1
|
Xing J, Zhang J, Wang Y, Wei X, Yin Z, Zhang Y, Pu A, Dong Z, Long Y, Wan X. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1148-1164. [PMID: 37967146 DOI: 10.1111/tpj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuqian Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| |
Collapse
|
2
|
Li S, Yan L, Zhang W, Yi C, Haider S, Wang C, Liu Y, Shi L, Xu F, Ding G. Nitrate alleviates ammonium toxicity in Brassica napus by coordinating rhizosphere and cell pH and ammonium assimilation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:786-804. [PMID: 37955989 DOI: 10.1111/tpj.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
In natural and agricultural situations, ammonium (NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known asNH 4 + toxicity. Nitrate (NO 3 - ) has long been recognized to reduceNH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to highNH 4 + . Here, we found thatNO 3 - can mitigateNH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus.NO 3 - increased the uptake ofNO 3 - andNH 4 + under highNH 4 + circumstances by triggering the expression ofNO 3 - andNH 4 + transporters, whileNO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression ofNO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition,NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated byNO 3 - under highNH 4 + conditions to enhance the assimilation ofNH 4 + into amino acids, thereby reducingNH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH.NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigateNH 4 + toxicity. Collectively, our results indicate thatNO 3 - balances both rhizosphere and intracellular pH via effectiveNO 3 - transmembrane cycling, acceleratesNH 4 + assimilation, and up-regulates malate metabolism to mitigateNH 4 + toxicity in oilseed rape.
Collapse
Affiliation(s)
- Shuang Li
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Wen Zhang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ceng Yi
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sharjeel Haider
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Shi
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Ding
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Wang J, Wang L, Zhang X, Li S, Wang X, Yang L, Wu F, Su H. Genome-wide identification of nitrate transporter 1/peptide transporter family (NPF) genes reveals that PaNPF5.5 enhances nitrate uptake in sweet cherry under high nitrate condition. Gene 2023; 888:147797. [PMID: 37708922 DOI: 10.1016/j.gene.2023.147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Agriculture, Ludong University, Yantai 264025, China; College of Life Sciences, Ludong University, Yantai 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai 264025, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong 264025, China
| | - Songlin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
4
|
Cui R, Feng Y, Yao J, Shi L, Wang S, Xu F. The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5606-5619. [PMID: 37474125 DOI: 10.1093/jxb/erad282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants, and its remobilization is key for adaptation to deficiency stress. However, there is limited understanding of the regulatory mechanisms of N remobilization in the important crop species Brassica napus (oilseed rape). Here, we report the identification of a transcription factor, BnaA9.WRKY47, that is induced by N starvation in a canola variety. At the seedling stage, BnaA9.WRKY47-overexpressing (OE) lines displayed earlier senescence of older leaves and preferential growth of juvenile leaves compared to the wild type under N starvation. At the field scale, the seed yield was significantly increased in the BnaA9.WRKY47-OE lines compared with the wild type when grown under N deficiency conditions and, conversely, it was reduced in BnaA9.WRKY47-knockout mutants. Biochemical analyses demonstrated that BnaA9.WRKY47 directly activates BnaC7.SGR1 to accelerate senescence of older leaves. In line with leaf senescence, the concentration of amino acids in the older leaves of the OE lines was elevated, and the proportion of plant N that they contained was reduced. This was associated with BnaA9.WRKY47 activating the amino acid permease BnaA9.AAP1 and the nitrate transporter BnaA2.NRT1.7. Thus, the expression of BnaA9.WRKY47 efficiently facilitated N remobilization from older to younger leaves or to seeds. Taken together, our results demonstrate that BnaA9.WRKY47 up-regulates the expression of BnaC7.SGR1, BnaA2.NRT1.7, and BnaA9AAP1, thus promoting the remobilization of N in B. napus under starvation conditions.
Collapse
Affiliation(s)
- Rui Cui
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingna Feng
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinliang Yao
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Rahmat Z, Sohail MN, Perrine-Walker F, Kaiser BN. Balancing nitrate acquisition strategies in symbiotic legumes. PLANTA 2023; 258:12. [PMID: 37296318 PMCID: PMC10256645 DOI: 10.1007/s00425-023-04175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.
Collapse
Affiliation(s)
- Zainab Rahmat
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Muhammad N Sohail
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Francine Perrine-Walker
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
6
|
Malécange M, Sergheraert R, Teulat B, Mounier E, Lothier J, Sakr S. Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. Int J Mol Sci 2023; 24:ijms24119714. [PMID: 37298664 DOI: 10.3390/ijms24119714] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past decade, plant biostimulants have been increasingly used in agriculture as environment-friendly tools that improve the sustainability and resilience of crop production systems under environmental stresses. Protein hydrolysates (PHs) are a main category of biostimulants produced by chemical or enzymatic hydrolysis of proteins from animal or plant sources. Mostly composed of amino acids and peptides, PHs have a beneficial effect on multiple physiological processes, including photosynthetic activity, nutrient assimilation and translocation, and also quality parameters. They also seem to have hormone-like activities. Moreover, PHs enhance tolerance to abiotic stresses, notably through the stimulation of protective processes such as cell antioxidant activity and osmotic adjustment. Knowledge on their mode of action, however, is still piecemeal. The aims of this review are as follows: (i) Giving a comprehensive overview of current findings about the hypothetical mechanisms of action of PHs; (ii) Emphasizing the knowledge gaps that deserve to be urgently addressed with a view to efficiently improve the benefits of biostimulants for different plant crops in the context of climate change.
Collapse
Affiliation(s)
- Marthe Malécange
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | - Béatrice Teulat
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | | | - Jérémy Lothier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| |
Collapse
|
7
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Zhang M, Zhang W, Zheng Z, Zhang Z, Hua B, Liu J, Miao M. Genome-Wide Identification and Expression Analysis of NPF Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1252. [PMID: 36986940 PMCID: PMC10057324 DOI: 10.3390/plants12061252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins perform an essential role in regulating plant nitrate absorption and distribution and in improving plant nitrogen use efficiency. In this study, cucumber (Cucumis sativus L.) NPF genes were comprehensively analyzed at the whole genome level, and 54 NPF genes were found to be unevenly distributed on seven chromosomes in the cucumber genome. The phylogenetic analysis showed that these genes could be divided into eight subfamilies. We renamed all CsNPF genes according to the international nomenclature, based on their homology with AtNPF genes. By surveying the expression profiles of CsNPF genes in various tissues, we found that CsNPF6.4 was specifically expressed in roots, indicating that CsNPF6.4 may play a role in N absorption; CsNPF6.3 was highly expressed in petioles, which may be related to NO3- storage in petioles; and CsNPF2.8 was highly expressed in fruits, which may promote NO3- transport to the embryos. We further examined their expression patterns under different abiotic stress and nitrogen conditions, and found that CsNPF7.2 and CsNPF7.3 responded to salt, cold, and low nitrogen stress. Taken together, our study lays a foundation for further exploration of the molecular and physiological functions of cucumber nitrate transporters.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zijian Zheng
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, Chhillar H, Chopra P, Khan MIR. Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1087946. [PMID: 36909406 PMCID: PMC9996754 DOI: 10.3389/fpls.2023.1087946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.
