1
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
2
|
Zijlmans DGM, Maaskant A, Louwerse AL, Sterck EHM, Langermans JAM. Overweight Management through Mild Caloric Restriction in Multigenerational Long-Tailed Macaque Breeding Groups. Vet Sci 2022; 9:262. [PMID: 35737314 PMCID: PMC9230116 DOI: 10.3390/vetsci9060262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Caloric restriction (CR) is an effective method to reduce overweight in captive non-human primates (NHPs). CR has been applied to individually- and pair-housed NHPs, but whether applying CR can be effective and safe in group-housed NHPs has not yet been assessed. This study investigates the effect of mild (20%) CR on adult overweight and biochemical parameters, immature growth, veterinary consultations, and reproductive success in multigenerational long-tailed macaque (Macaca fascicularis) breeding groups. Data were derived from anthropometric measurements and blood samples during yearly health checks, complemented with retrospective data on veterinary consultations and reproductive success. Adult body measures decreased after CR, with heavier individuals and females losing more weight compared to leaner individuals and males. CR lowered cholesterol levels in adults but had no overall effect on other biochemical parameters. Yet, biochemical parameters of individuals with high baseline values were reduced more compared to individuals with low baseline values. Immature growth, veterinary consultations and reproductive success were not influenced by CR. Thus, CR targeted the right individuals, i.e., overweight adults, and had no adverse effects on the variables examined in this study. This implies that mild CR can be a valuable overweight management strategy in group-housed NHPs.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Annet L. Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
3
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Late-life intermittent fasting decreases aging-related frailty and increases renal hydrogen sulfide production in a sexually dimorphic manner. GeroScience 2021; 43:1527-1554. [PMID: 33675469 PMCID: PMC8492807 DOI: 10.1007/s11357-021-00330-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.
Collapse
|
5
|
Kord-Varkaneh H, Nazary-Vannani A, Mokhtari Z, Salehi-sahlabadi A, Rahmani J, Clark CCT, Fatahi S, Zanghelini F, Hekmatdoost A, Okunade K, Mirmiran P. The Influence of Fasting and Energy Restricting Diets on Blood Pressure in Humans: A Systematic Review and Meta-Analysis. High Blood Press Cardiovasc Prev 2020; 27:271-280. [DOI: 10.1007/s40292-020-00391-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
|
6
|
Mooli RGR, Mukhi D, Watt M, Edmunds L, Xie B, Capooci J, Reslink M, Eze C, Mills A, Stolz DB, Jurczak M, Ramakrishnan SK. Sustained mitochondrial biogenesis is essential to maintain caloric restriction-induced beige adipocytes. Metabolism 2020; 107:154225. [PMID: 32275973 PMCID: PMC7284285 DOI: 10.1016/j.metabol.2020.154225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Caloric restriction (CR) delays the onset of metabolic and age-related disorders. Recent studies have demonstrated that formation of beige adipocytes induced by CR is strongly associated with extracellular remodeling in adipose tissue, decrease in adipose tissue inflammation, and improved systemic metabolic homeostasis. However, beige adipocytes rapidly transition to white upon CR withdrawal through unclear mechanisms. MATERIALS AND METHODS Six-week old C57BL6 mice were fed with 40% CR chow diet for 6 weeks. Subsequently, one group of mice was switched back to ad libitum chow diet, which was continued for additional 2 weeks. Adipose tissues were assessed histologically and biochemically for beige adipocytes. RESULTS Beige adipocytes induced by CR rapidly transition to white adipocytes when CR is withdrawn independent of parkin-mediated mitophagy. We demonstrate that the involution of mitochondria during CR withdrawal is strongly linked with a decrease in mitochondrial biogenesis. We further demonstrate that beige-to-white fat transition upon β3-AR agonist-withdrawal could be attenuated by CR, partly via maintenance of mitochondrial biogenesis. CONCLUSION In the model of CR, our study highlights the dominant role of mitochondrial biogenesis in the maintenance of beige adipocytes. We propose that loss of beige adipocytes upon β3-AR agonist withdrawal could be attenuated by CR.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Mikayla Watt
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Lia Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Bingxian Xie
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Joseph Capooci
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Matthew Reslink
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Chetachukwu Eze
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Amanda Mills
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Donna B Stolz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America.
