1
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
3
|
Sanacora G, Rothman D, Krystal JH. Applications of Magnetic Resonance Spectroscopy to Psychiatry. Neuroscientist 2016. [DOI: 10.1177/107385849900500316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inaccessibility of the human brain to biochemical studies has historically challenged the ability of in vestigators to elucidate the pathophysiology of psychiatric syndromes. Magnetic resonance spectroscopy (MRS) now provides a noninvasive means of assessing neurochemistry in vivo. Since the first application of the technique to the study of the human brain, many new advances have been made. This new technology broadens the applications of the MRS. The major principles of the technique and compounds currently available for study are discussed in this article. A brief review of current and future applications of the technology to the field of psychiatry are discussed. NEUROSCIENTIST 5:192-196, 1999
Collapse
Affiliation(s)
- Gerard Sanacora
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - Douglas Rothman
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - John H. Krystal
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| |
Collapse
|
4
|
Shaghaghi H, Kadlecek S, Siddiqui S, Pourfathi M, Hamedani H, Clapp J, Profka H, Rizi R. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance. Free Radic Biol Med 2015; 89:62-71. [PMID: 26165188 DOI: 10.1016/j.freeradbiomed.2015.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/19/2015] [Accepted: 06/28/2015] [Indexed: 01/10/2023]
Abstract
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes.
Collapse
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, Hamedani H, Ishii M, Profka H, Rizi AR. Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-(13) C pyruvate. NMR IN BIOMEDICINE 2014; 27:939-47. [PMID: 24865640 PMCID: PMC4110199 DOI: 10.1002/nbm.3139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 05/04/2023]
Abstract
Metabolic activity in the lung is known to change in response to external insults, inflammation, and cancer. We report measurements of metabolism in the isolated, perfused rat lung of healthy controls and in diseased lungs undergoing acute inflammation using hyperpolarized 1-(13) C-labeled pyruvate. The overall apparent activity of lactate dehydrogenase is shown to increase significantly (on average by a factor of 3.3) at the 7 day acute stage and to revert substantially to baseline at 21 days, while other markers indicating monocarboxylate uptake and transamination rate are unchanged. Elevated lung lactate signal levels correlate well with phosphodiester levels as determined with (31) P spectroscopy and with the presence of neutrophils as determined by histology, consistent with a relationship between intracellular lactate pool labeling and the density and type of inflammatory cells present. We discuss several alternate hypotheses, and conclude that the most probable source of the observed signal increase is direct uptake and metabolism of pyruvate by inflammatory cells and primarily neutrophils. This signal is seen in high contrast to the low baseline activity of the lung.
Collapse
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Author to whom correspondence should be addressed: Submitting author: Hoora Shaghaghi, PhD University of Pennsylvania Department of Radiology 338 Stemmler Hall 3450 Hamilton Walk Philadelphia, PA 19104 215-662-6775
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Charuhas Deshpande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Martinez
- Department of Pathology and Pathology Core Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Department of Otolaryngology, Johns Hopkins University, Baltimore, MD, United States
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - and Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Abstract
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.
Collapse
|
7
|
Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, K Yao J, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 2012; 198:347-52. [PMID: 22513041 DOI: 10.1016/j.psychres.2012.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/24/2022]
Abstract
Plasmalogens are a subclass of glycerophospholipids and ubiquitous constituents of cellular membranes and serum lipoproteins. Several neurological disorders show decreased level of plasmogens. An earlier study found differences in plasma phospholipids between unmedicated patients with schizophrenia and matched healthy control subjects. We here report a comparison of plasma plasmalogen levels across 20 drug-naïve patients experiencing first psychotic episodes, 20 recently unmedicated patients experiencing psychotic relapses after failing to comply with prescribed medications, and 17 matched healthy control subjects. Multiple plasma phosphatidylcholine and phosphatidylethanolamine plasmalogen levels were significantly lower in first episode patients and patients with recurrent disease compared to healthy controls. Reduced plasmalogen levels appear to be a trait evident at the onset of psychotic illness and after multiple psychotic relapses. It is implied that reductions in plasmalogen levels are not related to antipsychotic treatment but due to the illness itself. Reduced plasmalogen levels suggest impairments in membrane structure and function in patients with schizophrenia that might happen early in development. This may serve as a clue to the neurobiology of schizophrenia and should be studied as a potential biomarker for individuals at risk for schizophrenia.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3950 Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rubio MD, Haroutunian V, Meador-Woodruff JH. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry 2012; 71:906-14. [PMID: 22458949 PMCID: PMC3334466 DOI: 10.1016/j.biopsych.2012.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies on GTPases have suggested that reduced Duo and cell division cycle 42 (Cdc42) transcript expression is involved in dendritic spine loss in schizophrenia. In murine models, Duo and Cdc42 phosphorylate p21-activated kinase 1 (PAK1), which modifies the activity of regulatory myosin light chain (MLC) and cofilin by altering their phosphorylation. Therefore, we hypothesized that in schizophrenia abnormal Duo and Cdc42 expression result in changes in MLC and/or cofilin phosphorylation, which might alter actin cytoskeleton dynamics underlying dendritic spine maintenance. METHODS We performed Western blot protein expression analysis in postmortem brains from patients diagnosed with schizophrenia and a comparison group. We focused our studies in the anterior cingulate cortex (ACC; n = 33 comparison group; n = 36 schizophrenia) and dorsolateral prefrontal cortex (DLPFC; n = 29 comparison group; n = 35 schizophrenia). RESULTS In both ACC and DLPFC, we found a reduction of Duo expression and PAK1 phosphorylation in schizophrenia. Cdc42 protein expression was decreased in ACC but not in DLPFC. In ACC, we observed decreased PAK1 phosphorylation and increased MLC phosphorylation (pMLC), whereas in DLPFC pMLC remained unchanged. CONCLUSIONS These data suggest a novel mechanism that might underlie dendritic spine loss in schizophrenia. The increase in pMLC seen in ACC might be associated with dendritic spine shrinkage. The lack of an effect on pMLC in DLPFC suggests that in schizophrenia PAK1 downstream pathways are differentially affected in these cortical areas.
Collapse
Affiliation(s)
- María D. Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,Corresponding author: , Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Ave. S., CIRC 590C, Birmingham, AL 35294-0021, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Progressive membrane phospholipid changes in first episode schizophrenia with high field magnetic resonance spectroscopy. Psychiatry Res 2012; 201:25-33. [PMID: 22284150 DOI: 10.1016/j.pscychresns.2011.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 12/22/2022]
Abstract
Patients with a first episode of schizophrenia generally have increased phospholipid membrane breakdown products within the brain, while findings in chronic patients have been inconsistent. In this study we examine progressive changes in phosphorus membrane metabolites in the same patient group through the early years of schizophrenia in brain regions associated with the disease. Sixteen never-treated and medicated first episode schizophrenic patients were assessed at 10 months and 52 months after diagnosis. Sixteen matched volunteers were assessed at baseline and after 35 months. Phospholipid membrane metabolism was assessed with phosphorous magnetic resonance spectroscopy in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex, parieto-occipital cortex, superior temporal gyrus and temporal pole. At 10 months, glycerophosphocholine was increased in the anterior cingulate in patients as compared to controls. Glycerophosphocholine was decreased in the anterior cingulate and increased in the posterior cingulate and left superior temporal gyrus; glycerophosphoethanolamine was decreased in the left thalamus and increased in the left hippocampus within patients over time. At 52 months, compared to controls phosphocholine was increased in the left thalamus and glycerophosphoethanolamine was increased in the left hippocampus. These results imply a gradual inclusion of brain regions in schizophrenia where an initial increase, followed by a decrease in phospholipid membrane metabolites was observed. This pattern, observed in the early years of schizophrenia, is consistent with excitotoxic neural membrane breakdown in these regions.
