1
|
Li W, He SX, Zhou QY, Dai ZH, Liu CJ, Xiao SF, Deng SG, Ma LQ. Foliar-selenium enhances plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Critical roles of GSH-GSSG cycle and arsenite antiporters PvACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135154. [PMID: 38986410 DOI: 10.1016/j.jhazmat.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 μM arsenate (AsV) under hydroponics plus 25 or 50 μM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.
Collapse
Affiliation(s)
- Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Chen K, Guo D, Yan J, Zhang H, He Z, Wang C, Tang W, Chen J, Xu Z, Ma Y, Chen M. Transcription factor GmAlfin09 regulates endoplasmic reticulum stress in soybean via peroxidase GmPRDX6. PLANT PHYSIOLOGY 2024; 196:592-607. [PMID: 38829837 DOI: 10.1093/plphys/kiae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Soybean (Glycine max [L.] Merr.) is a valuable oil crop but is also highly susceptible to environmental stress. Thus, developing approaches to enhance soybean stress resistance is vital to soybean yield improvement. In previous studies, transcription factor Alfin has been shown to serve as an epigenetic regulator of plant growth and development. However, no studies on Alfin have yet been reported in soybean. In this study, the endoplasmic reticulum (ER) stress- and reactive oxygen species (ROS)-related GmAlfin09 was identified. Screening of genes co-expressed with GmAlfin09 unexpectedly led to the identification of soybean peroxidase 6 (GmPRDX6). Further analyses revealed that both GmAlfin09 and GmPRDX6 were responsive to ER stress, with GmPRDX6 localizing to the ER under stress. Promoter binding experiments confirmed the ability of GmAlfin09 to bind to the GmPRDX6 promoter directly. When GmAlfin09 and GmPRDX6 were overexpressed in soybean, enhanced ER stress resistance and decreased ROS levels were observed. Together, these findings suggest that GmAlfin09 promotes the upregulation of GmPRDX6, and GmPRDX6 subsequently localizes to the ER, reduces ROS levels, promotes ER homeostasis, and ensures the normal growth of soybean even under ER stress. This study highlights a vital target gene for future molecular breeding of stress-resistant soybean lines.
Collapse
Affiliation(s)
- Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongdong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiji Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huijuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Raihan MT, Tanaka Y, Ishikawa T. Characterization of chloroplastic thioredoxin dependent glutathione peroxidase like protein in Euglena gracilis: biochemical and functional perspectives. Biosci Biotechnol Biochem 2024; 88:1034-1046. [PMID: 38925644 DOI: 10.1093/bbb/zbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yasuhiro Tanaka
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
4
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
5
|
Hou K, Cao L, Li W, Fang ZH, Sun D, Guo Z, Zhang L. Overexpression of Rhodiola crenulata glutathione peroxidase 5 increases cold tolerance and enhances the pharmaceutical value of the hairy roots. Gene 2024; 917:148467. [PMID: 38615983 DOI: 10.1016/j.gene.2024.148467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.
Collapse
Affiliation(s)
- Kai Hou
- Pu'er People's Hospital, Yunnan, China; Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China
| | - Wen Li
- Pu'er People's Hospital, Yunnan, China
| | | | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Zhigang Guo
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Lipeng Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
6
|
Raihan MT, Ishikawa T. Biochemical and Functional Profiling of Thioredoxin-Dependent Cytosolic GPX-like Proteins in Euglena gracilis. Biomolecules 2024; 14:765. [PMID: 39062479 PMCID: PMC11275057 DOI: 10.3390/biom14070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Unlike plants and animals, the phytoflagellate Euglena gracilis lacks catalase and contains a non-selenocysteine glutathione peroxidase-like protein (EgGPXL), two peroxiredoxins (EgPrx1 and EgPrx4), and one ascorbate peroxidase in the cytosol to maintain reactive oxygen species (ROS) homeostasis. In the present study, the full-length cDNA of three cytosolic EgGPXLs was obtained and further characterized biochemically and functionally. These EgGPXLs used thioredoxin instead of glutathione as an electron donor to reduce the levels of H2O2 and t-BOOH. The specific peroxidase activities of these enzymes for H2O2 and t-BOOH were 1.3 to 4.9 and 0.79 to 3.5 µmol/min/mg protein, respectively. Cytosolic EgGPXLs and EgPrx1/EgPrx4 were silenced simultaneously to investigate the synergistic effects of these genes on the physiological function of E. gracilis. The suppression of cytosolic EgGPXL genes was unable to induce any critical phenomena in Euglena under normal (100 μmol photons m-2 s-1) and high-light conditions (350 μmol photons m-2 s-1) at both autotrophic and heterotrophic states. Unexpectedly, the suppression of EgGPXL genes was able to rescue the EgPrx1/EgPrx4-silenced cell line from a critical situation. This study explored the potential resilience of Euglena to ROS, even with restriction of the cytosolic antioxidant system, indicating the involvement of some compensatory mechanisms.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
7
|
Han Y, Zhang J, Zhang S, Xiang L, Lei Z, Huang Q, Wang H, Chen T, Cai M. DcERF109 regulates shoot branching by participating in strigolactone signal transduction in Dendrobium catenatum. PHYSIOLOGIA PLANTARUM 2024; 176:e14286. [PMID: 38618752 DOI: 10.1111/ppl.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.
