1
|
Kim CY, Park Y, Namgung JY, Park Y, Park BY. The macroscale routing mechanism of structural brain connectivity related to body mass index. Hum Brain Mapp 2024; 45:e70019. [PMID: 39230183 PMCID: PMC11372826 DOI: 10.1002/hbm.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Understanding the brain's mechanisms in individuals with obesity is important for managing body weight. Prior neuroimaging studies extensively investigated alterations in brain structure and function related to body mass index (BMI). However, how the network communication among the large-scale brain networks differs across BMI is underinvestigated. This study used diffusion magnetic resonance imaging of 290 young adults to identify links between BMI and brain network mechanisms. Navigation efficiency, a measure of network routing, was calculated from the structural connectivity computed using diffusion tractography. The sensory and frontoparietal networks indicated positive associations between navigation efficiency and BMI. The neurotransmitter association analysis identified that serotonergic and dopaminergic receptors, as well as opioid and norepinephrine systems, were related to BMI-related alterations in navigation efficiency. The transcriptomic analysis found that genes associated with network routing across BMI overlapped with genes enriched in excitatory and inhibitory neurons, specifically, gene enrichments related to synaptic transmission and neuron projection. Our findings suggest a valuable insight into understanding BMI-related alterations in brain network routing mechanisms and the potential underlying cellular biology, which might be used as a foundation for BMI-based weight management.
Collapse
Affiliation(s)
- Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Research Center for Small Businesses Ecosystem, Inha University, Incheon, South Korea
| |
Collapse
|
2
|
Chen Y, Ma L, Han Z, Xiong P. The global burden of disease attributable to high body mass index in 204 countries and territories: Findings from 1990 to 2019 and predictions to 2035. Diabetes Obes Metab 2024; 26:3998-4010. [PMID: 38957939 DOI: 10.1111/dom.15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
AIM Our study aims to provide an updated estimate of age- and sex-specific deaths and disability-adjusted life years (DALYs) associated with high body mass index (BMI) from 1990 to 2019 at the global, regional and national levels, and to forecast the global burden of disease attributed to high BMI from 2020 to 2035. METHODS We used the data for the number of deaths, DALYs, age-standardized rate (per 100 000 population), percentage change and population attributable fraction from the Global Burden of Disease Study 2019 (GBD 2019) to examine the disease burden attributable to high BMI. We further applied an autoregressive integrated moving average (ARIMA) model to predict the disease burden for the period 2020-2035. RESULTS From 1990 to 2019, the deaths and DALYs attributable to high BMI increased by 148% and 155.86% for men, and by 111.67% and 121.78% for women, respectively. In 2019, high BMI directly accounted for 8.52% [95% uncertainty intervals (UI) 0.05, 0.12] of all-cause deaths and 5.89% (95% UI 0.04, 0.08) of global DALYs. The highest death rates were observed in men aged 65-69 and women aged 75-79. The highest DALY rates were observed in the age group of 60-64 for both sexes. In 2019, the highest age-standardized deaths and DALY rates were observed in the Central Asia region [163.15 (95% UI 107.72, 223.58) per 100 000 people] and the Oceania region [4643.33 (95% UI 2835.66, 6902.6) per 100 000 people], respectively. Fiji [319.08 (95% UI 213.77, 444.96) per 100 000 people] and Kiribati [10 000.58 (95% UI 6266.55, 14159.2) per 100 000 people] had the highest age-standardized deaths and DALY rates, respectively. In 2019, the highest age-standardized rates of high BMI-related deaths and DALYs were observed in the middle-high socio-demographic index quintile and in the middle socio-demographic index quintile. The age-standardized deaths and DALY rates attributable to high BMI are projected to increase in both sexes from 2020 to 2035. The death rates are projected to rise from 62.79 to 64.31 per 100 000 people, while the DALY rates are projected to rise from 1946 to 2099.54 per 100 000 people. CONCLUSIONS High BMIs significantly contribute to the global disease burden. The projected rise in deaths and DALY rates attributable to high BMI by 2035 highlights the critical need to address the impact of obesity on public health. Our study provides policymakers with up-to-date and comprehensive information.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Li Ma
- Biomedical Innovation and Entrepreneurship Laboratory, Jinan University, Guangzhou, China
| | - Zhigang Han
- Guangzhou Centre for Disease Control and Prevention, Guangzhou, China
| | - Peng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
4
|
Ruda I, Chellapandian DC, Rott M, Scheid S, Freiherr J. Beyond Distracted Eating: Cognitive Distraction Downregulates Odor Pleasantness and Interacts with Weight Status. Nutrients 2024; 16:2871. [PMID: 39275187 PMCID: PMC11397456 DOI: 10.3390/nu16172871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Considering the widespread issue of distracted eating, our study investigates how cognitive distraction influences the sensory perception of food-related odors among individuals with varying weight statuses. We conducted an exploratory, randomized, and cross-sectional experimental study, using the Tetris game to simulate real-life cognitive distraction, incorporating two distraction levels (low and high) and presenting five distinct odors. A total of 59 participants, categorized into a lean (n = 30) and overweight/obese group (n = 29) based on their body mass index (BMI), received odor stimuli while playing Tetris at low and high difficulty, corresponding to low and high distraction levels, respectively. Participants subsequently rated odor intensity and pleasantness under the two cognitive distraction conditions. Respiratory movements were monitored to ensure accurate olfactory stimulation. Our findings revealed no significant difference in odor intensity ratings across distraction levels (p = 0.903). However, there was a significant reduction in odor pleasantness under high cognitive distraction (p = 0.007), more pronounced in lean participants compared to those with an overweight status (p = 0.035). Additionally, an interaction between gender and cognitive distraction effects was observed in odor pleasantness perception. The differential effects of distraction across weight-status groups and genders are discussed in the context of hedonic motivation and compensatory mechanisms. This study sheds light onto the sensory mechanisms underlying distracted eating and could inform more personalized strategies for promoting healthier eating habits in a world dominated by distractions.
Collapse
Affiliation(s)
- Iryna Ruda
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Deepak Charles Chellapandian
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Marlene Rott
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Selina Scheid
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jessica Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany
| |
Collapse
|
5
|
Soliz-Rueda JR, Cuesta-Marti C, O'Mahony SM, Clarke G, Schellekens H, Muguerza B. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol Metab 2024:S1043-2760(24)00189-9. [PMID: 39095231 DOI: 10.1016/j.tem.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| |
Collapse
|
6
|
Oughourlian TC, Rizvi S, Wang C, Kostiuk A, Salamon N, Holly LT, Ellingson BM. Sex-specific alterations in functional connectivity and network topology in patients with degenerative cervical myelopathy. Sci Rep 2024; 14:16020. [PMID: 38992236 PMCID: PMC11239916 DOI: 10.1038/s41598-024-67084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) experience structural and functional brain reorganization. However, few studies have investigated the influence of sex on cerebral alterations. The present study investigates the role of sex on brain functional connectivity (FC) and global network topology in DCM and healthy controls (HCs). The resting-state functional MRI data was acquired for 100 patients (58 males vs. 42 females). ROI-to-ROI FC and network topological features were characterized for each patient and HC. Group differences in FC and network topological features were examined. Compared to healthy counterparts, DCM males exhibited higher FC between vision-related brain regions, and cerebellum, brainstem, and thalamus, but lower FC between the intracalcarine cortex and frontal and somatosensory cortices, while DCM females demonstrated higher FC between the thalamus and cerebellar and sensorimotor regions, but lower FC between sensorimotor and visual regions. DCM males displayed higher FC within the cerebellum and between the posterior cingulate cortex (PCC) and vision-related regions, while DCM females displayed higher FC between frontal regions and the PCC, cerebellum, and visual regions. Additionally, DCM males displayed significantly greater intra-network connectivity and efficiency compared to healthy counterparts. Results from the present study imply sex-specific supraspinal functional alterations occur in patients with DCM.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Rizvi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Undergraduate Interdepartmental Program, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Alex Kostiuk
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA.
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Ruda I, Chellapandian DC, Freiherr J. The impact of cognitive distraction on gustatory perception in volunteers with obesity. Sci Rep 2024; 14:14268. [PMID: 38902292 PMCID: PMC11190272 DOI: 10.1038/s41598-024-64722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Obesity, a global health challenge, is influenced by biological, behavioral, socioeconomical, and environmental factors. In our technology-driven world, distracted eating is prevalent, yet neurocognitive mechanisms behind it remain poorly understood. This study targets individuals with overweight and obesity, exploring taste perception under distraction comprehensively. Participants formed two distinct groups based on their Body Mass Index (BMI), lean and overweight/obese. During the experiment participants received gustatory stimuli while playing a Tetris game of various difficulty levels. Participants rated taste intensity and pleasantness, with linear mixed models analyzing distraction effects. Results confirmed that high distraction levels reduced perception of taste intensity (p = 0.017) and taste pleasantness (p = 0.022), with variations influenced by gender and weight status. Individuals in the overweight/obese group exhibited most profound intensity changes during distraction (p = 0.01). Taste sensitivity ratings positively correlated with BMI interacting with gender (male r = 0.227, p < 0.001; female r = 0.101, p < 0.001). Overall across both groups, female participants demonstrated higher taste sensitivity compared to male participants (p < 0.001). This study highlights the impact of cognitive distraction during consumption on taste perception, particularly in relation to weight status and gender, underscoring their significant roles in this interplay.
Collapse
Affiliation(s)
- Iryna Ruda
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Deepak Charles Chellapandian
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jessica Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany.
| |
Collapse
|
8
|
Janet R, Smallwood J, Hutcherson CA, Plassmann H, Mckeown B, Tusche A. Body mass index-dependent shifts along large-scale gradients in human cortical organization explain dietary regulatory success. Proc Natl Acad Sci U S A 2024; 121:e2314224121. [PMID: 38648482 PMCID: PMC11067012 DOI: 10.1073/pnas.2314224121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.
