1
|
Kim J, Jung D, Chatterjee N, Clark B, Nacci D, Kim S, Choi J. Differential DNA methylation and metabolite profiling of Atlantic killifish (Fundulus heteroclitus) from the New Bedford Harbor Superfund site. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:22-33. [PMID: 38182934 PMCID: PMC10830762 DOI: 10.1007/s10646-023-02724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Atlantic killifish (Fundulus heteroclitus) is a valuable model in evolutionary toxicology to study how the interactions between genetic and environmental factors serve the adaptive ability of organisms to resist chemical pollution. Killifish populations inhabiting environmental toxicant-contaminated New Bedford Harbor (NBH) show phenotypes tolerant to polychlorinated biphenyls (PCBs) and differences at the transcriptional and genomic levels. However, limited research has explored epigenetic alterations and metabolic effects in NBH killifish. To identify the involvement of epigenetic and metabolic regulation in the adaptive response of killifish, we investigated tissue- and sex-specific differences in global DNA methylation and metabolomic profiles of NBH killifish populations, compared to sensitive populations from a non-polluted site, Scorton Creek (SC). The results revealed that liver-specific global DNA hypomethylation and differential metabolites were evident in fish from NBH compared with those from SC. The sex-specific differences were not greater than the tissue-specific differences. We demonstrated liver-specific enriched metabolic pathways (e.g., amino acid metabolic pathways converged into the urea cycle and glutathione metabolism), suggesting possible crosstalk between differential metabolites and DNA hypomethylation in the livers of NBH killifish. Additional investigation of methylated gene regions is necessary to understand the functional role of DNA hypomethylation in the regulation of enzyme-encoding genes associated with metabolic processes and physiological changes in NBH populations.
Collapse
Affiliation(s)
- Jiwan Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Korea
| | - Dawoon Jung
- Korea Environment Institute, Division of Environmental Health, Sejong, 30147, Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Korea
- NanoSafety Group, International Iberian Nanotechnology Laboratory, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Bryan Clark
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA
| | - Diane Nacci
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Korea.
| |
Collapse
|
2
|
Assad J, Cho S, Dileo V, Gascoigne G, Hubberstey AV, Patterson D, Williams R. Contaminated sediment in the Detroit River provokes acclimated responses in wild brown bullhead (Ameiurus nebulosus) populations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106772. [PMID: 38039693 DOI: 10.1016/j.aquatox.2023.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In a previous study, adaptive responses to a single polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), were identified in brown bullhead (Ameiurus nebulosus) captured from contaminated sites across the Great Lakes. The tumor suppressor p53 and phase I toxin metabolizing CYP1A genes showed a elevated and refractory response, respectively, up to the F1 generation (Williams and Hubberstey, 2014). As an extension to the first study, bullhead were exposed to sediment collected from sites along the Detroit River to see if these adaptive responses are attainable when fish from a contaminated site are exposed to a mixture of contaminants, instead of a single compound. p53 and CYP1A proteins were measured again with the addition of phase II glutathione-s-transferase (GST) activity in the present study. Three treatment groups were measured: acute (treated immediately), cleared (depurated for three months and subsequent treatment), and farm raised F1 offspring. All three treatment groups were exposed to clean and contaminated sediment for 24 and 96 h. Acute fish from contaminated sites exposed to contaminated sediment revealed an initial elevated p53 response that did not persist in fish after long-term contaminated sediment exposure. Acute fish from contaminated sites exposed to contaminated sediment revealed refractory CYP1A expression, which disappeared in cleared fish and whose F1 response overlapped with clean site F1 offspring. Decreasing GST activity was evident in both clean and contaminated fish over time, and only clean site fish responded to long-term contaminated sediment deliberately with increasing GST activity. Because p53 and CYP1A gene expression and GST activity responses did not overlap between contaminated fish treatment groups, our study suggests that contaminated fish have acclimated to the contaminants present in their environments and no evidence of adaptation could be detected within these biomarkers.
Collapse
Affiliation(s)
- J Assad
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - S Cho
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada
| | - V Dileo
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - G Gascoigne
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - A V Hubberstey
- Department of Biolomedical Sciences, University of Windsor, Windsor, ON N9B3P4, Canada
| | - D Patterson
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - R Williams
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada.
| |
Collapse
|
3
|
Yin-Liao I, Mahabir PN, Fisk AT, Bernier NJ, Laberge F. Lingering Effects of Legacy Industrial Pollution on Yellow Perch of the Detroit River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2158-2170. [PMID: 37341539 DOI: 10.1002/etc.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad). Our results show that higher sediment levels of industrial contaminants at the most downstream Detroit River site (Trenton Channel) are associated with increased perch liver detoxification activity and liver size, reduced brain size, and reduced scale cortisol content. Trenton Channel also displayed food web disruption, where adult perch occupied lower trophic positions than forage fish. Somatic growth and relative gut size were lower in perch sampled at the reference site in Lake St. Clair (Mitchell's Bay), possibly because of increased competition for resources. Models used to determine the factors contributing to site differences in organ growth suggest that the lingering effects of industrial pollution are best explained by trophic disruption. Thus, bioindicators of fish trophic ecology may prove advantageous to assess the health of aquatic ecosystems. Environ Toxicol Chem 2023;42:2158-2170. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Irene Yin-Liao
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Wirgin I, Chambers RC, Waldman JR, Roy NK, Witting DA, Mattson MT. Effects of Hudson River Stressors on Atlantic Tomcod: Contaminants and a Warming Environment. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2023; 31:342-371. [PMID: 37621745 PMCID: PMC10446889 DOI: 10.1080/23308249.2023.2189483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The Hudson River (HR) Estuary has a long history of pollution with a variety of contaminants including PCBs, and dioxins. In fact, 200 miles of the mainstem HR is designated a U.S. federal Superfund site, the largest in the nation, because of PCB contamination. The tidal HR hosts the southernmost spawning population of Atlantic tomcod, and studies revealed a correlation between exposure of juveniles to warm water temperature during summer to abundance of spawning adults of the same cohort in the following winter. Further, a battery of mechanistically linked biomarkers, ranging from the molecular to the population levels, were significantly impacted from contaminant exposures of the HR tomcod population. In response to xenobiotic insult, the HR tomcod population developed resistance to PCB sand TCDD toxicity resulting from a deletion in the aryl hydrocarbon receptor2 (AHR2) gene. Furthermore, RNA-Seq analysis of global gene expression demonstrated that effects of the AHR2 polymorphism were far more pervasive than anticipated. The most highly PCB-contaminated sediments in the upper HR were dredged between 2009 and 2015 with the objective of lowering PCB concentrations in fishes in the lower HR. Success of the remediation project has been controversial. These observations suggest that tomcod provides an informative model to evaluate the efficacy of HR PCB remediation efforts on downriver fish populations and possible interactive effects between contaminant exposure and a warming environment.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | |
Collapse
|
5
|
Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. TOXICS 2022; 10:toxics10070404. [PMID: 35878309 PMCID: PMC9320060 DOI: 10.3390/toxics10070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
CYP1A is a heme-thiolate enzyme associated with the cytochrome P4501A1 monooxygenase system and is inducible by a wide variety of xenobiotics and endogenous ligands that bind and activate the aryl hydrocarbon receptor (AHR). The AHR-CYP1A axis is important for detoxification of certain xenobiotics and for homeostatic balance of endogenous sex hormones, amine hormones, vitamins, fatty acids, and phospholipids. Herein, we generated and described applications of a zebrafish CYP1A-targeted monoclonal antibody (mAb CRC4) that fortuitously recognizes induced CYP1A across vertebrate taxa, including fish, chicken, mouse, rat, and human. We then demonstrated that mAb CRC4 targets a highly conserved epitope signature of vertebrate CYP1A. The unique complimentary determining region (CDR) sequences of heavy and light chains were determined, and these Ig sequences will allow for the expression of recombinant mAb CRC4, thus superseding the need for long-term hybridoma maintenance. This antibody works well for immunohistochemistry (IHC), as well as whole-mounted IHC in zebrafish embryos. Monoclonal antibody CRC4 may be particularly useful for studying the AHR-CYP1A axis in multiple vertebrate species and within the context of Oceans and Human Health research. By using archived samples, when possible, we actively promoted efforts to reduce, replace, and refine studies involving live animals.