Collapse
Affiliation(s)
- Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
10
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
11
|
Zou L, Qi D, Li S, Zhai M, Li Z, Guo X, Ruan M, Yu X, Zhao P, Li W, Zhang P, Ma Q, Peng M, Liao W. The cassava (Manihot-esculenta Crantz)'s nitrate transporter NPF4.5, expressed in seedling roots, involved in nitrate flux and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:122-133. [PMID: 36399913 DOI: 10.1016/j.plaphy.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
AtNPF4.5/AIT2, which was predicted to be a low-affinity transporter capable for nitrate uptake, was screened by ABA receptor complex in Arabidopsis ten years ago. However, the molecular and biochemical characterizations of AtNPF4.5 in plants remained largely unclear. In this study, the function of a plasma-membrane-localized and root-specifically-expressed gene MeNPF4.5 (Manihot-esculenta NITRATE TRANSPORTER 1 PTR FAMILY4.5), an ortholog of the Arabidopsis thaliana NPF4.5, was investigated in cassava roots as a nitrate efflux transporter on low nitrate medium and an influx transporter following exposure to high concentration of external nitrates. Moreover, RNA interference (RNAi) of MeNPF4.5 reduced the nitrate efflux capacity but the overexpressing cassava seedlings increased the ability of efflux from the elongation to the mature zone of root under low nitrate treatments. Besides, MeNPF4.5-RNAi expression reduced the nitrate influx capacity but enhanced nitrate absorption in parts of overexpressing plants from the meristem, elongation to mature zone of roots under high nitrate conditions. Furthermore, MeNPF4.5-RNAi seedlings survived owing to roots that could grow normally, but the MeNPF4.5-over-expressors showed adverse growth under 7% PEG6000 stress, suggesting that MeNPF4.5 negatively regulated the osmotic stress and was involved in nitrate flux through cassava seedlings.
Collapse
Affiliation(s)
- Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Min Zhai
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhuang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Guo
- College of Plant Science & Technology of HuaZhongAgricultural University, Wuhan, Hubei, 430070, China
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
12
|
Identification of NPF Family Genes in Brassica rapa Reveal Their Potential Functions in Pollen Development and Response to Low Nitrate Stress. Int J Mol Sci 2023; 24:ijms24010754. [PMID: 36614198 PMCID: PMC9821126 DOI: 10.3390/ijms24010754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.
Collapse
|
13
|
Cheng J, Tan H, Shan M, Duan M, Ye L, Yang Y, He L, Shen H, Yang Z, Wang X. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria. FRONTIERS IN PLANT SCIENCE 2022; 13:1043832. [PMID: 36589108 PMCID: PMC9795848 DOI: 10.3389/fpls.2022.1043832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Introduction Nitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N. Methods Bioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2. Results We identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins withNO 3 - were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs-NO 3 - binding energy ranged from -3.8 to -2.7 kcal/mol. Discussion Taken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
Collapse
Affiliation(s)
- Jinjin Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meng Shan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mengmeng Duan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Ling Ye
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yulu Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lu He
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Huimin Shen
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zhirong Yang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
14
|
Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev Cell 2022; 57:2638-2651.e6. [PMID: 36473460 DOI: 10.1016/j.devcel.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Plant root architecture flexibly adapts to changing nitrate (NO3-) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3--mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3- in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3- availability. Under low-NO3- availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.
Collapse
|
15
|
Guo H, He X, Zhang H, Tan R, Yang J, Xu F, Wang S, Yang C, Ding G. Physiological Responses of Cigar Tobacco Crop to Nitrogen Deficiency and Genome-Wide Characterization of the NtNPF Family Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3064. [PMID: 36432793 PMCID: PMC9697317 DOI: 10.3390/plants11223064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Tobacco prefers nitrate as a nitrogen (N) source. However, little is known about the molecular components responsible for nitrate uptake and the physiological responses of cigar tobacco to N deficiency. In this study, a total of 117 nitrate transporter 1 (NRT1) and peptide transporter (PTR) family (NPF) genes were comprehensively identified and systematically characterized in the whole tobacco genome. The NtNPF members showed significant genetic diversity within and across subfamilies but showed conservation between subfamilies. The NtNPF genes are dispersed unevenly across the chromosomes. The phylogenetic analysis revealed that eight subfamilies of NtNPF genes are tightly grouped with their orthologues in Arabidopsis. The promoter regions of the NtNPF genes had extensive cis-regulatory elements. Twelve core NtNPF genes, which were strongly induced by N limitation, were identified based on the RNA-seq data. Furthermore, N deprivation severely impaired plant growth of two cigar tobaccos, and CX26 may be more sensitive to N deficiency than CX14. Moreover, 12 hub genes respond differently to N deficiency between the two cultivars, indicating the vital roles in regulating N uptake and transport in cigar tobacco. The findings here contribute towards a better knowledge of the NtNPF genes and lay the foundation for further functional analysis of cigar tobacco.
Collapse
Affiliation(s)
- Hao Guo
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuyou He
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zhang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronglei Tan
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| | - Fangsen Xu
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| | - Guangda Ding
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Rui W, Mao Z, Li Z. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:11027. [PMID: 36232323 PMCID: PMC9570102 DOI: 10.3390/ijms231911027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
More than 80% of land plant species can form symbioses with arbuscular mycorrhizal (AM) fungi, and nutrient transfer to plants is largely mediated through this partnership. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake progress, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungal-root interface have been identified. In this review, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation) and focus on P and N transfer from the fungal partner to the host plant, with a highlight on a possible interplay between P and N nutrient exchanges. Transporters belonging to the plant or AM fungi can synergistically process the transmembrane transport of soil nutrients to the symbiotic interface for further plant acquisition. Although much progress has been made to elucidate the complex mechanism for the integrated roles of nutrient transfers in AM symbiosis, questions still remain to be answered; for example, P and N transporters are less studied in different species of AM fungi; the involvement of AM fungi in plant N uptake is not as clearly defined as that of P; coordinated utilization of N and P is unknown; transporters of cultivated plants inoculated with AM fungi and transcriptomic and metabolomic networks at both the soil-fungi interface and fungi-plant interface have been insufficiently studied. These findings open new perspectives for fundamental research and application of AM fungi in agriculture.
Collapse
Affiliation(s)
| | | | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
| |
Collapse
|
17
|
Ethylene Acts as a Local and Systemic Signal to Mediate UV-B-Induced Nitrate Reallocation to Arabidopsis Leaves and Roots via Regulating the ERFs-NRT1.8 Signaling Module. Int J Mol Sci 2022; 23:ijms23169068. [PMID: 36012333 PMCID: PMC9408821 DOI: 10.3390/ijms23169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Nitrate is the preferred nitrogen source for plants and plays an important role in plant growth and development. Under various soil stresses, plants reallocate nitrate to roots to promote stress tolerance through the ethylene-ethylene response factors (ERFs)-nitrate transporter (NRT) signaling module. As a light signal, ultraviolet B (UV-B) also stimulates the production of ethylene. However, whether UV-B regulates nitrate reallocation in plants via ethylene remains unknown. Here, we found that UV-B-induced expression of ERF1B, ORA59, ERF104, and NRT1.8 in both Arabidopsis shoots and roots as well as nitrate reallocation from hypocotyls to leaves and roots were impaired in ethylene signaling mutants for Ethylene Insensitive2 (EIN2) and EIN3. UV-B-induced NRT1.8 expression and nitrate reallocation to leaves and roots were also inhibited in the triple mutants for ERF1B, ORA59, and ERF104. Deletion of NRT1.8 impaired UV-B-induced nitrate reallocation to both leaves and roots. Furthermore, UV-B promoted ethylene release in both shoots and roots by enhancing the gene expression and enzymatic activities of ethylene biosynthetic enzymes only in shoots. These results show that ethylene acts as a local and systemic signal to mediate UV-B-induced nitrate reallocation from Arabidopsis hypocotyls to both leaves and roots via regulating the gene expression of the ERFs-NRT1.8 signaling module.