Collapse
Affiliation(s)
- Rémi Janet
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Cendri A. Hutcherson
- Department of Psychology, University of Toronto, Toronto, ONM5S 2E5, Canada
- Department of Marketing, Rotman School of Management, University of Toronto, Toronto, ONM5S 3E6, Canada
| | - Hilke Plassmann
- Marketing Area, INSEAD, FontainebleauF-77300, France
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), Sorbonne University, Paris75013, France
| | - Bronte Mckeown
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Anita Tusche
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
9
|
Zhang X, Ravichandran S, Gee GC, Dong TS, Beltrán-Sánchez H, Wang MC, Kilpatrick LA, Labus JS, Vaughan A, Gupta A. Social Isolation, Brain Food Cue Processing, Eating Behaviors, and Mental Health Symptoms. JAMA Netw Open 2024; 7:e244855. [PMID: 38573637 PMCID: PMC11192185 DOI: 10.1001/jamanetworkopen.2024.4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 04/05/2024] Open
Abstract
Importance Perceived social isolation is associated with negative health outcomes, including increased risk for altered eating behaviors, obesity, and psychological symptoms. However, the underlying neural mechanisms of these pathways are unknown. Objective To investigate the association of perceived social isolation with brain reactivity to food cues, altered eating behaviors, obesity, and mental health symptoms. Design, Setting, and Participants This cross-sectional, single-center study recruited healthy, premenopausal female participants from the Los Angeles, California, community from September 7, 2021, through February 27, 2023. Exposure Participants underwent functional magnetic resonance imaging while performing a food cue viewing task. Main Outcomes and Measures The main outcomes included brain reactivity to food cues, body composition, self-reported eating behaviors (food cravings, reward-based eating, food addiction, and maladaptive eating behaviors), and mental health symptoms (anxiety, depression, positive and negative affect, and psychological resilience). Results The study included 93 participants (mean [SD] age, 25.38 [7.07] years). Participants with higher perceived social isolation reported higher fat mass percentage, lower diet quality, increased maladaptive eating behaviors (cravings, reward-based eating, uncontrolled eating, and food addiction), and poor mental health (anxiety, depression, and psychological resilience). In whole-brain comparisons, the higher social isolation group showed altered brain reactivity to food cues in regions of the default mode, executive control, and visual attention networks. Isolation-related neural changes in response to sweet foods correlated with various altered eating behaviors and psychological symptoms. These altered brain responses mediated the connection between social isolation and maladaptive eating behaviors (β for indirect effect, 0.111; 95% CI, 0.013-0.210; P = .03), increased body fat composition (β, -0.141; 95% CI, -0.260 to -0.021; P = .02), and diminished positive affect (β, -0.089; 95% CI, -0.188 to 0.011; P = .09). Conclusions and Relevance These findings suggest that social isolation is associated with altered neural reactivity to food cues within specific brain regions responsible for processing internal appetite-related states and compromised executive control and attentional bias and motivation toward external food cues. These neural responses toward specific foods were associated with an increased risk for higher body fat composition, worsened maladaptive eating behaviors, and compromised mental health. These findings underscore the need for holistic mind-body-directed interventions that may mitigate the adverse health consequences of social isolation.
Collapse
Affiliation(s)
- Xiaobei Zhang
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Soumya Ravichandran
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- School of Medicine, University of California, San Diego, La Jolla, California
| | - Gilbert C. Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
- California Center for Population Research, University of California, Los Angeles
| | - Tien S. Dong
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Hiram Beltrán-Sánchez
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
- California Center for Population Research, University of California, Los Angeles
| | - May C. Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Lisa A. Kilpatrick
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Jennifer S. Labus
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Allison Vaughan
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
10
|
Walle R, Petitbon A, Fois GR, Varin C, Montalban E, Hardt L, Contini A, Angelo MF, Potier M, Ortole R, Oummadi A, De Smedt-Peyrusse V, Adan RA, Giros B, Chaouloff F, Ferreira G, de Kerchove d'Exaerde A, Ducrocq F, Georges F, Trifilieff P. Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure. Nat Commun 2024; 15:2543. [PMID: 38514654 PMCID: PMC10958053 DOI: 10.1038/s41467-024-46874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.
Collapse
Affiliation(s)
- Roman Walle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Anna Petitbon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Giulia R Fois
- Univ. Bordeaux, CNRS, IMN, UMR5293 F-33000, Bordeaux, France
| | - Christophe Varin
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrica Montalban
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Lola Hardt
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Mylène Potier
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
- Bordeaux Sciences Agro, F-, 33175, Gradignan, France
| | - Rodrigue Ortole
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Roger A Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS; F-75006, Paris, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077, Bordeaux, France
- Université de Bordeaux, 33077, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
11
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579924. [PMID: 38405878 PMCID: PMC10888780 DOI: 10.1101/2024.02.12.579924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Objective Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, e.g. ingestion and metabolic control. To date, no study has investigated whether brain responses to food cues in children are associated with peripheral insulin sensitivity. Methods We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with low and high ISI, adjusted for age and BMIz. Results Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on whole-brain food-cue reactivity. Conclusions Children with low peripheral insulin sensitivity showed differences in food cue evoked response particularly in insula functional connectivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Han J, Zhuang K, Dong D, Yang Y, Liu Y, He Q, Feng T, Lei X, Qiu J, Chen H. Elevated BMI impacts brain-state dynamics within the sensorimotor-to-transmodal hierarchy. Obesity (Silver Spring) 2024; 32:291-303. [PMID: 38269472 DOI: 10.1002/oby.23933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Overweight and obesity, as commonly indicated by a higher BMI, are associated with functional alterations in the brain, which may potentially result in cognitive decline and emotional illness. However, the manner in which these detrimental impacts manifest in the brain's dynamic characteristics remains largely unknown. METHODS Based on two independent resting-state functional magnetic resonance imaging data sets (Behavioral-Brain Research Project of Chinese Personality, n = 1923; Human Connectome Project, n = 998), the current study employed a Hidden Markov model to identify the spatiotemporal features of brain activity states. Subsequently, the study examined the changes in brain-state dynamics and the corresponding functional outcomes that arise with an increase in BMI. RESULTS Elevated BMI tends to shift the brain's activity states toward a greater emphasis on a specific set of states, i.e., the metastate, that are relevant to the joint activities of sensorimotor systems, making it harder to transfer to the metastate of transmodal systems. These findings were reconfirmed in a longitudinal sample (Behavioral-Brain Research Project of Chinese Personality, n = 34) that exhibited a significant increase in BMI at follow-up. Importantly, the alternation of brain-state dynamics specifically mediated the relationships between BMI and adverse functional outcomes, including cognitive decline and symptoms of mental illness. CONCLUSIONS The altered brain-state dynamics within the sensorimotor-to-transmodal hierarchy provide new insights into obesity-related brain dysfunctions and mental health issues.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yingkai Yang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Hu Y, Li G, Zhang W, Wang J, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow N, Ji G, Wang GJ, Zhang Y. Obesity is associated with alterations in anatomical connectivity of frontal-corpus callosum. Cereb Cortex 2024; 34:bhae014. [PMID: 38300178 PMCID: PMC11486688 DOI: 10.1093/cercor/bhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Haoyi Wang
- College of Westa, Southwest University, 2 Tiansheng Road, Chongqing 400715, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Nora Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| |
Collapse
|
14
|
Choi H, Byeon K, Lee J, Hong S, Park B, Park H. Identifying subgroups of eating behavior traits unrelated to obesity using functional connectivity and feature representation learning. Hum Brain Mapp 2024; 45:e26581. [PMID: 38224537 PMCID: PMC10789215 DOI: 10.1002/hbm.26581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Eating behavior is highly heterogeneous across individuals and cannot be fully explained using only the degree of obesity. We utilized unsupervised machine learning and functional connectivity measures to explore the heterogeneity of eating behaviors measured by a self-assessment instrument using 424 healthy adults (mean ± standard deviation [SD] age = 47.07 ± 18.89 years; 67% female). We generated low-dimensional representations of functional connectivity using resting-state functional magnetic resonance imaging and estimated latent features using the feature representation capabilities of an autoencoder by nonlinearly compressing the functional connectivity information. The clustering approaches applied to latent features identified three distinct subgroups. The subgroups exhibited different levels of hunger traits, while their body mass indices were comparable. The results were replicated in an independent dataset consisting of 212 participants (mean ± SD age = 38.97 ± 19.80 years; 35% female). The model interpretation technique of integrated gradients revealed that the between-group differences in the integrated gradient maps were associated with functional reorganization in heteromodal association and limbic cortices and reward-related subcortical structures such as the accumbens, amygdala, and caudate. The cognitive decoding analysis revealed that these systems are associated with reward- and emotion-related systems. Our findings provide insights into the macroscopic brain organization of eating behavior-related subgroups independent of obesity.
Collapse
Affiliation(s)
- Hyoungshin Choi
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
| | | | - Jong‐eun Lee
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
| | - Seok‐Jun Hong
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- Center for the Developing BrainChild Mind InstituteNew YorkUSA
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Bo‐yong Park
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- Department of Data ScienceInha UniversityIncheonRepublic of Korea
- Department of Statistics and Data ScienceInha UniversityIncheonRepublic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- School of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
15
|
Schultes B, Ernst B, Hallschmid M, Bueter M, Meyhöfer SM. The 'Behavioral Balance Model': A new perspective on the aetiology and therapy of obesity. Diabetes Obes Metab 2023; 25:3444-3452. [PMID: 37694802 DOI: 10.1111/dom.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Obesity is a debilitating disease of global proportions that necessitates refined, concept-driven therapeutic approaches. Policy makers, the public and even health care professionals, but also individuals with obesity harbour many misconceptions regarding this disease, which leads to prejudice, negative attitudes, stigmatization, discrimination, self-blame, and failure to provide and finance adequate medical care. Decades of intensive, successful scientific research on obesity have only had a very limited effect on this predicament. We propose a science-based, easy-to-understand conceptual model that synthesizes the complex pathogenesis of obesity including biological, psychological, social, economic and environmental aspects with the aim to explain and communicate better the nature of obesity and currently available therapeutic modalities. According to our integrative 'Behavioral Balance Model', 'top-down cognitive control' strategies are implemented (often with limited success) to counterbalance the increased 'bottom-up drive' to gain weight, which is triggered by biological, psycho-social and environmental mechanisms in people with obesity. Besides offering a deeper understanding of obesity, the model also highlights why there is a strong need for multimodal therapeutic approaches that may not only increase top-down control but also reduce a pathologically increased bottom-up drive.