Collapse
|
10
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
11
|
Hayashi-Takagi A, Barker PB, Sawa A. Readdressing synaptic pruning theory for schizophrenia: Combination of brain imaging and cell biology. Commun Integr Biol 2011; 4:211-2. [PMID: 21655443 DOI: 10.4161/cib.4.2.14492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 12/12/2010] [Indexed: 11/19/2022] Open
Abstract
Disturbance in the synapse has been suggested in the pathology of schizophrenia, especially through examination of autopsied brains from patients with the disease. Nonetheless, it has been unclear whether and how such disturbance is associated with the onset and progression of the disease in young adulthood. Some studies with magnetic resonance spectroscopy (MRS) have suggested that overpruning of dendritic spines may occur in the prodromal and early stages of schizophrenia. In addition, our recent study indicates that DISC1, a promising risk factor for schizophrenia, has a crucial role in the maintenance of the dendritic spine in association with activation of the NMDA-type glutamate receptor.1 Disturbance of spine maintenance can be linked to aberrant synaptic pruning during postnatal brain maturation. Biological studies with genetic models may provide us with an opportunity to validate experimentally the synaptic pruning theory for schizophrenia. An integrative strategy of brain imaging and cell biology may be a promising approach to address a key biological question for mental illnesses.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | | |
Collapse
|
12
|
Abstract
Mitochondria provide most of the energy production in cells. They are involved in the regulation of free radicals, calcium buffering, and redox signaling and take part in the intrinsic pathway of apoptosis. Mutations or polymorphisms of mitochondrial DNA, mitochondria-mediated oxidative stress, decrease of adenosine triphosphate production, changes of intracellular calcium and oxidative stress are concerned in various diseases. There is increasing evidence that impaired functions of mitochondria are associated with mood disorders. It is suggested that disturbed energetic metabolism and/or reactive oxygen species production take part in the pathophysiology of mood disorders and could participate in the therapeutic effects or side-effects of antidepressants and mood stabilizers.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | |
Collapse
|
13
|
Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen-glucose deprivation in a neonatal brain slice model of asphyxia. J Cereb Blood Flow Metab 2011; 31:547-59. [PMID: 20717124 PMCID: PMC3010526 DOI: 10.1038/jcbfm.2010.125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human clinical trials using 72 hours of mild hypothermia (32°C-34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that (1)H/(31)P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen-glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the (1)H spectra included PCr-(1)H (phosphocreatine in the (1)H spectrum), ATP-(1)H (adenosine triphosphate in the (1)H spectrum), and ADP-(1)H (adenosine diphosphate in the (1)H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia.
Collapse
|
14
|
Menuel C, Guillevin R, Costalat R, Perrin M, Sahli-Amor M, Martin-Duverneuil N, Chiras J. Spectroscopie du phosphore 31 par résonance magnétique : applications en pathologies cérébrales. J Neuroradiol 2010; 37:73-82. [DOI: 10.1016/j.neurad.2009.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
15
|
Fedorova I, Alvheim AR, Hussein N, Salem N. Deficit in prepulse inhibition in mice caused by dietary n-3 fatty acid deficiency. Behav Neurosci 2010; 123:1218-25. [PMID: 20001105 DOI: 10.1037/a0017446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may be biosynthesized from a precursor alpha-linolenic acid (LNA) or obtained preformed in the diet. Dams were fed four diets with different levels of the various n-3 fatty acids during pregnancy and lactation, and their offspring were weaned to the same diets: "n-3 Deficient," containing (as % total fatty acids) 0.07% of LNA; "Low LNA" (0.4%); "High LNA" (4.8%); and a "DHA + EPA" diet, containing 0.4% of LNA, 2% DHA, and 2% EPA. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response in C57Bl6 mice. The n-3 Deficient and Low LNA diets caused a substantial deficit in PPI compared to the DHA + EPA diet, whereas the High LNA diet induced a less pronounced, but significant reduction of PPI. These are the first data that demonstrate a deficit in sensorimotor gating in rodents caused by an inadequate amount of the n-3 fatty acids in the diet. Our results differentiate the effects of a High LNA diet from one with added EPA and DHA even though the difference in brain DHA content is only 12% between these dietary groups.
Collapse
Affiliation(s)
- Irina Fedorova
- Laboratory of Membrane Biochemistry & Biophysics, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
16
|
Porton B, Delisi LE, Bertisch HC, Ji F, Gordon D, Li P, Benedict MM, Greenberg WM, Kao HT. Telomerase levels in schizophrenia: a preliminary study. Schizophr Res 2008; 106:242-7. [PMID: 18829263 PMCID: PMC2613190 DOI: 10.1016/j.schres.2008.08.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that telomere length was markedly reduced in peripheral blood lymphocytes from individuals with schizophrenia. Since reduced telomere length can be caused by decreased telomerase activity, we quantitated basal telomerase activity in peripheral blood lymphocytes derived from individuals with schizophrenia (n=53), unaffected relatives (n=31) and unrelated controls (n=59). Telomerase activity varied greatly among individuals, suggesting that this enzymatic activity is affected by various factors. We observed a nominally significant decrease in telomerase activity among individuals with schizophrenia compared to unaffected individuals (unaffected relatives and unrelated controls). Further studies are needed to investigate the role of telomerase in schizophrenia.
Collapse
Affiliation(s)
- Barbara Porton
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L. Implication du stress oxydant dans la physiopathologie de la schizophrénie : revue de la literature. Encephale 2006; 32:244-52. [PMID: 16910626 DOI: 10.1016/s0013-7006(06)76151-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Schizophrenia is a devastating psychiatric disorder with a broad range of behavioural and biologic manifestations. There are several clinical characteristics of the illness that have been consistently associated with poor premorbid adjustment, long duration of psychosis prior to treatment and prominent negative symptoms. The etiopathogenic mechanisms of lack of insight in patients with schizophrenia are to date unknown, although several hypotheses have been suggested. A point of convergence for the theoretical models occurs with regard to the neuronal membrane. Neuronal membrane contains a high proportion of polyunsaturated fatty acid and is the site for oxidative stress. Oxidative stress is a state when there is unbalance between the generation of reactive oxygen species and antioxidant defence capacity of the body. It is closely associated with a number of diseases including Parkinson's disease, Alzheimer-type dementia and Huntington's chorea. Accumulating evidence points to many interrelated mechanisms that increase production of reactive oxygen or decrease antioxidant protection in schizophrenic patients. OBJECTIVES This review aims to summarize the perturbations in antioxidant protection systems during schizophrenia, their interrelationships with the characteristic clinics and therapeutics and the implications of these observations in the pathophysiology of schizophrenia are discussed. LITERATURE FINDINGS In schizophrenia there is evidence for deregulation of free radical metabolism, as detected by abnormal activity of critical antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase). Many studies conclude in the decrease in the activity of key antioxidant enzymes in schizophrenia. A few studies have examined levels of non enzymatic antioxidants such as plasma antioxidant proteins (albumin, bilirubine, uric acid) and trace elements. How showed decreased levels in schizophrenic patients. Others studies have provided evidence of oxidative membrane damage by examining levels of lipid peroxidation products. Such abnormalities have been associated with certain clinical symptoms and therapeutic features. Negative symptoms have been associated with low levels of GSH-Px. Positive symptoms have been positively correlated with SOD activity. Plasma TAS was significantly lower in drug-free and haloperidol treated patients with schizophrenia. A low erythrocyte SOD activity has been found in never-treated patients, but with haloperidol treatment, SOD activity increased. DISCUSSION These results demonstrate altered membrane dynamics and antioxidant enzyme activity in schizophrenia. Membrane dysfunction can be secondary to free a radical-mediated pathology, and may contribute to specific aspects of the schizophrenia symptomatology. Membrane defects can significantly alter a broad range of membrane functions and presumably modify behavior through multiple downstream biological effects. Phospholipid metabolism in the brain may be perturbed in schizophrenia, with reduced amounts of phosphatidylcholins and phosphatidylethanolamine in post-mortem brain tissue from schizophrenic patients, and large amounts of lipofuscin-like materiel in the oligodendrocytes. The existence of these products within cell membranes results in an unstable membrane structure, altered membrane fluidity and permeability and impaired signal transduction. Recent findings suggest that multiple neurotransmitter systems may be faulty. CNS cells are more vulnerable to the toxic effects of free radicals because they have a high rate of catecholamine oxidative metabolic activity. Neurotransmitters, like glutamate, can induce the same metabolic processes that increase free radical production and can lead to impaired dopamine-glutamate balance. These results question the role of this imbalance in the biochemical basis evoked in the etipathogenic mechanisms of schizophrenia, as well as the role of antioxidants in the therapeutic strategy and their implication in preventive and early intervention approaches in populations at risk for schizophrenia.