Collapse
Affiliation(s)
- Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
9
|
Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay SK. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111881. [PMID: 37806453 DOI: 10.1016/j.plantsci.2023.111881] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress tolerance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
10
|
Jiang B, Su C, Wang Y, Xu X, Li Y, Ma D. Genome-wide identification of Glutathione peroxidase (GPX) family genes and silencing TaGPX3.2A reduced disease resistance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108139. [PMID: 37883917 DOI: 10.1016/j.plaphy.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Glutathione peroxidase (GPX) is a crucial enzyme that scavenges reactive oxygen species in plants, playing a vital role in enhancing plant stress resistance. In this study, we identified 14 glutathione peroxidase genes (TaGPXs) from common hexaploid wheat (Triticum aestivum L.). These genes were subsequently categorized into three distinct groups based on their phylogenetic relationships. Simultaneously, a preliminarily analysis was conducted on the protein characteristics, chromosome localization, gene structure, cis-regulatory elements and transcriptome. Using reverse transcription quantitative PCR to analyze the expression patterns of five GPX genes that were investigated under various exogenous hormone treatments. According to the qRT-PCR analysis, it indicated that TaGPX genes have the distinct expression patterns. The enzyme activities in transiently overexpressed Nicotiana benthamiana (TaGPX3.2A and TaGPX3.4A) leaves were measured under salt and drought stresses, showed that peroxidase (POD) exhibited higher enzyme activity under stresses. Silencing TaGPX3.2A by virus-induced gene silencing (VIGS) led to reduced resistance of wheat to Fusarium graminearum, indicating that TaGPX3.2A plays a crucial role in enhancing wheat resistance against F. graminearum. This research provides a foundational basis for further investigations on the functional characterization of TaGPXs family members. And in the future it is provides valuable resources for genetic improvement of wheat resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Chang Su
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Xiao Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Yan Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Dongfang Ma
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Chen W, Liu J, Chu G, Wang Q, Zhang Y, Gao C, Gao M. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. BIORESOURCE TECHNOLOGY 2023; 386:129511. [PMID: 37468008 DOI: 10.1016/j.biortech.2023.129511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The nitrogen removal performance, nitrogen metabolism enzyme activities, and antioxidant response of four Chlorella species (Chlorella sp., Chlorella vulgaris, Chlorella sorokiniana, and Chlorella protothecoides) were compared under different light: dark (L:D) photoperiods during treating mariculture wastewater. The increase of light duration in the range of 8L:16D to 16L:8D was beneficial to the chlorophyll synthesis of selected four Chlorella species. Chlorella vulgaris was the most effective to treat mariculture wastewater than Chlorella sp., Chlorella sorokiniana, and Chlorella protothecoides. and its microalgae density, photosynthetic activity, and nitrogen metabolism enzyme activity were higher than those of the other three Chlorella species. An obvious oxidative stress in microalgal cells was under 20L:4D photoperiod, which led to a decrease in photosynthetic activity and nitrogen metabolizing enzyme activity. Among the four Chlorella species, Chlorella protothecoides had the highest degree of light-induced stress and ROS accumulation. This study can provide suitable microalgae and optimal photoperiod for treating mariculture wastewater.
Collapse
Affiliation(s)
- Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Rodrigues M, Forestan C, Ravazzolo L, Hugueney P, Baltenweck R, Rasori A, Cardillo V, Carraro P, Malagoli M, Brizzolara S, Quaggiotti S, Porro D, Meggio F, Bonghi C, Battista F, Ruperti B. Metabolic and Molecular Rearrangements of Sauvignon Blanc ( Vitis vinifera L.) Berries in Response to Foliar Applications of Specific Dry Yeast. PLANTS (BASEL, SWITZERLAND) 2023; 12:3423. [PMID: 37836164 PMCID: PMC10574919 DOI: 10.3390/plants12193423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years. Berries were sampled at several time points after the treatment, and grapes were analyzed for sugars, acidity, free and bound aroma precursors, amino acids, and targeted and untargeted RNA-Seq transcriptional profiles. The results obtained indicated that the DYE treatment did not interfere with the technological ripening parameters of sugars and acidity. Some aroma precursors, including cys-3MH and GSH-3MH, responsible for the typical aromatic nuances of Sauvignon Blanc, were stimulated by the treatment during both vintages. The levels of amino acids and the global RNA-seq transcriptional profiles indicated that DYE spraying upregulated ROS homeostatic and thermotolerance genes, as well as ethylene and jasmonic acid biosynthetic genes, and activated abiotic and biotic stress responses. Overall, the data suggested that the DYE reduced berry oxidative stress through the regulation of specific subsets of metabolic and hormonal pathways.
Collapse
Affiliation(s)
- Marta Rodrigues
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Cristian Forestan
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Philippe Hugueney
- National Research Institute for Agriculture, Food and Environment (INRAE), SVQV UMR A1131, University of Strasbourg, 67081 Strasbourg, France; (P.H.); (R.B.)
| | - Raymonde Baltenweck
- National Research Institute for Agriculture, Food and Environment (INRAE), SVQV UMR A1131, University of Strasbourg, 67081 Strasbourg, France; (P.H.); (R.B.)