Collapse
|
18
|
Kinoshita SN, Kinoshita T. A win-win scenario for photosynthesis and the plasma membrane H + pump. FRONTIERS IN PLANT SCIENCE 2022; 13:982485. [PMID: 36035713 PMCID: PMC9412029 DOI: 10.3389/fpls.2022.982485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 05/27/2023]
Abstract
In plants, cytosolic and extracellular pH homeostasis are crucial for various physiological processes, including the uptake of macronutrients and micronutrients, cell elongation, cell expansion, and enzyme activity. Proton (H+) gradients and the membrane potential are generated by a H+ pump consisting of an active primary transporter. Plasma membrane (PM) H+-ATPase, a PM-localized H+ pump, plays a pivotal role in maintaining pH homeostasis in plant cells and extracellular regions. PM H+-ATPase activity is regulated by protein abundance and by post-translational modifications. Several stimuli have been found to activate the PM H+-ATPase through phosphorylation of the penultimate threonine (Thr) of the carboxy terminus. Light- and photosynthesis-induced phosphorylation of PM H+-ATPase are conserved phenomena among various plant species. In this work, we review recent findings related to PM H+-ATPase regulation in the photosynthetic tissues of plants, focusing on its mechanisms and physiological roles. The physiological roles of photosynthesis-dependent PM H+-ATPase activation are discussed in the context of nitrate uptake and cytoplasmic streaming in leaves.
Collapse
Affiliation(s)
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Root nitrate uptake in sugarcane (Saccharum spp.) is modulated by transcriptional and presumably posttranscriptional regulation of the NRT2.1/NRT3.1 transport system. Mol Genet Genomics 2022; 297:1403-1421. [PMID: 35879567 DOI: 10.1007/s00438-022-01929-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
KEY MESSAGE Nitrate uptake in sugarcane roots is regulated at the transcriptional and posttranscriptional levels based on the physiological status of the plant and is likely a determinant mechanism for discrimination against nitrate. Sugarcane (Saccharum spp.) is one of the most suitable energy crops for biofuel feedstock, but the reduced recovery of nitrogen (N) fertilizer by sugarcane roots increases the crop carbon footprint. The low nitrogen use efficiency (NUE) of sugarcane has been associated with the significantly low nitrate uptake, which limits the utilization of the large amount of nitrate available in agricultural soils. To understand the regulation of nitrate uptake in sugarcane roots, we identified the major canonical nitrate transporter genes (NRTs-NITRATE TRANSPORTERS) and then determined their expression profiles in roots under contrasting N conditions. Correlation of gene expression with 15N-nitrate uptake revealed that under N deprivation or inorganic N (ammonium or nitrate) supply in N-sufficient roots, the regulation of ScNRT2.1 and ScNRT3.1 expression is the predominant mechanism for the modulation of the activity of the nitrate high-affinity transport system. Conversely, in N-deficient roots, the induction of ScNRT2.1 and ScNRT3.1 transcription is not correlated with the marked repression of nitrate uptake in response to nitrate resupply or high N provision, which suggested the existence of a posttranscriptional regulatory mechanism. Our findings suggested that high-affinity nitrate uptake is regulated at the transcriptional and presumably at the posttranscriptional levels based on the physiological N status and that the regulation of NRT2.1 and NRT3.1 activity is likely a determinant mechanism for the discrimination against nitrate uptake observed in sugarcane roots, which contributes to the low NUE in this crop species.
Collapse
|
20
|
Lu YT, Liu DF, Wen TT, Fang ZJ, Chen SY, Li H, Gong JM. Vacuolar nitrate efflux requires multiple functional redundant nitrate transporter in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:926809. [PMID: 35937356 PMCID: PMC9355642 DOI: 10.3389/fpls.2022.926809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrate in plants is preferentially stored in vacuoles; however, how vacuolar nitrate is reallocated and to which biological process(es) it might contribute remain largely elusive. In this study, we functionally characterized three nitrate transporters NPF5.10, NPF5.14, and NPF8.5 that are tonoplast-localized. Ectopic expression in Xenopus laevis oocytes revealed that they mediate low-affinity nitrate transport. Histochemical analysis showed that these transporters were expressed preferentially in pericycle and xylem parenchyma cells. NPF5.10, NPF5.14, and NPF8.5 overexpression significantly decreased vacuolar nitrate contents and nitrate accumulation in Arabidopsis shoots. Further analysis showed that the sextuple mutant (npf5.10 npf5.14 npf8.5 npf5.11 npf5.12 npf5.16) had a higher 15NO3-uptake rate than the wild-type Col-0, but no significant difference was observed for nitrate accumulation between them. The septuple mutant (npf5.11 npf5.12 npf5.16 npf5.10 npf5.14 npf8.5 clca) generated by using CRISPR/Cas9 showed essentially decreased nitrate reallocation compared to wild type when exposed to nitrate starvation, though no further decrease was observed when compared to clca. Notably, NPF5.10, NPF5.14, and NPF8.5 as well as NPF5.11, NPF5.12, and NPF5.16 were consistently induced by mannitol, and more nitrate was detected in the sextuple mutant than in the wild type after mannitol treatment. These observations suggest that vacuolar nitrate efflux is regulated by several functional redundant nitrate transporters, and the reallocation might contribute to osmotic stress response other than mineral nutrition.
Collapse
Affiliation(s)
- Yu-Ting Lu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Fen Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Wen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Si-Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhao Z, Li M, Xu W, Liu JH, Li C. Genome-Wide Identification of NRT Gene Family and Expression Analysis of Nitrate Transporters in Response to Salt Stress in Poncirus trifoliata. Genes (Basel) 2022; 13:genes13071115. [PMID: 35885900 PMCID: PMC9323722 DOI: 10.3390/genes13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The uptake and transportation of nitrate play a crucial role in plant growth and development. These processes mostly depend on nitrate transporters (NRT), which guarantee the supplement of nutrition in the plant. In this study, genes encoding NRT with Major Facilitator Superfamily (MFS) domain were identified in trifoliate orange (Poncirus trifoliata (L.) Raf.). Totally, 56 NRT1s, 6 NRT2s, and 2 NAR2s were explored. The bioinformation analysis, including protein characteristics, conserved domain, motif, phylogenetic relationship, cis-acting element, and synteny correlation, indicated the evolutionary conservation and functional diversity of NRT genes. Additionally, expression profiles of PtrNRTs in different tissues demonstrated that NRT genes possessed spatio-temporal expression specificity. Further, the salt condition was certified to induce the expression of some NRT members, like PtrNPF2.1, PtrNPF7.4, and PtrNAR2.1, proposing the potential role of these NRTs in salt stress response. The identification of NRT genes and the expression pattern analysis in various tissues and salt stress lay a foundation for future research between nitrogen transport and salt resistance in P. trifoliata.
Collapse
Affiliation(s)
- Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Weiwei Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
22
|
Carillo P, Rouphael Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:899522. [PMID: 35783949 PMCID: PMC9244799 DOI: 10.3389/fpls.2022.899522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 05/29/2023]
Abstract
Over the past five decades, nitrogen (N) fertilization has been an essential tool for boosting crop productivity in agricultural systems. To avoid N pollution while preserving the crop yields and profit margins for farmers, the scientific community is searching for eco-sustainable strategies aimed at increasing plants' nitrogen use efficiency (NUE). The present article provides a refined definition of the NUE based on the two important physiological factors (N-uptake and N-utilization efficiency). The diverse molecular and physiological mechanisms underlying the processes of N assimilation, translocation, transport, accumulation, and reallocation are revisited and critically discussed. The review concludes by examining the N uptake and NUE in tandem with chloride stress and eustress, the latter being a new approach toward enhancing productivity and functional quality of the horticultural crops, particularly facilitated by soilless cultivation.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
De Pessemier J, Moturu TR, Nacry P, Ebert R, De Gernier H, Tillard P, Swarup K, Wells DM, Haseloff J, Murray SC, Bennett MJ, Inzé D, Vincent CI, Hermans C. Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3569-3583. [PMID: 35304891 DOI: 10.1093/jxb/erac118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.
