identified a cis-regulatory module and the transcription factors (TFs) associated with basal radial glia development, which was associated with large brain size in primates. These TFs include GLI3, CREB5 and SOX9. Interestingly, the genes associated with the basal radial glia (bRG)-associated cis-element module, such as SRY and SOX9, are enriched in sex differentiation. Schizophrenia-associated single nucleotide polymorphisms are more enriched in super enhancers (SEs) than typical enhancers, suggesting that SEs play an important role in neural network wiring. A cis-regulatory element of DBN1 is identified, which is critical for neuronal cell proliferation and synaptic neuron differentiation. Notably, the loss of distal chromatin interaction and H3K27me3 signal are hallmarks of PFC aging, which are associated with abnormal expression of aging-related genes and transposon activation, respectively. Collectively, our findings shed light on epigenetic mechanisms underlying primate brain development and aging.
Collapse
Affiliation(s)
- Chao Ning
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zongyang Lu
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xuelong Yao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- GuangzhouNvwa Life Technology Co., Ltd, Guangzhou 510535, China
| | - Tao Zhou
- Shenzhen Neher Neural Plasticity Laboratory, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lizhi Yi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyu Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenbo Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
10
|
Del Casale A, Modesti MN, Gentile G, Guariglia C, Ferracuti S, Simmaco M, Borro M. Is the Hedgehog Pathway Involved in the Pathophysiology of Schizophrenia? A Systematic Review of Current Evidence of Neural Molecular Correlates and Perspectives on Drug Development. Curr Issues Mol Biol 2024; 46:5322-5336. [PMID: 38920990 PMCID: PMC11202070 DOI: 10.3390/cimb46060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Among the pathophysiological correlates of schizophrenia, recent research suggests a potential role for the Hedgehog (Hh) signalling pathway, which has been traditionally studied in embryonic development and oncology. Its dysregulation may impact brain homeostasis, neuroplasticity, and potential involvement in neural processes. This systematic review provides an overview of the involvement of Hh signalling in the pathophysiology of schizophrenia and antipsychotic responses. We searched the PubMed and Scopus databases to identify peer-reviewed scientific studies focusing on Hh and schizophrenia, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, finally including eight studies, including three articles focused on patients with schizophrenia, two animal models of schizophrenia, two animal embryo studies, and one cellular differentiation study. The Hh pathway is crucial in the development of midbrain dopaminergic neurons, neuroplasticity mechanisms, regulating astrocyte phenotype and function, brain-derived neurotrophic factor expression, brain glutamatergic neural transmission, and responses to antipsychotics. Overall, results indicate an involvement of Hh in the pathophysiology of schizophrenia and antipsychotic responses, although an exiguity of studies characterises the literature. The heterogeneity between animal and human studies is another main limitation. Further research can lead to better comprehension and the development of novel personalised drug treatments and therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Psychiatry, Emergency and Admissions Department, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Martina Nicole Modesti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Psychiatry, Mental Health Department, Santissimo Gonfalone Hospital, Local Health Service Roma 5, Monterotondo, 00015 Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Scientific Institute for Research, Hospitalization and Healthcare Fondazione Santa Lucia, 00179 Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Risk Management, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
11
|
Chou S, Wu R, Li M. Long-term impacts of prenatal maternal immune activation and postnatal maternal separation on maternal behavior in adult female rats: Relevance to postpartum mental disorders. Behav Brain Res 2024; 461:114831. [PMID: 38142861 PMCID: PMC10872411 DOI: 10.1016/j.bbr.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Early life adversities are known to exert long-term negative impacts on psychological and brain functions in adulthood. The present work examined how a prenatal brain insult and a postnatal stressor independently or interactively influence the quality of maternal care of postpartum female rats and their cognitive and emotional functions, as a way to identify the behavioral dysfunctions underlying childhood trauma-induced postpartum mental disorders (as indexed by impaired maternal care). Sprague-Dawley female offspring born from mother rats exposed to polyinosinic:polycytidylic acid (PolyI:C, 4.0-6.0 mg/kg) intended to cause gestational maternal immune activation (MIA) or saline were subjected to a repeated maternal separation stress (RMS, 3 h/day) or no separation for 9 days in the first two weeks of life (a 2 × 2 design). When these offspring became mothers, their attentional filtering ability (as measured in the prepulse inhibition of acoustic startle reflex test), positive hedonic response (as measured in the sucrose preference test), and negative emotional response (as measured in the startle reflex and fear-potentiated startle test) were examined, along with their home-cage maternal behavior. Virgin littermates served as controls in all the behavioral tests except in maternal behavior. Results showed that mother rats who experienced RMS displayed impaired nest building and crouching/nursing activities. RMS also interacted with MIA to alter pup retrieval latency and startle reactivity, such that MIA-RMS dams demonstrated significantly slower pup retrieval latency and higher startle magnitude compared to either RMS-only and MIA-only mothers. MIA also disrupted attentional filtering ability, with significantly lower prepulse inhibition. However, neither prenatal MIA nor postnatal RMS impaired sucrose preference or the acquisition of fear-potentiated startle. These results indicate that prenatal stress and postnatal adversity could impair maternal behavior individually, and interact with each other, causing impairments in attention, emotion and maternal motivation.
Collapse
Affiliation(s)
- Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
van der Meer D, Cheng W, Rokicki J, Fernandez-Cabello S, Shadrin A, Smeland OB, Ehrhart F, Gülöksüz S, Pries LK, Lin B, Rutten BPF, van Os J, O’Donovan M, Richards AL, Steen NE, Djurovic S, Westlye LT, Andreassen OA, Kaufmann T. Clustering Schizophrenia Genes by Their Temporal Expression Patterns Aids Functional Interpretation. Schizophr Bull 2024; 50:327-338. [PMID: 37824720 PMCID: PMC10919784 DOI: 10.1093/schbul/sbad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms. STUDY DESIGN We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls. STUDY RESULTS Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals. CONCLUSIONS We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other's effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia.