| |
Collapse
|
7
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Cox LA, Olivier M, Spradling-Reeves K, Karere GM, Comuzzie AG, VandeBerg JL. Nonhuman Primates and Translational Research-Cardiovascular Disease. ILAR J 2018; 58:235-250. [PMID: 28985395 DOI: 10.1093/ilar/ilx025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic, metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Genesio M Karere
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - John L VandeBerg
- South Texas Diabetes and Obesity Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, Texas
| |
Collapse
|
9
|
Dasgupta A, Kim J, Manakkadan A, Arumugam TV, Sajikumar S. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons. Neurobiol Learn Mem 2017; 154:70-77. [PMID: 29277679 DOI: 10.1016/j.nlm.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation.
Collapse
Affiliation(s)
- Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Anoop Manakkadan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore.
| |
Collapse
|
10
|
Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharm Res 2017; 40:1380-1389. [DOI: 10.1007/s12272-017-0989-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
|
11
|
Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455:148-157. [PMID: 28412520 PMCID: PMC7153268 DOI: 10.1016/j.mce.2017.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison WI, USA.
| | - Yasoma K Weerasekara
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
12
|
Abraham KJ, Ostrowski LA, Mekhail K. Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. J Mol Biol 2017; 429:3196-3214. [DOI: 10.1016/j.jmb.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/05/2023]
|
13
|
Obesity and malnutrition similarly alter the renin–angiotensin system and inflammation in mice and human adipose. J Nutr Biochem 2017; 48:74-82. [DOI: 10.1016/j.jnutbio.2017.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022]
|
14
|
Sipe LM, Yang C, Ephrem J, Garren E, Hirsh J, Deppmann CD. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr Diabetes 2017; 7:e260. [PMID: 28394360 PMCID: PMC5436093 DOI: 10.1038/nutd.2017.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
The sympathetic nervous system (SNS) regulates energy homeostasis in part by governing fatty acid liberation from adipose tissue. We first examined whether SNS activity toward discrete adipose depots changes in response to a weight loss diet in mice. We found that SNS activity toward each adipose depot is unique in timing, pattern of activation, and habituation with the most dramatic contrast between visceral and subcutaneous adipose depots. Sympathetic drive toward visceral epididymal adipose is more than doubled early in weight loss and then suppressed later in the diet when weight loss plateaued. Coincident with the decline in SNS activity toward visceral adipose is an increase in activity toward subcutaneous depots indicating a switch in lipolytic sources. In response to calorie restriction, SNS activity toward retroperitoneal and brown adipose depots is unaffected. Finally, pharmacological blockage of sympathetic activity on adipose tissue using the β3-adrenergic receptor antagonist, SR59230a, suppressed loss of visceral adipose mass in response to diet. These findings indicate that SNS activity toward discrete adipose depots is dynamic and potentially hierarchical. This pattern of sympathetic activation is required for energy liberation and loss of adipose tissue in response to calorie-restricted diet.
Collapse
Affiliation(s)
- L M Sipe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C Yang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Ephrem
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - E Garren
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Vaughan KL, Mattison JA. Obesity and Aging in Humans and Nonhuman Primates: A Mini-Review. Gerontology 2016; 62:611-617. [PMID: 27120471 PMCID: PMC5073030 DOI: 10.1159/000445800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in the US is increasing exponentially across gender, age and ethnic groups. Obesity and a long-term hypercaloric diet result in what appears to be accelerated aging, often leading to a multi-systemic deterioration known as the metabolic syndrome. Due to their physiological similarity to humans as well as comparable rates of spontaneous obesity and diabetes mellitus, nonhuman primates provide a useful translational model for the human condition. They allow for an in vivo study of disease progression, interaction of comorbidities, and novel interventions. However, defining obesity in aged humans and nonhuman primates is difficult as the physiological changes that occur with aging are not accounted for using our current systems (BMI - body mass index and BCS - body condition score). Nonetheless, nonhuman primate studies have greatly contributed to our understanding of obesity and metabolic dysfunction and should continue to play a large role in translational research. Here, methods for defining obesity and metabolic syndrome in humans and nonhuman primates are described along with the prevalence and effects of these conditions.