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Pietro Carraro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Duilio Porro
- Technology Transfer Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all ‘Adige, Italy;
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | | | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
13
|
Vogelsang L, Dietz KJ. Regeneration of cytosolic thiol peroxidases. PHYSIOLOGIA PLANTARUM 2023; 175:e14042. [PMID: 37882285 DOI: 10.1111/ppl.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Three soluble type two peroxiredoxins (PRXIIB, C, D) and two glutathione peroxidase-like enzymes (GPXL2, 8) reside in the cytosol of Arabidopsis thaliana cells and function both as thiol-dependent antioxidants and redox sensors. Their primary substrate is H2 O2 , but they also accept other peroxides with a distinct preference between PRXII and GPXL. Less known is their regeneration specificity in the light of the large set of thiol reductases, namely eight annotated thioredoxin h isoforms (TRXh1-5, 7-9), a few TRX-like proteins, including CxxS1 (formerly TRXh6) and several glutaredoxins (GRX) associated with the cytosol. This study addressed this open question by in vitro enzyme tests using recombinant protein. GPXL2 and 8 exclusively accepted electrons from the TRX system, namely TRXh1-5 and TDX, while PRXIIB/C/D were efficiently regenerated with GRXC1 and C2 but not the TRX-like protein Picot1. They showed significant but low activity (<3% of GRXC2) with TRXh1-5 and TDX. A similar reduction efficiency with TRX was seen in the insulin assay, only TDX was less active. Finally, the reduction of oxidized cytosolic malate dehydrogenase 1, as measured by regained activity, showed an extremely broad ability to accept electrons from different TRXs and GRXs. The results demonstrate redundancy and specificity in the redox regulatory network of the cytosol.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Wang S, Sun X, Miao X, Mo F, Liu T, Chen Y. Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:11078. [PMID: 37446254 PMCID: PMC10342349 DOI: 10.3390/ijms241311078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Glutathione peroxidase-like enzyme is an important enzymatic antioxidant in plants. It is involved in scavenging reactive oxygen species, which can effectively prevent oxidative damage and improve resistance. GPXL has been studied in many plants but has not been reported in potatoes, the world's fourth-largest food crop. This study identified eight StGPXL genes in potatoes for the first time through genome-wide bioinformatics analysis and further studied the expression patterns of these genes using qRT-PCR. The results showed that the expression of StGPXL1 was significantly upregulated under high-temperature stress, indicating its involvement in potato defense against high-temperature stress, while the expression levels of StGPXL4 and StGPXL5 were significantly downregulated. The expression of StGPXL1, StGPXL2, StGPXL3, and StGPXL6 was significantly upregulated under drought stress, indicating their involvement in potato defense against drought stress. After MeJA hormone treatment, the expression level of StGPXL6 was significantly upregulated, indicating its involvement in the chemical defense mechanism of potatoes. The expression of all StGPXL genes is inhibited under biotic stress, which indicates that GPXL is a multifunctional gene family, which may endow plants with resistance to various stresses. This study will help deepen the understanding of the function of the potato GPXL gene family, provide comprehensive information for the further analysis of the molecular function of the potato GPXL gene family as well as a theoretical basis for potato molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (S.W.); (X.S.); (X.M.); (F.M.); (T.L.)
| |
Collapse
|
15
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
16
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
17
|
Ramakrishnan M, Arivalagan J, Satish L, Mohan M, Samuel Selvan Christyraj JR, Chandran SA, Ju HJ, John L A, Ramesh T, Ignacimuthu S, Kalishwaralal K. Selenium: a potent regulator of ferroptosis and biomass production. CHEMOSPHERE 2022; 306:135531. [PMID: 35780987 DOI: 10.1016/j.chemosphere.2022.135531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence supports the notion that selenium (Se) plays a beneficial role in plant development for modern crop production and is considered an essential micronutrient and the predominant source of plants. However, the essential role of selenium in plant metabolism remains unclear. When used in moderate concentrations, selenium promotes plant physiological processes such as enhancing plant growth, increasing antioxidant capacity, reducing reactive oxygen species and lipid peroxidation and offering stress resistance by preventing ferroptosis cell death. Ferroptosis, a recently discovered mechanism of regulated cell death (RCD) with unique features such as iron-dependant accumulation of lipid peroxides, is distinctly different from other known forms of cell death. Glutathione peroxidase (GPX) activity plays a significant role in scavenging the toxic by-products of lipid peroxidation in plants. A low level of GPX activity in plants causes high oxidative stress, which leads to ferroptosis. An integrated view of ferroptosis and selenium in plants and the selenium-mediated nanofertilizers (SeNPs) have been discussed in more recent studies. For instance, selenium supplementation enhanced GPX4 expression and increased TFH cell (Follicular helper T) numbers and the gene transcriptional program, which prevent lipid peroxidase and protect cells from ferroptosis. However, though ferroptosis in plants is similar to that in animals, only few studies have focused on plant-specific ferroptosis; the research on ferroptosis in plants is still in its infancy. Understanding the implication of selenium with relevance to ferroptosis is indispensable for plant bioresource technology. In this review, we hypothesize that blocking ferroptosis cell death improves plant immunity and protects plants from abiotic and biotic stresses. We also examine how SeNPs can be the basis for emerging unconventional and advanced technologies for algae/bamboo biomass production. For instance, algae treated with SeNPs accumulate high lipid profile in algal cells that could thence be used for biodiesel production. We also suggest that further studies in the field of SeNPs are essential for the successful application of this technology for the large-scale production of plant biomass.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jaison Arivalagan
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA, USA; VAXIGEN International Research Center Private Limited, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 India
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Anoopa John L
- The Dale View College of Pharmacy and Research Centre, Thiruvananthapuram, Kerala, India
| | - Thiyagarajan Ramesh
- Deapartment of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University,P.O.Box:173, AI-Kharaj 11942,Saudi Arabia
| | | | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
18
|
Zhang M, Li W, Li S, Gao J, Gan T, Li Q, Bao L, Jiao F, Su C, Qian Y. Quantitative Proteomics and Functional Characterization Reveal That Glutathione Peroxidases Act as Important Antioxidant Regulators in Mulberry Response to Drought Stress. PLANTS 2022; 11:plants11182350. [PMID: 36145752 PMCID: PMC9500794 DOI: 10.3390/plants11182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) has been an economically important food crop for the domesticated silkworm, Bombyx mori, in China for more than 5000 years. However, little is known about the mechanism underlying mulberry response to environmental stress. In this study, quantitative proteomics was applied to elucidate the molecular mechanism of drought response in mulberry. A total of 604 differentially expressed proteins (DEPs) were identified via LC-MS/MS. The proteomic profiles associated with antioxidant enzymes, especially five glutathione peroxidase (GPX) isoforms, as a scavenger of reactive oxygen species (ROS), were systematically increased in the drought-stressed mulberry. This was further confirmed by gene expression and enzymatic activity. Furthermore, overexpression of the GPX isoforms led to enhancements in both antioxidant system and ROS-scavenging capacity, and greater tolerance to drought stress in transgenic plants. Taken together, these results indicated that GPX-based antioxidant enzymes play an important role in modulating mulberry response to drought stress, and higher levels of GPX can improve drought tolerance through enhancing the capacity of the antioxidant system for ROS scavenging.