Collapse
Affiliation(s)
- C Fendri
- Unité de Recherche en Santé mentale (01/UR/08.08), Service de Psychiatrie, Centre hospitalo-universitaire Fattouma Bourguiba de Monastir, rue du 1er juin 5000, Monastir, Tunisie
| | | | | | | | | | | |
Collapse
|
18
|
Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 2006; 81:47-63. [PMID: 16226876 DOI: 10.1016/j.schres.2005.08.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 08/12/2005] [Accepted: 08/15/2005] [Indexed: 01/11/2023]
Abstract
The cortical neuropathology of schizophrenia includes neuronal atrophy, decreased neuropil, and alterations in neuronal density. Taken together with evidence of decreased synaptic markers and dendritic spines, the data suggest that synaptic circuitry is altered. Recent neuroimaging studies also indicate that a progressive loss of cortical gray matter occurs early in the course of schizophrenia. Although the mechanisms underlying these deficits are largely unknown, recent postmortem data implicate a role for altered neuronal apoptosis. Apoptosis, a form of programmed cell death, is regulated by a complex cascade of pro- and anti-apoptotic proteins. Apoptotic activation can lead to rapid neuronal death. However, emerging data also indicate that sub-lethal apoptotic activity can lead to a limited form of apoptosis in terminal neurites and individual synapses to cause synaptic elimination without cell death. For example, in Alzheimer's disease, a localized apoptotic mechanism is thought to contribute to early neurite and synapse loss leading to the initial cognitive decline. Recent studies indicate that apoptotic regulatory proteins and DNA fragmentation patterns are altered in several cortical regions in schizophrenia. This paper will review converging lines of data that implicate synaptic deficits in the pathophysiology of schizophrenia and propose an underlying role for apoptotic dysregulation.
Collapse
Affiliation(s)
- Leisa A Glantz
- Department of Psychiatry, University of North Carolina-Chapel Hill, CB# 7160, Chapel Hill, NC 27599-7160, USA
| | | | | | | |
Collapse
|
19
|
Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA. Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:846-58. [PMID: 15908096 DOI: 10.1016/j.pnpbp.2005.03.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
While schizophrenia is generally considered a neurodevelopmental disorder, evidence for progressive clinical deterioration and subtle neurostructural changes following the onset of psychosis has led to the hypothesis that apoptosis may contribute to the pathophysiology of schizophrenia. Apoptosis (a.k.a. programmed cell death) is a mechanism of cell death that operates in normal neurodevelopment and is increasingly recognized for its role in diverse neuropathological conditions. Activation of apoptosis can lead to rapid and complete elimination of neurons and glia in the central nervous system. Studies also show that in certain settings, pro-apoptotic triggers can lead to non-lethal and localized apoptotic activity that produces neuritic and synaptic loss without causing cell death. Given that the neuropathology of schizophrenia is subtle and includes reduced neuropil (especially synaptic elements), limited and often layer-specific reductions of neurons, as well as neuroimaging data suggesting progressive loss of cortical gray matter in first-episode psychosis, a role for apoptosis in schizophrenia appears plausible. Studies that have examined markers of apoptosis and levels of apoptotic regulatory proteins in postmortem schizophrenia brain tissue will be reviewed in context of this hypothesis. Overall, the data seem to indicate a dysregulation of apoptosis in several cortical regions in schizophrenia, including evidence that the apoptotic vulnerability is increased. Although the exact role of apoptosis in schizophrenia remains uncertain, the potential involvement of non-lethal localized apoptosis is intriguing, especially in earlier stages of the illness.
Collapse
Affiliation(s)
- L Fredrik Jarskog
- Department of Psychiatry, Schizophrenia Research Center, University of North Carolina-Chapel Hill, CB# 7160, Chapel Hill, NC 27599-7160, USA.
| | | | | | | |
Collapse
|
20
|
Maxwell CR, Kanes SJ, Abel T, Siegel SJ. Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 2005; 129:101-7. [PMID: 15489033 DOI: 10.1016/j.neuroscience.2004.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2004] [Indexed: 11/26/2022]
Abstract
OVERVIEW All current antipsychotic medications work by binding to Gi-coupled dopamine (DA) D2 receptors. Such medications are thought to affect cellular function primarily by decreasing DA-mediated regulation of intracellular cyclic adenosine monophosphate (cAMP).However, several studies indicate that cAMP signal transduction abnormalities in schizophrenia may not be limited to D2-containing cells. The current study examines the potential of using non-receptor-based agents that modify intracellular signal transduction as potential antipsychotic medications. METHODS The indirect DA agonist amphetamine has been used to model the auditory sensory processing deficits in schizophrenia. Such pharmacologically induced abnormalities are reversed by current antipsychotic treatments. This study examines the ability of the phosphodiesterase-4 inhibitor, rolipram, to reverse amphetamine-induced abnormalities in auditory-evoked potentials that are characteristic of schizophrenia. RESULTS Rolipram reverses amphetamine-induced reductions in auditory-evoked potentials. CONCLUSION This finding could lead to novel approaches to receptor-independent treatments for schizophrenia.
Collapse
Affiliation(s)
- C R Maxwell
- Stanley Center for Experimental Therapeutics in Psychiatry, Division of Neuropsychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
21
|
Yao JK, Magan S, Sonel AF, Gurklis JA, Sanders R, Reddy RD. Effects of omega-3 fatty acid on platelet serotonin responsivity in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2004; 71:171-6. [PMID: 15253886 DOI: 10.1016/j.plefa.2004.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Studies suggest that the omega-3 fatty acid supplementation may be beneficial in reducing symptom severity in schizophrenia. The mechanism(s) underlying the clinical effect is not known. Serotonin (5-HT) has been implicated in the pathophysiology of schizophrenia and in the mechanism of some antipsychotic agents. 5-HT receptors are known to be modified by omega-3 fatty acids. We examined whether supplementation with the omega-3 fatty acid eicosapentaenoic acid (EPA)-modified 5-HT amplified ADP-induced platelet aggregation in patients with schizophrenia. Two grams of ethyl-EPA was administered daily for 6 months supplementally to ongoing antipsychotic treatment in 12 patients with chronic schizophrenia, using an open-label design. Red blood cell membrane fatty acids and platelet functions (platelet aggregation and dense granule secretion) were monitored at baseline, 1-, 3- and 6-months. The EPA levels were elevated more than five-fold in RBC membranes of all patients after 3 months supplementation, indicating a high degree of compliance. Consistent with previous reports, there was inhibition of ADP-induced platelet aggregation by EPA supplementation. Moreover, EPA markedly enhanced the 5-HT responsivity as measured by the magnitude of 5-HT amplification on ADP-induced platelet aggregation. Previously, we have demonstrated a significant inverse correlation between 5-HT responsivity and psychosis severity in unmedicated patients with schizophrenia. Taken together, the present data support the notion that EPA may be mediating its therapeutic effects in schizophrenia via modulation of the 5-HT2 receptor complex.