Collapse
Affiliation(s)
- Dennis van der Meer
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Weiqiu Cheng
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Sara Fernandez-Cabello
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Friederike Ehrhart
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sinan Gülöksüz
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Lotta-Katrin Pries
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bochao Lin
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bart P F Rutten
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jim van Os
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Michael O’Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander L Richards
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, Norwegian Centre for Mental Disorders Research, University of Bergen, Bergen, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
13
|
Arakelyan A, Avagyan S, Kurnosov A, Mkrtchyan T, Mkrtchyan G, Zakharyan R, Mayilyan KR, Binder H. Temporal changes of gene expression in health, schizophrenia, bipolar disorder, and major depressive disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:19. [PMID: 38368435 PMCID: PMC10874418 DOI: 10.1038/s41537-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.
- Armenian Bioinformatics Institute, Yerevan, Armenia.
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia.
| | | | | | - Tigran Mkrtchyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | | | - Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Karine R Mayilyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Bhuiyan P, Sun Z, Khan MA, Hossain MA, Rahman MH, Qian Y. System biology approaches to identify hub genes linked with ECM organization and inflammatory signaling pathways in schizophrenia pathogenesis. Heliyon 2024; 10:e25191. [PMID: 38322840 PMCID: PMC10844262 DOI: 10.1016/j.heliyon.2024.e25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
16
|
Kuhlman KR. Pitfalls and potential: Translating the two-hit model of early life stress from pre-clinical non-human experiments to human samples. Brain Behav Immun Health 2024; 35:100711. [PMID: 38169793 PMCID: PMC10758720 DOI: 10.1016/j.bbih.2023.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Exposure to early life stress (ELS) has been linked to at least double the risk of psychopathology as well as higher morbidity and earlier mortality across the lifespan. For this reason, the field of developmental psychopathology has spent decades identifying factors that explain which individuals are at risk for negative health outcomes. Preclinical experiments in this field commonly test the "two-hit hypothesis", which explores how ELS potentiates vulnerability to pathogenic physiological and behavioral outcomes when an individual is exposed to a stressor later in development. Yet, translation of the two-hit hypothesis to humans is conceptually and practically challenging, thus impeding progress in the field. This review summarizes the two-hit hypothesis used in preclinical experiments as it pertains to two putative pathways linking ELS to psychopathology: the innate immune and neuroendocrine systems. This review also identifies important considerations when translating this model to humans and provides several recommendations. Specifically, attention to the "biological salience" of different forms of ELA and the concordance of that salience with later probes of the system are needed. Further, the consequences of ELS may be context-specific rather than ubiquitous, at least among young people. Within this conceptualization, "second hits" may be best operationalized using standardized acute challenges to the innate immune and neuroendocrine systems (e.g., psychosocial stress). Third, more explicit reporting of sex differences in the human literature is needed. Finally, preclinical experimental designs that more accurately reflect the natural occurrence of ELS in community samples will more effectively advance the understanding of developmental mechanisms that occur as a consequence of ELS.
Collapse
Affiliation(s)
- Kate Ryan Kuhlman
- Department of Psychological Science, School of Social Ecology, University of California Irvine, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| |
Collapse
|
17
|
Rama Rao R, Reddy ABS, P D, Koul A. Schizencephaly Associated With Bipolar Affective Disorder. Cureus 2024; 16:e54534. [PMID: 38516433 PMCID: PMC10956483 DOI: 10.7759/cureus.54534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 03/23/2024] Open
Abstract
Schizencephaly is a rare congenital anomaly characterized by the formation of abnormal clefts in the brain. Despite the association of psychotic symptoms with various brain abnormalities or insults, their occurrence in individuals with schizencephaly is relatively infrequent. The association of bipolar disorder, with or without psychosis, with schizencephaly is rarer. A systematic search on PubMed using "Schizencephaly AND Bipolar Disorder" yielded only four case studies specifically addressing the connection between these two conditions. Here, we present a case of a 22-year-old male patient with a history of childhood seizures who developed first episode psychosis along with manic symptoms and was found to have closed-lip schizencephaly.
Collapse
Affiliation(s)
- Rahul Rama Rao
- Psychiatry, Mysore Medical College and Research Institute, Mysuru, IND
| | | | - Dhanushia P
- Psychiatry, Mysore Medical College and Research Institute, Mysuru, IND
| | - Abhay Koul
- Psychiatry, Mysore Medical College and Research Institute, Mysuru, IND
| |
Collapse
|
18
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
19
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Guerrin CG, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, Doorduin J, de Vries EF. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress 2023; 27:100580. [PMID: 37920548 PMCID: PMC10618826 DOI: 10.1016/j.ynstr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1β protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jing Zheng
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Maria Franquesa-Mullerat
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
21
|
Martín-Cuevas C, Ramos-Herrero VD, Crespo-Facorro B, Sánchez-Hidalgo AC. Prenatal risk factors and postnatal cannabis exposure: Assessing dual models of schizophrenia-like rodents. Neurosci Biobehav Rev 2023; 154:105409. [PMID: 37783300 DOI: 10.1016/j.neubiorev.2023.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is a multifactorial neurodevelopmental disorder caused by genetic and environmental alterations, especially during prenatal stages. On the other hand, cannabis consumption in adolescence has been also linked to an increased risk of developing SCZ. The combination of both hits has been proposed as the dual hit hypothesis of SCZ. We systematically reviewed prenatal environmental alterations and cannabis consumption during adolescence that are associated with an increased risk of SCZ, following the PRISMA model. The analysis focused on dual animal models where the first hit is prenatal environmental exposure and the second hit consists of postnatal cannabis exposure. The articles were evaluated by three independent reviewers based on inclusion criteria. We extracted the first author´s name, year, model species, sex and analysis. The articles reported on dual murine models and their effects on weight, behavior, genetics, electrophysiology and brain structure and function. We conclude that the defects caused by the dual hits depend on the sex of the model, as well as type of hits.