Collapse
Affiliation(s)
- Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuaijun Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junru Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Tiantian Gan
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| |
Collapse
|
19
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
20
|
Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 2022; 35:451-478. [PMID: 35344114 DOI: 10.1007/s10534-022-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)-glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic-phytochelatin (As-PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.
Collapse
|
21
|
Yang X, Lin P, Luo Y, Bai H, Liao X, Li X, Tian Y, Jiang B, Pan Y, Zhang F, Zhang L, Jia Y, Li Y, Liu Q. Lysine decrotonylation of glutathione peroxidase at lysine 220 site increases glutathione peroxidase activity to resist cold stress in chrysanthemum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113295. [PMID: 35151212 DOI: 10.1016/j.ecoenv.2022.113295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Lysine crotonylation is a protein post-translational modification that has been newly discovered in recent years. There are few studies on the lysine crotonylation of proteins in plants, and their functions in response to cold stress are still unclear. In this study, the chrysanthemum (Chrysanthemum morifolium Ramat.) glutathione peroxidase (GPX) gene was selected and named DgGPX1, and was found to be responsive to low temperature. Overexpression of DgGPX1 improved the cold resistance of transgenic chrysanthemum by increasing GPX activity to reduce the accumulation of reactive oxygen species (ROS) under low-temperature conditions. Furthermore, the level of DgGPX1 lysine crotonylation at lysine (K) 220 decreased under low temperature in chrysanthemum. Lysine decrotonylation of DgGPX1 at K220 further increased GPX activity to reduce ROS accumulation under cold stress, and thereby enhanced the cold resistance of chrysanthemum. The above results show that lysine decrotonylation of DgGPX1 at K220 increases GPX activity to resist cold stress in chrysanthemum.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Ping Lin
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yunchen Luo
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Huiru Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Xiaoqin Liao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Xin Li
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yuchen Tian
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Beibei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yuanzhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yin Jia
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.
| |
Collapse
|
22
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Aguilera A, Berdun F, Bartoli C, Steelheart C, Alegre M, Bayir H, Tyurina YY, Kagan VE, Salerno G, Pagnussat G, Martin MV. C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria. J Cell Biol 2022; 221:212878. [PMID: 34817556 PMCID: PMC8624678 DOI: 10.1083/jcb.201911005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.
Collapse
Affiliation(s)
- Anabella Aguilera
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Federico Berdun
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Charlotte Steelheart
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Matías Alegre
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Hülya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA.,Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E Kagan
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA.,Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Graciela Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Gabriela Pagnussat
- Instituto de investigaciones Biológicas IIB-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| |
Collapse
|
24
|
Zhang H, Zong R, He H, Huang T. Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting. CHEMOSPHERE 2022; 287:132185. [PMID: 34500328 DOI: 10.1016/j.chemosphere.2021.132185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is an environmental-friendly algicide and it is widely used to control algal blooms in aquatic ecosystems. However, the response of algal cell metabolic characteristics and intracellular protein profile under H2O2 stress is still not well understood. In the present study, the green alga Scenedesmus obliquus was exposed to different concentrations of H2O2 (0, 2, 6, 8 and 10 mg L-1) to evaluate the changes in algal morphological, physiological, and proteomic features to H2O2 exposure. The results showed that 8 mg L-1 of H2O2 could effectively inhibit the cell growth and photosynthetic activity of S. obliquus including chlorophyll-a content and chlorophyll fluorescence parameters. The increased activities of superoxide dismutase (SOD) and catalase (CAT) observed in this study indicate that cells exposure to H2O2 caused oxidative stress. The metabolic activity of S. obliquus was significantly decreased by H2O2 treatment. In terms of proteomic analysis, 251 differentially expressed proteins (DEPs) were successfully identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant protein enrichment in the metabolic pathways, photosynthesis, ascorbic acid, and alginate metabolism and phenylpropane biosynthesis of S. obliquus. The analysis of protein-protein interaction system shows that the pathways of photosynthesis and metabolic pathways of S. obliquus were essential to resist oxidative stress. Taking together, these results shed new lights on exploring the cell physiological metabolism and intracellular protein mechanisms of H2O2 inhibition on algal blooms.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiyan He
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
25
|