Collapse
Affiliation(s)
- Jeffrey K Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Skosnik PD, Yao JK. From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia? Prostaglandins Leukot Essent Fatty Acids 2003; 69:367-84. [PMID: 14623490 DOI: 10.1016/j.plefa.2003.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.
Collapse
Affiliation(s)
- P D Skosnik
- Department of Psychology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
23
|
Condray R, Glasgow AG. The relationship between membrane pathology and language disorder in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2003; 69:449-60. [PMID: 14623499 DOI: 10.1016/j.plefa.2003.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptive language disorder in schizophrenia has been hypothesized to involve a fundamental deficit in the temporal (time-based) dynamics of brain function that includes disruptions to patterns of activation and synchronization. In this paper, candidate mechanisms and pathways that could account for this basic deficit are discussed. Parallels are identified between the patterns of language dysfunction observed for schizophrenia and dyslexia, two separate clinical disorders that may share a common abnormality in cell membrane phospholipids. A heuristic is proposed which details a trajectory involving an interaction of brain fatty acids and second-messenger function that modulates synaptic efficacy, and, in turn, influences language processing in schizophrenia patients. It is additionally hypothesized that a primary deficit of functional excitation originating in the cerebellum, in combination with a compensatory decrease of functional inhibition in the prefrontal cortex, influences receptive language dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Ruth Condray
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
24
|
Yao JK, Sistilli CG, van Kammen DP. Membrane polyunsaturated fatty acids and CSF cytokines in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2003; 69:429-36. [PMID: 14623497 DOI: 10.1016/j.plefa.2003.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Findings to date provide evidence that altered membrane structure and function are present in patients with either first-episode or chronic schizophrenia, suggesting defects in phospholipid metabolism and cell signaling in schizophrenia. The purpose of this investigation is to test whether decreased membrane polyunsaturated fatty acids (PUFAs) were associated with an increased secretion of proinflammatory cytokines. Thus, we measured interleukin 6 (IL-6) and interleukin 10 (IL-10) in cerebrospinal fluid (CSF) of patients with chronic schizophrenia as well as PUFAs of red blood cell (RBC) membranes from the same individuals. A significant and inverse correlation was found between CSF IL-6 (not IL-10) and RBC membrane PUFAs levels in both haloperidol-treated and medication-free patients with schizophrenia. Specifically, such an association was found in the n-6 (18:2, 20:4, and 22:4) and, to a lesser extent, the n-3 fatty acids. Taken together, the present findings suggest that decreased membrane PUFAs may be related to an immune disturbance in schizophrenia, possibly resulting from an increased phospholipase A2 activity mediated through the proinflammatory cytokines.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System and Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, 7180 Highland Drive, Building 13, Pittsburgh, PA 15206, USA.
| | | | | |
Collapse
|
25
|
Hibbeln JR, Makino KK, Martin CE, Dickerson F, Boronow J, Fenton WS. Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry 2003; 53:431-41. [PMID: 12614996 DOI: 10.1016/s0006-3223(02)01549-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prior reports of decreased levels of essential fatty acids among schizophrenic patients have generated several hypotheses proposing inherent abnormalities in phospholipid and fatty acid metabolism and have provided the basis for treatment trials; however, these essential fatty acid aberrations may be attributable to uncontrolled factors, such as smoking, rather than abnormalities inherent to schizophrenia. METHODS Erythrocyte fatty acid compositions were quantified in 72 medicated schizophrenic or schizoaffective patients both at baseline and after 16 weeks of supplementation with 3 g/day of either ethyl-eicosapentaenoic acid or placebo. Current smoking status, gender, dietary survey, and Montgomery Asburg Depression Rating Scale, Repeatable Battery for the Assessment of Neuropsychological Status, Abnormal Involuntary Movement Scale, and Positive and Negative Syndrome Scale scores were assessed. RESULTS Schizophrenic patients who smoked had lower baseline erythrocyte docosahexaenoic acid percent (2.98 +/-.7 vs. 3.59 +/- 1.2, p <.005) and eicosapentaenoic acid (EPA) percent (.39 +/-.13 vs. 47 +/-.22, p <.05), compared with nonsmokers, with a significant gender interaction (p <.01) in multivariate analyses of variance. Baseline arachidonic acid did not differ. Smokers reported lower dietary intake (percent total fat) of linolenic acid (F = 10.1, p <.003) compared with nonsmokers. Nonsmoking women reported greater dietary intake of EPA compared with smoking men or nonsmokers of either gender. CONCLUSIONS Smoking status, gender, and dietary intake significantly predicted erythrocyte polyunsaturated fatty acid status among schizophrenic patients. No evidence was found for subgroups of schizophrenia or relationships to specific symptom severity on the basis of erythrocyte fatty acids. Prior reports of abnormalities of essential fatty acid metabolism among schizophrenic patients may have been an artifact of patients' smoking behavior and differences in dietary intake of omega-3 fatty acids.
Collapse
Affiliation(s)
- Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
26
|
Stanley JA. In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2002; 47:315-26. [PMID: 12025430 DOI: 10.1177/070674370204700402] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo magnetic resonance spectroscopy (MRS) is the only noninvasive imaging technique that can directly assess the living biochemistry in localized brain regions. In the past decade, spectroscopy studies have shown biochemical alterations in various neuropsychiatric disorders. These first-generation studies have, in most cases, been exploratory but have provided insightful biochemical information that has furthered our understanding of different brain disorders. This review provides a brief description of spectroscopy, followed by a literature review of key spectroscopy findings in schizophrenia, affective disorders, and autism. In schizophrenia, phosphorus spectroscopy studies have shown altered metabolism of membrane phospholipids (MPL) during the early course of the illness, which is consistent with a neurodevelopmental abnormality around the critical period of adolescence when the illness typically begins. Children and adolescents who are at increased genetic risk for schizophrenia show similar MPL alterations, suggesting that schizophrenia subjects with a genetic predisposition may have a premorbid neurodevelopmental abnormality. Independent of medication status, bipolar subjects in the depressive state tended to have higher MPL precursor levels and a deficit of high-energy phosphate metabolites, which also is consistent with major depression, though these results varied. Further bipolar studies are needed to investigate alterations at the early stage. Lastly, associations between prefrontal metabolism of high-energy phosphate and MPL and neuropsychological performance and reduced N-acetylaspartate in the temporal and cerebellum regions have been reported in individuals with autism. These findings are consistent with developmental alterations in the temporal lobe and in the cerebellum of persons with autism. This paper discusses recent findings of new functions of N-acetylaspartate.
Collapse
Affiliation(s)
- Jeffrey A Stanley
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
27
|
Abstract
Magnetic resonance spectroscopy (MRS) provides a useful method for studying a number of psychotropic medications and metabolites in human brain in vivo. New insights regarding the pharmacokinetic and pharmacodynamic properties of psychotropic medications in the target organ (i.e., brain) have been obtained using lithium-7 MRS and fluorine-19 MRS. Both proton and phosphorus-31 MRS have significantly enhanced our knowledge of the pathophysiology of a number of psychiatric disorders by providing estimates of brain concentrations of several important cerebral metabolites. Efforts are also being made to link MRS measures of cerebral metabolism with neurophysiologic and neurocognitive processes. Ongoing improvement and refinement in MRS techniques, including the installation of scanners with increased magnetic field strength and better methods of data processing, will improve both spatial and temporal resolution. In addition, efforts to develop multisite research studies may result in greater standardization of MRS procedures and methods for interpretation of results. In this review, the current status of MRS applications in psychiatric research is reviewed, and new frontiers and possible future developments are discussed.