Collapse
Affiliation(s)
- Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain.
| | - Víctor Darío Ramos-Herrero
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain.
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain; Department of Psychiatry, School of Medicine, University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain.
| | - Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Chandwani MN, Kamte YS, Singh VR, Hemerson ME, Michaels AC, Leak RK, O'Donnell LA. The anti-viral immune response of the adult host robustly modulates neural stem cell activity in spatial, temporal, and sex-specific manners. Brain Behav Immun 2023; 114:61-77. [PMID: 37516388 DOI: 10.1016/j.bbi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Yashika S Kamte
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Vivek R Singh
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Marlo E Hemerson
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Alexa C Michaels
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Rehana K Leak
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Development 2023; 150:dev201872. [PMID: 37702007 PMCID: PMC10560572 DOI: 10.1242/dev.201872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Murlanova K, Pletnikov MV. Modeling psychotic disorders: Environment x environment interaction. Neurosci Biobehav Rev 2023; 152:105310. [PMID: 37437753 DOI: 10.1016/j.neubiorev.2023.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Schizophrenia is a major psychotic disorder with multifactorial etiology that includes interactions between genetic vulnerability and environmental risk factors. In addition, interplay of multiple environmental adversities affects neurodevelopment and may increase the individual risk of developing schizophrenia. Consistent with the two-hit hypothesis of schizophrenia, we review rodent models that combine maternal immune activation as the first hit with other adverse environmental exposures as the second hit. We discuss the strengths and pitfalls of the current animal models of environment x environment interplay and propose some future directions to advance the field.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
26
|
Wang Z, Lipshutz A, Liu ZL, Trzeciak AJ, Miranda IC, Martínez de la Torre C, Schild T, Lazarov T, Rojas WS, Saavedra PHV, Romero-Pichardo JE, Baako A, Geissmann F, Faraco G, Gan L, Etchegaray JI, Lucas CD, Parkhurst CN, Zeng MY, Keshari KR, Perry JSA. Early life high fructose exposure disrupts microglia function and impedes neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553242. [PMID: 37645894 PMCID: PMC10462086 DOI: 10.1101/2023.08.14.553242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.
Collapse
|
27
|
Giannopoulou I, Georgiades S, Stefanou MI, Spandidos DA, Rizos E. Links between trauma and psychosis (Review). Exp Ther Med 2023; 26:386. [PMID: 37456168 PMCID: PMC10347243 DOI: 10.3892/etm.2023.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between trauma and psychosis is complex and multifaceted, with evidence suggesting that trauma can be both a risk factor for the development of psychosis and a consequence of psychotic experiences. The present review aimed to provide an overview of the current state of knowledge on the relationship between trauma and psychosis, including historical and conceptual considerations, as well as epidemiological evidence. The potential explanation of the link between trauma and psychosis is provided through available models and similarities in their neurobiological associations. Overall, the research confirms the relationship between trauma and psychosis, and suggests that individuals with a co-occurring history of trauma and psychosis may have increased symptom severity and worse functional outcomes compared with individuals with psychosis alone. Future research should focus on elucidating the underlying causal pathways between trauma exposure and psychosis in order to inform effective treatment approaches aiming to prevent the intensification of psychotic symptoms and processes.
Collapse
Affiliation(s)
- Ioanna Giannopoulou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Stelios Georgiades
- Department of Basic Clinical Sciences, Medical School, University of Nicosia, 2415 Nicosia, Cyprus
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
28
|
Southey BR, Johnson RW, Rodriguez-Zas SL. Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites 2023; 13:881. [PMID: 37623825 PMCID: PMC10456262 DOI: 10.3390/metabo13080881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Prenatal stress often results in maternal immune activation (MIA) that can impact prenatal brain development, molecular processes, and substrates and products of metabolism that participate in physiological processes at later stages of life. Postnatal metabolic and immunological stressors can affect brain metabolites later in life, independently or in combination with prenatal stressors. The effects of prenatal and postnatal stressors on hippocampal metabolites were studied using a pig model of viral MIA exposed to immunological and metabolic stressors at 60 days of age using gas chromatography mass spectrometry. Postnatal stress and MIA elicited effects (FDR-adjusted p-value < 0.1) on fifty-nine metabolites, while eight metabolites exhibited an interaction effect. The hippocampal metabolites impacted by MIA or postnatal stress include 4-aminobutanoate (GABA), adenine, fumarate, glutamate, guanine, inosine, ornithine, putrescine, pyruvate, and xanthine. Metabolites affected by MIA or postnatal stress encompassed eight significantly (FDR-adjusted p-value < 0.1) enriched Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathways. The enriched arginine biosynthesis and glutathione metabolism pathways included metabolites that are also annotated for the urea cycle and polyamine biosynthesis pathways. Notably, the prenatal and postnatal challenges were associated with disruption of the glutathione metabolism pathway and changes in the levels of glutamic acid, glutamate, and purine nucleotide metabolites that resemble patterns elicited by drugs of abuse and may underlie neuroinflammatory processes. The combination of MIA and postnatal stressors also supported the double-hit hypothesis, where MIA amplifies the impact of stressors later in life, sensitizing the hippocampus of the offspring to future challenges. The metabolites and pathways characterized in this study offer evidence of the role of immunometabolism in understanding the impact of MIA and stressors later in life on memory, spatial navigation, neuropsychiatric disorders, and behavioral disorders influenced by the hippocampus.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
30
|