Collapse
|
6
|
Celander MC, Goldstone JV, Brun NR, Clark B, Jayaraman S, Nacci D, Stegeman JJ. Resistance to Cyp3a induction by polychlorinated biphenyls, including non-dioxin-like PCB153, in gills of killifish (Fundulus heteroclitus) from New Bedford Harbor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103580. [PMID: 33429071 PMCID: PMC8374885 DOI: 10.1016/j.etap.2020.103580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Previous reports suggested that non-dioxin-like (NDL) PCB153 effects on cytochrome P450 3A (Cyp3a) expression in Atlantic killifish (Fundulus heteroclitus) gills differed between F0 generation fish from a PCB site (New Bedford Harbor; NBH) and a reference site (Scorton Creek; SC). Here, we examined effects of PCB153, dioxin-like (DL) PCB126, or a mixture of both, on Cyp3a56 mRNA in killifish generations removed from the wild, without environmental PCB exposures. PCB126 effects in liver and gills differed between populations, as expected. Gill Cyp3a56 was not affected by either congener in NBH F2 generation fish, but was induced by PCB153 in SC F1 fish, with females showing a greater response. PCB153 did not affect Cyp3a56 in liver of either population. Results suggest a heritable resistance to NDL-PCBs in killifish from NBH, in addition to that reported for DL PCBs. Induction of Cyp3a56 in gills may be a biomarker of exposure to NDL PCBs in fish populations that are not resistant to PCBs.
Collapse
Affiliation(s)
- Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30, Gothenburg, Sweden; Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - Jared V Goldstone
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Nadja R Brun
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Bryan Clark
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Saro Jayaraman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Diane Nacci
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - John J Stegeman
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
7
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|
8
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Crawford KA, Clark BW, Heiger-Bernays WJ, Karchner SI, Hahn ME, Nacci DE, Schlezinger JJ. Tributyltin disrupts fin development in Fundulus heteroclitus from both PCB-sensitive and resistant populations: Investigations of potential interactions between AHR and PPARγ. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105334. [PMID: 31743820 PMCID: PMC6935467 DOI: 10.1016/j.aquatox.2019.105334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 05/09/2023]
Abstract
Tributyltin (TBT) and dioxin-like polychlorinated biphenyls (PCBs) are environmental contaminants that are highly toxic to fish and co-occur in New Bedford Harbor (NBH), an estuarine Superfund site located in Massachusetts, USA. Atlantic killifish (Fundulus heteroclitus) that reside in NBH (and other highly contaminated sites along the east coast of the United States) have developed resistance to activation of the aryl hydrocarbon receptor (AHR) pathway and the toxicity of dioxin-like chemicals, such as 3,3',4,4',5-pentachlorobiphenyl, PCB126. In many biological systems, TBT disregulates adipose and bone development via the PPARγ-RXR pathway; AHR activation also disrupts adipose and bone homeostasis, potentially through molecular crosstalk between AHR and PPARγ. However, little is known about how co-exposure and the interaction of these pathways modulate the toxicological effects of these contaminants. Here, we tested the hypotheses that TBT would induce teratogenesis in killifish via activation of PPARγ and that PCB126 co-exposure would suppress PPARγ pathway activation in PCB-sensitive killifish from a reference site (Scorton Creek, SC, PCB-sensitive) but not in PCB-tolerant NBH killifish. Killifish embryos from both populations exposed to TBT (50 and 100 nM) displayed caudal fin deformities. TBT did not change the expression of pparg or its target genes related to adipogenesis (fabp11a and fabp1b) in either population. However, expression of osx/sp7, an osteoblast marker gene, and col2a1b, a chondroblast marker gene, was significantly suppressed by TBT only in SC killifish. An RXR-specific agonist, but not a PPARγ-specific agonist, induced caudal fin deformities like those observed in TBT-treated embryos. PCB126 did not induce caudal fin deformities and did not exacerbate TBT-induced fin deformities. Further, PCB126 increased expression of pparg in SC embryos and not NBH embryos, but did not change the expression of fabp1b. Taken together, these results suggest that in killifish embryos the PPARγ pathway is regulated in part by AHR, but is minimally active at least in this early life stage. In killifish, RXR activation, rather than PPARγ activation, appears to be the mechanism by which TBT induces caudal fin teratogenicity, which is not modulated by AHR responsiveness.
Collapse
Affiliation(s)
- K A Crawford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - B W Clark
- Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - S I Karchner
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - M E Hahn
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - D E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - J J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA.
| |
Collapse
|
10
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
11
|
Crawford KA, Clark BW, Heiger-Bernays WJ, Karchner SI, Claus Henn BG, Griffith KN, Howes BL, Schlezinger DR, Hahn ME, Nacci DE, Schlezinger JJ. Altered lipid homeostasis in a PCB-resistant Atlantic killifish (Fundulus heteroclitus) population from New Bedford Harbor, MA, U.S.A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:30-43. [PMID: 30822701 PMCID: PMC6544361 DOI: 10.1016/j.aquatox.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 05/09/2023]
Abstract
Sentinel species such as the Atlantic killifish (Fundulus heteroclitus) living in urban waterways can be used as toxicological models to understand impacts of environmental metabolism disrupting compound (MDC) exposure on both wildlife and humans. Exposure to MDCs is associated with increased risk of metabolic syndrome, including impaired lipid and glucose homeostasis, adipogenesis, appetite control, and basal metabolism. MDCs are ubiquitous in the environment, including in aquatic environments. New Bedford Harbor (NBH), Massachusetts is polluted with polychlorinated biphenyls (PCBs), and, as we show for the first time, tin (Sn). PCBs and organotins are ligands for two receptor systems known to regulate lipid homeostasis, the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptors (PPARs), respectively. In the current study, we compared lipid homeostasis in laboratory-reared killifish from NBH (F2) and a reference location (Scorton Creek, Massachusetts; F1 and F2) to evaluate how adaptation to local conditions may influence responses to MDCs. Adult killifish from each population were exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB126, dioxin-like), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153, non-dioxin-like), or tributyltin (TBT, a PPARγ ligand) by a single intraperitoneal injection and analyzed after 3 days. AHR activation was assessed by measuring cyp1a mRNA expression. Lipid homeostasis was evaluated phenotypically by measuring liver triglycerides and organosomatic indices, and at the molecular level by measuring the mRNA expression of pparg and ppara and a target gene for each receptor. Acute MDC exposure did not affect phenotypic outcomes. However, overall NBH killifish had higher liver triglycerides and adiposomatic indices than SC killifish. Both season and population were significant predictors of the lipid phenotype. Acute MDC exposure altered hepatic gene expression only in male killifish from SC. PCB126 exposure induced cyp1a and pparg, whereas PCB153 exposure induced ppara. TBT exposure did not induce ppar-dependent pathways. Comparison of lipid homeostasis in two killifish populations extends our understanding of how MDCs act on fish and provides a basis to infer adaptive benefits of these differences in the wild.