Collapse
Affiliation(s)
- Jérôme De Pessemier
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Taraka Ramji Moturu
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Philippe Nacry
- Institute of Plant Science Montpellier, Université de Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Rebecca Ebert
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Hugues De Gernier
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pascal Tillard
- Institute of Plant Science Montpellier, Université de Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Christopher I Vincent
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| |
Collapse
|
24
|
Tan S, Liang Y, Huang Y, Xi J, Huang X, Yang X, Yi K. Phylogeny and Expression Atlas of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Agave. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111434. [PMID: 35684207 PMCID: PMC9182991 DOI: 10.3390/plants11111434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 05/08/2023]
Abstract
Agave species are widely cultivated crassulacean acid metabolism (CAM) plants for alcoholic beverages, food and fiber production. Among these, the Agave hybrid H11648 ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for sisal fiber in the tropical areas of Brazil, China, and African countries. The plants of Agave hybrid H11648 have a long life cycle and large leaves, which require a huge amount of nitrogen nutrient. However, the molecular basis of nitrogen transport and allocation has not been well understood in agave. In this study, we identified 19 NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY(NPF) genes (called AhNPFs) with full-length coding sequences in Agave hybrid H11648. Our analysis of gene expression in various types of tissues revealed the tissue-specific expression pattern of AhNPFs. We further examined their expression patterns at different leaf developmental stages, under abiotic/biotic stresses and nutrient deficiency. The results reveal several candidate regulators in the agave NPF family, including AhNPF4.3/5.2/7.1. We first characterized the NPF genes in agave based on published leaf transcriptome datasets and emphasized their potential functions. The study will benefit future studies related to nitrogen nutrient in agave.
Collapse
Affiliation(s)
- Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Yanlei Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| |
Collapse
|
25
|
Guan Y, Liu DF, Qiu J, Liu ZJ, He YN, Fang ZJ, Huang XH, Gong JM. The nitrate transporter OsNPF7.9 mediates nitrate allocation and the divergent nitrate use efficiency between indica and japonica rice. PLANT PHYSIOLOGY 2022; 189:215-229. [PMID: 35148397 PMCID: PMC9070802 DOI: 10.1093/plphys/kiac044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Nitrate allocation in Arabidopsis (Arabidopsis thaliana) represents an important mechanism for mediating plant environmental adaptation. However, whether this mechanism occurs or has any physiological/agronomic importance in the ammoniphilic plant rice (Oriza sativa L.) remains unknown. Here, we address this question through functional characterization of the Nitrate transporter 1/Peptide transporter Family (NPF) transporter gene OsNPF7.9. Ectopic expression of OsNPF7.9 in Xenopus oocytes revealed that the gene encodes a low-affinity nitrate transporter. Histochemical and in-situ hybridization assays showed that OsNPF7.9 expresses preferentially in xylem parenchyma cells of vasculature tissues. Transient expression assays indicated that OsNPF7.9 localizes to the plasma membrane. Nitrate allocation from roots to shoots was essentially decreased in osnpf7.9 mutants. Biomass, grain yield, and nitrogen use efficiency (NUE) decreased in the mutant dependent on nitrate availability. Further analysis demonstrated that nitrate allocation mediated by OsNPF7.9 is essential for balancing rice growth and stress tolerance. Moreover, our research identified an indica-japonica divergent single-nucleotide polymorphism occurring in the coding region of OsNPF7.9, which correlates with enhanced nitrate allocation to shoots of indica rice, revealing that divergent nitrate allocation might represent an important component contributing to the divergent NUE between indica and japonica subspecies and was likely selected as a favorable trait during rice breeding.
Collapse
Affiliation(s)
- Yuan Guan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Crop Breeding and Cultivation Research Institute, CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - De-Fen Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Qiu
- College of Life Sciences, Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi-Jun Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya-Ni He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xue-Hui Huang
- College of Life Sciences, Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
26
|
Feng Y, Zhao Y, Li Y, Zhou J, Li Y, Shi H. Physiological and transcriptome analysis reveals the differences in nitrate content between lamina and midrib of flue-cured tobacco. Sci Rep 2022; 12:2932. [PMID: 35190651 PMCID: PMC8861034 DOI: 10.1038/s41598-022-07011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Nitrate is an important precursor of tobacco-specific nitrosamines (TSNAs) and a remarkable difference in nitrate accumulation between lamina and midrib of flue-cured tobacco has long been observed. However, the physiological and molecular mechanisms underpinning this difference remain poorly understood. In this study, physiological and genetic factors impacting nitrate accumulation were identified in pot experiments using flue-cured tobacco K326 with contrasting nitrate content between lamina and midrib. The results showed that three times higher NO3-N content was observed in midrib than that in the lamina, along with lower pigment, NH4-N content, nitrate reductase activity (NRA), sucrose synthetase activity (SSA), and glutamine synthetase activity (GSA) in midrib. Transcriptome analysis revealed that expression of genes involved in porphyrin and chlorophyll metabolism, carotenoid biosynthesis, photosynthesis-antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, starch and sucrose metabolism, nitrogen metabolism, and biosynthesis of amino acids were significantly lower in midrib than in lamina. qRT-PCR results showed that the expression level of nitrate transporter genes LOC107782967, LOC107806749, LOC107775674, LOC107829632, LOC107799198, LOC107768465 decreased by 2.74, 1.81, 49.5, 3.5, 2.64 and 2.96-folds while LOC107789301 increased by 8.23-folds in midrib but not in lamina. Reduced chlorophyll content might result in low carbohydrate formation which is the source of energy and carbon skeleton supply, then the low capacity of nitrogen reduction, assimilation and transportation, and the poor ability of nitrate reallocation but the high capacity of accumulation might lead to nitrate accumulation in midrib. The results laid the foundation for reducing nitrate content and TSNA formation in tobacco midribs and their products.