Kayir H, Ruffolo J, McCunn P, Khokhar JY. The Relationship Between Cannabis, Cognition, and Schizophrenia: It's Complicated. Curr Top Behav Neurosci 2023; 63:437-461. [PMID: 36318403 DOI: 10.1007/7854_2022_396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The consequences of cannabis use, especially in the context of schizophrenia, have gained increased importance with the legalization of cannabis in North America and across the globe. Cannabis use has multifaceted impacts on cognition in schizophrenia patients and healthy subjects. Healthy subjects, particularly those who initiated cannabis use at earlier ages and used high-potency cannabis for longer durations, exhibited poorer cognition mainly in working memory and attention. Cannabis use in schizophrenia has been associated with symptom exacerbation, longer and more frequent psychotic episodes, and poorer treatment outcomes. However, cannabis-using patients have better overall cognitive performance compared to patients who were not cannabis users. Interestingly, these effects were only apparent in lifetime cannabis users, but not in current (or within last 6 months) users. Moreover, higher frequency and earlier age of cannabis use initiation (i.e., before 17 years of age) were associated with better cognitive performance, although they had an earlier illness onset. Three possible hypotheses seem to come forward to explain this paradox. First, some components of cannabis may have antipsychotic or cognitive-enhancing properties. Secondly, chronic cannabis use may alter endocannabinoid signaling in the brain which could be a protective factor for developing psychosis or cognitive impairments. A third explanation could be their representation of a phenotypically distinct patient group with more intact cognitive functioning and less neurodevelopmental pathology. Multiple factors need to be considered to understand the complex relationship between cannabis, cognitive function, and schizophrenia. In short, age at initiation, duration and rate of cannabis use, abstinence duration, co-use of substances and alcohol, prescribed medications, relative cannabinoid composition and potency of cannabis, presence of genetic and environmental vulnerability factors are prominent contributors to the variability in outcomes. Animal studies support the disruptive effects of Δ9-tetrahydrocannabinol (THC) administration during adolescence on attention and memory performance. They provide insights about interaction of cannabinoid receptors with other neurotransmitter systems, such as GABA and glutamate, and other regulatory molecules, such as PSD95 and synaptophysin. Cannabidiol (CBD), on the other hand, can improve cognitive deficits seen in neurodevelopmental and chemically-induced animal models of schizophrenia. Future studies focusing on bridging the translational gaps between human and animal studies, through the use of translationally relevant methods of exposure (e.g., vaping), consistent behavioral assessments, and congruent circuit interrogations (e.g., imaging) will help to further clarify this complex picture.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jessica Ruffolo
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick McCunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
31
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
32
|
Nielsen TC, Nassar N, Shand AW, Jones HF, Han VX, Patel S, Guastella AJ, Dale RC, Lain SJ. Association of maternal autoimmune disease and early childhood infections with offspring autism spectrum disorder: A population-based cohort study. Autism Res 2022; 15:2371-2380. [PMID: 36189896 PMCID: PMC10946525 DOI: 10.1002/aur.2824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to examine potential synergistic effects between maternal autoimmune disease and early childhood infections and their association with autism spectrum disorder (ASD) in offspring. Both exposures have been associated with increased risk of ASD in previous studies, but potential synergistic effects remain underexplored. We conducted a population-based cohort study of singleton children born at term gestation (37-41 weeks) in New South Wales, Australia from January 2002 to December 2008. Maternal autoimmune diagnoses and childhood infections before age 2 years were identified from linked maternal and child hospital admissions, and ASD diagnoses by age 9 years were identified from linked disability services data. Multivariable logistic regression assessed the association between each exposure and ASD and additive interaction between exposures, controlling for potential confounders. A total of 18,451 children exposed to maternal autoimmune disease were propensity score matched (1:2) to 36,902 unexposed children. Any maternal autoimmune disease (adjusted odds ratio (aOR) 1.25, 95% confidence interval (CI) 1.07-1.47) and any childhood infection before age 2 years (aOR 1.38, 95% CI 1.15-1.67) were each associated with ASD. However, there was no evidence of additive interaction between the two exposures (relative excess risk due to interaction [RERI] 0.128, 95% CI -0.418-0.675) resulting in increased odds of ASD in offspring. Future studies could examine potential interactions between other sources of maternal immune activation and childhood infection and impact on ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Timothy C. Nielsen
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
| | - Natasha Nassar
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
| | - Antonia W. Shand
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
- Department of Maternal Fetal MedicineRoyal Hospital for WomenSydneyAustralia
| | - Hannah F. Jones
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
- Starship Children's Hospital, University of AucklandAucklandNew Zealand
| | - Velda X. Han
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
- Khoo Teck Puat‐National University Children's Medical Institute, National University Health SystemSingapore
| | - Shrujna Patel
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
| | | | - Russell C. Dale
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
| | - Samantha J. Lain
- Children's Hospital Westmead Clinical SchoolUniversity of SydneySydneyAustralia
| |
Collapse
|
33
|
Jakovljevic A, Agatonovic G, Aleksic D, Aksic M, Reiss G, Förster E, Stamatakis A, Jakovcevski I, Poleksic J. The impact of early life maternal deprivation on the perineuronal nets in the prefrontal cortex and hippocampus of young adult rats. Front Cell Dev Biol 2022; 10. [PMID: 36518543 PMCID: PMC9742529 DOI: 10.3389/fcell.2022.982663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024] Open
Abstract
Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol. We show that maternal deprivation in the medial prefrontal cortex of adult rats caused a decrease in density of overall PNNs and PNNs that enwrap PV+ interneurons in the rostral cingulate cortex. Furthermore, a staining intensity decrease of overall PNNs and PNN+/PV+ cells was found in the prelimbic cortex. Finally, a decrease in both intensity and density of overall PNNs and PNNs surrounding PV+ cells was observed in the infralimbic cortex, together with increase in the intensity of VGAT inhibitory puncta. Surprisingly, maternal deprivation did not cause any changes in the density of PV+ interneurons in the mPFC, neither had it affected PNNs and PV+ interneurons in the hippocampus. Taken together, our findings indicate that PNNs, specifically the ones enwrapping PV+ interneurons in the medial prefrontal cortex, are affected by early life stress.