Collapse
Affiliation(s)
- Kathryn A Crawford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA.
| | - Bryan W Clark
- Oak Ridge Institute for Science and Education at the Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Wendy J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA
| | - Sibel I Karchner
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Birgit G Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kevin N Griffith
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, USA
| | - Brian L Howes
- School for Marine Science and Technology, University of Massachusetts, Dartmouth, New Bedford, MA, USA
| | - David R Schlezinger
- School for Marine Science and Technology, University of Massachusetts, Dartmouth, New Bedford, MA, USA
| | - Mark E Hahn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA
| |
Collapse
|
12
|
Goodale BC, Hampton TH, Ford EN, Jackson CE, Shaw JR, Stanton BA, King BL. Profiling microRNA expression in Atlantic killifish (Fundulus heteroclitus) gill and responses to arsenic and hyperosmotic stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:142-153. [PMID: 30476744 PMCID: PMC6298807 DOI: 10.1016/j.aquatox.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The Atlantic killifish (Fundulus heteroclitus), native to estuarine areas of the Atlantic coast of the United States, has become a valuable ecotoxicological model as a result of its ability to acclimate to rapid environmental changes and adapt to polluted habitats. MicroRNAs (miRNAs) are highly conserved small RNAs that regulate gene expression and play critical roles in stress responses in a variety of organisms. Global miRNA expression in killifish and the potential roles miRNA have in environmental acclimation have yet to be characterized. Accordingly, we profiled miRNA expression in killifish gill for the first time and identified a small group of highly expressed, well-conserved miRNAs as well as 16 novel miRNAs not yet identified in other organisms. Killifish respond to large fluctuations in salinity with rapid changes in gene expression and protein trafficking to maintain osmotic balance, followed by a secondary phase of gene and protein expression changes that enable remodeling of the gills. Arsenic, a major environmental toxicant, was previously shown to inhibit gene expression responses in killifish gill, as well the ability of killifish to acclimate to a rapid increase in salinity. Thus, we examined the individual and combined effects of salinity and arsenic on miRNA expression in killifish gill. Using small RNA sequencing, we identified 270 miRNAs expressed in killifish, and found that miR-135b was differentially expressed in response to arsenic and at 24 h following transfer to salt water. Predicted targets of miR-135b are involved in ion transport, cell motility and migration, GTPase mediated signal transduction and organelle assembly. Consistent with previous studies of these two environmental stressors, we found a significant interaction (i.e., arsenic dependent salinity effect), whereby killifish exposed to arsenic exhibited an opposite response in miR-135b expression at 24 h post hyperosmotic challenge compared to controls. By examining mRNA expression of predicted miRNA targets during salinity acclimation and arsenic exposure, we found that miR-135b targets were significantly more likely to decrease during salinity acclimation than non-targets. Our identification of a significant interaction effect of arsenic and salinity on miR-135b expression supports the hypothesis that arsenic alters upstream regulators of stress response networks, which may adversely affect the killifish response to osmotic stress. The characterization of miRNAs in this ecotoxicological model will be a valuable resource for future studies investigating the role of miRNAs in response to environmental stress.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States.
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| | - Emily N Ford
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA 01119, United States
| | - Craig E Jackson
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| |
Collapse
|
13
|
Glazer L, Kido Soule MC, Longnecker K, Kujawinski EB, Aluru N. Hepatic metabolite profiling of polychlorinated biphenyl (PCB)-resistant and sensitive populations of Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:114-122. [PMID: 30368057 PMCID: PMC6246827 DOI: 10.1016/j.aquatox.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at this site appear to be thriving, the metabolic costs of survival in a highly contaminated environment are not well understood. In this study we compared the hepatic metabolite profiles of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a targeted metabolomics approach in which polar metabolites were extracted from adult fish livers and quantified. Our results revealed differences in the levels of several metabolites between fish from the two sites. The majority of these metabolites are associated with one-carbon metabolism, an important pathway that supports multiple physiological processes including DNA and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible differences in DNA methylation profiles. Consistent with this, the two populations differed significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides. Overall, our results suggest that the unique hepatic metabolite signatures observed in NBH and SC reflect the adaptive mechanisms for survival in their respective habitats.
Collapse
Affiliation(s)
- Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
| |
Collapse
|
14
|
Osterberg JS, Cammen KM, Schultz TF, Clark BW, Di Giulio RT. Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:73-82. [PMID: 29727773 PMCID: PMC6957077 DOI: 10.1016/j.aquatox.2018.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 05/09/2023]
Abstract
In many human-altered ecosystems, organisms are increasingly faced with more diverse and complex environmental stressors and pollutant mixtures, to which the adaptations necessary to survive exposure are likely to be numerous and varied. Improving our understanding of the molecular mechanisms that underlie complex polygenic adaptations in natural settings requires significant toxicological, biochemical, physiological, and genomic data rarely available for non-model organisms. Here, we build upon two decades of study of adaptation to anthropogenic pollutants in a population of Atlantic killifish (Fundulus heteroclitus) that inhabits the creosote-contaminated Atlantic Wood Industries Superfund (AW) site on the Elizabeth River, Virginia in the United States. To better understand the genotypes that underlie previously characterized resistance to PCBs and PAHs, we performed Restriction site-Associated DNA sequencing (RADseq) on killifish from AW and two relatively clean reference sites (King's Creek-KC, and Mains Creek-MC). Across the genome, we analyzed over 83,000 loci and 12,000 single nucleotide polymorphisms (SNPs). Shared across both comparisons of killifish from polluted (AW) and relatively unpolluted (KC and MC) sites, we found eight genomic regions with smoothed FST values significantly (p < 0.001) elevated above background. Using the recently published F. heteroclitus reference genome, we identified candidate genes in these significant regions involved in the AHR pathway (e.g. AIP, ARNT1c), as well as genes relating to cardiac structure and function. These genes represent both previously characterized and potentially novel molecular adaptations involved with various aspects of resistance to these environmental toxins.