Collapse
Affiliation(s)
- Yuqing Feng
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuanyuan Zhao
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafei Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Zhou
- Beijing Cigarette Factory, Shanghai Tobacco Group Co., Ltd., Beijing, 100024, China
| | - Yujing Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongzhi Shi
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China Tobacco, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
27
|
Ren J, Yang X, Zhang N, Feng L, Ma C, Wang Y, Yang Z, Zhao J. Melatonin alleviates aluminum-induced growth inhibition by modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in Zea mays L. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127159. [PMID: 34537633 DOI: 10.1016/j.jhazmat.2021.127159] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
Melatonin, a regulatory molecule, performs pleiotropic functions in plants, including aluminum (Al) stress mitigation. Here, we conducted transcriptomic and physiological analyses to identify metabolic processes associated with the alleviated Al-induced growth inhibition of the melatonin-treated (MT) maize (Zea mays L.) seedlings. Melatonin decreased Al concentration in maize roots and leaves under Al stress. Al stress reduced the total dry weight (DW) by 41.2% after 7 days of treatment. By contrast, the total DW was decreased by only 19.4% in MT plants. According to RNA-Seq, enzyme activity, and metabolite content data, MT plants exhibited a higher level of relatively stable carbon and nitrogen metabolism than non-treated (NT) plants. Under Al stress, MT plants showed higher photosynthetic rate and sucrose content by 29.9% and 20.5% than NT plants, respectively. Similarly, the nitrate reductase activity and protein content of MT plants were 34.0% and 15.0% higher than those of NT plants, respectively. Furthermore, exogenous supply of melatonin mitigated Al-induced oxidative stress. Overall, our results suggest that melatonin alleviates aluminum-induced growth inhibition through modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in maize. Graphical Abstarct.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunying Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yuling Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
28
|
Chen YN, Ho CH. Concept of Fluorescent Transport Activity Biosensor for the Characterization of the Arabidopsis NPF1.3 Activity of Nitrate. SENSORS 2022; 22:s22031198. [PMID: 35161943 PMCID: PMC8839256 DOI: 10.3390/s22031198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
The NRT1/PTR FAMILY (NPF) in Arabidopsis (Arabidopsis thaliana) plays a major role as a nitrate transporter. The first nitrate transporter activity biosensor NiTrac1 converted the dual-affinity nitrate transceptor NPF6.3 into fluorescence activity sensors. To test whether this approach is transferable to other members of this family, screening for genetically encoded fluorescence transport activity sensor was performed with the member of the NPF family in Arabidopsis. In this study, NPF1.3, an uncharacterized member of NPF in Arabidopsis, was converted into a transporter activity biosensor NiTrac-NPF1.3 that responds specifically to nitrate. The emission ratio change of NiTrac-NPF1.3 triggered by the addition of nitrate reveals the important function of NPF1.3 in nitrate transport in Arabidopsis. A functional analysis of Xenopus laevis oocytes confirmed that NPF1.3 plays a role as a nitrate transporter. This new technology is applicable in plant and medical research.
Collapse
|
29
|
Shah AN, Javed T, Singhal RK, Shabbir R, Wang D, Hussain S, Anuragi H, Jinger D, Pandey H, Abdelsalam NR, Ghareeb RY, Jaremko M. Nitrogen use efficiency in cotton: Challenges and opportunities against environmental constraints. FRONTIERS IN PLANT SCIENCE 2022; 13:970339. [PMID: 36072312 PMCID: PMC9443504 DOI: 10.3389/fpls.2022.970339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Nitrogen is a vital nutrient for agricultural, and a defieciency of it causes stagnate cotton growth and yield penalty. Farmers rely heavily on N over-application to boost cotton output, which can result in decreased lint yield, quality, and N use efficiency (NUE). Therefore, improving NUE in cotton is most crucial for reducing environmental nitrate pollution and increasing farm profitability. Well-defined management practices, such as the type of sources, N-rate, application time, application method, crop growth stages, and genotypes, have a notable impact on NUE. Different N formulations, such as slow and controlled released fertilizers, have been shown to improve N uptake and, NUE. Increasing N rates are said to boost cotton yield, although high rates may potentially impair the yield depending on the soil and environmental conditions. This study comprehensively reviews various factors including agronomic and environmental constraints that influence N uptake, transport, accumulation, and ultimately NUE in cotton. Furthermore, we explore several agronomic and molecular approaches to enhance efficiency for better N uptake and utilization in cotton. Finally, this objective of this review to highlight a comprehensive view on enhancement of NUE in cotton and could be useful for understanding the physiological, biochemical and molecular mechanism of N in cotton.
Collapse
Affiliation(s)
- Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
- *Correspondence: Adnan Noor Shah,
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong, China
- Depeng Wang,
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hirdayesh Anuragi
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Dinesh Jinger
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Anand, Gujarat, India
| | | | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Science Research and Technological Applications, Alexandria, Egypt
| | - Mariusz Jaremko
- Smart Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
30
|
Zhou JY, Hao DL, Yang GZ. Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H +-ATPases and Multiple Transporters. Int J Mol Sci 2021; 22:12998. [PMID: 34884802 PMCID: PMC8657649 DOI: 10.3390/ijms222312998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.
Collapse
Affiliation(s)
- Jin-Yan Zhou
- Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guang-Zhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| |
Collapse
|
31
|
Liu YJ, Gao N, Ma QJ, Zhang JC, Wang X, Lu J, Hao YJ, Wang XF, You CX. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. HORTICULTURE RESEARCH 2021; 8:236. [PMID: 34719676 PMCID: PMC8558332 DOI: 10.1038/s41438-021-00667-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Nitrate is a major nitrogen resource for plant growth and development and acts as both a crucial nutrient and a signaling molecule for plants; hence, understanding nitrate signaling is important for crop production. Abscisic acid (ABA) has been demonstrated to be involved in nitrate signaling, but the underlying mechanism is largely unknown in apple. In this study, we found that exogenous ABA inhibited the transport of nitrate from roots to shoots in apple, and the transcription of the nitrate transporter MdNRT1.5/MdNPF7.3 was noticeably reduced at the transcriptional level by ABA, which inhibited the transport of nitrate from roots to shoots. Then, it was found that the ABA-responsive transcription factor MdABI5 bound directly to the ABRE recognition site of the MdNRT1.5 promoter and suppressed its expression. Overexpression of MdABI5 inhibited ABA-mediated transport of nitrate from roots to shoots. Overall, these results demonstrate that MdABI5 regulates the transport of nitrate from roots to shoots partially by mediating the expression of MdNRT1.5, illuminating the molecular mechanism by which ABA regulates nitrate transport in apple.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ning Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jing Lu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
32
|
Morales de Los Ríos L, Corratgé-Faillie C, Raddatz N, Mendoza I, Lindahl M, de Angeli A, Lacombe B, Quintero FJ, Pardo JM. The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:239-251. [PMID: 34656860 DOI: 10.1016/j.plaphy.2021.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/02/2023]
Abstract
Nitrate and potassium nutrition is tightly coordinated in vascular plants. Physiological and molecular genetics studies have demonstrated that several NPF/NRT1 nitrate transporters have a significant impact on both uptake and the root-shoot partition of these nutrients. However, how these traits are biochemically connected remain controversial since some NPF proteins, e.g. NPF7.3/NRT1.5, have been suggested to mediate K+/H+ exchange instead of nitrate fluxes. Here we show that NPF6.2/NRT1.4, a protein that gates nitrate accumulation at the leaf petiole of Arabidopsis thaliana, also affects the root/shoot distribution of potassium. We demonstrate that NPF6.2/NRT1.4 is a plasma membrane nitrate transporter phosphorylated at threonine-98 by the CIPK23 protein kinase that is a regulatory hub for nitrogen and potassium nutrition. Heterologous expression of NPF6.2/NRT1.4 and NPF7.3/NRT1.5 in yeast mutants with altered potassium uptake and efflux systems showed no evidence of nitrate-dependent potassium transport by these proteins.