Collapse
|
34
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
35
|
Setién-Suero E, Ayesa-Arriola R, Peña J, Crespo-Facorro B, Ojeda N. Trauma and psychosis: The mediating role of premorbid adjustment and recent stressful events in a 3-year longitudinal study. J Psychiatr Res 2022; 155:279-285. [PMID: 36166937 DOI: 10.1016/j.jpsychires.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Some of the most-studied environmental factors that can contribute to the development of psychosis are the adversities experienced at an early age. Among these, childhood interpersonal trauma (CIT) has been considered especially influential in the onset of the disease. The aim of the study was to explore the relationship between CIT and the first episode of psychosis (FEP), as well as the relationship between CIT and clinical and functional outcomes 3 years after illness onset. METHODS A total of 278 patients with a FEP and 52 healthy controls were studied. Logistic regression analysis was carried out to examine the explained variation by CIT at the beginning of psychosis. Recent stressful events and premorbid adjustment related to CIT, were introduced in path analyses to determine their mediating effects between CIT and the disease and its clinical and functional results. RESULTS Mediation analyses showed that CIT was indirectly associated with belonging to the FEP group through recent stressful events (Effect = 0.981; SE = 0.323; CI = 0.485 to 1.761). Premorbid academic adjustment in late adolescence mediated the relationship between CIT and clinical and functional outcomes, specifically in the measurements of the Scales for Assessment of Positive and Negative Symptoms, in the Brief Psychiatric Rating Scale, and in the Disability Assessment Scale. CONCLUSIONS These findings suggest that early traumatic experiences play an important role in the FEP. Early intervention that promotes good academic adjustment during adolescence and/or avoids retraumatisation could positively impact both the onset and the course of psychotic illness.
Collapse
Affiliation(s)
- Esther Setién-Suero
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Rosa Ayesa-Arriola
- University Hospital Marqués de Valdecilla. Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Spain; Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| |
Collapse
|
36
|
Abstract
Growing evidence indicates that a suboptimal intrauterine environment confers risk for schizophrenia. The developmental model of schizophrenia posits that aberrant brain growth during early brain development and adolescence may interact to contribute to this psychiatric disease in adulthood. Although a variety of factors may perturb the environment of the developing fetus and predispose for schizophrenia later, a common mechanism has yet to be elucidated. Micronutrient deficiencies during the perinatal period are known to induce potent effects on brain development by altering neurodevelopmental processes. Iron is an important candidate nutrient to consider because of its role in energy metabolism, monoamine synthesis, synaptogenesis, myelination, and the high prevalence of iron deficiency (ID) in the mother-infant dyad. Understanding the current state of science regarding perinatal ID as an early risk factor for schizophrenia is imperative to inform empirical work investigating the etiology of schizophrenia and develop prevention and intervention programs. In this narrative review, we focus on perinatal ID as a common mechanism underlying the fetal programming of schizophrenia. First, we review the neural aberrations associated with perinatal ID that indicate risk for schizophrenia in adulthood, including disruptions in dopaminergic neurotransmission, hippocampal-dependent learning and memory, and sensorimotor gating. Second, we review the pathophysiology of perinatal ID as a function of maternal ID during pregnancy and use epidemiological and cohort studies to link perinatal ID with risk of schizophrenia. Finally, we review potential confounding phenotypes, including nonanemic causes of perinatal brain ID and future risk of schizophrenia.
Collapse
Affiliation(s)
- Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Raghavendra B. Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455 (USA)
- Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
37
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
38
|
Puvogel S, Blanchard K, Casas BS, Miller RL, Garrido-Jara D, Arizabalos S, Rehen SK, Sanhueza M, Palma V. Altered resting-state functional connectivity in hiPSCs-derived neuronal networks from schizophrenia patients. Front Cell Dev Biol 2022; 10:935360. [PMID: 36158199 PMCID: PMC9489842 DOI: 10.3389/fcell.2022.935360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022] Open
Abstract
Schizophrenia (SZ) is a severe mental disorder that arises from abnormal neurodevelopment, caused by genetic and environmental factors. SZ often involves distortions in reality perception and it is widely associated with alterations in brain connectivity. In the present work, we used Human Induced Pluripotent Stem Cells (hiPSCs)-derived neuronal cultures to study neural communicational dynamics during early development in SZ. We conducted gene and protein expression profiling, calcium imaging recordings, and applied a mathematical model to quantify the dynamism of functional connectivity (FC) in hiPSCs-derived neuronal networks. Along the neurodifferentiation process, SZ networks displayed altered gene expression of the glutamate receptor-related proteins HOMER1 and GRIN1 compared to healthy control (HC) networks, suggesting a possible tendency to develop hyperexcitability. Resting-state FC in neuronal networks derived from HC and SZ patients emerged as a dynamic phenomenon exhibiting connectivity configurations reoccurring in time (hub states). Compared to HC, SZ networks were less thorough in exploring different FC configurations, changed configurations less often, presented a reduced repertoire of hub states and spent longer uninterrupted time intervals in this less diverse universe of hubs. Our results suggest that alterations in the communicational dynamics of SZ emerging neuronal networks might contribute to the previously described brain FC anomalies in SZ patients, by compromising the ability of their neuronal networks for rapid and efficient reorganization through different activity patterns.