Collapse
Affiliation(s)
- Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, Md., USA
| | | |
Collapse
|
16
|
Meyer C, Kerns A, Haberthur K, Messaoudi I. Improving immunity in the elderly: current and future lessons from nonhuman primate models. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1157-1168. [PMID: 22180097 PMCID: PMC3448983 DOI: 10.1007/s11357-011-9353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
The immune system must overcome daily challenges from pathogens to protect the body from infection. The success of the immune response to infection relies on the ability to sense and evaluate microbial threats and organize their elimination, while limiting damage to host tissues. This delicate balance is achieved through coordinated action of the innate and adaptive arms of the immune system. Aging results in several structural and functional changes in the immune system, often described under the umbrella term "immune senescence". Age-related changes affect both the innate and adaptive arms of the immune system and are believed to result in increased susceptibility and severity of infectious diseases, which is further exacerbated by reduced vaccine efficacy in the elderly. Therefore, multiple strategies to improve immune function in the aged are being investigated. Traditionally, studies on immune senescence are conducted using inbred specific pathogen free (SPF) rodents. This animal model has provided invaluable insight into the mechanisms of aging. However, the limited genetic heterogeneity and the SPF status of this model restrict the successful transfer of immunological discoveries between murine models and the clinical setting. More recently, nonhuman primates (NHPs) have emerged as a leading translational model to investigate immune senescence and to test interventions aimed at delaying/reversing age-related changes in immune function. In this article, we review and summarize advances in immuno-restorative approaches investigated in the NHP model system and discuss where the NHP model can support the development of novel therapeutics.
Collapse
Affiliation(s)
- Christine Meyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
| | - Amelia Kerns
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
| | - Kristen Haberthur
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
- Graduate Program in Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
- Graduate Program in Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR USA
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| |
Collapse
|
17
|
Marchal J, Blanc S, Epelbaum J, Aujard F, Pifferi F. Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 2012; 7:e34289. [PMID: 22479589 PMCID: PMC3316613 DOI: 10.1371/journal.pone.0034289] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day(-1)·kg(-1)). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes.
Collapse
Affiliation(s)
- Julia Marchal
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie, Ethologie UMR 7178 CNRS Université Louis Pasteur, Strasbourg, France
| | - Jacques Epelbaum
- Centre de Psychiatrie et Neuroscience, UMR 894 Inserm, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
- * E-mail:
| | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| |
Collapse
|
18
|
Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J 2011; 10:107. [PMID: 21981968 PMCID: PMC3200169 DOI: 10.1186/1475-2891-10-107] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023] Open
Abstract
Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion.
Collapse
Affiliation(s)
- John F Trepanowski
- Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|
19
|
Zhang X, Zhang R, Raab S, Zheng W, Wang J, Liu N, Zhu T, Xue L, Song Z, Mao J, Li K, Zhang H, Zhang Y, Han C, Ding Y, Wang H, Hou N, Liu Y, Shang S, Li C, Sebokova E, Cheng H, Huang PL. Rhesus macaques develop metabolic syndrome with reversible vascular dysfunction responsive to pioglitazone. Circulation 2011; 124:77-86. [PMID: 21690491 PMCID: PMC3775509 DOI: 10.1161/circulationaha.110.990333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The metabolic syndrome (MetS) is a constellation of clinical features that include central obesity, hypertension, atherogenic dyslipidemia, and insulin resistance. However, the concept remains controversial; it has been debated whether MetS represents nothing more than simultaneous co-occurrence of individual risk factors or whether there are common shared pathophysiological mechanisms that link the individual components. METHODS AND RESULTS To investigate the emergence of metabolic and cardiovascular components during the development of MetS, we identified MetS-predisposed animals (n=35) in a large population of rhesus macaques (Macaca mulatta, 12.7±2.9 years old, n=408), acclimated them to standardized conditions, and monitored the progression of individual component features over 18 months. In 18 MetS animals with recently developed fasting hyperinsulinemia, central obesity, hypertension, and atherogenic dyslipidemia, we found that individual metabolic and cardiovascular components track together during the transition from pre-MetS to onset of MetS; MetS was associated with a 60% impairment of flow-mediated dilation, establishing the mechanistic link with vascular dysfunction. Pioglitazone treatment (3 mg/kg body weight/d for 6 weeks), a peroxisome proliferator-activated receptor γ agonist, reversibly improved atherogenic dyslipidemia and insulin resistance and fully restored flow-mediated dilation with persistent benefits. CONCLUSIONS Coemergence of metabolic and cardiovascular components during MetS progression and complete normalization of vascular dysfunction with peroxisome proliferator-activated receptor γ agonists suggest shared underlying mechanisms rather than separate processes, arguing for the benefit of early intervention of MetS components. Predictive nonhuman primate (NHP) models of MetS should be highly valuable in mechanistic and translational studies on the pathogenesis of MetS in relation to cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
- Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Rongli Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Susanne Raab
- PRDM, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Wen Zheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jue Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Na Liu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Tiangang Zhu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lifang Xue
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Department of Medical Ultrasonics, Peking University People’s Hospital, Beijing 100044, China
| | - Zhentao Song
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jiaming Mao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Kaitao Li
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Huiliang Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Chao Han
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yi Ding
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hui Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yuli Liu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shujiang Shang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Chuanyun Li
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Elena Sebokova
- PRDM, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Paul L. Huang
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
MacDonald L, Radler M, Paolini AG, Kent S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Am J Physiol Regul Integr Comp Physiol 2011; 301:R172-84. [PMID: 21525175 DOI: 10.1152/ajpregu.00057.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.