Collapse
Affiliation(s)
- Bernd Schultes
- Metabolic Center St. Gallen, friendlyDocs Ltd, St. Gallen, Switzerland
| | - Barbara Ernst
- Metabolic Center St. Gallen, friendlyDocs Ltd, St. Gallen, Switzerland
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Department of Surgery, Spital Männedorf, Männedorf, Switzerland
| | - Sebastian M Meyhöfer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Xu H, Owens MM, MacKillop J. Neuroanatomical profile of BMI implicates impulsive delay discounting and general cognitive ability. Obesity (Silver Spring) 2023; 31:2799-2808. [PMID: 37853988 DOI: 10.1002/oby.23880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Obesity is a disorder of excessive adiposity, typically assessed via the anthropometric density measure of BMI. Numerous studies have implicated BMI with differences in brain structure, but with highly inconsistent findings. METHODS Machine learning elastic net regression models with cross-validation were conducted to characterize a neuroanatomical morphometry profile associated with BMI in 1100 participants (22% BMI > 30, n = 242) from the Human Connectome Project Young Adult project. RESULTS Using five-fold cross-validation, the multiregion neuroanatomical profile substantively predicted BMI (R2 = 10.05%), and this was robust in a held-out test set (R2 = 8.87%). In terms of specific regions, the neuroanatomical profile was enriched for nodes in the default mode, executive control, and salience networks. The relationship between the morphometry profile and BMI itself was partially mediated by impulsive delay discounting and general cognitive ability. CONCLUSIONS Taken together, these findings reveal a robust machine learning-derived neuroanatomical profile of BMI, one that comprises nodes in motivational brain networks and suggests the functional links to obesity are via self-regulatory capacity and cognitive function.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Baboumian S, Puma L, Swencionis C, Astbury NM, Ho J, Pantazatos SP, Geliebter A. Binge Eating (BE) and Obesity: Brain Activity and Psychological Measures before and after Roux-En-Y Gastric Bypass (RYGB). Nutrients 2023; 15:3808. [PMID: 37686840 PMCID: PMC10490010 DOI: 10.3390/nu15173808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Brain activity in response to food cues following Roux-En-Y Gastric Bypass (RYGB) in binge eating (BE) or non-binge eating (NB) individuals is understudied. Here, 15 RYGB (8 BE; 7 NB) and 13 no treatment (NT) (7 BE; 6 NB) women with obesity underwent fMRI imaging while viewing high and low energy density food (HEF and LEF, respectively) and non-food (NF) visual cues. A region of interest (ROI) analysis compared BE participants to NB participants in those undergoing RYGB surgery pre-surgery and 4 months post. Results were corrected for multiple comparisons using liberal (p < 0.006 uncorrected) and stringent (p < 0.05 FDR corrected) thresholds. Four months following RYGB (vs. no treatment (NT) control), both BE and NB participants showed greater reductions in blood oxygen level-dependent (BOLD) signals (a proxy of local brain activity) in the dorsomedial prefrontal cortex in response to HEF (vs. LEF) cues (p < 0.006). BE (vs. NB) participants showed greater increases in the precuneus (p < 0.006) and thalamic regions (p < 0.05 corrected) to food (vs. NF). For RYGB (vs. NT) participants, BE participants, but not NB participants, showed lower BOLD signal in the middle occipital gyrus (p < 0.006), whilst NB participants, but not BE participants, showed lower signal in inferior frontal gyrus (p < 0.006) in response to HEF (vs. LEF). Results suggest distinct neural mechanisms of RGYB in BE and may help lead to improved clinical treatments.
Collapse
Affiliation(s)
- Shaunte Baboumian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Lauren Puma
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Charles Swencionis
- Ferkauf Graduate School of Psychology, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA
| | - Nerys M. Astbury
- Nuffield Department of Primary Care Health Sciences, Medical Sciences Division, University of Oxford, Oxford OX2 6GG, UK
| | - Jennifer Ho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Spiro P. Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Dr, New York, NY 10032, USA
| | - Allan Geliebter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| |
Collapse
|
18
|
Schumann K, Rodriguez-Raecke R, Sijben R, Freiherr J. Elevated Insulin Levels Engage the Salience Network during Multisensory Perception. Neuroendocrinology 2023; 114:90-106. [PMID: 37634508 DOI: 10.1159/000533663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Brain insulin reactivity has been reported in connection with systematic energy metabolism, enhancement in cognition, olfactory sensitivity, and neuroendocrine circuits. High receptor densities exist in regions important for sensory processing. The main aim of the study was to examine whether intranasal insulin would modulate the activity of areas in charge of olfactory-visual integration. METHODS As approach, a placebo-controlled double-blind within crossover design was chosen. The experiments were conducted in a research unit of a university hospital. On separate mornings, twenty-six healthy normal-weight males aged between 19 and 31 years received either 40 IU intranasal insulin or placebo vehicle. Subsequently, they underwent 65 min of functional magnetic resonance imaging whilst performing an odor identification task. Functional brain activations of olfactory, visual, and multisensory integration as well as insulin versus placebo were assessed. Regarding the odor identification task, reaction time, accuracy, pleasantness, and intensity measurements were taken to examine the role of integration and treatment. Blood samples were drawn to control for peripheral hormone concentrations. RESULTS Intranasal insulin administration during olfactory-visual stimulation revealed strong bilateral engagement of frontoinsular cortices, anterior cingulate, prefrontal cortex, mediodorsal thalamus, striatal, and hippocampal regions (p ≤ 0.001 familywise error [FWE] corrected). In addition, the integration contrast showed increased activity in left intraparietal sulcus, left inferior frontal gyrus, left superior frontal gyrus, and left middle frontal gyrus (p ≤ 0.013 FWE corrected). CONCLUSIONS Intranasal insulin application in lean men led to enhanced activation in multisensory olfactory-visual integration sites and salience hubs which indicates stimuli valuation modulation. This effect can serve as a basis for understanding the connection of intracerebral insulin and olfactory-visual processing.
Collapse
Affiliation(s)
- Katja Schumann
- Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Rea Rodriguez-Raecke
- Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rik Sijben
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Jessica Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander, University Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
19
|
Richter M, Widera S, Malz F, Goltermann J, Steinmann L, Kraus A, Enneking V, Meinert S, Repple J, Redlich R, Leehr EJ, Grotegerd D, Dohm K, Kugel H, Bauer J, Arolt V, Dannlowski U, Opel N. Higher body weight-dependent neural activation during reward processing. Brain Imaging Behav 2023; 17:414-424. [PMID: 37012575 PMCID: PMC10435630 DOI: 10.1007/s11682-023-00769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range.
Collapse
Affiliation(s)
- Maike Richter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Sophia Widera
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Franziska Malz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lavinia Steinmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, Martin-Luther University of Halle, Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
20
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
21
|
Badaeva AV, Danilov AB, Clayton P, Moskalev AA, Karasev AV, Tarasevich AF, Vorobyeva YD, Novikov VN. Perspectives on Neuronutrition in Prevention and Treatment of Neurological Disorders. Nutrients 2023; 15:nu15112505. [PMID: 37299468 DOI: 10.3390/nu15112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The term neuronutrition has been proposed as part of nutritional neuroscience, studying the effects of various dietary components on behavior and cognition. Other researchers underline that neuronutrition includes the use of various nutrients and diets to prevent and treat neurological disorders. The aim of this narrative review was to explore the current understanding of the term neuronutrition as the key concept for brain health, its potential molecular targets, and perspectives of its nutritional approach to the prevention and treatment of Alzheimer's and Parkinson's diseases, multiple sclerosis, anxiety, depressive disorders, migraine, and chronic pain. Neuronutrition can be defined as a part of neuroscience that studies the influence of various aspects of nutrition (nutrients, diet, eating behavior, food environment, etc.) on the development of nervous disorders and includes nutrition, clinical dietetics, and neurology. There is evidence that the neuronutritional approach can influence neuroepigenetic modifications, immunological regulation, metabolic control, and behavioral patterns. The main molecular targets in neuronutrition include neuroinflammation, oxidative/nitrosative stress and mitochondrial dysfunction, gut-brain axis disturbance, and neurotransmitter imbalance. To effectively apply neuronutrition for maintaining brain health, a personalized approach is needed, which includes the adaptation of the scientific findings to the genetic, biochemical, psycho-physiological, and environmental features of each individual.