Wang X, Liu X, An YQC, Zhang H, Meng D, Jin Y, Huo H, Yu L, Zhang J. Identification of Glutathione Peroxidase Gene Family in Ricinus communis and Functional Characterization of RcGPX4 in Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:707127. [PMID: 34804079 PMCID: PMC8602854 DOI: 10.3389/fpls.2021.707127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glutathione peroxidases (GPXs) protect cells against damage caused by reactive oxygen species (ROS) and play key roles in regulating many biological processes. Here, five GPXs were identified in the Ricinus communis genome. Phylogenetic analysis displayed that the GPXs were categorized into five groups. Conserved domain and gene structure analyses showed that the GPXs from different plant species harbored four highly similar motifs and conserved exon-intron arrangement patterns, indicating that their structure and function may have been conserved during evolution. Several abiotic stresses and hormone-responsive cis-acting elements existed in the promoters of the RcGPXs. The expression profiles indicated that the RcGPXs varied substantially, and some RcGPXs were coordinately regulated under abiotic stresses. Overexpression of RcGPX4 in Arabidopsis enhanced cold tolerance at seed germination but reduced freezing tolerance at seedlings. The expression of abscisic acid (ABA) signaling genes (AtABI4 and AtABI5), ABA catabolism genes (AtCYP707A1 and AtCYP707A2), gibberellin acid (GA) catabolism gene (AtGA2ox7), and cytokinin (CTK)-inducible gene (AtARR6) was regulated in the seeds of transgenic lines under cold stress. Overexpression of RcGPX4 can disturb the hydrogen peroxide (H2O2) homeostasis through the modulation of some antioxidant enzymes and compounds involved in the GSH-ascorbate cycle in transgenic plants. Additionally, RcGPX4 depended on the MAPK3-ICE1-C-repeat-binding factor (CBF)-COR signal transduction pathway and ABA-dependent pathway to negatively regulate the freezing tolerance of transgenic plants. This study provides valuable information for understanding the potential function of RcGPXs in regulating the abiotic stress responses of castor beans.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Xuming Liu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yong-qiang Charles An
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Hongyu Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Di Meng
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yanan Jin
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Hongyan Huo
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Lili Yu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Jixing Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
26
|
Sako K, Nagashima R, Tamoi M, Seki M. Exogenous ethanol treatment alleviates oxidative damage of Arabidopsis thaliana under conditions of high-light stress. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:339-344. [PMID: 34782821 PMCID: PMC8562572 DOI: 10.5511/plantbiotechnology.21.0715a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 05/31/2023]
Abstract
Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3'-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Ryutaro Nagashima
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
28
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
29
|
Babina D, Podobed M, Bondarenko E, Kazakova E, Bitarishvili S, Podlutskii M, Mitsenyk A, Prazyan A, Gorbatova I, Shesterikova E, Volkova P. Seed Gamma Irradiation of Arabidopsis thaliana ABA-Mutant Lines Alters Germination and Does Not Inhibit the Photosynthetic Efficiency of Juvenile Plants. Dose Response 2021; 18:1559325820979249. [PMID: 33456412 PMCID: PMC7783891 DOI: 10.1177/1559325820979249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plant growth response to γ-irradiation includes stimulating or inhibitory effects
depending on plant species, dose applied, stage of ontogeny and other factors.
Previous studies showed that responses to irradiation could depend on ABA
accumulation and signaling. To elucidate the role of ABA in growth and
photosynthetic responses to irradiation, lines Col-8, abi3-8
and aba3 -1 of Arabidopsis thaliana were used.
Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It
was revealed that the dose of 150 Gy affected germination parameters of
aba3 -1 and Col-8 lines, while abi3-8 line
was the most resistant to the studied doses and even showed faster germination
at early hours after γ-irradiation at 50 Gy. These results suggest that
susceptibility to ABA is probably more important for growth response to
γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old
plants mainly was not disturbed by γ-irradiation of seeds, and no indication of
photosystem II photoinhibition was noticed, revealing the robustness of the
photosynthetic system of A. thaliana. Glutathione peroxidase
activity and ABA concentrations in plant tissues were not affected in the
studied dose range. These results contribute to the understanding of germination
and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing
radiation.
Collapse
Affiliation(s)
- Darya Babina
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Marina Podobed
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Mikhail Podlutskii
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Anastasia Mitsenyk
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Alexander Prazyan
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Irina Gorbatova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| |
Collapse
|
30
|
The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. J Proteomics 2020; 232:104029. [PMID: 33160103 DOI: 10.1016/j.jprot.2020.104029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) OsGPX3 is induced after treatment with the phytohormone abscisic acid (ABA) and is involved in its responses and in epigenetic modifications. Plants that have been silenced for OsGPX3 (gpx3i) present substantial changes in the accumulation of proteins related to these processes. These plants also have several altered ABA responses, such as germination, ROS accumulation, stomatal closure, and dark-induced senescence. This study is the first to demonstrate that OsGPX3 plays a role in ABA signaling and corroborate that redox homeostasis enzymes can act in different and complex pathways in plant cells. SIGNIFICANCE: This work proposes the mitochondrial glutathione peroxidase (OsGPX3) as a novel ABA regulatory pathway component. Our results suggest that this antioxidant enzyme is involved in ABA-responses, highlighting the complex pathways that these proteins can participate beyond the regulation of cellular redox status.