Collapse
Affiliation(s)
- In Kyoon Lyoo
- McLean Hospital Brain Imaging Center, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
28
|
Abstract
OBJECTIVE This paper briefly describes neuroimaging using magnetic resonance spectroscopy (MRS) and provides a systematic review of its application to psychiatric disorders. METHOD A literature review (Index Medicus/Medline) was carried out, as well as a review of other relevant papers and data known to the authors. RESULTS Magnetic resonance spectroscopy is a complex and sophisticated neuroimaging technique that allows reliable and reproducible quantification of brain neurochemistry provided its limitations are respected. In some branches of medicine it is already used clinically, for instance, to diagnose tumours and in psychiatry its applications are gradually extending beyond research. Neurochemical changes have been found in a variety of brain regions in dementia, schizophrenia and affective disorders and promising discoveries have also been made in anxiety disorders. CONCLUSION Magnetic resonance spectroscopy is a non-invasive investigative technique that has provided useful insights into the biochemical basis of many neuropsychiatric disorders. It allows direct measurement, in vivo, of medication levels within the brain and has made it possible to track the neurochemical changes that occur as a consequence of disease and ageing or in response to treatment. It is an extremely useful advance in neuroimaging technology and one that will undoubtedly have many clinical uses in the near future.
Collapse
Affiliation(s)
- Gin S Malhi
- Mood Disorders Unit, The Villa, Prince of Wales Hospital, Randwick NSW 2031, Sydney, Australia.
| | | | | | | |
Collapse
|
29
|
Yarlagadda A. Role of calcium regulation in pathophysiology model of schizophrenia and possible interventions. Med Hypotheses 2002; 58:182-6. [PMID: 11812200 DOI: 10.1054/mehy.2001.1511] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances into the neuroscience research related to pathophysiology of schizophrenia have been impressive. While some are based on pre-existing theories and models, others have explored on a molecular level attempting to integrate the concepts of the past and present. However, given the complex multifactorial etiology of schizophrenia attempts to improve the current treatment modalities raise more questions than answers. In the cascade model of the hypotheses, the focus will be on a common factor/marker for the disease, to address the possible stepwise correlation between the various theories. Homeostasis of calcium, its relation to the release of glutamate, dopamine and nitric oxide will be discussed in detail with the potential for interventions aimed at every stage. Although this hypothesis emphasizes the role of calcium as a common factor, other potential causes such as autoantibodies to the receptors, such as NMDA (and GABA) cannot be ruled out.
Collapse
Affiliation(s)
- A Yarlagadda
- Department of Psychiatric Medicine, University of Virginia Health System, Charlottesville, Virginia 22908-0623, USA.
| |
Collapse
|
30
|
Yao JK, Reddy RD, van Kammen DP. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 2001; 15:287-310. [PMID: 11463134 DOI: 10.2165/00023210-200115040-00004] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Free radicals are highly reactive chemical species generated during normal metabolic processes. which in excess can lead to membrane damage. Elaborate antioxidant defence systems exist to protect against oxidative stress. There is accumulating evidence of altered antioxidant capacity in schizophrenia. Membrane dysfunction can be secondary to free radical-mediated pathology, and may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment. Specifically, free radical-mediated abnormalities may contribute to the development of a number of clinically significant consequences, including prominent negative symptoms, tardive dyskinesia, neurological 'soft' signs and parkinsonian symptoms. Our previous results showing altered membrane dynamics and antioxidant enzyme activities in schizophrenia, and findings from other investigators, are consistent with the notion of free radical-mediated neurotoxicity in schizophrenia. These findings provide a theoretical basis from which the development of novel therapeutic strategies such as fatty acid and antioxidant supplementation can occur in the future.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System, Neurochemistry and Psychopharmacology Laboratory, Pennsylvania 15206-1297, USA.
| | | | | |
Collapse
|
31
|
Ponizovsky AM, Modai I, Nechamkin Y, Barshtein G, Ritsner MS, Yedgar S, Lecht S, Bergelson LD. Phospholipid patterns of erythrocytes in schizophrenia: relationships to symptomatology. Schizophr Res 2001; 52:121-6. [PMID: 11595399 DOI: 10.1016/s0920-9964(00)00189-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phospholipid composition of red blood cells (RBC) from 32 haloperidol-treated schizophrenic patients, classified according to the positive and negative syndrome scale (PANSS) as showing either predominantly positive or predominantly negative symptoms, was determined and compared with that of normal controls. While the levels of phosphatidylcholine and phosphatidylserine were similar in all three groups, sphingomyelin (SM) and phosphatidylethanolamine (PE) were, respectively, increased and decreased in RBCs of schizophrenic patients. In both patient groups, the SM/PE ratios correlated directly with the PANSS negative symptom scale scores and inversely with the positive symptom scale scores. However, the inverse changes in the contents of SM and PE were much more expressed in the negative group. It is suggested that a main source of that difference is a higher activity of the polyunsaturated acid-selective phospholipase A(2) in the negative syndrome patients than in the positive syndrome and control groups.
Collapse
Affiliation(s)
- A M Ponizovsky
- Institute for Psychiatric Studies, Sha'ar Menashe Mental Health Center, Hadera, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6:293-301. [PMID: 11326297 DOI: 10.1038/sj.mp.4000866] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Revised: 12/12/2000] [Accepted: 12/14/2000] [Indexed: 11/09/2022]
Abstract
Complex defects in neuronal signaling may underlie the dysfunctions that characterize schizophrenia. Using cDNA microarrays, we discovered that the transcript encoding regulator of G-protein signaling 4 (RGS4) was the most consistently and significantly decreased in the prefrontal cortex of all schizophrenic subjects examined. The expression levels of ten other RGS family members represented on the microarrays were unchanged and hierarchical data analysis revealed that as a group, 274 genes associated with G-protein signaling were unchanged. Quantitative in situ hybridization verified the microarray RGS4 data, and demonstrated highly correlated decreases in RGS4 expression across three cortical areas of ten subjects with schizophrenia. RGS4 expression was not altered in the prefrontal cortex of subjects with major depressive disorder or in monkeys treated chronically with haloperidol. Interestingly, targets for 70 genes mapped to the major schizophrenia susceptibility locus 1q21--22 were present on the microarrays, of which only RGS4 gene expression was consistently altered. The combined data indicate that a decrease in RGS4 expression may be a common and specific feature of schizophrenia, which could be due either to genetic factors or a disease- specific adaptation, both of which could affect neuronal signaling.
Collapse
Affiliation(s)
- K Mirnics
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. karoly+@pitt.edu
| | | | | | | | | |
Collapse
|
33
|
Maurer I, Zierz S, Möller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48:125-36. [PMID: 11278159 DOI: 10.1016/s0920-9964(00)00075-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In-vivo imaging studies and post-mortem studies have demonstrated an impairment of energy metabolism in brains of patients with schizophrenia. Decreased oxidative metabolism has been consistently documented in the frontal lobes. However, the biochemical basis of these changes is unclear. The changes could be caused by reduced requirement of the cells for metabolic energy or an abnormality in energy generation. Neurons generate energy through the respiratory chain in the mitochondria. The respiratory chain consists of five enzyme complexes (I-V). The purpose of the present study was to assess mitochondrial function and test the hypothesis of an underlying oxidative phosphorylation defect in schizophrenia. We analysed spectrophotometrically post-mortem brain specimens of frontal cortex, temporal cortex, basal ganglia, and cerebellum of 12 patients who met the DSM-IV criteria for schizophrenia and of 13 healthy controls for the specific activities of respiratory chain enzymes in the mitochondria. The major finding was that the activity of complex IV was significantly reduced in the frontal cortex (40.9+/-6.7 vs. 87.3+/-12, P=0.003) and in the temporal cortex (39.5+/-6.8 vs. 78+/-10.8, P=0.006) of schizophrenics. In addition, the activity of complexes I+III was significantly reduced in the temporal cortex (2.2+/-0.6 vs. 4.4+/-0.5, P=0.01) and basal ganglia (1.6+/-0.5 vs. 3.4+/-0.3, P=0.015) in schizophrenia. All other enzyme activities showed no differences to healthy controls. The results confirm a defect of oxidative phosphorylation in brains from patients with schizophrenia, which may contribute to impaired energy generation.