Collapse
Affiliation(s)
- Laura Morales de Los Ríos
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Natalia Raddatz
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Imelda Mendoza
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Marika Lindahl
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Alexis de Angeli
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Francisco J Quintero
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - José M Pardo
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain.
| |
Collapse
|
33
|
Ren J, Yang X, Ma C, Wang Y, Zhao J. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:958-969. [PMID: 34571389 DOI: 10.1016/j.plaphy.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Melatonin is a pleiotropic regulatory molecule in plants and is involved in regulating plant tolerance to drought stress. Here, we conducted transcriptomic and physiological analyses to identify metabolic processes associated with the enhanced tolerance of the melatonin-treated maize (Zea mays L.) seedlings to water deficit. Maize seedlings were foliar sprayed with either 50 μM melatonin or water and exposed to drought stress for 12 d in growth chambers. Drought stress significantly suppressed seedling growth, and melatonin application partially alleviated this growth inhibition. RNA-Seq analysis revealed that genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. Analysis of transcriptomics, enzyme activity, and metabolite content data, melatonin-treated plants exhibited a higher level of relatively stable C and N metabolism than untreated plants; this phenotype of melatonin-treated plants was associated with their higher photosynthesis, sucrose biosynthesis, N assimilation, and protein biosynthesis capacities under drought stress. Overall, our results suggest that melatonin enhances drought stress tolerance in maize through coordinated regulation of C and N metabolism.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunying Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Yuling Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| |
Collapse
|
34
|
Wei YM, Ren ZJ, Wang BH, Zhang L, Zhao YJ, Wu JW, Li LG, Zhang XS, Zhao XY. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110901. [PMID: 34034862 DOI: 10.1016/j.plantsci.2021.110901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential macronutrient for plants and regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen in plants. However, the role of nitrate uptake and allocation in seed development is not fully understood. Here, we identified the maize (Zea mays) small-kernel mutant zmnpf7.9 and characterized the candidate gene, ZmNPF7.9, which was the same gene as nitrate transport 1.5 (NRT1.5) in maize. This gene is specifically expressed in the basal endosperm transfer layer cells of maize endosperm. Dysfunction of ZmNPF7.9 resulted in delayed endosperm development, abnormal starch deposition and decreased hundred-grain weight. Functional analysis of cRNA-injected Xenopus oocytes showed that ZmNPF7.9 is a low-affinity, pH-dependent bidirectional nitrate transporter. Moreover, the amount of nitrate in mature seeds of the zmnpf7.9 mutant was reduced. These suggest that ZmNPF7.9 is involved in delivering nitrate from maternal tissues to the developing endosperm. Moreover, most of the key genes associated with glycolysis/gluconeogenesis, carbon fixation, carbon metabolism and biosynthesis of amino acids pathways in the zmnpf7.9 mutant were significantly down-regulated. Thus, our results demonstrate that ZmNPF7.9 plays a specific role in seed development and grain weight by regulating nutrition transport and metabolism, which might provide useful information for maize genetic improvement.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhi Jie Ren
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Le Gong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
35
|
The Expression Characteristics of NPF Genes and Their Response to Vernalization and Nitrogen Deficiency in Rapeseed. Int J Mol Sci 2021; 22:ijms22094944. [PMID: 34066572 PMCID: PMC8125141 DOI: 10.3390/ijms22094944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.
Collapse
|
36
|
Lin Z, Guo C, Lou S, Jin S, Zeng W, Guo Y, Fang J, Xu Z, Zuo Z, Ma L. Functional analyses unveil the involvement of moso bamboo (Phyllostachys edulis) group I and II NIN-LIKE PROTEINS in nitrate signaling regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110862. [PMID: 33775367 DOI: 10.1016/j.plantsci.2021.110862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
For rapid growth, moso bamboo (Phyllostachys edulis) requires large amounts of nutrients. Nitrate is an indispensable molecular signal to regulate nitrogen absorption and assimilation, which are regulated by group III NIN-LIKE PROTEINs (NLPs). However, no Phyllostachys edulis NLP (PeNLP) has been characterized. Here, eight PeNLPs were identified, which showed dynamic expression patterns in bamboo tissues. Nitrate did not affect PeNLP mRNA levels, and PeNLP1, -2, -5, -6, -7, and -8 successfully restored nitrate signaling in Arabidopsis atnlp7-1 protoplasts through recovering AtNiR and AtNRT2.1 expression. Four group I and II PeNLPs (PeNLP1, -2, -5, and -8) interacted with the nitrate-responsive cis-element of PeNiR. Moreover, nitrate triggered the nuclear retention of PeNLP8. PeNLP8 overexpression in Arabidopsis significantly increased the primary root length, lateral root number, leaf area, and dry and wet weight of the transgenic plants, and PeNLP8 expression rescued the root architectural defect phenotype of atnlp7-1 mutants. Interestingly, PeNLP8 overexpression dramatically reduced nitrate content but elevated total amino acid content in Arabidopsis. Overall, the present study unveiled the potential involvement of group I and II NLPs in nitrate signaling regulation and provided genetic resources for engineering plants with high nitrogen use efficiency.
Collapse
Affiliation(s)
- Zezhong Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cuiting Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuaitong Lou
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Songsong Jin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weike Zeng
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanan Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Fang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Zhenguo Xu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Liu Y, Bai L, Sun M, Wang J, Li S, Miao L, Yan Y, He C, Yu X, Li Y. Adaptation of cucumber seedlings to low temperature stress by reducing nitrate to ammonium during it's transportation. BMC PLANT BIOLOGY 2021; 21:189. [PMID: 33874888 PMCID: PMC8056598 DOI: 10.1186/s12870-021-02918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low temperature severely depresses the uptake, translocation from the root to the shoot, and metabolism of nitrate and ammonium in thermophilic plants such as cucumber (Cucumis sativus). Plant growth is inhibited accordingly. However, the availability of information on the effects of low temperature on nitrogen transport remains limited. RESULTS Using non-invasive micro-test technology, the net nitrate (NO3-) and ammonium (NH4+) fluxes in the root hair zone and vascular bundles of the primary root, stem, petiole, midrib, lateral vein, and shoot tip of cucumber seedlings under normal temperature (NT; 26 °C) and low temperature (LT; 8 °C) treatment were analyzed. Under LT treatment, the net NO3- flux rate in the root hair zone and vascular bundles of cucumber seedlings decreased, whereas the net NH4+ flux rate in vascular bundles of the midrib, lateral vein, and shoot tip increased. Accordingly, the relative expression of CsNRT1.4a in the petiole and midrib was down-regulated, whereas the expression of CsAMT1.2a-1.2c in the midrib was up-regulated. The results of 15N isotope tracing showed that NO3--N and NH4+-N uptake of the seedlings under LT treatment decreased significantly compared with that under NT treatment, and the concentration and proportion of both NO3--N and NH4+-N distributed in the shoot decreased. Under LT treatment, the actual nitrate reductase activity (NRAact) in the root did not change significantly, whereas NRAact in the stem and petiole increased by 113.2 and 96.2%, respectively. CONCLUSIONS The higher net NH4+ flux rate in leaves and young tissues may reflect the higher NRAact in the stem and petiole, which may result in a higher proportion of NO3- being reduced to NH4+ during the upward transportation of NO3-. The results contribute to an improved understanding of the mechanism of changes in nitrate transportation in plants in response to low-temperature stress.