Collapse
Affiliation(s)
- Anastasiia V Badaeva
- Department of Personalized and Preventive Medicine, Institute of Interdisciplinary Medicine, 107113 Moscow, Russia
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Alexey B Danilov
- Department of Personalized and Preventive Medicine, Institute of Interdisciplinary Medicine, 107113 Moscow, Russia
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Paul Clayton
- Department of Personalized and Preventive Medicine, Institute of Interdisciplinary Medicine, 107113 Moscow, Russia
| | - Alexey A Moskalev
- Russian Research Clinical Center of Gerontology of the Russian National Research Medical University Named after N.I. Pirogov, 129226 Moscow, Russia
| | - Alexander V Karasev
- Department of Personalized and Preventive Medicine, Institute of Interdisciplinary Medicine, 107113 Moscow, Russia
| | - Andrey F Tarasevich
- Department of Personalized and Preventive Medicine, Institute of Interdisciplinary Medicine, 107113 Moscow, Russia
| | - Yulia D Vorobyeva
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Viacheslav N Novikov
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
22
|
Gowik JK, Goelz C, Vieluf S, van den Bongard F, Reinsberger C. Source connectivity patterns in the default mode network differ between elderly golf-novices and non-golfers. Sci Rep 2023; 13:6215. [PMID: 37069191 PMCID: PMC10110620 DOI: 10.1038/s41598-023-31893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
Learning to play golf has high demands on attention and therefore may counteract age-related changes of functional brain networks. This cross-sectional study compared source connectivity in the Default Mode Network (DMN) between elderly golf novices and non-golfers. Four-minute resting-state electroencephalography (128 channels) from 22 elderly people (mean age 67 ± 4.3 years, 55% females) were recorded after completing a 22-week golf learning program or after having continued with normal life. Source connectivity was assessed after co-registration of EEG data with native MRI within pre-defined portions of the DMN in the beta band (14-25 Hz). Non-golfers had significantly higher source connectivity values in the anterior DMN compared to non-golfers. Exploratory correlation analyses did not indicate an association to cognitive performance in either group. Inverse correlations between a marker of external attention with source connectivity of the anterior DMN may suggest a trend in the golf group only, but have to be replicated in future studies. Clinical relevance of these findings remains to be elucidated, but the observed difference in the anterior DMN may provide a starting point to further investigate if and how learning golf may have an impact on physiological age-related cognitive changes.
Collapse
Affiliation(s)
- J K Gowik
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - C Goelz
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - S Vieluf
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - F van den Bongard
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - C Reinsberger
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany.
| |
Collapse
|
23
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Brooks SJ, Smith C, Stamoulis C. Excess BMI in early adolescence adversely impacts maturating functional circuits supporting high-level cognition and their structural correlates. Int J Obes (Lond) 2023:10.1038/s41366-023-01303-7. [PMID: 37012426 DOI: 10.1038/s41366-023-01303-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND/OBJECTIVES Adverse effects of excess BMI (affecting 1 in 5 children in the US) on brain circuits during neurodevelopmentally vulnerable periods are incompletely understood. This study investigated BMI-related alterations in maturating functional networks and their underlying brain structures, and high-level cognition in early adolescence. SUBJECTS/METHODS Cross-sectional resting-state fMRI, structural sMRI, neurocognitive task scores, and BMI from 4922 youth [median (IQR) age = 120.0 (13.0) months, 2572 females (52.25%)] from the Adolescent Brain Cognitive Development (ABCD) cohort were analyzed. Comprehensive topological and morphometric network properties were estimated from fMRI and sMRI, respectively. Cross-validated linear regression models assessed correlations with BMI. Results were reproduced across multiple fMRI datasets. RESULTS Almost 30% of youth had excess BMI, including 736 (15.0%) with overweight and 672 (13.7%) with obesity, and statistically more Black and Hispanic compared to white, Asian and non-Hispanic youth (p < 0.01). Those with obesity or overweight were less physically active, slept less than recommended, snored more frequently, and spent more time using an electronic device (p < 0.01). They also had lower topological efficiency, resilience, connectivity, connectedness and clustering in Default-Mode, dorsal attention, salience, control, limbic, and reward networks (p ≤ 0.04, Cohen's d: 0.07-0.39). Lower cortico-thalamic efficiency and connectivity were estimated only in youth with obesity (p < 0.01, Cohen's d: 0.09-0.19). Both groups had lower cortical thickness, volume and white matter intensity in these networks' constituent structures, particularly anterior cingulate, entorhinal, prefrontal, and lateral occipital cortices (p < 0.01, Cohen's d: 0.12-0.30), which also mediated inverse relationships between BMI and regional functional topologies. Youth with obesity or overweight had lower scores in a task measuring fluid reasoning - a core aspect of cognitive function, which were partially correlated with topological changes (p ≤ 0.04). CONCLUSIONS Excess BMI in early adolescence may be associated with profound aberrant topological alterations in maturating functional circuits and underdeveloped brain structures that adversely impact core aspects of cognitive function.
Collapse
Affiliation(s)
- Skylar J Brooks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
- University of California Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Calli Smith
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
| | - Catherine Stamoulis
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA.
- Harvard Medical School, Department of Pediatrics, Boston, MA, USA.
| |
Collapse
|
25
|
Merege-Filho CAA, Gil SS, Kirwan JP, Murai IH, Dantas WS, Nucci MP, Pastorello B, de Lima AP, Bazán PR, Pereira RMR, de Sá-Pinto AL, Lima FR, Brucki SMD, de Cleva R, Santo MA, Leite CDC, Otaduy MCG, Roschel H, Gualano B. Exercise modifies hypothalamic connectivity and brain functional networks in women after bariatric surgery: a randomized clinical trial. Int J Obes (Lond) 2023; 47:165-174. [PMID: 36585494 PMCID: PMC10134041 DOI: 10.1038/s41366-022-01251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity is a disease that may involve disrupted connectivity of brain networks. Bariatric surgery is an effective treatment for obesity, and the positive effects on obesity-related conditions may be enhanced by exercise. Herein, we aimed to investigate the possible synergistic effects of Roux-en-Y Gastric Bypass (RYGB) and exercise training on brain functional networks. METHODS Thirty women eligible for bariatric surgery were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 15, age = 41.0 ± 7.3 years) or RYGB plus Exercise Training (RYGB + ET: n = 15, age = 41.9 ± 7.2 years). Clinical, laboratory, and brain functional connectivity parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6-month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). RESULTS Exercise superimposed on bariatric surgery (RYGB + ET) increased connectivity between hypothalamus and sensorial regions (seed-to-voxel analyses of hypothalamic connectivity), and decreased default mode network (DMN) and posterior salience (pSAL) network connectivity (ROI-to-ROI analyses of brain networks connectivity) when compared to RYGB alone (all p-FDR < 0.05). Increases in basal ganglia (BG) network connectivity were only observed in the exercised training group (within-group analyses). CONCLUSION Exercise training is an important component in the management of post-bariatric patients and may improve the hypothalamic connectivity and brain functional networks that are involved in controlling food intake. TRIAL REGISTRATION Clinicaltrial.gov: NCT02441361.
Collapse
Affiliation(s)
- Carlos A A Merege-Filho
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo S Gil
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Igor H Murai
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mariana P Nucci
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Pastorello
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Alisson Padilha de Lima
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo R Bazán
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sonia M D Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marco A Santo
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Maria Concepción García Otaduy
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
26
|
Rolls ET, Feng R, Cheng W, Feng J. Orbitofrontal cortex connectivity is associated with food reward and body weight in humans. Soc Cogn Affect Neurosci 2023; 18:nsab083. [PMID: 34189586 PMCID: PMC10498940 DOI: 10.1093/scan/nsab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The aim was to investigate with very large-scale analyses whether there are underlying functional connectivity differences between humans that relate to food reward and whether these in turn are associated with being overweight. In 37 286 humans from the UK Biobank, resting-state functional connectivities of the orbitofrontal cortex (OFC), especially with the anterior cingulate cortex, were positively correlated with the liking for sweet foods (False Discovery Rate (FDR) P < 0.05). They were also positively correlated with the body mass index (BMI) (FDR P < 0.05). Moreover, in a sample of 502 492 people, the 'liking for sweet foods' was correlated with their BMI (r = 0.06, P < 10-125). In a cross-validation with 545 participants from the Human Connectome Project, a higher functional connectivity involving the OFC relative to other brain areas was associated with a high BMI (≥30) compared to a mid-BMI group (22-25; P = 6 × 10-5), and low OFC functional connectivity was associated with a low BMI (≤20.5; P < 0.024). It is proposed that a high BMI relates to increased efficacy of OFC food reward systems and a low BMI to decreased efficacy. This was found with no stimulation by food, so may be an underlying individual difference in brain connectivity that is related to food reward and BMI.
Collapse
Affiliation(s)
- Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Ruiqing Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| |
Collapse
|
27
|
Malin SK, Stewart NR, Ude AA, Alderman BL. Brain insulin resistance and cognitive function: influence of exercise. J Appl Physiol (1985) 2022; 133:1368-1380. [PMID: 36269295 PMCID: PMC9744647 DOI: 10.1152/japplphysiol.00375.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Exercise has systemic health benefits in people, in part, through improving whole body insulin sensitivity. The brain is an insulin-sensitive organ that is often underdiscussed relative to skeletal muscle, liver, and adipose tissue. Although brain insulin action may have only subtle impacts on peripheral regulation of systemic glucose homeostasis, it is important for weight regulation as well as mental health. In fact, brain insulin signaling is also involved in processes that support healthy cognition. Furthermore, brain insulin resistance has been associated with age-related declines in memory and executive function as well as Alzheimer's disease pathology. Herein, we provide an overview of brain insulin sensitivity in relation to cognitive function from animal and human studies, with particular emphasis placed on the impact exercise may have on brain insulin sensitivity. Mechanisms discussed include mitochondrial function, brain growth factors, and neurogenesis, which collectively help combat obesity-related metabolic disease and Alzheimer's dementia.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Nathan R Stewart
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Andrew A Ude
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Brandon L Alderman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
28
|
ISHIHARA TORU, MIYAZAKI ATSUSHI, TANAKA HIROKI, MATSUDA TETSUYA. Association of Cardiovascular Risk Markers and Fitness with Task-Related Neural Activity during Animacy Perception. Med Sci Sports Exerc 2022; 54:1738-1750. [PMID: 35666157 PMCID: PMC9473717 DOI: 10.1249/mss.0000000000002963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Numerous studies have demonstrated the association between cardiovascular risk markers and fitness, and broad aspects of cognition; however, the possible association of cardiovascular risk markers and fitness with social cognition, which plays a significant role in the development and maintenance of social relationships, has largely been ignored. Herein, we investigated the relationship of cardiovascular risk markers and fitness with task-related neural activity during animacy perception. METHODS We analyzed data from the Human Connectome Project derived from 1027 adults age 22-37 yr. Canonical correlation analysis (CCA) was conducted to evaluate the association between participants' body mass index, systolic and diastolic blood pressure, submaximal endurance, gait speed, hand dexterity, and muscular strength with task-related neural activity during animacy perception. RESULTS We observed a single significant CCA mode. Body mass index and blood pressure demonstrated negative cross-loadings with task-related neural activity in the temporoparietal, superior and anterior temporal, posterior cingulate, and inferior frontal regions, whereas submaximal endurance, hand dexterity, and muscular strength demonstrated positive cross-loadings. The observed CCA variates did not seem highly heritable, as the absolute differences in CCA variates in monozygotic twins, dizygotic twins, and nontwin siblings were not statistically different. Furthermore, the cardiovascular risk markers and fitness CCA variates were positively associated with animacy perception and emotion recognition accuracy, which was mediated by the task-related neural activity. CONCLUSIONS The present findings can provide new insights into the role of markers for cardiovascular health and fitness, specifically their association with social cognition and the underlying neural basis. The intervention for cardiovascular risk and fitness could be a potentially cost-effective method of targeting social cognition.