Collapse
Affiliation(s)
- Leah MacDonald
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | |
Collapse
|
21
|
Lasa A, Simón E, Churruca I, Fernández-Quintela A, Rodríguez VM, Portillo MP. Adiposity and serum parameters in hamsters fed energy restricted diets supplemented or not with trans-10,cis-12 conjugated linoleic acid. J Physiol Biochem 2008; 63:297-304. [PMID: 18457005 DOI: 10.1007/bf03165761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated that conjugated linoleic acid (CLA) modulates body composition, reducing body fat accumulation in various mammalian species. However, very few studies have been carried out to assess the effect of CLA on previously stored body fat. The aim of the present work was to analyse the effectiveness of trans-10,cis-12 CLA in improving alterations produced by high-fat feeding in body fat and serum parameters when it was included in an energy-restricted diet. For this purpose male Syrian Golden hamsters were fed on high-fat diet for 7 weeks in order to increase their body fat content, and a further 25% energy-restricted diet supplemented or not with 0.5% trans-10,cis-12 CLA for 3 weeks. Adipose tissues, liver and gastrocnemious muscles were dissected and weighed. Adipocyte diameter and number were assessed in epididymal adipose tissue. Total cholesterol, triacylglycerols, non-esterified fatty acids and glucose were measured in serum. Three weeks of energy restriction resulted in a reduction in body weight and white adipose tissue size in all anatomical locations, without changes in liver and gastrocnemious muscle weights. Epididymal adipocyte size was reduced, but total adipocyte number remained unchanged. Serum cholesterol, triacylglycerols and glucose were significantly reduced. No differences were observed between the restricted groups (control and CLA supplemented). In conclusion, under our experimental conditions, the addition of trans-10,cis-12 CLA to the diet does not increase the benefits produced by energy restriction.
Collapse
Affiliation(s)
- A Lasa
- Department of Nutrition and Food Science, University of País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
An epidemic of overweight/obesity and type 2 diabetes, caused by overeating nutrient-poor energy-dense foods and a sedentary lifestyle, is spreading rapidly throughout the world. Abdominal obesity represents a serious threat to health because it increases the risk of developing many chronic diseases, including cardiovascular disease and cancer. Calorie restriction (CR) with adequate nutrition improves cardiometabolic health, prevents tumorigenesis and increases life span in experimental animals. The purpose of this review is to evaluate the metabolic and clinical implications of CR with adequate nutrition in humans, within the context of data obtained in animal models. It is unlikely that information regarding the effect of CR on maximal life span in humans will become available in the foreseeable future. In young and middle-aged healthy individuals, however, CR causes many of the same cardiometabolic adaptations that occur in long-lived CR rodents, including decreased metabolic, hormonal and inflammatory risk factors for diabetes, hypertension, cardiovascular disease and cancer. Unraveling the mechanisms that link calorie intake and body composition with metabolism and aging will be a major step in understanding the age-dependency of a wide range of human diseases and will also contribute to improve the general quality of life at old ages.