Collapse
|
31
|
Demecsová L, Zelinová V, Liptáková Ľ, Valentovičová K, Tamás L. Indole-3-butyric acid priming reduced cadmium toxicity in barley root tip via NO generation and enhanced glutathione peroxidase activity. PLANTA 2020; 252:46. [PMID: 32885283 DOI: 10.1007/s00425-020-03451-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 05/13/2023]
Abstract
Activation of GPX and enhanced NO level play a key role in IBA-mediated enhanced Cd tolerance in young barley roots. Application of exogenous indole-3-acetic acid (IAA) or an IAA precursor improves the tolerance of plants to heavy metals. However, the physiology of these tolerance mechanisms remains largely unknown. Therefore, we studied the priming effect of indole-3-butyric acid (IBA), an IAA precursor, on mild and severe cadmium (Cd) stress-induced responses in roots of young barley seedlings. IBA, similarly to mild Cd stress, significantly increased the glutathione peroxidase (GPX) activity in the apexes of barley roots, which remained elevated after the IBA pretreatment as well. IBA pretreatment-evoked high nitric oxide generation in roots effectively reduced the high superoxide level under the severe Cd stress, leading to less toxic peroxynitrite accumulation accompanied by markedly reduced Cd-induced cell death. On the other hand, the IBA-evoked changes in IAA homeostasis resulted in root growth reorientation from longitudinal elongation to radial swelling. However, the application of an IAA signaling inhibitor, following the activation of defense responses by IBA, was able to promote root growth even at high concentrations of Cd. Based on the results, it can be concluded that the application of IBA, as an effective activator of Cd tolerance mechanisms in young barley roots, and the subsequent use of an IAA signaling inhibitor for the inhibition of root morphogenic responses induced by altered auxin metabolism, results in a high degree of root Cd tolerance, helping it to withstand even the transient exposure to lethal Cd concentration without the absolute inhibition of root growth.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
32
|
Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC PLANT BIOLOGY 2020; 20:392. [PMID: 32847515 PMCID: PMC7449071 DOI: 10.1186/s12870-020-02602-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/16/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response. RESULTS In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress. CONCLUSIONS The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jun Yan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| |
Collapse
|
33
|
Zhou Y, Zhang D, Liu B, Hu D, Shen L, Long C, Yu Y, Lin T, Liu X, He D, Wei G. Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism. Genes Dis 2019; 6:431-440. [PMID: 31832523 PMCID: PMC6889044 DOI: 10.1016/j.gendis.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Dong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
34
|
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress. Int J Mol Sci 2019; 20:ijms20225782. [PMID: 31744233 PMCID: PMC6888306 DOI: 10.3390/ijms20225782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.L.); (H.J.)
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Guangshun Zheng
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
35
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Zhang L, Wu M, Yu D, Teng Y, Wei T, Chen C, Song W. Identification of Glutathione Peroxidase (GPX) Gene Family in Rhodiola crenulata and Gene Expression Analysis under Stress Conditions. Int J Mol Sci 2018; 19:E3329. [PMID: 30366446 PMCID: PMC6274781 DOI: 10.3390/ijms19113329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Glutathione peroxidases (GPXs) are important enzymes in the glutathione-ascorbate cycle for catalyzing the reduction of H₂O₂ or organic hydroperoxides to water. GPXs play an essential role in plant growth and development by participating in photosynthesis, respiration, and stress tolerance. Rhodiola crenulata is a popular traditional Chinese medicinal plant which displays an extreme energy of tolerance to harsh alpine climate. The GPXs gene family might provide R. crenulata for extensively tolerance to environment stimulus. In this study, five GPX genes were isolated from R. crenulata. The protein amino acid sequences were analyzed by bioinformation softwares with the results that RcGPXs gene sequences contained three conserve cysteine residues, and the subcellular location predication were in the chloroplast, endoplasmic reticulum, or cytoplasm. Five RcGPXs members presented spatial and temporal specific expression with higher levels in young and green organs. And the expression patterns of RcGPXs in response to stresses or plant hormones were investigated by quantitative real-time PCR. In addition, the putative interaction proteins of RcGPXs were obtained by yeast two-hybrid with the results that RcGPXs could physically interact with specific proteins of multiple pathways like transcription factor, calmodulin, thioredoxin, and abscisic acid signal pathway. These results showed the regulation mechanism of RcGPXs were complicated and they were necessary for R. crenulata to adapt to the treacherous weather in highland.
Collapse
Affiliation(s)
- Lipeng Zhang
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Mei Wu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Deshui Yu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Yanjiao Teng
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Tao Wei
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Chengbin Chen
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Wenqin Song
- College of Life Science, Nankai University, Tianjin, 300071 China.
| |
Collapse
|
37
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
38
|
Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, Chen C, Song W. Overexpression of the Glutathione Peroxidase 5 ( RcGPX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:1950. [PMID: 30687353 PMCID: PMC6333746 DOI: 10.3389/fpls.2018.01950] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Excessive cellular accumulation of reactive oxygen species (ROS) due to environmental stresses can critically disrupt plant development and negatively affect productivity. Plant glutathione peroxidases (GPXs) play an important role in ROS scavenging by catalyzing the reduction of H2O2 and other organic hydroperoxides to protect plant cells from oxidative stress damage. RcGPX5, a member of the GPX gene family, was isolated from a traditional medicinal plant Rhodiola crenulata and constitutively expressed in Salvia miltiorrhiza under control of the CaMV 35S promoter. Transgenic plants showed increased tolerance to oxidative stress caused by application of H2O2 and drought, and had reduced production of malondialdehyde (MDA) compared with the wild type. Under drought stress, seedlings of the transgenic lines wilted later than the wild type and recovered growth 1 day after re-watering. In addition, the reduced glutathione (GSH) and total glutathione (T-GSH) contents were higher in the transgenic lines, with increased enzyme activities including glutathione reductase (GR), ascorbate peroxidase (APX), and GPX. These changes prevent H2O2 and O2 - accumulation in cells of the transgenic lines compared with wild type. Overexpression of RcGPX5 alters the relative expression levels of multiple endogenous genes in S. miltiorrhiza, including transcription factor genes and genes in the ROS and ABA pathways. In particular, RcGPX5 expression increases the mass of S. miltiorrhiza roots while reducing the concentration of the active ingredients. These results show that heterologous expression of RcGPX5 in S. miltiorrhiza can affect the regulation of multiple biochemical pathways to confer tolerance to drought stress, and RcGPX5 might act as a competitor with secondary metabolites in the S. miltiorrhiza response to environmental stimuli.