Collapse
Affiliation(s)
- I Maurer
- Department of Psychiatry, Friedrich-Schiller Universität, Philosophenweg 3, 07740, Jena, Germany.
| | | | | |
Collapse
|
34
|
Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28:53-67. [PMID: 11086983 DOI: 10.1016/s0896-6273(00)00085-4] [Citation(s) in RCA: 728] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microarray expression profiling of prefrontal cortex from matched pairs of schizophrenic and control subjects and hierarchical data analysis revealed that transcripts encoding proteins involved in the regulation of presynaptic function (PSYN) were decreased in all subjects with schizophrenia. Genes of the PSYN group showed a different combination of decreased expression across subjects. Over 250 other gene groups did not show altered expression. Selected PSYN microarray observations were verified by in situ hybridization. Two of the most consistently changed transcripts in the PSYN functional gene group, N-ethylmaleimide sensitive factor and synapsin II, were decreased in ten of ten and nine of ten subjects with schizophrenia, respectively. The combined data suggest that subjects with schizophrenia share a common abnormality in presynaptic function. We set forth a predictive, testable model.
Collapse
Affiliation(s)
- K Mirnics
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA. karoly+@pitt.edu
| | | | | | | | | |
Collapse
|
35
|
Bell JG, Sargent JR, Tocher DR, Dick JR. Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: a characteristic abnormality in neurodevelopmental disorders? Prostaglandins Leukot Essent Fatty Acids 2000; 63:21-5. [PMID: 10970708 DOI: 10.1054/plef.2000.0186] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fatty acid compositions of red blood cell (RBC) phospholipids from a patient with autistic spectrum disorder (ASD) had reduced percentages of highly unsaturated fatty acids (HUFA) compared to control samples. The percentage of HUFA in the RBC from the autistic patient was dramatically reduced (up to 70%) when the sample was stored for 6 weeks at -20 degrees C. However, only minor HUFA reductions were recorded in control samples stored similarly, or when the autistic sample was stored at -80 degrees C. A similar instability in RBC HUFA compositions upon storage at -20 degrees C has been recorded in schizophrenic patients. In a number of other neurodevelopmental conditions, including attention deficit hyperactivity disorder (ADHD) and dyslexia, reduced concentrations of RBC HUFA have been recorded. The extent and nature of these aberrations require further assessment to determine a possible common biochemical origin of neurodevelopmental disorders in general. To facilitate this, a large scale assessment of RBC fatty acid compositions in patients with ASD, and related disorders, should be performed as a matter of urgency. Supplementing cells in culture with the tryptophan metabolite indole acrylic acid (IAA) affected the levels of cellular HUFA and prostaglandin production. Indole acroyl glycine (IAG), a metabolite of IAA excreted in urine, is found in high concentrations in patients with neurodevelopmental disorders including ASD, ADHD, dyslexia, Asperger's syndrome and obsessive compulsive disorder.
Collapse
Affiliation(s)
- J G Bell
- Nutrition Group, Institute of Aquaculture, Stirling, UK.
| | | | | | | |
Collapse
|
36
|
Abstract
This paper presents the hypothesis that NMDA receptor delayed maturation (NRDM) may lead to the pathogenesis of schizophrenic psychotic symptoms. This hypothesis is further analyzed in the language of a neural modeling formulation. This formulation points to a possible chain of pathological events, leading from molecular-level NRDM to over-increased synaptic plasticity, and to the formation of pathological attractors, a putative macroscopic-level correlate of schizophrenic positive symptoms. The relations of the NRDM hypothesis to other alterations which are assumed to take place in schizophrenia are discussed, together with possible ways to test this hypothesis.
Collapse
Affiliation(s)
- E Ruppin
- Department of Physiology & Department of Computer Science, School of Medicine & School of Mathematics, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
37
|
Abstract
Previous studies in schizophrenia have shown alterations in membrane phospholipids and polyunsaturated fatty acids. However, these studies have primarily examined peripheral (non-neuronal) cell types. The purpose of the present study was to examine whether the membrane deficits seen in peripheral tissues are also observed in the brain. The caudate was the primary region of interest for this study. Using high-pressure liquid chromatography in conjunction with an evaporative light-scattering detector, we first measured the level of various membrane phospholipids (PL) in schizophrenic (n=11) and control groups with (n=7) and without (n=14) other mental disorders. Polyunsaturated fatty acids (PUFAs) were then determined by capillary gas chromatography. Within groups, there are no significant correlations between membrane PL levels and other collection and demographic parameters including age, postmortem interval, storage time and brain weight. Significantly lower amounts of phosphatidylcholine and phosphatidylethanolamine were found in postmortem brain tissue from schizophrenic patients than in those from control groups, even after accounting for potential confounds. In addition, strong reductions of total PUFAs and saturated fatty acids were found in schizophrenic brains, relative to control brains. Specifically, the reduced PUFAs were largely attributable to decreases in arachidonic acid (AA) and, to a lesser extent, its precursors, linoleic and eicosadienoic acids. There are no significant differences between the control groups with and without other mental disorders. The present findings suggest that deficits identified in peripheral membranes may also be present in the brain from schizophrenic patients. Such a deficit in membrane AA may contribute to the many biological, physiological, and clinical phenomena observed in schizophrenia.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| | | | | |
Collapse
|
38
|
Vance AL, Velakoulis D, Maruff P, Wood SJ, Desmond P, Pantelis C. Magnetic resonance spectroscopy and schizophrenia: what have we learnt? Aust N Z J Psychiatry 2000; 34:14-25. [PMID: 11185927 DOI: 10.1046/j.1440-1614.2000.00702.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been increasingly used to investigate the in vivo biochemistry of particular regions of the brain in patients with schizophrenia. We review the literature and discuss the theoretical constructs that form the presumed impetus for these studies in light of the current methodological limitations. Future directions are noted. METHOD The available published literature in English formed the basis for this review. RESULTS The results of 31P-MRS have been interpreted as reflecting a relative increase in cell membrane degradation in prefrontal cortical regions at certain phases of schizophrenia. 1H-MRS studies, though less consistent, provide evidence suggestive of a decrease in neuronal cell mass in the hippocampal region, which supports the findings of volumetric studies. Both groups of MRS studies support a neuro-developmental hypothesis of brain dysfunction in schizophrenia. However, current methodological problems limit the reliable interpretation of MRS data. A clear understanding of the methodology and its reliable interpretation is yet to emerge. CONCLUSIONS MRS remains a research instrument that is yet to be fully utilised in schizophrenia research. A few replicated findings are emerging, although the interpretation of these spectroscopic findings needs to be validated.