Collapse
Affiliation(s)
- TORU ISHIHARA
- Graduate School of Human Development and Environment, Kobe University, Kobe, JAPAN
| | | | - HIROKI TANAKA
- Tamagawa University Brain Science Institute, Tokyo, JAPAN
- Japan Society for the Promotion of Science, Tokyo, JAPAN
| | | |
Collapse
|
29
|
Jack Rejeski W, Laurienti PJ, Bahrami M, Fanning J, Simpson SL, Burdette JH. Aging and Neural Vulnerabilities in Overeating: A Conceptual Overview and Model to Guide Treatment. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e39. [PMID: 36589860 PMCID: PMC9797202 DOI: 10.1002/pcn5.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Given the vulnerability of older adults to chronic disease and physical disability, coupled with the threat that obesity poses to healthy aging, there is an urgent need to understand the causes of positive energy balance and the struggle that many older adults face with intentional weight loss. This paper focuses on neural vulnerabilities related to overeating in older adults, and moderating variables that can have either favorable or unfavorable effect these vulnerabilities. Research from our laboratory on older adults with obesity suggests that they are prone to similar neural vulnerabilities for overeating that have been observed in younger and middle-aged populations. In addition, following brief postabsorptive states, functional brain networks both in the resting state and in response to active imagery of desired food are associated with 6-month weight loss. Data reviewed suggest that the sensorimotor network is a central hub in the process of valuation and underscores the central role played by habits in overeating. Finally, we demonstrate how research on the neural vulnerabilities for overeating offers a useful framework for guiding clinical decision-making in weight management.
Collapse
Affiliation(s)
- W. Jack Rejeski
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Paul J. Laurienti
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mohsen Bahrami
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jason Fanning
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Sean L. Simpson
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Biostatistics and Data ScienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jonathan H. Burdette
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
30
|
Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci 2022; 12:brainsci12081080. [PMID: 36009143 PMCID: PMC9405914 DOI: 10.3390/brainsci12081080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 12/16/2022] Open
Abstract
In the last decades, it has been proposed that executive functions may be particularly vulnerable to weight-related issues. However, evidence on the matter is mixed, especially when the effects of sociodemographic variables are weighted. Thus, the current study aimed at further examining the relationship between executive functions and obesity. To this aim, we compared treatment-seeking overweight, obese, and morbidly obese patients with normal-weight control participants. We examined general executive functioning (Frontal Assessment Battery−15) and different executive subdomains (e.g., inhibitory control, verbal fluency, and psychomotor speed) in a clinical sample including 208 outpatients with different degrees of BMI (52 overweight, BMI 25−30, M age = 34.38; 76 obese, BMI 30−40, M age = 38.00; 80 morbidly obese, BMI > 40, M age = 36.20). Ninety-six normal-weight subjects served as controls. No difference on executive scores was detected when obese patients were compared with over- or normal-weight subjects. Morbidly obese patients reported lower performance on executive scores than obese, overweight, and normal-weight subjects. Between-group difference emerged also when relevant covariates were taken into account. Our results support the view that morbid obesity is associated with lower executive performance, also considering the critical role exerted by sociodemographic (i.e., sex, age, and education) variables. Our results support the view that executive functioning should be accounted into the management of the obese patient because of non-negligible clinical relevance in diagnostic, therapeutic, and prognostic terms.
Collapse
|
31
|
Ester T, Kullmann S. Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Rev Endocr Metab Disord 2022; 23:753-772. [PMID: 34862944 PMCID: PMC9307556 DOI: 10.1007/s11154-021-09697-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is appreciated as a key neurobiological player in human eating behavior. A special focus is herein dedicated to the dorsolateral prefrontal cortex (DLPFC), which is critically involved in executive function such as cognitive control over eating. Persons with obesity display hypoactivity in this brain area, which is linked to overconsumption and food craving. Contrary to that, higher activity in the DLPFC is associated with successful weight-loss and weight-maintenance. Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation tool used to enhance self-control and inhibitory control. The number of studies using tDCS to influence eating behavior rapidly increased in the last years. However, the effectiveness of tDCS is still unclear, as studies show mixed results and individual differences were shown to be an important factor in the effectiveness of non-invasive brain stimulation. Here, we describe the current state of research of human studies using tDCS to influence food intake, food craving, subjective feeling of hunger and body weight. Excitatory stimulation of the right DLPFC seems most promising to reduce food cravings to highly palatable food, while other studies provide evidence that stimulating the left DLPFC shows promising effects on weight loss and weight maintenance, especially in multisession approaches. Overall, the reported findings are heterogeneous pointing to large interindividual differences in tDCS responsiveness.
Collapse
Affiliation(s)
- Theresa Ester
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Ebehard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Godet A, Fortier A, Bannier E, Coquery N, Val-Laillet D. Interactions between emotions and eating behaviors: Main issues, neuroimaging contributions, and innovative preventive or corrective strategies. Rev Endocr Metab Disord 2022; 23:807-831. [PMID: 34984602 DOI: 10.1007/s11154-021-09700-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
Emotional eating is commonly defined as the tendency to (over)eat in response to emotion. Insofar as it involves the (over)consumption of high-calorie palatable foods, emotional eating is a maladaptive behavior that can lead to eating disorders, and ultimately to metabolic disorders and obesity. Emotional eating is associated with eating disorder subtypes and with abnormalities in emotion processing at a behavioral level. However, not enough is known about the neural pathways involved in both emotion processing and food intake. In this review, we provide an overview of recent neuroimaging studies, highlighting the brain correlates between emotions and eating behavior that may be involved in emotional eating. Interaction between neural and neuro-endocrine pathways (HPA axis) may be involved. In addition to behavioral interventions, there is a need for a holistic approach encompassing both neural and physiological levels to prevent emotional eating. Based on recent imaging, this review indicates that more attention should be paid to prefrontal areas, the insular and orbitofrontal cortices, and reward pathways, in addition to regions that play a major role in both the cognitive control of emotions and eating behavior. Identifying these brain regions could allow for neuromodulation interventions, including neurofeedback training, which deserves further investigation.
Collapse
Affiliation(s)
- Ambre Godet
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - Alexandra Fortier
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - Elise Bannier
- CRNS, INSERM, IRISA, INRIA, Univ Rennes, Empenn Rennes, France
- Radiology Department, Rennes University Hospital, Rennes, France
| | - Nicolas Coquery
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France
| | - David Val-Laillet
- Nutrition Metabolisms and Cancer (NuMeCan), INRAE, INSERM, Univ Rennes, St Gilles, France.
| |
Collapse
|
33
|
Coquery N, Gautier Y, Serrand Y, Meurice P, Bannier E, Thibault R, Constant A, Moirand R, Val-Laillet D. Brain Responses to Food Choices and Decisions Depend on Individual Hedonic Profiles and Eating Habits in Healthy Young Women. Front Nutr 2022; 9:920170. [PMID: 35811938 PMCID: PMC9263555 DOI: 10.3389/fnut.2022.920170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
The way different food consumption habits in healthy normal-weight individuals can shape their emotional and cognitive relationship with food and further disease susceptibility has been poorly investigated. Documenting the individual consumption of Western-type foods (i.e., high-calorie, sweet, fatty, and/or salty) in relation to psychological traits and brain responses to food-related situations can shed light on the early neurocognitive susceptibility to further diseases and disorders. We aimed to explore the relationship between eating habits, psychological components of eating, and brain responses as measured by blood oxygen level-dependent functional magnetic resonance imaging (fMRI) during a cognitive food choice task and using functional connectivity (FC) during resting-state fMRI (rsfMRI) in a population of 50 healthy normal-weight young women. A Food Consumption Frequency Questionnaire (FCFQ) was used to classify them on the basis of their eating habits and preferences by principal component analysis (PCA). Based on the PCA, we defined two eating habit profiles, namely, prudent-type consumers (PTc, N = 25) and Western-type consumers (WTc, N = 25), i.e., low and high consumers of western diet (WD) foods, respectively. The first two PCA dimensions, PCA1 and PCA2, were associated with different psychological components of eating and brain responses in regions involved in reward and motivation (striatum), hedonic evaluation (orbitofrontal cortex, OFC), decision conflict (anterior cingulate cortex, ACC), and cognitive control of eating (prefrontal cortex). PCA1 was inversely correlated with the FC between the right nucleus accumbens and the left lateral OFC, while PCA2 was inversely correlated with the FC between the right insula and the ACC. Our results suggest that, among a healthy population, distinct eating profiles can be detected, with specific correlates in the psychological components of eating behavior, which are also related to a modulation in the reward and motivation system during food choices. We could detect different patterns in brain functioning at rest, with reduced connectivity between the reward system and the frontal brain region in Western-type food consumers, which might be considered as an initial change toward ongoing modified cortico-striatal control.