Collapse
Affiliation(s)
- J S Osterberg
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA; Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA.
| | - K M Cammen
- Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA
| | - T F Schultz
- Duke University, Nicholas School of the Environment, Duke Marine Lab, Beaufort, NC, 28516, USA
| | - B W Clark
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA
| | - R T Di Giulio
- Duke University, Nicholas School of the Environment, Duke Superfund Research Center, Durham, NC, 27708, USA
| |
Collapse
|
15
|
Baldwin WS, Boswell WT, Ginjupalli G, Litoff EJ. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus. NUCLEAR RECEPTOR RESEARCH 2017; 4. [PMID: 28804711 DOI: 10.11131/2017/101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear receptors (NRs) are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish) nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B), Rev-erb (NR1D), ROR (NR1F), COUPTF (NR2F), ERR (NR3B), RXR (NR2B), and to a lesser extent the NGF (NR4A), and NR3C steroid receptors (GR/AR). Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634.,Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
16
|
Aladesanmi OT, Agboola FK, Okonji RE. Enzymes as Biomarkers of Environmental Stress in African Catfish (Clarias gariepinus) in Osun State, Nigeria. J Health Pollut 2017; 7:71-83. [PMID: 30524824 PMCID: PMC6259478 DOI: 10.5696/2156-9614-7.14.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many natural aquatic bodies have been contaminated with heavy metals released from domestic, industrial and other anthropogenic activities. Fish are an important bioindicator species and play an important role in the monitoring of water pollution. OBJECTIVES This study shows the effect of heavy metals on the distribution of glutathione S-transferases (GST), catalase, rhodanese and 3-mercaptopyruvate sulphur transferase (3-MST) isolated from the liver, gills, fins and muscle of Clarias gariepinus. METHODS Glutathione S-transferase, catalase, rhodanese and 3-mercaptopyruvate S-transferase enzymes were isolated from the liver and gills of fish by homogenization of each tissue (with specific buffers for each enzyme) and centrifugation. Serial dilutions of the crude enzymes were then assayed for residual enzymatic activities using standard enzyme assay protocol. RESULTS The results showed heavy metals in the liver and muscle of the investigated fish. This study indicated significant accumulation of heavy metals in the tissues/organ of the fish from Ilesha, Osogbo and Yakoyo fish ponds. These are three main towns in Osun State where the major occupation is fish farming. The relationship between enzymatic activities and heavy metal content in C gariepinus tissue showed positive and significant (p<0.05) correlations between lead (Pb) and GST as well as chromium (Cr) and GST. This implies that higher concentrations of Pb and Cr induced the expression of greater GST activity in the fish tissue. CONCLUSIONS The study concluded that the pattern of response of GST, catalase, rhodanese and 3-MST activities in the various organs/tissues of C gariepinus to the heavy metals suggests that the excitation or inhibitions of their activities are organ specific. Further biochemical studies of fish tissues/organs are needed to characterize the enzymatic changes associated with heavy metal pollution.
Collapse
|
17
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
18
|
Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes. J Genet 2017; 96:75-85. [PMID: 28360392 DOI: 10.1007/s12041-017-0745-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.
Collapse
|
19
|
Nacci D, Proestou D, Champlin D, Martinson J, Waits ER. Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species. Mol Ecol 2016; 25:5467-5482. [DOI: 10.1111/mec.13848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Diane Nacci
- U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Atlantic Ecology Division 27 Tarzwell Dr. Narragansett RI 02882 USA
| | - Dina Proestou
- U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Atlantic Ecology Division 27 Tarzwell Dr. Narragansett RI 02882 USA
| | - Denise Champlin
- U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Atlantic Ecology Division 27 Tarzwell Dr. Narragansett RI 02882 USA
| | - John Martinson
- U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Ecological Exposure Research Division 26 W. Martin Luther King Dr. Cincinnati OH 45268 USA
| | - Eric R. Waits
- U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Ecological Exposure Research Division 26 W. Martin Luther King Dr. Cincinnati OH 45268 USA
| |
Collapse
|
20
|
Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells. Toxicol Appl Pharmacol 2016; 309:15-23. [PMID: 27535091 DOI: 10.1016/j.taap.2016.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I+P517S, R554K+V570I and P517S+R554K+V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR(+) (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S+R554K+V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I.
Collapse
|
21
|
Hubbard TD, Murray IA, Bisson WH, Sullivan AP, Sebastian A, Perry GH, Jablonski NG, Perdew GH. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution. Mol Biol Evol 2016; 33:2648-58. [PMID: 27486223 DOI: 10.1093/molbev/msw143] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking.
Collapse
Affiliation(s)
- Troy D Hubbard
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University
| | | | | | - George H Perry
- Department of Biology, Pennsylvania State University Department of Anthropology, Pennsylvania State University
| | | | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| |
Collapse
|
22
|
Cotter KA, Nacci D, Champlin D, Yeo AT, Gilmore TD, Callard GV. Adaptive Significance of ERα Splice Variants in Killifish (Fundulus heteroclitus) Resident in an Estrogenic Environment. Endocrinology 2016; 157:2294-308. [PMID: 27070100 DOI: 10.1210/en.2016-1052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The possibility that chronic, multigenerational exposure to environmental estrogens selects for adaptive hormone-response phenotypes is a critical unanswered question. Embryos/larvae of killifish from an estrogenic-polluted environment (New Bedford Harbor, MA [NBH]) compared with those from a reference site overexpress estrogen receptor alpha (ERα) mRNA but are hyporesponsive to estradiol. Analysis of ERα mRNAs in the two populations revealed differences in splicing of the gene encoding ERα (esr1). Here we tested the transactivation functions of four differentially expressed ERα mRNAs and tracked their association with the hyporesponsive phenotype for three generations after transfer of NBH parents to a clean environment. Deletion variants ERαΔ6 and ERαΔ6-8 were specific to NBH killifish, had dominant negative functions in an in vitro reporter assay, and were heritable. Morpholino-mediated induction of ERαΔ6 mRNA in zebrafish embryos verified its role as a dominant negative ER on natural estrogen-responsive promoters. Alternate long (ERαL) and short (ERαS) 5'-variants were similar transcriptionally but differed in estrogen responsiveness (ERαS ≫ ERαL). ERαS accounted for high total ERα expression in first generation (F1) NBH embryos/larvae but this trait was abolished by transfer to clean water. By contrast, the hyporesponsive phenotype of F1 NBH embryos/larvae persisted after long-term laboratory holding but reverted to a normal or hyper-responsive phenotype after two or three generations, suggesting the acquisition of physiological or biochemical traits that compensate for ongoing expression of negative-acting ERαΔ6 and ERαΔ6-8 isoforms. We conclude that a heritable change in the pattern of alternative splicing of ERα pre-mRNA is part of a genetic adaptive response to estrogens in a polluted environment.
Collapse
Affiliation(s)
- Kellie A Cotter
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Diane Nacci
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Denise Champlin
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Alan T Yeo
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Thomas D Gilmore
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Gloria V Callard
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| |
Collapse
|
23
|
Hammond SA, Nelson CJ, Helbing CC. Environmental influences on the epigenomes of herpetofauna and fish. Biochem Cell Biol 2016; 94:95-100. [DOI: 10.1139/bcb-2015-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herpetofauna (amphibians and reptiles) and fish represent important sentinel and indicator species for environmental and ecosystem health. It is widely accepted that the epigenome plays an important role in gene expression regulation. Environmental stimuli, including temperature and pollutants, influence gene activity, and there is growing evidence demonstrating that an important mechanism is through modulation of the epigenome. This has been primarily studied in human and mammalian models; relatively little is known about the impact of environmental conditions or pollutants on herpetofauna or fish epigenomes and the regulatory consequences of these changes on gene expression. Herein we review recent studies that have begun to address this deficiency, which have mainly focused on limited specific epigenetic marks and individual genes or large-scale global changes in DNA methylation, owing to the comparative ease of measurement. Greater understanding of the epigenetic influences of these environmental factors will depend on increased availability of relevant species-specific genomic sequence information to facilitate chromatin immunoprecipitation and DNA methylation experiments.