Collapse
|
23
|
Rebelatto JR, Jiménez R, Delgado MA, Muguerza B, Muñoz ME, Galan AI, Sánchez RM, Arenillas JIC. Antioxidantes, atividade física e estresse oxidativo em mulheres idosas. REV BRAS MED ESPORTE 2008. [DOI: 10.1590/s1517-86922008000100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJETIVO: Verificar a influência da suplementação de vitaminas antioxidantes na dieta de mulheres idosas que praticam exercícios físicos regulares, sobre o estresse oxidativo, indicadores da saúde física e risco de enfermidades cardiovasculares (ECV). MÉTODO: Foram observados dois grupos (S e C) de mulheres com idades entre 60 e 80 anos participantes de um programa de atividades físicas durante 58 semanas, com freqüência de três vezes por semana e duração de 50 a 55 minutos cada sessão. A dieta habitual do Grupo S (n=36) foi suplementada diariamente com 330 ml de uma bebida antioxidante (FuncionaTM); o Grupo C (n=32) ingeriu água e se caracterizou como controle. Como indicadores do estresse oxidativo foram determinadas as concentrações plasmáticas de glutationa reduzida (GSH) e oxidada (GSSG), calculada a relação molar GSH/GSSG, e identificado o dano oxidativo em lipídios e proteínas. As condições físicas e cardiovasculares foram avaliadas por meio dos parâmetros antropométricos habituais (peso, altura e índice de massa corporal) e da pressão arterial. RESULTADOS: O Grupo C apresentou aumentos significativos do estresse oxidativo, redução da pressão arterial e dos valores médios de indicadores de risco de ECV. O Grupo S teve o estresse oxidativo reduzido significativamente e apresentou incremento dos ganhos cardiovasculares. Não foram identificadas significâncias em relação aos efeitos ergogênicos. CONCLUSÃO: Os dados indicam que mulheres idosas que realizam exercícios físicos freqüentes melhoram suas condições físicas e cardiovasculares e que o suplemento dietético continuado de alimentos funcionais antioxidantes podem minimizar os efeitos danosos das espécies reativas de oxigênio.
Collapse
|
24
|
Young GS, Kirkland JB. Rat models of caloric intake and activity: relationships to animal physiology and human health. Appl Physiol Nutr Metab 2007; 32:161-76. [PMID: 17486157 DOI: 10.1139/h06-082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Every rodent experiment is based on important parameters concerning the levels of caloric intake and physical activity. In many cases, these decisions are not made consciously, but are based on traditional models. For experimental models directed at the study of caloric intake and activity, the selection of parameters is usually aimed at modeling human conditions, the ultimate goal of which is to gain insight into the pathophysiology of the disease process in man. In each model, it is important to understand the influence of diet, exercise, and genetic background on physiology and the development of disease states. Along the continuum of energy intake from caloric restriction to high-fat feeding, and of energy output from total inactivity to forced exercise, a number of models are used to study different disease states. In this paper, we will evaluate the influence of the quantity and composition of diet and exercise in several animal models, and will discuss how each model can be applied to various human conditions. This review will be limited to traditional models using the rat as the experimental animal, and although it is not an exhaustive list, the models presented are those most commonly represented in the literature. We will also review the mechanisms by which each affects rat physiology, and will compare these to the analogous mechanisms in the modeled human disease state. We hope that the information presented here will help researchers make choices among the available models and will encourage discussion on the interpretation and extrapolation of results obtained from traditional and novel rodent experiments on diet, exercise, and chronic disease.
Collapse
Affiliation(s)
- Genevieve S Young
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
25
|
Varady KA, Roohk DJ, Hellerstein MK. Dose effects of modified alternate-day fasting regimens on in vivo cell proliferation and plasma insulin-like growth factor-1 in mice. J Appl Physiol (1985) 2007; 103:547-51. [PMID: 17495119 DOI: 10.1152/japplphysiol.00209.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduced cell proliferation is associated with lower cancer risk. Alternate-day fasting (ADF), defined as alternating 24-h periods of ad libitum feeding and fasting, decreases cell proliferation. The effect of modified regimens of ADF on cell proliferation, however, has not been examined. This study measured the effects of modified ADF regimens on prostate and splenic T-cell proliferation and circulating insulin-like growth factor-1 (IGF-1) levels in mice. In a 4-wk study, 24 male C57BL/6J mice were randomized to one of four interventions: 1) ADF-25% [25% calorie restriction (CR) on fast day], 2) ADF-50% (50% CR on fast day), 3) ADF-100% (100% CR on fast day), and 4) control. Body weight of the ADF-100% group was less (P < 0.005) than that of the ADF-25% and ADF-50% groups posttreatment. On the feast day, the ADF-100% and ADF-50% groups ate 85% and 45% more food, respectively, than controls, indicating a hyperphagic response to fasting. Proliferation rates of T-cells were 6% and 30% lower (P < 0.05) in the ADF-50% and ADF-100% groups, respectively, relative to controls. Prostate cell proliferation was reduced (P < 0.05) by 49% in the ADF-100% group, relative to controls, but did not change in the other groups. IGF-1 levels were reduced (P < 0.05) by 40%, relative to controls, in the ADF-100% group. These findings confirm the beneficial effects of ADF-100% on cancer risk by decreasing cell proliferation and IGF-1 levels and suggest that modified ADF regimens comprising 25-50% CR on the fast day do not replicate these effects.