Collapse
|
39
|
Zhang JJ, Xu JY, Lu FF, Jin SF, Yang H. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa). Chem Res Toxicol 2017; 30:1835-1846. [DOI: 10.1021/acs.chemrestox.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Jing Zhang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College
of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiang Yan Xu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - She Feng Jin
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
40
|
Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:1281-1295. [PMID: 28102911 DOI: 10.1111/pce.12919] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/27/2023]
Abstract
Glutathione peroxidase-like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N-terminal and C-terminal fusions with redox-sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N-terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N-terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N-terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.
Collapse
Affiliation(s)
- Safira Attacha
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - David Solbach
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Krisztina Bela
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stefanie J Müller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| |
Collapse
|
41
|
Kasajima I. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. BMC Res Notes 2017; 10:168. [PMID: 28446247 PMCID: PMC5406975 DOI: 10.1186/s13104-017-2489-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. METHODS 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. RESULTS Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. CONCLUSIONS Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan. .,Department of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, Japan.
| |
Collapse
|
42
|
Chen M, Li K, Li H, Song CP, Miao Y. The Glutathione Peroxidase Gene Family in Gossypium hirsutum: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis. Sci Rep 2017; 7:44743. [PMID: 28300195 PMCID: PMC5353742 DOI: 10.1038/srep44743] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations, tissue-specific expression patterns and environmental stress responses. In this study, 13 putative GPXs from the genome of Gossypium hirsutum (GhGPXs) were identified and a conserved pattern among plant GPXs were exhibited, besides this they also responded to multiple environmental stresses and we predicted that they had hormone responsive cis-elements in their promoter regions. Most of the GhGPXs on expression in yeast can scavenge H2O2. Our results showed that different members of the GhGPX gene family were co-ordinately regulated under specific environmental stress conditions, and suggested the importance of GhGPXs in hormone treatments and abiotic stress responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/metabolism
- Exons/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genetic Complementation Test
- Genome, Plant
- Glutathione Peroxidase/chemistry
- Glutathione Peroxidase/classification
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Gossypium/drug effects
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/physiology
- Hydrogen Peroxide/pharmacology
- Introns/genetics
- Multigene Family
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protoplasts/drug effects
- Protoplasts/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/growth & development
- Sequence Homology, Nucleic Acid
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Mingyang Chen
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Haipeng Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
43
|
Lima-Melo Y, Carvalho FEL, Martins MO, Passaia G, Sousa RHV, Neto MCL, Margis-Pinheiro M, Silveira JAG. Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:737-48. [PMID: 26799169 DOI: 10.1111/jipb.12464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 05/08/2023]
Abstract
The physiological role of plant mitochondrial glutathione peroxidases is scarcely known. This study attempted to elucidate the role of a rice mitochondrial isoform (GPX1) in photosynthesis under normal growth and salinity conditions. GPX1 knockdown rice lines (GPX1s) were tested in absence and presence of 100 mM NaCl for 6 d. Growth reduction of GPX1s line under non-stressful conditions, compared with non-transformed (NT) plants occurred in parallel to increased H2 O2 and decreased GSH contents. These changes occurred concurrently with photosynthesis impairment, particularly in Calvin cycle's reactions, since photochemical efficiency did not change. Thus, GPX1 silencing and downstream molecular/metabolic changes modulated photosynthesis differentially. In contrast, salinity induced reduction in both phases of photosynthesis, which were more impaired in silenced plants. These changes were associated with root morphology alterations but not shoot growth. Both studied lines displayed increased GPX activity but H2 O2 content did not change in response to salinity. Transformed plants exhibited lower photorespiration, water use efficiency and root growth, indicating that GPX1 could be important to salt tolerance. Growth reduction of GPX1s line might be related to photosynthesis impairment, which in turn could have involved a cross talk mechanism between mitochondria and chloroplast originated from redox changes due to GPX1 deficiency.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| | - Márcio O Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| | - Gisele Passaia
- Department of Genetics, Federal University of Rio Grande do Sul, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rachel H V Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| | - Milton C Lima Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| | - Márcia Margis-Pinheiro
- Department of Genetics, Federal University of Rio Grande do Sul, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60451-970, Fortaleza, Ceará, Brazil
| |
Collapse
|
44
|
Glutathione Peroxidase of Pennisetum glaucum (PgGPx) Is a Functional Cd2+ Dependent Peroxiredoxin that Enhances Tolerance against Salinity and Drought Stress. PLoS One 2015; 10:e0143344. [PMID: 26600014 PMCID: PMC4658160 DOI: 10.1371/journal.pone.0143344] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) arise in the plant system due to inevitable influence of various environmental stimuli. Glutathione peroxidases are one of the important ROS scavengers inside the cell. A glutathione peroxidase (PgGPx) gene was previously found from Pennisetum glauccum abiotic stressed cDNA library. Enzyme kinetics data revealed that PgGPx possessed preference towards thioredoxin rather than glutathione as electron donor and thus belongs to the functional peroxiredoxin group. Moreover, its activity was found to be dependent on divalent cations, especially Cd2+ and homology model showed the presence of Cd2+ binding site in the protein. Site directed mutagenesis study of PgGPx protein revealed the vital role of two conserved Cysteine residues for its enzymatic activity and structural folding. Expression analysis suggested that PgGPx transcript is highly up-regulated in response to salinity and drought stresses. When expressed ectopically, PgGPx showed enhanced tolerance against multiple abiotic stresses in prokaryotic E. coli and model plant, rice. Transgenic rice plants showed lesser accumulation of MDA and H2O2; and higher accumulation of proline as compared to wild type (WT) plants in response to both salinity and drought stresses that clearly indicates suppression of lipid peroxidation and ROS generation in transgenic lines. Moreover, transgenic plants maintained better photosynthesis efficiency and higher level of antioxidant enzyme activity as compared to WT plants under stress conditions. These results clearly indicate the imperative role of PgGPx in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance towards oxidative stress.