Collapse
Affiliation(s)
- S. Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Christopher J. Nelson
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
24
|
Chivittz CC, Pinto DP, Ferreira RS, Sopezki MDS, Fillmann G, Zanette J. Responses of the CYP1A biomarker in Jenynsia multidentata and Phalloceros caudimaculatus and evaluation of a CYP1A refractory phenotype. CHEMOSPHERE 2016; 144:925-931. [PMID: 26432534 DOI: 10.1016/j.chemosphere.2015.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The level of cytochrome P450 1A (CYP1A) in fish is used as a typical environmental biomarker for the presence of organic contaminants. We used RT-qPCR to investigate CYP1A mRNA levels in the liver, gill and gonopodium of guppies Jenynsia multidentata and Phalloceros caudimaculatus in wetlands within the Rio Grande city (RG) which is under the influence of the Patos Lagoon Estuary (RS, Brazil). The CYP1A mRNA levels evaluated in fish liver from two locations that receive non-treated wastewater effluents (S3 and S4) and another locations near an oil refinery (S6) and an industrial complex (S7), were higher than in locations remote from those sites (S1, S2 and S5). The sum of 16 priority PAHs in sediment confirmed high levels in S4 and S6 (3914.0 and 4414.0 ng g(-1) dw, respectively) comparing to S7>S2>S3>S5>S1 (119.3, 66.3, 62.8, 16.4 and 1.7 ng g(-1) dw). J. multidentata from sites S1 to S4 that were transferred to the laboratory exhibited CYP1A induction after 24 h waterborne exposure to 1 µM betanaphtoflavone (BNF) in all organs compared to controls, except in the liver of fish from site S4. This lack of CYP1A induction by BNF indicates a CYP1A refractory phenotype in guppy. Although this characteristic possibly involves the alteration in AHR signaling or control, the mechanism of resistance is unknown. The present study provides information about the use of the use of CYP1A in South American guppies as an useful biomarker tool for environmental contamination studies.
Collapse
Affiliation(s)
- Cíntia C Chivittz
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Debora P Pinto
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Roger S Ferreira
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Mauricio da S Sopezki
- Programa de Pós-graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Juliano Zanette
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil; Programa de Pós-graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
25
|
Du X, Crawford DL, Oleksiak MF. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:231-40. [PMID: 26122720 DOI: 10.1016/j.aquatox.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 05/24/2023]
Abstract
Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King's Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King's Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3',4,4',5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King's Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King's Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed fish are not affected by PAH exposure and undosed fish show decreased LEAK and increased State 3 and E state.
Collapse
Affiliation(s)
- Xiao Du
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA
| | - Douglas L Crawford
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA
| | - Marjorie F Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
26
|
Delunardo FAC, de Carvalho LR, da Silva BF, Galão M, Val AL, Chippari-Gomes AR. Seahorse (Hippocampus reidi) as a bioindicator of crude oil exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 117:28-33. [PMID: 25828890 DOI: 10.1016/j.ecoenv.2015.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
This study explored the suitability of the seahorse Hippocampus reidi (Ginsburg, 1933) for assessing biomarkers of genotoxic effects and its use as a sentinel organism to detect the effects of acute exposure to petroleum hydrocarbons. Fish were exposed to three concentrations of crude oil (10, 20 and 30 g/kg) for 96 h, and the activity of phase II biotransformation enzyme glutathione S-transferase (GST) was measured. In addition, we performed genotoxicity assays, such as comet assay, micronucleus (MN) test and nuclear abnormalities (NA) induction, on the erythrocytes of the fish species. Our results revealed that the inhibition of hepatic GST activity in H. reidi was dependent on increasing crude oil concentrations. In contrast, an increase in the damage index (DI) and MN frequency were observed with increased crude oil concentrations. These results indicate that the alkaline comet assay and micronucleus test were suitable and useful in the evaluation of the genotoxicity of crude oil, which could improve determinations of the impact of oil spills on fish populations. In addition, H. reidi is a promising "sentinel organism" to detect the genotoxic impact of petroleum hydrocarbons.
Collapse
Affiliation(s)
| | - Luciano Rodrigues de Carvalho
- Laboratório de Ictiologia Aplicada, Universidade Vila Velha (LAB PEIXE-UVV), CEP.: 29102-770, Vila Velha, Espírito Santo, Brazil
| | - Bruno Ferreira da Silva
- Laboratório de Ictiologia Aplicada, Universidade Vila Velha (LAB PEIXE-UVV), CEP.: 29102-770, Vila Velha, Espírito Santo, Brazil
| | - Michel Galão
- Laboratório de Ictiologia Aplicada, Universidade Vila Velha (LAB PEIXE-UVV), CEP.: 29102-770, Vila Velha, Espírito Santo, Brazil
| | - Adalberto Luís Val
- Laboratório de Ecofisiologia e Evolução Molecular (LEEM-INPA), CEP: 69067-375 Manaus, Amazonas, Brazil
| | - Adriana R Chippari-Gomes
- Laboratório de Ictiologia Aplicada, Universidade Vila Velha (LAB PEIXE-UVV), CEP.: 29102-770, Vila Velha, Espírito Santo, Brazil.
| |
Collapse
|
27
|
Lyons K, Adams DH. Maternal offloading of organochlorine contaminants in the yolk-sac placental scalloped hammerhead shark (Sphyrna lewini). ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:553-562. [PMID: 25527298 DOI: 10.1007/s10646-014-1403-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Elasmobranchs are a group of animals that typically occupy upper trophic levels in food webs and have a propensity to accumulate high contaminant concentrations. To date, few studies have investigated maternal offloading processes in sharks, despite the fact that this process represents a substantial source of exposure for young sharks and is a significant pathway for contaminant redistribution within marine ecosystems. Comparable to mammalian systems, scalloped hammerhead sharks (Sphyrna lewini) utilize a yolk-sac placental strategy to nourish young in utero, which may allow females to transfer contaminants to young. Organic contaminants (PCBs and chlorinated pesticides) were measured in livers of both females and males from several age classes that were collected from U.S. Atlantic waters, including two near-term pregnant females and their embryos. Adult female hammerheads (n = 3) were found to have lower levels of PCBs compared to the younger, adult male (mean ± SD, 11.1 ± 1.0 vs. 22.8 μg g(-1) lw), but had substantially higher concentrations of pesticides (4.1 ± 0.9 vs. 1.9 μg g(-1) lw). Embryos from the two litters (n = 36) had similar levels of summed organic contaminant concentrations (4.6 ± 0.9 μg g(-1) lw) and pregnant females were estimated to offload approximately 0.03-2.3% of their hepatic contaminant load to offspring. While the potential health impacts of these transferred contaminants is unknown, this is the first study to demonstrate that scalloped hammerheads are exposed to a substantial amount of contaminants prior to birth and document maternal offloading of organochlorines in a pseudo-placental shark species. Therefore, future research should continue to investigate the potential adverse effects these contaminants have on elasmobranch physiology.