Collapse
Affiliation(s)
- Sofía Puvogel
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
- Cell Physiology Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Kris Blanchard
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
- Cell Physiology Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Bárbara S. Casas
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
| | - Robyn L. Miller
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), Atlanta, GA, United States
| | - Delia Garrido-Jara
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
| | - Sebastián Arizabalos
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
| | - Stevens K. Rehen
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Magdalena Sanhueza
- Cell Physiology Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- *Correspondence: Verónica Palma, ; Magdalena Sanhueza,
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Department of Biology, Faculty of Sciences. Universidad de Chile. Santiago, Chile
- *Correspondence: Verónica Palma, ; Magdalena Sanhueza,
| |
Collapse
|
39
|
Lombardo B, Pagani M, De Rosa A, Nunziato M, Migliarini S, Garofalo M, Terrile M, D’Argenio V, Galbusera A, Nuzzo T, Ranieri A, Vitale A, Leggiero E, Di Maio A, Barsotti N, Borello U, Napolitano F, Mandarino A, Carotenuto M, Heresco-Levy U, Pasqualetti M, Malatesta P, Gozzi A, Errico F, Salvatore F, Pastore L, Usiello A. D-aspartate oxidase gene duplication induces social recognition memory deficit in mice and intellectual disabilities in humans. Transl Psychiatry 2022; 12:305. [PMID: 35915065 PMCID: PMC9343392 DOI: 10.1038/s41398-022-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.
Collapse
Affiliation(s)
- Barbara Lombardo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Marco Pagani
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Arianna De Rosa
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marcella Nunziato
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Migliarini
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Martina Garofalo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Marta Terrile
- grid.5606.50000 0001 2151 3065Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, 16132 Genoa, Italy ,grid.496862.70000 0004 0544 6263Present Address: Novartis Ireland ltd, D04A9N6 Dublin 4, Ireland
| | - Valeria D’Argenio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, Università San Raffaele, 00166 Rome, Italy
| | - Alberto Galbusera
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Nuzzo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Annaluisa Ranieri
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Andrea Vitale
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Eleonora Leggiero
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Anna Di Maio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Noemi Barsotti
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Francesco Napolitano
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Alessandra Mandarino
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Marco Carotenuto
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Uriel Heresco-Levy
- grid.414060.70000 0004 0470 6676Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, 9190501 Jerusalem, Israel ,grid.9619.70000 0004 1937 0538Hadassah Medical School, Hebrew University, 9190501 Jerusalem, Israel
| | - Massimo Pasqualetti
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy ,grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Paolo Malatesta
- grid.5606.50000 0001 2151 3065Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Alessandro Gozzi
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Francesco Errico
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro modelli animali (Federico II, 80131, Naples; Tor Vergata, Rome and "G. D'Annunzio", Chieti-Pescara), Naples, Italy.
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy.
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
40
|
Chen Y, Li S, Zhang T, Yang F, Lu B. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress. iScience 2022; 25:104609. [PMID: 35789832 PMCID: PMC9250029 DOI: 10.1016/j.isci.2022.104609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yanhui Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Corresponding author
| |
Collapse
|
41
|
Bidirectional Effect of Repeated Exposure to Extremely Low-Frequency Electromagnetic Field (50 Hz) of 1 and 7 mT on Oxidative/Antioxidative Status in Rat's Brain: The Prediction for the Vulnerability to Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1031211. [PMID: 35746959 PMCID: PMC9213150 DOI: 10.1155/2022/1031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Studies reported evidence for opposite effects of extremely low-frequency electromagnetic field (EMF): harmful, including the oxidative stress induction, and beneficial, such as the activation of antioxidant defense. People's exposure to EMF is often repeated or prolonged, and it is important to consider the cumulative effect of such kind of exposure on the organism. If changes evoked by repeated exposure to EMF are permanent, responsiveness to other stress factors can be modified. The aims of our study were (1) to evaluate changes in the levels of oxidative stress and antioxidant defense markers in the prefrontal cortex of adult rats after repeated exposure to 1 and 7 mT EMF and (2) to assess whether repeated EMF exposure can modify oxidative/antioxidative status in response to other stress factors. Rats were exposed to EMF 1 h/day for 7 days, one, twice, or three times. After each exposure, 8-isoprostanes, protein carbonyl groups, and the total antioxidant capacity were assessed. Part of the animals, after EMF treatment, was exposed to another stress factor—open field. Results showed that repeated exposure changed the oxidative/antioxidative status depending on the intensity of the EMF and the number of exposures. 1 mT EMF created weak changes in the oxidative status in the brain; however, 7 mT EMF moved the balance to a clearly higher level. The changes in the oxidative status after 1 mT EMF were enough to reduce, and after 7 mT EMF to intensify oxidative processes in response to the next stress. We concluded that the organism might adapt to “weak” EMF, while “strong” EMF exceeds the adaptive capacity of the organism and sensitizes it to subsequent stress, and thus may modulate vulnerability to diseases. Our results also provide new insights into the possible therapeutic properties of the magnetic field, as 1 mT EMF appears to have a potentially protective impact on the brain.
Collapse
|
42
|
Rymut HE, Rund LA, Southey BR, Johnson RW, Rodriguez-Zas SL. Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors. Genes (Basel) 2022; 13:814. [PMID: 35627199 PMCID: PMC9141200 DOI: 10.3390/genes13050814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Neurogenomic changes induced by maternal immune activation (MIA) during gestation and the social stress of weaning can alter brain plasticity in the hippocampus of offspring. The present study furthers the understanding of how these stressors impact hippocampus gene networks. The hippocampus transcriptome was profiled in pigs that were either exposed to MIA or not and were weaned or nursed. Overall, 1576 genes were differentially expressed (FDR-adjusted p-value < 0.05 and |log2 (fold change between pig groups)| > 1.2) in response to the main and interacting effects of MIA, weaning, and sex. Functional analysis identified 17 enriched immunological and neurological pathways in the Kyoto Encyclopedia of Genes and Genomes database. The enrichment of the terpenoid backbone biosynthesis pathway was characterized by genes under-expressed in MIA relative to non-MIA exposed, males relative to females, and weaned relative to nursed pigs. On the other hand, the enrichment of drug addiction pathways was characterized by gene over-expression in MIA relative to non-exposed pigs. Our results indicate that weaning and sex can modify the effects of MIA on the offspring hippocampus. This knowledge can aid in precise identification of molecular targets to reduce the prolonged effects of pre- and postnatal stressors.