Collapse
Affiliation(s)
- Yumei Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agricultural and Biological Engineering, Heze University, Heze, 274000 Shandong China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Mintao Sun
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shuzhen Li
- College of Life Science, Gannan Normal University, Ganzhou, 341000 Jiangxi China
| | - Li Miao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chaoxing He
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xianchang Yu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yansu Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
38
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
39
|
Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol 2021; 4:256. [PMID: 33637855 PMCID: PMC7910545 DOI: 10.1038/s42003-021-01775-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
Identification of genes and their alleles capable of improving plant growth under low nitrogen (N) conditions is key for developing sustainable agriculture. Here, we show that a genome-wide association study using Arabidopsis thaliana accessions suggested an association between different magnitudes of N deficiency responses and diversity in NRT1.1/NPF6.3 that encodes a dual-affinity nitrate transporter involved in nitrate uptake by roots. Various analyses using accessions exhibiting reduced N deficiency responses revealed that enhanced NRT1.1 expression in shoots rather than in roots is responsible for better growth of Arabidopsis seedlings under N deficient conditions. Furthermore, polymorphisms that increased NRT1.1 promoter activity were identified in the NRT1.1 promoter sequences of the accessions analyzed. Hence, our data indicated that polymorphism-dependent activation of the NRT1.1 promoter in shoots could serve as a tool in molecular breeding programs for improving plant growth in low N environments.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- grid.26999.3d0000 0001 2151 536XPlant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Chaganzhana
- grid.26999.3d0000 0001 2151 536XPlant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Atsushi Mabuchi
- grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koh Iba
- grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- grid.26999.3d0000 0001 2151 536XPlant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
40
|
Wang X, Cai X, Xu C, Wang Q. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:297-307. [PMID: 33243709 DOI: 10.1016/j.plaphy.2020.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Nitrate transporters (NRTs) participate in nitrate uptake, transport and allocation within the plant. However, this gene family has not been studied thoroughly in spinach. This study provided the general information about spinach SoNRTs and their transcriptional and functional responses to different levels of nitrate supplies. Resultes showed that fifty-seven NPF (also known as NRT1), nine NRT2 and one NRT3 were identified in spinach homologous to characterized Arabidopsis NRT genes. Phylogenetic analysis organized the SoNRT family into three clades: NPF with three subclades, NRT2, and NRT3. The tested SoNRT genes showed the various expression profiles in relation to tissue specificity and nitrate supply, indicating their functional diversity in response to external nitrate supply. Among them, transgenic Arabidopsis plants overexpressing SoNPF30 showed improved biomass, decreased shoot nitrate contents but no significant difference of 15NO3- uptake rates when compared with those of the wild type in response to high N treatment. Under low N treatment, overexpressing of SoNRT3 significantly increased whole plant biomass, root nitrate contents and 15NO3- uptake rates. These demonstrated that SoNPF30 and SoNRT3 confer greater capacity for nitrate translocation or nitrate uptake, and could help to improve the ability of plant nitrogen utilization under those conditions. Our findings provide a valuable basis for future research on this family of genes in spinach.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiaofeng Cai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chenxi Xu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
41
|
Wen J, Li PF, Ran F, Guo PC, Zhu JT, Yang J, Zhang LL, Chen P, Li JN, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics 2020; 21:871. [PMID: 33287703 PMCID: PMC7720588 DOI: 10.1186/s12864-020-07274-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. Results A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone−/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2–1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. Conclusion We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2–1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07274-7.
Collapse
Affiliation(s)
- Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Tian Zhu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Lan-Lan Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
42
|
Genome-Wide Systematic Characterization of the NPF Family Genes and Their Transcriptional Responses to Multiple Nutrient Stresses in Allotetraploid Rapeseed. Int J Mol Sci 2020; 21:ijms21175947. [PMID: 32824914 PMCID: PMC7504168 DOI: 10.3390/ijms21175947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) family (NPF) proteins can transport various substrates, and play crucial roles in governing plant nitrogen (N) uptake and distribution. However, little is known about the NPF genes in Brassica napus. Here, a comprehensive genome-wide systematic characterization of the NPF family led to the identification of 193 NPF genes in the whole genome of B. napus. The BnaNPF family exhibited high levels of genetic diversity among sub-families but this was conserved within each subfamily. Whole-genome duplication and segmental duplication played a major role in BnaNPF evolution. The expression analysis indicated that a broad range of expression patterns for individual gene occurred in response to multiple nutrient stresses, including N, phosphorus (P) and potassium (K) deficiencies, as well as ammonium toxicity. Furthermore, 10 core BnaNPF genes in response to N stress were identified. These genes contained 6–13 transmembrane domains, located in plasma membrane, that respond discrepantly to N deficiency in different tissues. Robust cis-regulatory elements were identified within the promoter regions of the core genes. Taken together, our results suggest that BnaNPFs are versatile transporters that might evolve new functions in B. napus. Our findings benefit future research on this gene family.
Collapse
|
43
|
Joshi V, Joshi M, Penalosa A. Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea). PLoS One 2020; 15:e0232011. [PMID: 32374731 PMCID: PMC7202632 DOI: 10.1371/journal.pone.0232011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrogen (N) is critical to the growth and productivity of crops. To understand the molecular mechanisms influenced by N stress, we used RNA-Sequencing (RNA-Seq) to analyze differentially expressed genes (DEGs) in root and leaf tissues of spinach. N stress negatively influenced photosynthesis, biomass accumulation, amino acid profiles, and partitioning of N across tissues. RNA-seq analysis revealed that N stress caused most transcriptomic changes in roots, identifying 1,346 DEGs. High-affinity nitrate transporters (NRT2.1, NRT2.5) and glutamine amidotransferase (GAT1) genes were strongly induced in roots in response to N deplete and replete conditions, respectively. GO and KEGG analyses revealed that the functions associated with metabolic pathways and nutrient reservoir activity were enriched due to N stress. Whereas KEGG pathway enrichment analysis indicated the upregulation of DEGs associated with DNA replication, pyrimidine, and purine metabolism in the presence of high N in leaf tissue. A subset of transcription factors comprising bHLH, MYB, WRKY, and AP2/ERF family members was over-represented in both tissues in response to N perturbation. Interesting DEGs associated with N uptake, amino acid metabolism, hormonal pathway, carbon metabolism, along with transcription factors, were highlighted. The results provide valuable information about the underlying molecular processes in response to N stress in spinach and; could serve as a resource for functional analysis of candidate genes/pathways and enhancement of nitrogen use efficiency.
Collapse
Affiliation(s)
- Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, Texas, United States of America
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, Texas, United States of America
| | - Arianne Penalosa
- College of Science, University of Texas, Arlington, Texas, United States of America
| |
Collapse
|
44
|
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:904-914. [PMID: 31612486 DOI: 10.1002/jsfa.10085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 05/19/2023]
Abstract
A huge amount of nitrogenous fertilizer is used to increase crop production. This leads to an increase in the cost of production, and to human and environmental problems. It is therefore necessary to improve nitrogen use efficiency (NUE) and to design agronomic, biotechnological and breeding strategies for better fertilizer use. Nitrogen use efficiency relies primarily on how plants extract, uptake, transport, assimilate, and remobilize nitrogen. Many plants use nitrate as a preferred nitrogen source. It acts as a signaling molecule in the various important physiological processes required for growth and development. As nitrate is the main source of nitrogen in the soil, root nitrate transporters are important subjects for study. The latest reports have also discussed how nitrate transporter and assimilation genes can be used as molecular tools to improve NUE in crops. The purpose of this review is to describe the mechanisms and functions of nitrate as a specific factor that can be addressed to increase NUE. Improving factors such as nitrate uptake, transport, assimilation, and remobilization through activation by signaling, sensing, and regulatory processes will improve plant growth and NUE. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Madeeha Alamzeb
- Standardization of cotton planting technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
45
|
Liang G, Zhang Z. Reducing the Nitrate Content in Vegetables Through Joint Regulation of Short-Distance Distribution and Long-Distance Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:1079. [PMID: 32765562 PMCID: PMC7378733 DOI: 10.3389/fpls.2020.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 05/11/2023]
Abstract
As an important nitrogen source, nitrate (NO3 -) absorbed by plants is carried throughout the plant via short-distance distribution (cytoplasm to vacuole) and long-distance transportation (root to shoot), the two pathways that jointly regulate the content of NO3 - in plants. NO3 - accumulation within the vacuole depends on the activities of both tonoplast proton pumps and chloride channel (CLC) proteins, and less NO3 - is stored in vacuoles when the activities of these proteins are reduced. The ratio of the distribution of NO3 - in the cytoplasm and vacuole affects the long-distance transport of NO3 -, which is regulated by the proteins NPF7.3 and NPF7.2 that play opposite but complementary roles. NPF7.3 is responsible for loading NO3 - from the root cytoplasm into the xylem, whereas NPF7.2 regulates the unloading of NO3 - from the xylem, thereby facilitating the long-distance transport of NO3 - through the roots to the shoots. Vegetables, valued for their nutrient content, are consumed in large quantities; however, a high content of NO3 - can detrimentally affect the quality of these plants. NO3 - that is not assimilated and utilized in plant tissues is converted via enzyme-catalyzed reactions to nitrite (NO2 -), which is toxic to plants and harmful to human health. In this review, we describe the mechanisms underlying NO3 - distribution and transport in plants, a knowledge of which will contribute to breeding leafy vegetables with lower NO3 - contents and thus be of considerable significance from the perspectives of environmental protection and food safety.