Collapse
Affiliation(s)
- Kady Lyons
- University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada,
| | | |
Collapse
|
28
|
Cotter KA, Nacci D, Champlin D, Chuprin J, Callard GV. Cloning of multiple ERα mRNA variants in killifish (Fundulus heteroclitus), and differential expression by tissue type, stage of reproduction, and estrogen exposure in fish from polluted and unpolluted environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:184-197. [PMID: 25550165 PMCID: PMC4300264 DOI: 10.1016/j.aquatox.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
To test the hypothesis that alternative splicing could be an adaptive mechanism for populations subject to multi-generational estrogenic exposures, we compared estrogen receptor alpha (ERα) splicing variants in two populations of killifish (Fundulus heteroclitus): one resident in an estrogenic polluted environment (New Bedford Harbor, NBH, MA, USA) and one from a relatively uncontaminated reference site (Scorton Creek, SC, MA, USA). In total we identified 19 ERα variants, each with deletions of one or more coding exons. Four of the variants with potential functional relevance were analyzed by qPCR to test for population differences in expression by tissue type, site, sex, seasonal reproductive status and estrogen treatment. Significantly, a 5'-truncated short form variant (ERαS) was highly expressed in liver and ovary, and was associated with seasonal reproductive activity in SC but not NBH fish. Both ERαS and the full-length long variant (ERαL) were estrogen-inducible (ERαS>ERαL) but the induction response was lower in NBH than in SC fish. In contrast, NBH killifish were hyper-responsive to estrogen as measured by expression of two other estrogen responsive genes: vitellogenin (Vtg) and aromatase B (AroB). Most strikingly, two ERα deletion variants (Δ6 and Δ6-8), lacking ligand binding and activation function domains, were identified in a subset of NBH fish, where they were associated with reduced responsiveness to estrogen treatment. Together, these results support the hypothesis that alternative splicing of the esr1 gene of killifish could be an autoregulatory mechanism by which estrogen modulates the differential expression of ERα, and suggests a novel and adaptive mechanistic response to xenoestrogenic exposure.
Collapse
Affiliation(s)
- Kellie A Cotter
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Denise Champlin
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Jane Chuprin
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Gloria V Callard
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Fritsch EB, Stegeman JJ, Goldstone JV, Nacci DE, Champlin D, Jayaraman S, Connon RE, Pessah IN. Expression and function of ryanodine receptor related pathways in PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New Bedford Harbor, MA, USA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:156-66. [PMID: 25546006 PMCID: PMC4300256 DOI: 10.1016/j.aquatox.2014.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) thrive in New Bedford Harbor (NBH), MA, highly contaminated with polychlorinated biphenyls (PCBs). Resident killifish have evolved tolerance to dioxin-like (DL) PCBs, whose toxic effects through the aryl hydrocarbon receptor (AhR) are well studied. In NBH, non-dioxin like PCBs (NDL PCBs), which lack activity toward the AhR, vastly exceed levels of DL congeners yet how killifish counter NDL toxic effects has not been explored. In mammals and fish, NDL PCBs are potent activators of ryanodine receptors (RyR), Ca(2+) release channels necessary for a vast array of physiological processes. In the current study we compared the expression and function of RyR related pathways in NBH killifish with killifish from the reference site at Scorton Creek (SC, MA). Relative to the SC fish, adults from NBH displayed increased levels of skeletal muscle RyR1 protein, and increased levels of FK506-binding protein 12 kDa (FKBP12) an accessory protein essential for NDL PCB-triggered changes in RyR channel function. In accordance with increased RyR1 levels, NBH killifish displayed increased maximal ligand binding, increased maximal response to Ca(2+) activation and increased maximal response to activation by the NDL PCB congener PCB 95. Compared to SC, NBH embryos and larvae had increased levels of mtor and ryr2 transcripts at multiple stages of development, and generations, while levels of serca2 were decreased at 9 days post-fertilization in the F1 and F2 generations. These findings suggest that there are compensatory and heritable changes in RyR mediated Ca(2+) signaling proteins or potential signaling partners in NBH killifish.
Collapse
Affiliation(s)
- Erika B Fritsch
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Denise Champlin
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA; The Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, USA
| |
Collapse
|
30
|
Gräns J, Wassmur B, Fernández-Santoscoy M, Zanette J, Woodin BR, Karchner SI, Nacci DE, Champlin D, Jayaraman S, Hahn ME, Stegeman JJ, Celander MC. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:198-207. [PMID: 25553538 PMCID: PMC4311260 DOI: 10.1016/j.aquatox.2014.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/12/2023]
Abstract
Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased mRNA expression of hepatic PXR, CYP3A and Pgp upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal mRNA expression of these genes between the two populations. In SC fish, but not in NBH fish, there was increased mRNA expression of branchial PXR and CYP3A upon exposure to PCB126 and of CYP3A upon exposure to PCB153. The results suggest a difference between the two populations in non-AhR transcription factor signaling in liver and gills, and that this could involve killifish PXR. It also implies possible cross-regulatory interactions between that factor (presumably PXR) and AhR2 in liver of these fish.
Collapse
Affiliation(s)
- Johanna Gräns
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - María Fernández-Santoscoy
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - Juliano Zanette
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Bruce R Woodin
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Diane E Nacci
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Denise Champlin
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Saro Jayaraman
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark E Hahn
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John J Stegeman
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden.
| |
Collapse
|
31
|
Di Giulio RT, Clark BW. The Elizabeth River Story: A Case Study in Evolutionary Toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:259-98. [PMID: 26505693 PMCID: PMC4733656 DOI: 10.1080/15320383.2015.1074841] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.
Collapse
Affiliation(s)
- Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Address correspondence to Richard T. Di Giulio, Nicholas School of the Environment, Duke University, Durham, NC27708-0328, USA. E-mail:
| | - Bryan W. Clark
- U.S. Environmental Protection Agency, Atlantic Ecology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, Narragansett, Rhode Island, USA
| |
Collapse
|
32
|
Aluru N, Karchner SI, Franks DG, Nacci D, Champlin D, Hahn ME. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:192-201. [PMID: 25481785 PMCID: PMC4272816 DOI: 10.1016/j.aquatox.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diane Nacci
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Denise Champlin
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Clark BW, Bone AJ, Di Giulio RT. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13898-908. [PMID: 24374617 PMCID: PMC4074458 DOI: 10.1007/s11356-013-2446-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/09/2013] [Indexed: 05/06/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable.