Collapse
Affiliation(s)
- Nicolas Coquery
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
| | - Yentl Gautier
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
| | - Yann Serrand
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
| | - Paul Meurice
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
| | - Elise Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France
- CHU Rennes, Department of Radiology, Rennes, France
| | - Ronan Thibault
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
- Unité de Nutrition, CHU Rennes, Rennes, France
| | - Aymery Constant
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
- EHESP, School of Public Health, Rennes, France
| | - Romain Moirand
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
- Unité d’Addictologie, CHU Rennes, Rennes, France
| | - David Val-Laillet
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer Institute, NuMeCan, Rennes, France
- *Correspondence: David Val-Laillet,
| |
Collapse
|
34
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
35
|
Donofry SD, Lesnovskaya A, Drake JA, Ripperger HS, Gilmore AD, Donahue PT, Crisafio ME, Grove G, Gentry AL, Sereika SM, Bender CM, Erickson KI. Obesity, Psychological Distress, and Resting State Connectivity of the Hippocampus and Amygdala Among Women With Early-Stage Breast Cancer. Front Hum Neurosci 2022; 16:848028. [PMID: 35431843 PMCID: PMC9011058 DOI: 10.3389/fnhum.2022.848028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Objective Overweight and obesity [body mass index (BMI) ≥ 25 kg/m2] are associated with poorer prognosis among women with breast cancer, and weight gain is common during treatment. Symptoms of depression and anxiety are also highly prevalent in women with breast cancer and may be exacerbated by post-diagnosis weight gain. Altered brain function may underlie psychological distress. Thus, this secondary analysis examined the relationship between BMI, psychological health, and resting state functional connectivity (rsFC) among women with breast cancer. Methods The sample included 34 post-menopausal women newly diagnosed with Stage 0-IIa breast cancer (Mage = 63.59 ± 5.73) who were enrolled in a 6-month randomized controlled trial of aerobic exercise vs. usual care. At baseline prior to randomization, whole-brain analyses were conducted to evaluate the relationship between BMI and seed-to-voxel rsFC of the hippocampus and amygdala. Connectivity values from significant clusters were then extracted and examined as predictors of self-reported depression and anxiety. Results Mean BMI was in the obese range (M = 31.83 ± 6.62). For both seeds examined, higher BMI was associated with lower rsFC with regions of prefrontal cortex (PFC), including ventrolateral PFC (vlPFC), dorsolateral PFC, and superior frontal gyrus (z range = 2.85-4.26). Hippocampal connectivity with the vlPFC was negatively correlated with self-reported anxiety (β = 0.47, p < 0.01). Conclusion Higher BMI was associated with lower hippocampal and amygdala connectivity to regions of PFC implicated in cognitive control and emotion regulation. BMI-related differences in hippocampal and amygdala connectivity following a recent breast cancer diagnosis may relate to future worsening of psychological functioning during treatment and remission. Additional longitudinal research exploring this hypothesis is warranted.
Collapse
Affiliation(s)
- Shannon D. Donofry
- Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alina Lesnovskaya
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jermon A. Drake
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hayley S. Ripperger
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alysha D. Gilmore
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patrick T. Donahue
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mary E. Crisafio
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - George Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amanda L. Gentry
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan M. Sereika
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Catherine M. Bender
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Burdette JH, Bahrami M, Laurienti PJ, Simpson S, Nicklas BJ, Fanning J, Rejeski WJ. Longitudinal relationship of baseline functional brain networks with intentional weight loss in older adults. Obesity (Silver Spring) 2022; 30:902-910. [PMID: 35333443 PMCID: PMC8969753 DOI: 10.1002/oby.23396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The goal of this study was to determine whether the degree of weight loss after 6 months of a behavior-based intervention is related to baseline connectivity within two functional networks (FNs) of interest, FN1 and FN2, in a group of older adults with obesity. METHODS Baseline functional magnetic resonance imaging data were collected following an overnight fast in 71 older adults with obesity involved in a weight-loss intervention. Functional brain networks in a resting state and during a food-cue task were analyzed using a mixed-regression framework to examine the relationships between baseline networks and 6-month change in weight. RESULTS During the resting condition, the relationship of baseline brain functional connectivity and network clustering in FN1, which includes the visual cortex and sensorimotor areas, was significantly associated with 6-month weight loss. During the food-cue condition, 6-month weight loss was significantly associated with the relationship between baseline brain connectivity and network global efficiency in FN2, which includes executive control, attention, and limbic regions. CONCLUSION These findings provide further insight into complex functional circuits in the brain related to successful weight loss and may ultimately aid in developing tailored behavior-based treatment regimens that target specific brain circuitry.
Collapse
Affiliation(s)
- Jonathan H. Burdette
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Mohsen Bahrami
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of Biomedical EngineeringVirginia Tech‐Wake Forest School of Biomedical Engineering and SciencesWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Paul J. Laurienti
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Sean L. Simpson
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Barbara J. Nicklas
- Section on Geriatric MedicineDepartment of Internal MedicineWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Jason Fanning
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - W. Jack Rejeski
- Section on Geriatric MedicineDepartment of Internal MedicineWake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
37
|
Zhang P, Wu GW, Tang LR, Yu FX, Li MY, Wang Z, Yang ZH, Zhang ZT, Lv H, Liu Y, Wang ZC. Altered Brain Structural Reorganization and Hierarchical Integrated Processing in Obesity. Front Neurosci 2022; 16:796792. [PMID: 35368267 PMCID: PMC8971659 DOI: 10.3389/fnins.2022.796792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brain receives sensory information about food, evaluates its desirability and value, and responds with approach or withdrawal. The evaluation process of food in the brain with obesity may involve a variety of neurocircuit abnormalities in the integration of internal and external information processing. There is a lack of consistency of the results extant reported for aberrant changes in the brain with obesity that prohibits key brain alterations to be identified. Moreover, most studies focus on the observation of neural plasticity of function or structure, and the evidence for functional and structural correlations in the neuronal plasticity process of obesity is still insufficient. The aims of this article are to explore the key neural structural regions and the hierarchical activity pattern of key structural nodes and evaluate the correlation between changes in functional modulation and eating behavior. Forty-two participants with obesity and 33 normal-weight volunteers were recruited. Gray matter volume (GMV) and Granger causality analysis (GCA) were performed using the DPARSF, CAT12, and DynamicBC toolbox. Compared with the normal weight group, the obesity group exhibited significantly increased GMV in the left parahippocampal gyrus (PG). The obesity group showed decreased causal inflow to the left PG from the left orbitofrontal cortex (OFC), right calcarine, and bilateral supplementary motor area (SMA). Decreased causal outflow to the left OFC, right precuneus, and right SMA from the left PG, as well as increased causal outflow to the left middle occipital gyrus (MOG) were observed in the obesity group. Negative correlations were found between DEBQ-External scores and causal outflow from the left PG to the left OFC, and DEBQ-Restraint scores and causal inflow from the left OFC to the left PG in the obesity group. Positive correlation was found between DEBQ-External scores and causal outflow from the left PG to the left MOG. These results show that the increased GMV in the PG may play an important role in obesity, which may be related to devalued reward system, altered behavioral inhibition, and the disengagement of attentional and visual function for external signals. These findings have important implications for understanding neural mechanisms in obesity and developing individual-tailored strategies for obesity prevention.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Li-rong Tang
- Department of Clinical Psychology Center, Beijing Anding Hospital, Capital Medical University and National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Feng-xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Meng-yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
- Yang Liu,
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhen-chang Wang,
| |
Collapse
|
38
|
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol 2022; 18:417-442. [PMID: 35044793 DOI: 10.1146/annurev-clinpsy-072720-014213] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Is the field of cognitive aging irretrievably concerned with decline and deficits, or is it shifting to emphasize the hope of preservation and enhancement of cognitive function in late life? A fragment of an answer comes from research attempting to understand the reasons for individual variability in the extent and rate of cognitive decline. This body of work has created a sense of optimism based on evidence that there are some health behaviors that amplify cognitive performance or mitigate the rate of age-related cognitive decline. In this context, we discuss the role of physical activity on neurocognitive function in late adulthood and summarize how it can be conceptualized as a constructive approach both for the maintenance of cognitive function and as a therapeutic for enhancing or optimizing cognitive function in late life. In this way, physical activity research can be used to shape perceptions of cognitive aging. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Shannon D Donofry
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Chelsea M Stillman
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
39
|
Doostfatemeh M, Haem E, Sarbaraninan M, Ajdari Tafti M. Multidimensional item Response theory to assess the psychometric properties of persian version of dutch eating behavior questionnaire (DEBQ) in university students. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-021-02608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Brennan A, Marstaller L, Burianová H, Benton D, Hanley CJ, Newstead S, Young HA. Weaker connectivity in resting state networks is associated with disinhibited eating in older adults. Int J Obes (Lond) 2022; 46:859-865. [PMID: 35017713 PMCID: PMC8960408 DOI: 10.1038/s41366-021-01056-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Background/objectives Obesity affects more than forty percent of adults over the age of sixty. Aberrant eating styles such as disinhibition have been associated with the engagement of brain networks underlying executive functioning, attentional control, and interoception. However, these effects have been exclusively studied in young samples overlooking those most at risk of obesity related harm. Methods Here we assessed associations between resting-state functional connectivity and disinhibited eating (using the Three Factor Eating Questionnaire) in twenty-one younger (aged 19–34 years, BMI range: 18–31) and twenty older (aged 60–73 years, BMI range: 19–32) adults matched for BMI. The Alternative Healthy Eating Index was used to quantify diet quality. Results Older, compared to younger, individuals reported lower levels of disinhibited eating, consumed a healthier diet, and had weaker connectivity in the frontoparietal (FPN) and default mode (DMN) networks. In addition, associations between functional connectivity and eating behaviour differed between the two age groups. In older adults, disinhibited eating was associated with weaker connectivity in the FPN and DMN––effects that were absent in the younger sample. Importantly, these effects could not be explained by differences in habitual diet. Conclusions These findings point to a change in interoceptive signalling as part of the ageing process, which may contribute to behavioural changes in energy intake, and highlight the importance of studying this under researched population.