Collapse
Affiliation(s)
- Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA; (H.E.R.); (L.A.R.); (B.R.S.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA; (H.E.R.); (L.A.R.); (B.R.S.); (R.W.J.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA; (H.E.R.); (L.A.R.); (B.R.S.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA; (H.E.R.); (L.A.R.); (B.R.S.); (R.W.J.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA; (H.E.R.); (L.A.R.); (B.R.S.); (R.W.J.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA
| |
Collapse
|
43
|
Deane AR, Ward RD. The instrumental role of operant paradigms in translational psychiatric research: Insights from a maternal immune activation model of schizophrenia risk. J Exp Anal Behav 2022; 117:560-575. [PMID: 35319781 PMCID: PMC9314699 DOI: 10.1002/jeab.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Rigorous behavioral analysis is essential to the translation of research conducted using animal models of neuropsychiatric disease. Here we discuss the use of operant paradigms within our lab as a powerful approach for exploring the biobehavioral bases of disease in the maternal immune activation rat model of schizophrenia. We have investigated a range of disease features in schizophrenia including abnormal perception of time, cognition, learning, motivation, and internal state (psychosis), providing complex insights into brain and behavior. Beyond simple phenotyping, implementing sophisticated operant procedures has been effective in delineating aspects of pathological behavior, identifying interacting pathologies, and isolating contributing mechanisms of disease. We provide comment on the strengths of operant techniques to support high-quality behavioral investigations in fundamental neuropsychiatric research.
Collapse
Affiliation(s)
- Ashley R. Deane
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Ryan D. Ward
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
44
|
Mizutani R, Noguchi S, Saiga R, Yamashita Y, Miyashita M, Arai M, Itokawa M. Schizophrenia-Mimicking Layers Outperform Conventional Neural Network Layers. Front Neurorobot 2022; 16:851471. [PMID: 35418846 PMCID: PMC8995800 DOI: 10.3389/fnbot.2022.851471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
We have reported nanometer-scale three-dimensional studies of brain networks of schizophrenia cases and found that their neurites are thin and tortuous when compared to healthy controls. This suggests that connections between distal neurons are suppressed in microcircuits of schizophrenia cases. In this study, we applied these biological findings to the design of a schizophrenia-mimicking artificial neural network to simulate the observed connection alteration in the disorder. Neural networks that have a “schizophrenia connection layer” in place of a fully connected layer were subjected to image classification tasks using the MNIST and CIFAR-10 datasets. The results revealed that the schizophrenia connection layer is tolerant to overfitting and outperforms a fully connected layer. The outperformance was observed only for networks using band matrices as weight windows, indicating that the shape of the weight matrix is relevant to the network performance. A schizophrenia convolution layer was also tested using the VGG configuration, showing that 60% of the kernel weights of the last three convolution layers can be eliminated without loss of accuracy. The schizophrenia layers can be used instead of conventional layers without any change in the network configuration and training procedures; hence, neural networks can easily take advantage of these layers. The results of this study suggest that the connection alteration found in schizophrenia is not a burden to the brain, but has functional roles in brain performance.
Collapse
Affiliation(s)
- Ryuta Mizutani
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
- *Correspondence: Ryuta Mizutani
| | - Senta Noguchi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Rino Saiga
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masanari Itokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Identification of ultra-rare disruptive variants in voltage-gated calcium channel-encoding genes in Japanese samples of schizophrenia and autism spectrum disorder. Transl Psychiatry 2022; 12:84. [PMID: 35220405 PMCID: PMC8882172 DOI: 10.1038/s41398-022-01851-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), and T-type VGCC subunit Cav3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Cav1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca2+-dependent inhibition, resulting in excessive Ca2+ entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca2+ homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.
Collapse
|
46
|
Travis-Lumer Y, Kodesh A, Goldberg Y, Reichenberg A, Frangou S, Levine SZ. Biopsychosocial Exposure to the Covid-19 Pandemic and the Relative Risk of Schizophrenia: Interrupted Time-Series Analysis of a Nationally Representative Sample. Eur Psychiatry 2022; 65:e7. [PMID: 35067255 PMCID: PMC8853851 DOI: 10.1192/j.eurpsy.2021.2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Studies of COVID-19 pandemic biopsychosocial exposure and schizophrenia risk showed contradictory results, were undertaken early in the pandemic, and did not consider lockdowns or COVID-19 infection. Hence, we examined the association between COVID-19 biopsychosocial exposure and incident schizophrenia. Methods An interrupted time-series study design was implemented based on Israeli electronic health records from 2013 to 2021 with national coverage. The period coinciding with the COVID-19 pandemic biopsychosocial exposures from March 2020 to February 2021 was classified as exposed, otherwise unexposed. The effect of the COVID-19 pandemic on incident schizophrenia was quantified by fitting a Poisson regression and modeling the relative risk (RR) and corresponding 95% confidence intervals (CI). Three scenarios were projected from the third lockdown to 10 months to forecast incident schizophrenia rates and their associated 95% prediction intervals (PI). Results The total population (N = 736,356) yielded 4,310 cases of incident schizophrenia over time. The primary analysis showed that the period exposed to the COVID-19 pandemic was associated with a reduced RR (RR = 0.81, 95% CI = 0.73, 0.91, p < 0.001). This conclusion was supported in 12 sensitivity analyses, including scrutinizing lockdowns and COVID-19 infection status. Two of three forecast scenarios projected an incident increase (6.74, 95% PI = 5.80, 7.84; 7.40, 95% PI = 6.36, 8.60). Conclusions The reduced risk of schizophrenia during the pandemic suggests no immediate triggering of new onsets either by the virus or the pandemic-induced psychosocial adversities. Once restrictions are lifted, the increased projected presentations have implications for clinicians and healthcare policy.