Collapse
Affiliation(s)
- Bryan W Clark
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA,
| | | | | |
Collapse
|
34
|
Williams R, Hubberstey AV. Benzo(a)pyrene exposure causes adaptive changes in p53 and CYP1A gene expression in Brown bullhead (Ameiurus nebulosus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:201-210. [PMID: 25259779 DOI: 10.1016/j.aquatox.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The Brown bullhead (Ameiurus nebulosus) is able to survive and reproduce in high levels of environmentally contaminated areas of the Great Lakes. The purpose of this study was to establish whether there are adaptive genetic/molecular changes occurring in these fish that allow for their survival. Expression of a cell cycle regulator, p53 and the toxin metabolizing protein, CYP1A were measured in liver tissue from bullhead caught from either clean or contaminated areas of Lake Erie and surrounding areas. Wild caught fish and F1 raised offspring (whose parents originated from clean and contaminated sites) were used to measure endogenous gene expression levels. Results revealed that endogenous expression of p53 was on average 6.6× higher in contaminated fish than in fish caught from clean sites. Interestingly, when fed benzo(a)pyrene (BaP)-treated food, p53 expression increased 0.2× in clean fish and decreased 2.6× in contaminated fish. Endogenous CYP1A expression was not detectable in clean fish and low in contaminated fish. Upon exposure to BaP-treated food, CYP1A expression increased in both clean and contaminated fish, although at a higher rate in clean fish. Furthermore, when fish were cleared and then re-exposed to BaP, CYP1A expression increased from basal levels at a higher rate in clean versus contaminated fish. CYP1A and p53 expression in F1 offspring was similar to wild caught fish at the endogenous level and when fed BaP treated food. Results suggest that fish in contaminated regions may be implementing an adaptive response to severe environmental stress by maintaining high expression of p53 and low expression of CYP1A; thus lending increased protection to cells and decreasing the potential amount of carcinogens produced by contaminant metabolism.
Collapse
Affiliation(s)
- R Williams
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B3P4
| | - A V Hubberstey
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B3P4.
| |
Collapse
|
35
|
Bugel SM, Bonventre JA, White LA, Tanguay RL, Cooper KR. Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:222-231. [PMID: 24794048 PMCID: PMC4084733 DOI: 10.1016/j.aquatox.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Reproductive and endocrine disruption is commonly reported in aquatic species exposed to complex contaminant mixtures. We previously reported that Atlantic killifish (Fundulus heteroclitus) from the chronically contaminated Newark Bay, NJ, exhibit multiple endocrine disrupting effects, including inhibition of vitellogenesis (yolk protein synthesis) in females and false negative vitellogenin biomarker responses in males. Here, we characterized the effects on estrogen signaling and the transcriptional regulation of estrogen-responsive genes in this model population. First, a dose-response study tested the hypothesis that reproductive biomarkers (vtg1, vtg2, chg H, chg Hm, chg L) in Newark Bay killifish are relatively less sensitive to 17β-estradiol at the transcriptional level, relative to a reference (Tuckerton, NJ) population. The second study assessed expression for various metabolism (cyp1a, cyp3a30, mdr) and estrogen receptor (ER α, ER βa, ER βb) genes under basal and estrogen treatment conditions in both populations. Hepatic metabolism of 17β-estradiol was also evaluated in vitro as an integrated endpoint for adverse effects on metabolism. In the third study, gene methylation was evaluated for promoters of vtg1 (8 CpGs) and vtg2 (10 CpGs) in both populations, and vtg1 promoter sequences were examined for single nucleotide polymorphism (SNPs). Overall, these studies show that multi-chemical exposures at Newark Bay have desensitized all reproductive biomarkers tested to estrogen. For example, at 10ng/g 17β-estradiol, inhibition of gene induction ranged from 62% to 97% for all genes tested in the Newark Bay population, relative to induction levels in the reference population. The basis for this recalcitrant phenotype could not be explained by a change in 17β-estradiol metabolism, nuclear estrogen receptor expression, promoter methylation (gene silencing) or SNPs, all of which were unaltered and normal in the Newark Bay population. The decreased transcriptional sensitivity of estrogen-responsive genes is suggestive of a broad effect on estrogen receptor pathway signaling, and provides insight into the mechanisms of the endocrine disrupting effects in the Newark Bay population.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, United States.
| | - Josephine A Bonventre
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| | - Lori A White
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| | - Keith R Cooper
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| |
Collapse
|
36
|
Oziolor EM, Bigorgne E, Aguilar L, Usenko S, Matson CW. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:210-9. [PMID: 24699180 DOI: 10.1016/j.aquatox.2014.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 05/06/2023]
Abstract
The Houston Ship Channel (HSC), connecting Houston, Texas to Galveston Bay and ultimately the Gulf of Mexico, is heavily industrialized and includes several areas that have historically been identified as containing significant levels of mercury, dioxins, furans, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Gulf killifish, Fundulus grandis, inhabit this entire estuarine system, including the most contaminated areas. F. grandis is the sister species of the well-established estuarine model organism Fundulus heteroclitus, for which heritable resistance to both PCB and PAH toxicity has been documented in several populations. F. grandis collected from two Superfund sites on the HSC and from a reference population were used to establish breeding colonies. F1 embryos from HSC populations were approximately 1000-fold more resistant to PCB126- and 2-5-fold more resistant to coal tar-induced cardiovascular teratogenesis, relative to embryos from the reference population. Reciprocal crosses between reference and contaminated populations exhibit an intermediate level of resistance, confirming that observed protection is genetic and biparentally inherited. Ethoxyresorufin-O-deethylase (EROD) data confirm a reduction in basal and induced cytochrome P4501A (CYP1A) activity in resistant populations of F. grandis. This result is consistent with responses previously described for resistant populations of F. heteroclitus, specifically a recalcitrant aryl hydrocarbon receptor (AHR) pathway. The decreased levels of cardiovascular teratogenesis, and decrease in CYP1A inducibility in response to PCB126 and a PAH mixture, suggest that HSC F. grandis populations have adapted to chronic contaminants exposures via a mechanism similar to that previously described for F. heteroclitus. To the best of our knowledge, this is the first documentation of evolved pollution resistance in F. grandis. Additionally, the mechanistic similarities between the population adaptation observed in this study and previous work in F. heteroclitus suggest that genetic variation predating the evolutionary divergence of these two species may best explain the apparent rapid parallel evolution of pollution resistance in genetically and geographically distinct species and populations.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States; Institute for Biomedical Studies, Baylor University, Waco, TX 76798, United States
| | - Emilie Bigorgne
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States
| | - Lissette Aguilar
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States; The Institute for Ecological, Earth, Environmental Sciences, Baylor University, Waco, TX 76798, United States
| | - Sascha Usenko
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States; The Institute for Ecological, Earth, Environmental Sciences, Baylor University, Waco, TX 76798, United States
| | - Cole W Matson
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States; Institute for Biomedical Studies, Baylor University, Waco, TX 76798, United States; The Institute for Ecological, Earth, Environmental Sciences, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
37
|
Booc F, Thornton C, Lister A, MacLatchy D, Willett KL. Benzo[a]pyrene effects on reproductive endpoints in Fundulus heteroclitus. Toxicol Sci 2014; 140:73-82. [PMID: 24747980 DOI: 10.1093/toxsci/kfu064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that has been implicated in modulating aromatase enzyme function with the potential to interrupt normal reproductive function. The aim of this study was to use a fish model, Fundulus heteroclitus, to assess whether BaP exposure adversely impacts reproduction. Adult fish were exposed to waterborne BaP nominal concentrations of (0, 1, or 10 μg/l) for 28 days. Males and females were combined for the second half of the exposure (days 14-28) in order to quantitate egg production and fertilization success. Egg fertilization and subsequent hatching success of F1 embryos was significantly decreased by the high dose of BaP. In males, both gonad weight and plasma testosterone concentrations were significantly reduced compared to controls by 10 μg/l BaP. Histopathological examination of testes including spermatogonia, spermatocyte and spermatid cyst areas, percentage of cysts per phase, and area of spermatozoa per seminiferous tubule were not significantly affected. Other biomarkers, including male liver weight, liver vitellogenin (vtg) mRNA expression and sperm concentrations, were also not affected. In females, estradiol concentrations were significantly reduced after BaP exposure, but egg production, gonad weight, liver weight, vtg expression and oocyte maturation were not altered. Steroid concentrations in Fundulus larvae from exposed parents at 1 and 3 weeks posthatch were not significantly changed. BaP exposure at these environmentally relevant concentrations caused negative alterations particularly in male fish to both biochemical and phenotypic biomarkers associated with reproduction and multigenerational embryo survival.