Collapse
|
46
|
Wulff N, Ernst HA, Jørgensen ME, Lambertz S, Maierhofer T, Belew ZM, Crocoll C, Motawia MS, Geiger D, Jørgensen FS, Mirza O, Nour-Eldin HH. An Optimized Screen Reduces the Number of GA Transporters and Provides Insights Into Nitrate Transporter 1/Peptide Transporter Family Substrate Determinants. FRONTIERS IN PLANT SCIENCE 2019; 10:1106. [PMID: 31632416 PMCID: PMC6785635 DOI: 10.3389/fpls.2019.01106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 05/17/2023]
Abstract
Based on recent in vitro data, a relatively large number of the plant nitrate transporter 1/peptide transporter family (NPF) proteins have been suggested to function as gibberellic acid (GA) transporters. Most GA transporting NPF proteins also appear to transport other structurally unrelated phytohormones or metabolites. Several of the GAs used in previous in vitro assays are membrane permeable weak organic acids whose movement across membranes are influenced by the pH-sensitive ion-trap mechanism. Moreover, a large proportion of in vitro GA transport activities have been demonstrated indirectly via long-term yeast-based GA-dependent growth assays that are limited to detecting transport of bioactive GAs. Thus, there is a need for an optimized transport assay for identifying and characterizing GA transport. Here, we develop an improved transport assay in Xenopus laevis oocytes, wherein we directly measure movement of six different GAs across oocyte membranes over short time. We show that membrane permeability of GAs in oocytes can be predicted based on number of oxygen atoms and that several GAs do not diffuse over membranes regardless of changes in pH values. In addition, we show that small changes in internal cellular pH can result in strongly altered distribution of membrane permeable phytohormones. This prompts caution when interpreting heterologous transport activities. We use our transport assay to screen all Arabidopsis thaliana NPF proteins for transport activity towards six GAs (two membrane permeable and four non-permeable). The results presented here, significantly reduce the number of bona fide NPF GA transporters in Arabidopsis and narrow the activity to fewer subclades within the family. Furthermore, to gain first insight into the molecular determinants of substrate specificities toward organic molecules transported in the NPF, we charted all surface exposed amino acid residues in the substrate-binding cavity and correlated them to GA transport. This analysis suggests distinct residues within the substrate-binding cavity that are shared between GA transporting NPF proteins; the potential roles of these residues in determining substrate specificity are discussed.
Collapse
Affiliation(s)
- Nikolai Wulff
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Morten Egevang Jørgensen
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, Würzburg, Germany
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Sophie Lambertz
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tobias Maierhofer
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, Würzburg, Germany
| | - Zeinu Mussa Belew
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mohammed Saddik Motawia
- Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, Würzburg, Germany
| | | | - Osman Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
47
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
48
|
|
49
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC PLANT BIOLOGY 2019; 19:206. [PMID: 31109290 PMCID: PMC6528335 DOI: 10.1186/s12870-019-1768-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND In order to grow, plants rely on soil nutrients which can vary both spatially and temporally depending on the environment, the soil type or the microbial activity. An essential nutrient is nitrogen, which is mainly accessible as nitrate and ammonium. Many studies have investigated transport genes for these ions in Arabidopsis thaliana and recently in crop species, including Maize, Rice and Barley. However, in most crop species, an understanding of the participants in nitrate and ammonium transport across the soil plant continuum remains undefined. RESULTS We have mapped a non-exhaustive set of putative nitrate and ammonium transporters in maize. The selected transporters were defined based on previous studies comparing nitrate transport pathways conserved between Arabidopsis and Zea mays (Plett D et. al, PLOS ONE 5:e15289, 2010). We also selected genes from published studies (Gu R et. al, Plant and Cell Physiology, 54:1515-1524, 2013, Garnett T et. al, New Phytol 198:82-94, 2013, Garnett T et. al, Frontiers in Plant Sci 6, 2015, Dechorgnat J et. al, Front Plant Sci 9:531, 2018). To analyse these genes, the plants were grown in a semi-hydroponic system to carefully control nitrogen delivery and then harvested at both vegetative and reproductive stages. The expression patterns of 26 putative nitrogen transporters were then tested. Six putative genes were found not expressed in our conditions. Transcripts of 20 other genes were detected at both the vegetative and reproductive stages of maize development. We observed the expression of nitrogen transporters in all organs tested: roots, young leaves, old leaves, silks, cobs, tassels and husk leaves. We also followed the gene expression response to nitrogen starvation and resupply and uncovered mainly three expression patterns: (i) genes unresponsiveness to nitrogen supply; (ii) genes showing an increase of expression after nitrogen starvation; (iii) genes showing a decrease of expression after nitrogen starvation. CONCLUSIONS These data allowed the mapping of putative nitrogen transporters in maize at both the vegetative and reproductive stages of development. No growth-dependent expression was seen in our conditions. We found that nitrogen transporter genes were expressed in all the organs tested and in many cases were regulated by the availability of nitrogen supplied to the plant. The gene expression patterns in relation to organ specificity and nitrogen availability denote a speciality of nitrate and ammonium transporter genes and their probable function depending on the plant organ and the environment.
Collapse
Affiliation(s)
- Julie Dechorgnat
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| | - Karen L. Francis
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Kanwarpal S. Dhugga
- Genetic Discovery Group, DuPont Pioneer, Johnston, IA 50131-1004 USA
- Present Address: Genetic Resources Group, International Center for Maize and Wheat Improvement (CIMMYT), El Batan, 56237 Texcoco, Mexico
| | - J. Antony Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, Wilmington, DE 198803 USA
| | - Stephen D. Tyerman
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Brent N. Kaiser
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| |
Collapse
|
50
|
Aubry E, Dinant S, Vilaine F, Bellini C, Le Hir R. Lateral Transport of Organic and Inorganic Solutes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E20. [PMID: 30650538 PMCID: PMC6358943 DOI: 10.3390/plants8010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Organic (e.g., sugars and amino acids) and inorganic (e.g., K⁺, Na⁺, PO₄2-, and SO₄2-) solutes are transported long-distance throughout plants. Lateral movement of these compounds between the xylem and the phloem, and vice versa, has also been reported in several plant species since the 1930s, and is believed to be important in the overall resource allocation. Studies of Arabidopsis thaliana have provided us with a better knowledge of the anatomical framework in which the lateral transport takes place, and have highlighted the role of specialized vascular and perivascular cells as an interface for solute exchanges. Important breakthroughs have also been made, mainly in Arabidopsis, in identifying some of the proteins involved in the cell-to-cell translocation of solutes, most notably a range of plasma membrane transporters that act in different cell types. Finally, in the future, state-of-art imaging techniques should help to better characterize the lateral transport of these compounds on a cellular level. This review brings the lateral transport of sugars and inorganic solutes back into focus and highlights its importance in terms of our overall understanding of plant resource allocation.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90183 Umeå, Sweden.
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|