Collapse
Affiliation(s)
- A L Vance
- Cognitive Neuropsychiatry Unit, Mental Health Research Institute of Victoria, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Fenton WS, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47:8-21. [PMID: 10650444 DOI: 10.1016/s0006-3223(99)00092-x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that deficient uptake or excessive breakdown of membrane phospholipids may be associated with schizophrenia. We review available clinical research on abnormalities in membrane fatty acid composition and metabolism in schizophrenia, and therapeutic trials of fatty acid in this disorder. All potentially relevant English-language articles were identified from the medical and psychiatric literature with the aid of computer searches using key words such as lipids, phospholipids, prostaglandins and schizophrenia. All studies which include human subjects are reviewed. Empirical studies related to membrane hypotheses of schizophrenia focus on: 1) assessment of prostaglandins (PG) and their essential fatty acid (EFA) precursors in the tissues of patients with schizophrenia; 2) evaluation of the niacin flush test as a possible diagnostic marker; 3) evaluation of phospholipase enzyme activity; 4) NMR spectroscopy studies of brain phospholipid metabolism; and 5) therapeutic trials of PG precursors for the treatment of schizophrenia. The most consistent clinical findings include red blood cell fatty acid membrane abnormalities, NMR spectroscopy evidence of increased phospholipid turnover and a therapeutic effect of omega-3 fatty acid supplementation of neuroleptic treatment in some schizophrenia patients. Studies of EFA metabolism have proved fruitful for generating and testing novel etiologic hypotheses and new therapeutic agents for schizophrenia. Greater attention to factors that influence tissue EFA levels such as diet, tobacco and alcohol are required to reconcile inconsistent findings. Treatment studies, although promising, require independent replication.
Collapse
Affiliation(s)
- W S Fenton
- Stanley Treatment Programs at Chestnut Lodge, Bethesda (MK), Maryland, USA
| | | | | |
Collapse
|
40
|
Seidman LJ, Faraone SV, Goldstein JM, Goodman JM, Kremen WS, Toomey R, Tourville J, Kennedy D, Makris N, Caviness VS, Tsuang MT. Thalamic and amygdala-hippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 1999; 46:941-54. [PMID: 10509177 DOI: 10.1016/s0006-3223(99)00075-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Schizophrenia is characterized by subcortical and cortical brain abnormalities. Evidence indicates that some nonpsychotic relatives of schizophrenic patients manifest biobehavioral abnormalities, including brain abnormalities. The goal of this study was to determine whether amygdala-hippocampal and thalamic abnormalities are present in relatives of schizophrenic patients. METHODS Subjects were 28 nonpsychotic, and nonschizotypal, first-degree adult relatives of schizophrenics and 26 normal control subjects. Sixty contiguous 3 mm coronal, T1-weighted 3D magnetic resonance images of the brain were acquired on a 1.5 Tesla magnet. Cortical and subcortical gray and white matter and cerebrospinal fluid (CSF) were segmented using a semi-automated intensity contour mapping algorithm. Analyses of covariance of the volumes of brain regions, controlling for expected intellectual (i.e., reading) ability and diagnosis, were used to compare groups. RESULTS The main findings were that relatives had significant volume reductions bilaterally in the amygdala-hippocampal region and thalamus compared to control subjects. Marginal differences were noted in the pallidum, putamen, cerebellum, and third and fourth ventricles. CONCLUSIONS Results support the hypothesis that core components of the vulnerability to schizophrenia include structural abnormalities in the thalamus and amygdala-hippocampus. These findings require further work to determine if the abnormalities are an expression of the genetic liability to schizophrenia.
Collapse
Affiliation(s)
- L J Seidman
- Harvard Medical School Department of Psychiatry, Massachusetts Mental Health Center, Boston, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND Previous studies have shown impaired antioxidant defense system in schizophrenia, including alterations in glutathione peroxidase (GSH-Px) activity in erythrocytes. There exists a related enzyme, human plasma GSH-Px (hpGSH-Px), that has not been previously examined in schizophrenia. METHODS An enzyme-linked immunoassay was used to determine hpGSH-Px levels in male schizophrenic patients (n = 39), using a within-subject, on-off haloperidol (HD) treatment design, compared with age- and gender-matched normal control subjects (n = 37). RESULTS hpGSH-Px was not significantly different between normal control subjects and patients, consistent with our previous findings in erythrocyte GSH-Px. There were no significant treatment effects. hpGSH-Px was significantly and positively correlated with psychosis rating scores in patients both on and off HD treatment. CONCLUSIONS Although not different from normal controls, hpGSH-Px levels in patients may reflect oxidative stress associated with greater psychosis severity. The present findings thus suggest that schizophrenic patients, without obvious increase of endogenous antioxidant enzymes (e.g., hpGSH-Px), may be at risk for oxidative damage.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System, Pennsylvania 15206, USA
| | | | | |
Collapse
|
42
|
Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ. Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res 1999; 821:407-13. [PMID: 10064828 DOI: 10.1016/s0006-8993(99)01123-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported that the activity of a calcium-independent subtype of phospholipase A2 is increased in blood of patients with schizophrenia. The present investigation examined whether similar changes take place in brain of patients with this disorder, and for comparison, in patients with bipolar disorder. The activity of two classes of PLA2, calcium-stimulated and independent, were assayed in autopsied temporal, prefrontal and occipital cortices, putamen, hippocampus and thalamus of 10 patients with schizophrenia, 8 patients with bipolar disorder and 12 matched control subjects. Calcium-independent PLA2 activity was increased by 45% in the temporal cortex of patients with schizophrenia as compared with the controls but was not significantly altered in other brain areas. In contrast, calcium-stimulated PLA2 activity was decreased by 27-42% in the temporal and prefrontal cortices and putamen, with no significant alterations in other brain regions. Brain PLA2 activity was normal in patients with bipolar disorder. Calcium-stimulated PLA2 activity was normal in cortex, cerebellum and striatum of rats treated acutely or chronically with haloperidol, whereas calcium-independent PLA2 activity was decreased in striatum of chronically treated animals, indicating that altered PLA2 activity in patients with schizophrenia is unlikely to be a direct effect of medication. Studies of the cellular role played by PLA2 suggest that decreased calcium-stimulated PLA2 activity, as also occurs in striatum of chronic human cocaine users, may be due, in part, to increased dopaminergic activity in the disorder, whereas increased calcium-independent PLA2 activity may be related to abnormal fatty acid metabolism and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- B M Ross
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
43
|
Poland RE, Cloak C, Lutchmansingh PJ, McCracken JT, Chang L, Ernst T. Brain N-acetyl aspartate concentrations measured by H MRS are reduced in adult male rats subjected to perinatal stress: preliminary observations and hypothetical implications for neurodevelopmental disorders. J Psychiatr Res 1999; 33:41-51. [PMID: 10094239 DOI: 10.1016/s0022-3956(98)00043-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to determine if the concentration of brain N-acetyl-aspartate (NAA), a putative neuronal marker, is reduced in adult rats subjected to stress during the perinatal period. As the prenatal stressor, pregnant rats were subjected to restraint stress for one hour twice daily from days 14-21 of gestation; stressed offspring were reared by normal dams and studied as adults. As the postnatal stressor, normal pups were reared by prenatally 'stressed' dams and studied as adults. As compared to non-stressed controls (n=6), NAA concentrations were significantly reduced 21 and 25% in left frontal cortex from the prenatal (n=4) and postnatal (n=6) stress groups. respectively. The data suggest that in perinatally stressed adult offspring permanent neuronal damage or loss has occurred. While no direct causal associations between perinatal stress and the developmental of particular disorders can be inferred from these limited data, the effects of perinatal stress on subsequent brain neuropathology are reviewed. particularly in relation to NAA. For hypothesis-generating purposes, the possible relevance of stress and NAA to the neurodevelopmental hypothesis of schizophrenia is discussed in greater detail.