Collapse
Affiliation(s)
- Krista A Varady
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California 94720-3104, USA.
| | | | | |
Collapse
|
26
|
Gomes P, Sampaio-Marques B, Ludovico P, Rodrigues F, Leão C. Low auxotrophy-complementing amino acid concentrations reduce yeast chronological life span. Mech Ageing Dev 2007; 128:383-91. [PMID: 17544056 DOI: 10.1016/j.mad.2007.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae, interventions resembling caloric restriction, either by reduction of glucose or non-essential amino acid content in the medium, prolong life span and retard aging. Here we have examined the role of auxotrophy-complementing amino acid supplementation of S. cerevisiae strains in determining yeast chronological life span and stress resistance. The results obtained from cells cultured in standard amino acid concentrations revealed a reduced final biomass yield and premature aging phenotypes. These included shorter life span and indicators of oxidative stress, together with a G2/M cell cycle arrest and the appearance of a sub-G0/G1 population pointing to the occurrence of a specific cell death programme under starvation of essential amino acids. In order to overcome this starvation, five times higher amino acid concentrations were supplied to the medium as has already been commonly used by few laboratories. Such cultures reached more than five-fold higher final biomass yield in stationary phase and the early aging phenotypes were abrogated. Furthermore, in a long-lived yeast strain lacking TOR1, there was no positive effect of amino acid supplementation on longevity. On the contrary, amino acid supply had a positive effect on chronological life span of RAS2 deleted cells. This study may provide novel insights into the role of essential nutrients and their effect on aging process and raises the warning that the positive effects of caloric restriction on life span maybe restricted to non-essential nutrients. Moreover, the severe consequences on cell physiology, life span and stress resistance induced by essential amino acid imbalances presents a note of caution for those still using standard amino acid concentrations for studies with auxotrophic yeast strains.
Collapse
Affiliation(s)
- Pedro Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
27
|
Abstract
The epidemic of metabolic syndrome contributes to the rapid growth of cardiovascular and renal diseases. Hyper-hemodynamics, impaired pressure natriuresis, excess excretory load, insulin resistance, endothelial dysfunction, chronic inflammation, and prothrombotic status individually and interdependently initiate renal injury in metabolic syndrome. The prevention and treatment of kidney disease require a multifactorial approach. Weight loss through diet control and exercise can reverse many pathophysiologic processes. Pharmacologic intervention includes insulin sensitizers, tight glycemic and lipid control, blockage of renin angiotensin aldosterone system, and anti-inflammatory and antithrombotic therapies. Each peroxisome proliferator-activated receptor isoform plays a distinct role in metabolic syndrome, and their agonists may prevent or reverse the early renal injuries.