Collapse
|
45
|
Nota F, Cambiagno DA, Ribone P, Alvarez ME. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:122-9. [PMID: 25900572 DOI: 10.1016/j.plantsci.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 05/21/2023]
Abstract
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress.
Collapse
Affiliation(s)
- Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Damián A Cambiagno
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Pamela Ribone
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María E Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
46
|
Passaia G, Margis-Pinheiro M. Glutathione peroxidases as redox sensor proteins in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:22-6. [PMID: 25804806 DOI: 10.1016/j.plantsci.2015.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 05/24/2023]
Abstract
Glutathione peroxidases are thiol-based enzymes that catalyze the reduction of H2O2 and hydroperoxides to H2O or alcohols, they mitigate the toxicity of these compounds to the cell mainly using thioredoxin as an electron donor. Additionally, certain redox sensor and signaling functions are being ascribed to these enzymes in prokaryotes, fungi, and plants. We review the evolutionary history, enzymatic and biochemical evidence that make GPX proteins, in addition to being peroxiredoxins, important candidates for acting as redox sensor proteins in plants: (i) the lower peroxidase activity of Cys-GPX; (ii) the thiol catalytic center; (iii) the capacity to interact with regulatory proteins. All these characteristics suggest that at the basal level, plant GPXs have an important role in redox signal transduction in addition to their peroxidase activity.
Collapse
Affiliation(s)
- Gisele Passaia
- Department of Genetics, Federal University of Rio Grande do Sul, RS, Brazil
| | | |
Collapse
|
47
|
Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M. Function of glutathione peroxidases in legume root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2979-90. [PMID: 25740929 PMCID: PMC4423513 DOI: 10.1093/jxb/erv066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Ana Saiz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Maria Peñuelas
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Pilar Bustos-Sanmamed
- Institut des Sciences du Végétal, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Camino de Vera, 46022 Valencia, Spain
| | - Maria V Barja
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Camino de Vera, 46022 Valencia, Spain
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France INRA, Interactions Arbres-Microorganismes, UMR1136, F-54280 Champenoux, France
| | - Marten Moore
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501 Bielefeld, Germany
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501 Bielefeld, Germany
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
48
|
Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:192-201. [PMID: 25638402 DOI: 10.1016/j.jplph.2014.12.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/18/2023]
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|
49
|
Fu JY. Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. BOTANICAL STUDIES 2014; 55:7. [PMID: 28510910 PMCID: PMC5432830 DOI: 10.1186/1999-3110-55-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Tea plant, Camellia sinensis (L.) O. Kuntze, a well-known heavy metal hyperaccumulator, possesses a powerful tolerance to heavy metals. The heavy metal stresses lead to reactive oxygen species (ROS) production, and high concentration of ROS is harmful to plants. The glutathione peroxidase gene has positive function to damage induced by ROS. To understand the mechanism of tolerance to deferent stresses in tea plant, a new glutathione peroxidase gene of tea plant was cloned and its expression pattern was analyzed under abiotic and biotic stresses. RESULTS A novel cDNA encoding glutathione peroxidase of tea plant (Camellia sinensis) was isolated by rapid amplification of cDNA ends (RACE) method and designated as CsGPX2 (GenBank Accession No. JQ247186). This full-length sequence was 917 nucleotides including a 510 bp open reading frame (ORF), which encoded a polypeptide of 169 amino acids. The deduced amino acid sequence showed high homology with glutathione peroxidases of angiosperms and contained the characteristic conserved motifs of ILAFPCNQF and FTVKD, the highest level of similarity was 85% to a glutathione peroxidase from Ricinus communis (Accession NO. XP_002509790.1). Tissue expression pattern analysis indicated that CsGPX2 expressed similarly in root, stem, leaf and flower of tea plant. The CsGPX2 gene showed strong responses to most abiotic stresses including salinity, heavy metal toxicity, drought, heat, plant hormones, but could not be induced by biotic treatment. CONCLUSIONS The result suggested that CsGPX2 had potential function in protecting tea plant from peroxidative damage induced by some abiotic stresses.
Collapse
Affiliation(s)
- Jian-Yu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, China.
| |
Collapse
|
50
|
Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 2014; 21:1422-41. [PMID: 24180661 PMCID: PMC4158988 DOI: 10.1089/ars.2013.5662] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. RECENT ADVANCES A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. CRITICAL ISSUES The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. FUTURE DIRECTIONS Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a "ROS marker gene" should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of "ROS signatures," which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes.
Collapse
Affiliation(s)
- Lauri Vaahtera
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki , Helsinki, Finland
| | | | | | | |
Collapse
|