Collapse
Affiliation(s)
- R E Poland
- Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, CA 90509, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
There is evidence of dysregulation of the antioxidant defense system in schizophrenia. The purpose of the present study was to examine whether uric acid, a potent antioxidant, is reduced in the plasma of patients with schizophrenia. To this end, a within-subject, repeated measures, on-off-on haloperidol treatment design was utilized. Male schizophrenic patients with either a haloperidol treatment (n=47) or a drug-free condition (n=35) had significantly lower levels of plasma uric acid than the age- and sex-matched normal control subjects (n=34). Following haloperidol withdrawal, plasma uric acid levels were further reduced in schizophrenic patients (P=0.018; paired t-test, n=35). However, no relationship was found between uric acid levels and the length of the drug-free period (< 5 or > 5 weeks) or days drug free. In addition, the plasma levels of uric acid in patient groups were significantly and inversely correlated with psychosis. There was a trend for lower uric acid levels in relapsed patients relative to clinically stable patients. Smoking, which can modify plasma antioxidant capacity, was not found to have prominent effects on uric acid levels. The present finding of a significant decrease of a selective antioxidant provides additional support to the hypothesis that oxidative stress in schizophrenia may be due to a defect in the antioxidant defense system.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System, PA 15206-1297, USA.
| | | | | |
Collapse
|
45
|
Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 1998; 30:193-208. [PMID: 9589514 DOI: 10.1016/s0920-9964(97)00151-5] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurodevelopmental hypothesis of schizophrenia is becoming an important feature of research in the field. However, its major drawback is that it lacks any biochemical basis which might draw the diverse observations together. It is suggested that the membrane phospholipid hypothesis can provide such a biochemical basis and that the neurodevelopmental phospholipid concept offers a powerful paradigm to guide future research.
Collapse
|
46
|
Abstract
Any hypotheses concerning the origins of humans must explain many things. Among these are: 1, the growth in brain size around two million years ago; 2, the presence of subcutaneous fat; 3, the near absence of change or cultural progress for around 2 million years after the brain grew in size; 4, the cultural explosion which began somewhere between fifty thousand and one hundred thousand years ago with the emergence of art, music, religion and warfare; 5, the further cultural explosion around ten thousand to fifteen thousand years ago which developed with the emergence of agriculture and which has continued since. Since the brain, like subcutaneous fat, is particularly rich in lipids, and since the microconnections of the brain are substantially lipid in nature, it is suggested that changes in lipid metabolism are what differentiated humans from the great apes. The growth in brain size and in the quality of subcutaneous adipose tissue may have occurred because of changes in the proteins which regulate the rate of delivery of fatty acids to tissues, notably lipoprotein lipases and fatty acid binding proteins. The creativity which occurred one hundred thousand years ago may have resulted from changes in phospholipid-synthesizing, -remodelling and -degrading enzymes which largely determine the microconnectivity of neurons. Family studies and adoption studies indicate that schizophrenia in a family member is associated with an increased risk of the illness in other family members. It is also associated with an increased risk of schizotypy, manic-depression, dyslexia, sociopathy and psychopathy. On the other hand it is also an indication of an increased likelihood of high creativity, leadership qualities, achievements in many fields, high musical skills and an intense interest in religion. I propose that the characteristics which entered the human race about one hundred thousand years ago and which ended around two million years of cultural near-stagnation are precisely those shown by the families of people with schizophrenia. I propose that these features are caused by variations in phospholipid biochemistry which are responsible both for schizophrenia and for our humanity. This would help to explain why schizophrenia is present to approximately the same degree in all races. It is the illness which made us human prior to the separation of the races.
Collapse
Affiliation(s)
- D F Horrobin
- Scotia Research Institute, Stirling, Scotland, UK
| |
Collapse
|
47
|
Katila H, Appelberg B, Rimón R. No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr Res 1997; 26:103-5. [PMID: 9323339 DOI: 10.1016/s0920-9964(97)00054-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phospholipase-A2 activity in plasma from 62 psychiatric patients admitted in an acute state to psychiatric hospital was determined by a fluorometric assay and compared to that of age- and sex-matched controls. Contrary to earlier findings, no significant differences were found between patients and controls.
Collapse
Affiliation(s)
- H Katila
- Department of Psychiatry, Helsinki University Central Hospital, Finland
| | | | | |
Collapse
|
48
|
Ross BM, Moszczynska A, Blusztajn JK, Sherwin A, Lozano A, Kish SJ. Phospholipid biosynthetic enzymes in human brain. Lipids 1997; 32:351-8. [PMID: 9113621 DOI: 10.1007/s11745-997-0044-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growing evidence suggests an involvement of brain membrane phospholipid metabolism in a variety of neurodegenerative and psychiatric conditions. This has prompted the use of drugs (e.g., CDPcholine) aimed at elevating the rate of neural membrane synthesis. However, no information is available regarding the human brain enzymes of phospholipid synthesis which these drugs affect. Thus, the objective of our study was to characterize the enzymes involved, in particular, whether differences existed in the relative affinity of substrates for the enzymes of phosphatidylethanolamine (PE) compared to those of phosphatidylcholine (PC) synthesis. The concentration of choline in rapidly frozen human brain biopsies ranged from 32-186 nmol/g tissue, a concentration similar to that determined previously for ethanolamine. Since human brain ethanolamine kinase possessed a much lower affinity for ethanolamine (Km = 460 microM) than choline kinase did for choline (Km = 17 microM), the activity of ethanolamine kinase in vivo may be more dependent on substrate availability than that of choline kinase. In addition, whereas ethanolamine kinase was inhibited by choline, and to a lesser extent by phosphocholine, choline kinase activity was unaffected by the presence of ethanolamine, or phosphoethanolamine, and only weakly inhibited by phosphocholine. Phosphoethanolamine cytidylyltransferase (PECT) and phosphocholine cytidylyltransferase (PCCT) also displayed dissimilar characteristics, with PECT and PCCT being located predominantly in the cytosolic and particulate fractions, respectively. Both PECT and PCCT exhibited a low affinity for CTP (Km approximately 1.2 mM), suggesting that the activities of these enzymes, and by implication, the rate of phospholipid synthesis, are highly dependent upon the cellular concentration of CTP. In conclusion our data indicate different regulatory properties of PE and PC synthesis in human brain, and suggest that the rate of PE synthesis may be more dependent upon substrate (ethanolamine) availability than that of PC synthesis.
Collapse
Affiliation(s)
- B M Ross
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
For the first time, there is a pathogenic hypothesis of schizophrenia based upon reasonable empirical data. The hypothesis is that schizophrenia is a disorder arising from aberrant brain development. The neurodevelopmental view of schizophrenia is supported by neuropathological, epidemiological and clinical findings. Here, the evidence in favour of the model is summarized, together with a consideration of its weaknesses.
Collapse
Affiliation(s)
- P J Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK.
| |
Collapse
|
50
|
Beauregard M, Bachevalier J. Neonatal insult to the hippocampal region and schizophrenia: a review and a putative animal model. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 1996; 41:446-56. [PMID: 8884034 DOI: 10.1177/070674379604100710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the mounting evidence implicating early hippocampal dysfunction in the pathogenesis and the pathophysiology of schizophrenia. An account is made of recent neurodevelopmental hypotheses indicating how an early dysfunction of the hippocampal region disrupts maturational events in brain systems connected to that structure, thus inducing dysfunctional connectional development. Finally, an animal model is presented. METHOD Socioemotional behaviour of monkeys (Macaca mulatta) with selective neonatal hippocampal lesions was assessed by analyzing their interactions with their age-matched controls at 2 months, 6 months, and 5 to 8 years of age and by comparing the social interactions at each age with those of normal controls paired together. RESULTS At 2 months of age, monkeys with neonatal hippocampal lesions presented minor disturbances in initiation of social interactions. These subtle changes of behaviour were less evident at 6 months, although by that age, the operated monkeys displayed more withdrawals in response to an increase in aggressive responses from their unoperated peers. In adulthood, the amount of time spent by the hippocampectomized monkeys in social contacts with their normal peers decreased markedly. In addition, operated monkeys exhibited more locomotor stereotypies than normal controls. CONCLUSION These experimental findings indicate that the time-course and nature of the behavioural disturbances resulting from early trauma to the hippocampal region have some similarities with the clinical symptoms of schizophrenic patients and the typical time-course of the disease.
Collapse
Affiliation(s)
- M Beauregard
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston 77225, USA
| | | |
Collapse
|