Collapse
Affiliation(s)
- Rubin Zhang
- Section of Nephrology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 20112-2822, USA
| | | | | | | | | |
Collapse
|
28
|
Guarente L. Calorie restriction and SIR2 genes--towards a mechanism. Mech Ageing Dev 2005; 126:923-8. [PMID: 15941577 DOI: 10.1016/j.mad.2005.03.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/20/2005] [Accepted: 03/15/2005] [Indexed: 12/11/2022]
Abstract
Calorie restriction is the first and most compelling example of life extension in mammals. Much speculation about how CR works has focused on ideas of what causes aging. Since these causes themselves are much disputed, I have instead focused my thinking on lessons from simple model organisms, which have emerged from recent genetic studies. These findings can now be integrated with numerous, elegant studies on CR over the decades, which provide a treasure trove of information about physiological changes that are elicited by this regimen. In this paper, I present data showing that the SIR2 gene is a strong candidate to regulate CR in the simple model organisms, such as yeast and Drosophila. I then summarize what is known about the mammalian Sirt1 as it relates to physiological changes during CR, and discuss how this mechanism may impact on life span, as well as diseases of aging.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6:298-305. [PMID: 15768047 DOI: 10.1038/nrm1616] [Citation(s) in RCA: 753] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calorie restriction (CR) is the only experimental manipulation that is known to extend the lifespan of a number of organisms including yeast, worms, flies, rodents and perhaps non-human primates. In addition, CR has been shown to reduce the incidence of age-related disorders (for example, diabetes, cancer and cardiovascular disorders) in mammals. The mechanisms through which this occurs have been unclear. CR induces metabolic changes, improves insulin sensitivity and alters neuroendocrine function in animals. In this review, we summarize recent findings that are beginning to clarify the mechanisms by which CR results in longevity and robust health, which might open new avenues of therapy for diseases of ageing.
Collapse
Affiliation(s)
- Laura Bordone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
30
|
Everitt AV, Roth GS, Le Couteur DG, Hilmer SN. Caloric restriction versus drug therapy to delay the onset of aging diseases and extend life. AGE (DORDRECHT, NETHERLANDS) 2005; 27:39-48. [PMID: 23598602 PMCID: PMC3456093 DOI: 10.1007/s11357-005-3284-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 12/28/2004] [Indexed: 06/02/2023]
Abstract
There are two firmly established methods of prolonging life. Calorie restriction (CR) using nutrient-rich diets to prolong life in lower animals, and life saving medications in humans to delay the development of the major diseases of middle and old age. These two approaches have different mechanisms of action. In rats, CR at 40% below ad libitum intake begun soon after weaning and continued until death, reduces body weight by about 40% and increases lifespan. There have been no lifelong CR studies performed on humans. However, in healthy adult human subjects about 20% CR over a period of 2-15 years, lowers body weight by about 20% and decreases body mass index (BMI) to about 19. This CR treatment in humans reduces blood pressure and blood cholesterol to a similar extent as the specific drugs used to delay the onset of vascular disease and so extend human life. These same drugs may act by mechanisms that overlap with some of the mechanisms of CR in retarding these pathologies and thus may have similar antiaging and life prolonging actions. Such drugs may be regarded as CR mimetics which inhibit the development of certain life shortening diseases, without the need to lower calorie intake. In developed countries, better medical care, drug therapy, vaccinations, and other public health measures have extended human life by about 30 years during the 20th century without recourse to CR, which is so effective in the rat. The percentage gain in human life expectancy during the 20th century is twice that achieved by CR in rat survival. However, rat longevity studies now use specific pathogen-free animals and start CR after weaning or later, thereby excluding deaths from infectious diseases and those associated with birth and early life. There is a need to develop CR mimetics which can delay the development of life-threatening diseases in humans. In the 21st century due to the human epidemic of overeating with a sedentary lifestyle, it may necessary to utilize CR to counter the aging effects of overweight. Since the greatest life-extending effects of CR in the rodent occur when started early in life, long-term antiaging therapy in humans should be initiated soon after maturity, when physiological systems have developed optimally.
Collapse
Affiliation(s)
- Arthur V. Everitt
- Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - George S. Roth
- GeroScience Inc., 1124 Ridge Road, Pylesville, MD 21132 USA
| | - David G. Le Couteur
- Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia
| | - Sarah N. Hilmer
- Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Gresl TA, Colman RJ, Havighurst TC, Byerley LO, Allison DB, Schoeller DA, Kemnitz JW. Insulin sensitivity and glucose effectiveness from three minimal models: effects of energy restriction and body fat in adult male rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1340-54. [PMID: 12842866 DOI: 10.1152/ajpregu.00651.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The minimal model of glucose disappearance (MINMOD version 3; MM3) and both the one-compartment (1CMM) and the two-compartment (2CMM) minimal models were used to analyze stable isotope-labeled intravenous glucose tolerance test (IVGTT) data from year 10 of a study of the effect of dietary restriction (DR) in male rhesus monkeys. Adult monkeys were energy restricted (R; n = 12) on a semipurified diet to approximately 70% of control (C) intake (ad libitum-fed monkeys; n = 12). Under ketamine anesthesia, fasting insulin levels were greater among C monkeys. Insulin sensitivity estimates from all models were greater in R than C monkeys, whereas glucose effectiveness estimates were not consistently greater in R monkeys. Fasting plasma glucose as well as hepatic glucose production and clearance rates did not differ between groups. Body fat, in part, statistically mediated the effect of DR to enhance insulin sensitivity indexes. Precision of estimation and intermodel relationships among insulin sensitivity and glucose effectiveness estimates were in the ranges of those reported previously for humans and dogs, suggesting that the models may provide valid estimates for rhesus monkeys as well. The observed insulin sensitivity indexes from all models, elevated among R vs. C monkeys, may be explained, at least in part, by the difference in body fat content between these groups after chronic DR.