Collapse
|
47
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
48
|
Atasoy S, Johar H, Fleischer T, Beutel M, Binder H, Braehler E, Schomerus G, Zöller D, Kruse J, Ladwig KH. Depression Mediates the Association Between Childhood Emotional Abuse and the Onset of Type 2 Diabetes: Findings From German Multi-Cohort Prospective Studies. Front Psychiatry 2022; 13:825678. [PMID: 35463485 PMCID: PMC9019116 DOI: 10.3389/fpsyt.2022.825678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The dysregulation of glucose homeostasis via mental health stress is increasingly acknowledged, whereby depression independently increases the risk of the onset of type 2 diabetes by up to 60%. Contributing mental health factors starting in early life have further been considered, indicating that exposure to childhood emotional abuse is associated with both depression and an increased onset of type 2 diabetes in adulthood. However, the potential role of depression within the emotional abuse and type 2 diabetes link remains unknown. METHODS Data were derived from community-dwelling participants in southern and northeastern Germany who participated in the longitudinal KORA-F4 and SHIP-3 studies. Multivariable logistic regression analyses adjusted for lifestyle, somatic, and psychological risk factors were used to investigate the association between childhood emotional abuse, assessed retrospectively by the Childhood Trauma Screener, and newly diagnosed type 2 diabetes cases, which were confirmed using a standard oral glucose tolerance test. The mediating role of depressive symptoms between childhood emotional abuse and type 2 diabetes was assessed by the Patient Health Questionnaire-9 and calculated by using the Sobel test for mediation. RESULTS A total of 2,973 (53.2% women, 46.8% men) participants with a mean age of 49.7 were included in the analyses, of whom 5.9% (7.1% women, 4.5% men) reported emotional abuse in childhood. Participants exposed to childhood emotional abuse had a 1.70 (1.12-2.56; p = 0.02) times higher odds of depression in the fully adjusted model than unexposed participants. During the 6.5-year follow-up period, 104 (3.5%) participants developed type 2 diabetes. Participants who were exposed to childhood emotional abuse had a 2.56 (1.31-4.98, p = 0.005) times higher odds of developing type 2 diabetes than unexposed participants. This association was significantly mediated by the increased odds of depression in participants with childhood emotional abuse (Sobel Test, 1.84, p = 0.06; Goodman Test, 1.91, p = 0.05). CONCLUSION The current results indicate that the increased likelihood of type 2 diabetes onset in participants who were exposed to childhood emotional abuse is significantly attributed to increased depression in adulthood.
Collapse
Affiliation(s)
- Seryan Atasoy
- Department of Psychosomatic Medicine and Psychotherapy, University of Giessen and Marburg, Giessen, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Hamimatunnisa Johar
- Department of Psychosomatic Medicine and Psychotherapy, University of Giessen and Marburg, Giessen, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Toni Fleischer
- Department of Psychiatry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Manfred Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elmar Braehler
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Georg Schomerus
- Department of Psychiatry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Daniela Zöller
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, University of Giessen and Marburg, Giessen, Germany
| | - Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| |
Collapse
|
49
|
Poleksic J, Aksic M, Kapor S, Aleksic D, Stojkovic T, Radovic M, Djulejic V, Markovic B, Stamatakis A. Effects of Maternal Deprivation on the Prefrontal Cortex of Male Rats: Cellular, Neurochemical, and Behavioral Outcomes. Front Behav Neurosci 2021; 15:666547. [PMID: 34819843 PMCID: PMC8606589 DOI: 10.3389/fnbeh.2021.666547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Stressful events experienced during early life are associated with increased vulnerability of developing psychopathology in adulthood. In the present study, we exposed 9-day-old Wistar rats to 24 h maternal deprivation (MD) with the aim to investigate the impact of early life stress (ELS) on morphological, biochemical, and functional aspects of the prefrontal cortex (PFC), a brain region particularly sensitive to stress. We found that in the superficial medial orbital cortex (MO), young adult male rats had reduced density of GAD67 and CCK immunopositive cells, while the rostral part of the ventral lateral orbital cortex (roVLO) showed a decrease in the density of GAD67 immunopositive cells in both superficial and deep layers. In addition, the superficial rostral part of area 1 of the cingulate cortex (roCg1) and deep prelimbic cortex (PrL) was also affected by MD indicated by the reduction in PV immunopositive cellular density. Furthermore, MD induced upregulation of brain-derived neurotrophic factor (BDNF), while it did not affect the overall expression of Iba1 in neonatal or young adult PFC as measured by Western blot, however, microglial activation in young adult MD rats was detected immunohistochemically in deep layers of MO and infralimbic cortex (IL). Interestingly, when young adult male rats were subjected to a behavioral flexibility test in a T-maze, MD rats showed a subtle impairment in T-maze reversal learning indicating a mildly affected PFC function. Taken together, our findings demonstrated that MD reduced the density of interneurons and induced microglial activation, in particular, PFC areas at young adulthood, and could alter synaptic plasticity accompanied by PFC dysfunction.
Collapse
Affiliation(s)
- Joko Poleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Aksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Aleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Stojkovic
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Radovic
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vuk Djulejic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Markovic
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, School of Health Sciences, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Guerrin CGJ, Doorduin J, Sommer IE, de Vries EFJ. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci Biobehav Rev 2021; 131:1150-1168. [PMID: 34715148 DOI: 10.1016/j.neubiorev.2021.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|