Collapse
Affiliation(s)
| | | | - Hana Burianová
- Swansea University, Wales, SA2 8PP, UK.,Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK
| | | | | | | | | |
Collapse
|
41
|
Zhang M, Gao X, Yang Z, Niu X, Chen J, Wei Y, Wang W, Han S, Cheng J, Zhang Y. Weight Status Modulated Brain Regional Homogeneity in Long-Term Male Smokers. Front Psychiatry 2022; 13:857479. [PMID: 35733797 PMCID: PMC9207237 DOI: 10.3389/fpsyt.2022.857479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Tobacco smoking and being overweight could lead to adverse health effects, which remain an important public health problem worldwide. Research indicates that overlapping pathophysiology may contribute to tobacco addiction and being overweight, but the neurobiological interaction mechanism between the two factors is still unclear. METHODS The current study used a mixed sample design, including the following four groups: (i) overweight long-term smokers (n = 24); (ii) normal-weight smokers (n = 28); (iii) overweight non-smokers (n = 19), and (iv) normal-weight non-smokers (n = 28), for a total of 89 male subjects. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) was used to compare internal cerebral activity among the four groups. Interaction effects between tobacco addiction and weight status on ReHo were detected using a two-way analysis of variance, correcting for age, years of education, and head motion. RESULTS A significant interaction effect between tobacco addiction and weight status is shown in right superior frontal gyrus. Correlation analyses show that the strengthened ReHo value in the right superior frontal gyrus is positively associated with pack-year. Besides, the main effect of tobacco addiction is specially observed in the occipital lobe and cerebellum posterior lobe. As for the main effect of weight status, the right lentiform nucleus, left postcentral gyrus, and brain regions involved in default mode network (DMN) survived. CONCLUSIONS These results shed light on an antagonistic interaction on brain ReHo between tobacco addiction and weight status in the right superior frontal gyrus, which may be a clinical neuro-marker of comorbid tobacco addiction and overweight. Our findings may provide a potential target to develop effective treatments for the unique population of comorbid tobacco addiction and overweight people.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
42
|
Han XD, Zhang HW, Xu T, Liu L, Cai HT, Liu ZQ, Li Q, Zheng H, Xu T, Yuan TF. How Impulsiveness Influences Obesity: The Mediating Effect of Resting-State Brain Activity in the dlPFC. Front Psychiatry 2022; 13:873953. [PMID: 35619620 PMCID: PMC9127259 DOI: 10.3389/fpsyt.2022.873953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Impulsiveness is a stable personal characteristic that contributes to obesity and may interact with it. Specifically, obesity is caused by unrestrained impulse eating that is not consciously controlled and leads to a hormonal imbalance that also can impair impulse control. However, the mechanism of this relationship is unclear. In our study, 35 obese individuals (body mass index, BMI > 28) were recruited and matched with 31 healthy controls (BMI < 24) in age and education level. All the participants underwent a resting-state fMRI and completed the Barratt Impulsiveness Scale-11. The results showed that patients with obesity had a significantly lower fractional amplitude of low-frequency fluctuations (fALFF) in the bilateral dorsolateral prefrontal cortex (dlPFC) and higher fALFF in the left fusiform cortex. In addition, non-planning impulsiveness was positively correlated with BMI. Importantly, we found that the right dlPFC completely mediated the relationship between non-planning impulsiveness and BMI. Our findings suggest that impulsivity is statistically more likely to precede obesity than to precede impulsivity and contributes to obesity by downregulating spontaneous activity in the dlPFC. This suggests that the dlPFC, which is associated with executive control, may be able a potential target for treating obesity.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Wei Zhang
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Xu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Liu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ting Cai
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Qi Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Xu
- Department of Anaesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anaesthesiology, Tongzhou People's Hospital, Nantong, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Ely AV, Jagannathan K, Spilka N, Keyser H, Rao H, Franklin TR, Wetherill RR. Exploration of the influence of body mass index on intra-network resting-state connectivity in chronic cigarette smokers. Drug Alcohol Depend 2021; 227:108911. [PMID: 34364193 PMCID: PMC8464487 DOI: 10.1016/j.drugalcdep.2021.108911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obesity and cigarette smoking are two leading preventable causes of death. Previous research suggests that comorbid smoking and obesity likely share neurobehavioral underpinnings; however, the influence of body mass index (BMI) on resting-state functional connectivity (rsFC) in smokers remains unknown. In this study, we explore how BMI affects rsFC and associations between rsFC and smoking-related behavior. METHODS Treatment-seeking cigarette smokers (N = 87; 54 % men) completed a BOLD resting-state fMRI scan session. We grouped smokers into BMI groups (N = 23 with obesity, N = 33 with overweight, N = 31 lean) and used independent components analysis (ICA) to identify the resting state networks commonly associated with cigarette smoking: salience network (SN), right and left executive control networks (ECN) and default mode network (DMN). Average rsFC values were extracted (p < 0.001, k = 100) to determine group differences in rsFC and relationship to self-reported smoking and dependence. RESULTS Analyses revealed a significant relationship between BMI and connectivity in the SN and a significant quadratic effect of BMI on DMN connectivity. Heavier smoking was related to greater rsFC in the SN among lean and obese groups but reduced rsFC in the overweight group. CONCLUSIONS Findings build on research suggesting an influence of BMI on the neurobiology of smokers. In particular, dysfunction of SN-DMN-ECN circuitry in smokers with overweight may lead to a failure to modulate attention and behavior and subsequent difficulty quitting smoking. Future research is needed to elucidate the mechanism underlying the interaction of BMI and smoking and its impact on treatment.
Collapse
Affiliation(s)
- Alice V. Ely
- Corresponding authors: University of Pennsylvania, Department of Psychiatry, 3535 Market St Suite 500, Philadelphia PA 19104, ,
| | | | | | | | | | | | - Reagan R. Wetherill
- Corresponding authors: University of Pennsylvania, Department of Psychiatry, 3535 Market St Suite 500, Philadelphia PA 19104, ,
| |
Collapse
|
44
|
Syan SK, McIntyre-Wood C, Minuzzi L, Hall G, McCabe RE, MacKillop J. Dysregulated resting state functional connectivity and obesity: A systematic review. Neurosci Biobehav Rev 2021; 131:270-292. [PMID: 34425125 DOI: 10.1016/j.neubiorev.2021.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Obesity has been variously linked to differences in brain functional connectivity in regions associated with reward, emotional regulation and cognition, potentially revealing neural mechanisms contributing to its development and maintenance. This systematic review summarizes and critically appraises the existing literature on differences in resting state functional connectivity (Rs-FC) between overweight and individuals with obesity in relation healthy-BMI controls. Twenty-nine studies were identified and the results consistently support the hypothesis that obesity is associated with differences in Rs-FC. Specifically, obesity/overweight was consistently associated with (i) DMN hypoconnectivity and salience network hyperconnectivity; (ii) increased Rs-FC between the hypothalamus and reward, limbic and salience networks, and decreased Rs-FC between the hypothalamus and cognitive regions; (iii) increased power within regions associated with inhibition/emotional reasoning; (iv) decreased nodal efficiency, degree centrality, and global efficiency. Collectively, the results suggest obesity is associated with disrupted connectivity of brain networks responsible for cognition, reward, self-referential processing and emotional regulation.
Collapse
Affiliation(s)
- Sabrina K Syan
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Randi E McCabe
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Chen X, Gao X, Qin J, Wang C, Xiao M, Tian Y, Luo YJ, Qiu J, Feng T, He Q, Lei X, Chen H. Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. NEUROIMAGE-CLINICAL 2021; 30:102671. [PMID: 33892431 PMCID: PMC8082688 DOI: 10.1016/j.nicl.2021.102671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
This study examined the resting-state functional network connectivity underlying eating disorder symptoms in a large sample of healthy young adults (n = 693). Individuals with higher levels of eating disorder symptoms displayed weaker intra-network connectivity of the executive control network and basal ganglia network, as well as weaker inter-network connectivity in the three examined networks (i.e., the executive control network, basal ganglia network, and default mode network). The findings suggest that these neural circuits may play a key role in symptoms of disordered eating in healthy adults. They further reveal that the less efficient information exchange within and between intrinsic networks associated with self-referential thinking, inhibitory control, and reward sensitivity are strongly related to eating disorder symptoms.