Collapse
Affiliation(s)
- Theresa A Gresl
- Wisconsin Primate Research Center, 1220 Capitol Court, Madison, WI 53715, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Kristan DM, Hammond KA. Parasite infection and caloric restriction induce physiological and morphological plasticity. Am J Physiol Regul Integr Comp Physiol 2001; 281:R502-10. [PMID: 11448854 DOI: 10.1152/ajpregu.2001.281.2.r502] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the effects of parasitism and caloric restriction on morphology (body composition, organ mass) and physiology (resting metabolism, intestinal glucose transport capacity), we gave laboratory mice intestinal parasites (Heligmosomoides polygyrus, Nematoda), 30% caloric restriction, or both. Calorically restricted mice had smaller body mass, enhanced glucose transport capacity, and lower resting metabolism than ad libitum-fed mice. Parasitized mice maintained body mass, had diminished intestinal glucose transport capacity, and greater resting metabolism than unparasitized mice. Parasitized, calorically restricted mice had smaller organ masses than parasitized, ad libitum-fed mice and did not increase their glucose uptake rate as much as unparasitized, calorically restricted mice. There was a significant interaction between caloric restriction and parasite status for morphological variables but not for physiological variables. Knowing the types of phenotypic changes that occur with simultaneous parasitism and caloric restriction will provide insight into understanding human helminthiasis in food-restricted communities and also how wild animals cope with environments where parasitism and seasonal food restriction are common.
Collapse
Affiliation(s)
- D M Kristan
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
34
|
Lane MA, Black A, Handy AM, Shapses SA, Tilmont EM, Kiefer TL, Ingram DK, Roth GS. Energy restriction does not alter bone mineral metabolism or reproductive cycling and hormones in female rhesus monkeys. J Nutr 2001; 131:820-7. [PMID: 11238765 DOI: 10.1093/jn/131.3.820] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Energy restriction (ER) extends the life span and slows aging and age-related diseases in short-lived mammalian species. Although a wide variety of physiological systems have been studied using this paradigm, little is known regarding the effects of ER on skeletal health and reproductive aging. Studies in rhesus monkeys have reported that ER delays sexual and skeletal maturation in young male monkeys and reduces bone mass in adult males. No studies have examined the chronic effects on bone health and reproductive aging in female rhesus monkeys. The present cross-sectional study examined the effects of chronic (6 y) ER on skeletal and reproductive indices in 40 premenopausal and perimenopausal (7-27 y old) female rhesus macaques (Macaca mulatta). Although ER monkeys weighed less and had lower fat mass, ER did not alter bone mineral density, bone mineral content, osteocalcin, 25-hydroxyvitamin D, 1,25-hydroxyvitamin D or parathyroid hormone concentrations, menstrual cycling or reproductive hormone concentrations. Body weight and lean mass were significantly related to bone mineral density and bone mineral content at all skeletal sites (total body, lumbar spine, mid and distal radius; P: < or = 0.04). The number of total menstrual cycles over 2 y, as well as the percentage of normal-length cycles (24-31 d), was lower in older than in younger monkeys (P: < or = 0.05). Older monkeys also had lower estradiol (P: = 0.02) and higher follicle-stimulating hormone (P: = 0.02) concentrations than did younger monkeys. We conclude that ER does not negatively affect these indices of skeletal or reproductive health and does not alter age-associated changes in the same variables.
Collapse
Affiliation(s)
- M A Lane
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|