Previous neuroimaging research of eating disorders such as anorexia nervosa and bulimia nervosa has mainly focused on clinical patients, indicating the crucial role of intrinsic connectivity networks involved in aberrant behavioral control (i.e., executive control network), reward reactivity (i.e., basal ganglia network), and excessive self-focused and body-focused ruminations (i.e., default mode network) in the onset and maintenance of eating disturbances. However, examinations of large-scale resting-state networks that support the role of cognitive control, reward sensitivity, and self-directed thinking in disordered eating have rarely involved non-clinical samples from the general population. This study, involving a total of 693 healthy young adults (68.69% females; mean age, 18.37 years), investigated these issues by using pre-defined functional regions of interest from the executive control network, basal ganglia network, default mode network, and a seed-based region of interest-to-region of interest approach. After statistically controlling for differences in age, sex, body mass index, and head motion, we observed significant associations of higher levels of eating disorder symptoms, especially bulimia-type eating (i.e., binge eating and a combination of binge eating and compensatory behaviors, such as purging via self-induced vomiting or laxative use, and compulsive exercise), with weaker intra-network and inter-network functional synchrony. These results remained significant after excluding underweight, overweight, and obese participants. These findings suggest that these neural circuits may play a key role in the symptoms of disordered eating in healthy adults. They further reveal that the less efficient information exchange within and between intrinsic networks associated with self-referential thinking, inhibitory control, and reward sensitivity are strongly related to eating disorder symptoms.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chuan Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yun Tian
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yi-Jun Luo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
46
|
Tucholska K, Gulla B, Grabowska A, Major P. Time perspective, future anxiety, and hope for success in individuals awaiting bariatric surgery. HEALTH PSYCHOLOGY REPORT 2021; 10:111-121. [PMID: 38084328 PMCID: PMC10681836 DOI: 10.5114/hpr.2021.105259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The paper focuses on the problems of temporal functioning of obese individuals and of individuals prepared for bariatric treatment. The experience of time heavily weighs on many areas of human functioning, everyday activity, planning and achieving goals, engaging in pro-health behaviours, and in consequence on the quality of life and on physical health. Contingent on numerous factors, obesity may be related to focusing on particular aspects of time perspective. The aim of the study was to determine the specificity of particular temporal dispositions in individuals prepared for bariatric surgery, and thus to devise suitable post-op psychological interventions. PARTICIPANTS AND PROCEDURE The study sample comprised 28 individuals (60.7% women, mean age M = 43.82 years, SD = 10.01, mean BMI M = 44.83 kg/m2, SD = 6.51) awaiting bariatric surgery. The data were collected individually with the following pen-and-paper questionnaires: the Zimbardo Time Perspective Inventory, the Dark Future Scale, and the Polish adaptation of Snyder's Adult Hope Scale, which is named the Hope for Success Questionnaire. RESULTS The results showed the prevalence of present hedonistic time perspective in the obese. With regard to future anxiety or the hope for success, no significant deviations from the general population were observed. CONCLUSIONS The results indicate that this group is in need of temporal psychotherapy aimed at balancing the time perspective. The results may also be interpreted through the lens of contextual determinants connected with task orientation preceding the surgery.
Collapse
Affiliation(s)
- Kinga Tucholska
- Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bożena Gulla
- Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Anna Grabowska
- 2 Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Major
- 2 Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
47
|
Kupis L, Goodman ZT, Kircher L, Romero C, Dirks B, Chang C, Nomi JS, Uddin LQ. Altered patterns of brain dynamics linked with body mass index in youth with autism. Autism Res 2021; 14:873-886. [PMID: 33616282 DOI: 10.1002/aur.2488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Children with autism spectrum disorder (ASD) have higher rates of overweight and obesity (OWOB) compared with typically developing (TD) children. Brain functional connectivity differences have been shown in both ASD and OWOB. However, only one study to date has examined ASD and OWOB concurrently, so little is known regarding the neural mechanisms associated with the higher prevalence of OWOB and its behavioral impacts in ASD. We investigated co-activation patterns (CAPs) of brain regions identified by independent component analysis in 129 children and adolescents between 6 and 18 years of age (n = 68 ASD). We examined the interaction between body mass index (BMI) and diagnosis in predicting dynamic brain metrics (dwell time, DT; frequency of occurrence, and transitions between states) as well as dimensional brain-behavior relationships. The relationship between BMI and brain dynamics was moderated by diagnosis (ASD, TD), particularly among the frequency of CAP 4, characterized by co-activation of lateral frontoparietal, temporal, and frontal networks. This pattern was negatively associated with parent-reported inhibition skills. Children with ASD had shorter CAP 1, characterized by co-activation of the subcortical, temporal, sensorimotor, and frontal networks, and CAP 4 DTs compared with TD children. CAP 1 DT was negatively associated with cognitive flexibility, inhibition, social functioning, and BMI. Cognitive flexibility moderated the relationship between BMI and brain dynamics in the visual network. Our findings provide novel evidence of neural mechanisms associated with OWOB in children with ASD. Further, poorer cognitive flexibility may result in increased vulnerability for children with ASD and co-occurring OWOB. LAY SUMMARY: Obesity is a societal epidemic and is common in autism, however, little is known about the neural mechanisms associated with the higher rates of obesity in autism. Here, we find unique patterns of brain dynamics associated with obesity in autism that were not observed in typically developing children. Further, the relationship between body mass index and brain dynamics depended on cognitive flexibility. These findings suggest that individuals with autism may be more vulnerable to the effects of obesity on brain function. Autism Res 2021, 14: 873-886. © 2021 International Society for Autism Research, Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Lauren Kupis
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Zachary T Goodman
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Leigha Kircher
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Celia Romero
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Bryce Dirks
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
48
|
Zhang W, Ji G, Manza P, Li G, Hu Y, Wang J, Lv G, He Y, von Deneen KM, Han Y, Cui G, Tomasi D, Volkow ND, Nie Y, Wang GJ, Zhang Y. Connectome-Based Prediction of Optimal Weight Loss Six Months After Bariatric Surgery. Cereb Cortex 2020; 31:2561-2573. [PMID: 33350441 DOI: 10.1093/cercor/bhaa374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Despite bariatric surgery being the most effective treatment for obesity, a proportion of subjects have suboptimal weight loss post-surgery. Therefore, it is necessary to understand the mechanisms behind the variance in weight loss and identify specific baseline biomarkers to predict optimal weight loss. Here, we employed functional magnetic resonance imaging (fMRI) with baseline whole-brain resting-state functional connectivity (RSFC) and a multivariate prediction framework integrating feature selection, feature transformation, and classification to prospectively identify obese patients that exhibited optimal weight loss at 6 months post-surgery. Siamese network, which is a multivariate machine learning method suitable for small sample analysis, and K-nearest neighbor (KNN) were cascaded as the classifier (Siamese-KNN). In the leave-one-out cross-validation, the Siamese-KNN achieved an accuracy of 83.78%, which was substantially higher than results from traditional classifiers. RSFC patterns contributing to the prediction consisted of brain networks related to salience, reward, self-referential, and cognitive processing. Further RSFC feature analysis indicated that the connection strength between frontal and parietal cortices was stronger in the optimal versus the suboptimal weight loss group. These findings show that specific RSFC patterns could be used as neuroimaging biomarkers to predict individual weight loss post-surgery and assist in personalized diagnosis for treatment of obesity.
Collapse
Affiliation(s)
- Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
49
|
Inagaki TK. Health neuroscience 2.0: integration with social, cognitive and affective neuroscience. Soc Cogn Affect Neurosci 2020; 15:1017-1023. [PMID: 32888307 PMCID: PMC7657452 DOI: 10.1093/scan/nsaa123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tristen K Inagaki
- Department of Psychology, San Diego State University, San Diego, USA
| |
Collapse
|
50
|
Cai C, Huang C, Yang C, Lu H, Hong X, Ren F, Hong D, Ng E. Altered Patterns of Functional Connectivity and Causal Connectivity in Salience Subnetwork of Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment. Front Neurosci 2020; 14:288. [PMID: 32390791 PMCID: PMC7189119 DOI: 10.3389/fnins.2020.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
The subjective cognitive decline (SCD) may last for decades prior to the onset of dementia and has been proposed as a risk population for development to amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD). Disruptions of functional connectivity and causal connectivity (CC) in the salience network (SN) are generally perceived as prominent hallmarks of the preclinical AD. Nevertheless, the alterations in anterior SN (aSN), and posterior SN (pSN) remain unclear. Here, we hypothesized that both the functional connectivity (FC) and CC of the SN subnetworks, comprising aSN and pSN, were distinct disruptive in the SCD and aMCI. We utilized resting-state functional magnetic resonance imaging to investigate the altered FC and CC of the SN subnetworks in 28 healthy controls, 23 SCD subjects, and 29 aMCI subjects. In terms of altered patterns of FC in SN subnetworks, aSN connected to the whole brain was significantly increased in the left orbital superior frontal gyrus, left insula lobule, right caudate lobule, and left rolandic operculum gyrus (ROG), whereas decreased FC was found in the left cerebellum superior lobule and left middle temporal gyrus when compared with the HC group. Notably, no prominent statistical differences were obtained in pSN. For altered patterns of CC in SN subnetworks, compared to the HC group, the aberrant connections in aMCI group were separately involved in the right cerebellum inferior lobule (CIL), right supplementary motor area (SMA), and left ROG, whereas the SCD group exhibited more regions of aberrant connection, comprising the right superior parietal lobule, right CIL, left inferior parietal lobule, left post-central gyrus (PG), and right angular gyrus. Especially, SCD group showed increased CC in the right CIL and left PG, whereas the aMCI group showed decreased CC in the left pre-cuneus, corpus callosum, and right SMA when compared to the SCD group. Collectively, our results suggest that analyzing the altered FC and CC observed in SN subnetworks, served as impressible neuroimaging biomarkers, may supply novel insights for designing preclinical interventions in the preclinical stages of AD.
Collapse
Affiliation(s)
- Chunting Cai
- School of Informatics, Xiamen University, Xiamen, China
| | - Chenxi Huang
- School of Informatics, Xiamen University, Xiamen, China
| | - Chenhui Yang
- School of Informatics, Xiamen University, Xiamen, China
| | - Haijie Lu
- Department of Radiation Oncology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xin Hong
- School of Informatics, Xiamen University, Xiamen, China.,College of Computer Science and Technology, Huaqiao University, Xiamen, China
| | - Fujia Ren
- School of Informatics, Xiamen University, Xiamen, China
| | - Dan Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Eyk Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|