Collapse
Affiliation(s)
- Frank Booc
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Andrea Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Deborah MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Kristine L Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| |
Collapse
|
38
|
Reitzel AM, Karchner SI, Franks DG, Evans BR, Nacci D, Champlin D, Vieira VM, Hahn ME. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol Biol 2014; 14:6. [PMID: 24422594 PMCID: PMC3899389 DOI: 10.1186/1471-2148-14-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022] Open
Abstract
Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02568, USA.
| |
Collapse
|
39
|
Whitehead A. Evolutionary Genomics of Environmental Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:321-37. [DOI: 10.1007/978-94-007-7347-9_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
40
|
Clark BW, Cooper EM, Stapleton HM, Di Giulio RT. Compound- and mixture-specific differences in resistance to polycyclic aromatic hydrocarbons and PCB-126 among Fundulus heteroclitus subpopulations throughout the Elizabeth River estuary (Virginia, USA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10556-66. [PMID: 24003986 PMCID: PMC4079253 DOI: 10.1021/es401604b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Industries Superfund Site (Elizabeth River, Portsmouth, VA, USA) are resistant to the acute toxicity and cardiac teratogenesis caused by high levels of polycyclic aromatic hydrocarbons (PAHs) from creosote. The resistance is linked to down regulation of the aryl hydrocarbon receptor (AHR) pathway. We investigated the association between CYP1 activity, as a marker of potential AHR pathway suppression, and contaminant resistance in killifish subpopulations from sites throughout the estuary that varied significantly in PAH contamination level. Adult killifish and sediments were collected from seven sites across approximately 13.7 km in river length within the estuary and from a nearby reference site. Sediment PAH levels were determined using gas chromatography mass spectrometry. Embryos obtained via manual spawning were exposed to individual AHR agonists and PAH mixtures 24 h post fertilization (hpf); CYP1 activity was determined by in ovo ethoxyresorufin-o-deethylase (EROD) at 96 hpf, and cardiac deformity severity was scored at 144 hpf. The total PAH levels measured among the sites varied from approximately 200 to 125,000 ng/g dry sediment. Overall, the resistance to teratogenesis was strongest in the subpopulations from sites in or closest to the major PAH contamination sites, but even embryos from less-contaminated sites within the Elizabeth River demonstrated at least partial resistance to many challenges. Surprisingly, all of the subpopulations tested were highly resistant to PCB-126 (3,3',4,4',5-pentachlorobiphenyl). However, the degree of CYP1 activity response varied significantly among subpopulations and did not always correlate strongly with resistance to teratogenesis; some subpopulations resisted the cardiac teratogenesis caused by the challenges at doses that still elicited strong EROD induction. Our results suggest that there is variation in the adaptive phenotype exhibited by laboratory-spawned embryos from killifish subpopulations throughout the estuary. Furthermore, the results show that contaminants have affected killifish subpopulations throughout the estuary, even in sites with lower levels of PAHs.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/enzymology
- Adaptation, Physiological
- Animals
- Cytochrome P-450 CYP1A1/metabolism
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/enzymology
- Embryonic Development/drug effects
- Fundulidae/abnormalities
- Fundulidae/physiology
- Geologic Sediments/analysis
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/enzymology
- Polychlorinated Biphenyls/toxicity
- Polycyclic Aromatic Hydrocarbons/analysis
- Polycyclic Aromatic Hydrocarbons/toxicity
- Receptors, Aryl Hydrocarbon/metabolism
- Teratogens/analysis
- Teratogens/toxicity
- Virginia
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Bryan W. Clark
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
- Corresponding author:
| | - Ellen M. Cooper
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| |
Collapse
|
41
|
Brammell BF, Price DJ, Birge WJ, Elskus AA. Lack of CYP1A responsiveness in species inhabiting chronically contaminated habitats: two varieties of resistance? Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:212-9. [PMID: 22776768 DOI: 10.1016/j.cbpc.2012.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 07/01/2012] [Accepted: 07/01/2012] [Indexed: 11/22/2022]
Abstract
Organisms chronically exposed to organic pollutants such as polychlorinated biphenyls (PCBs) can develop resistance to these chemicals, a condition associated with reduced inducibility of the biomarker enzyme cytochrome P450 1A (CYP1A). This study addresses the CYP1A response of members of the families Ictaluridae and Centrarchidae, two fish families found throughout much of the United States. We measured CYP1A expression, PCB body burdens, and conducted CYP1A challenge experiments in species from these families residing in the Town Branch/Mud River system (Logan County, KY, USA), a stream system historically contaminated with high levels of PCBs. Despite PCB concentrations in muscle tissue typically associated with elevated CYP1A (16.7 to 75.2μgPCB/g wet edible flesh), resident fish in the contaminated Town Branch/Mud River sites (yellow bullhead [Ameiurus natalis], green sunfish [Lepomis cyanellus], and spotted bass [Micropterus punctulatus]) had hepatic CYP1A activity levels similar to, rather than higher than, those in reference fish, suggesting reduced sensitivity to CYP1A induction. Lack of CYP1A expression following direct contaminant exposure has often been associated with resistance to those contaminants. To determine if CYP1A in resident populations was resistant to induction by PCBs, we exposed resident fish to a single, intraperitoneal injection with a potent CYP1A inducer, 3,4,3',4'-tetrachlorobiphenyl (PCB 77). PCB 77 treatment significantly induced hepatic CYP1A activity and protein in yellow bullhead from reference, but not contaminated, sites and had no effect on CYP1A in green sunfish from either site. The low CYP1A expression levels in resident fish with elevated PCB body burdens, together with the failure of PCB injection to induce CYP1A in certain populations, indicate an acclimatory CYP1A response in yellow bullheads and likely an inherently resistant CYP1A in green sunfish. This work demonstrates for the first time acclimation of CYP1A to PCBs in a species within the family Ictaluridae and provides further support for our previous work indicating an apparent inherent lack of CYP1A sensitivity to chlorinated inducers in Centrarchids. These traits may explain, at least in part, the common association of these families with degraded habitats and indicate Lepomis members are likely to be excellent candidates for exploring the mechanistic basis of 'inherent' CYP1A resistance. This study also underlines to the need for thorough characterization of the CYP1A responsivity of a population and/or species prior to using CYP1A as a reliable biomonitoring tool.
Collapse
Affiliation(s)
- Ben F Brammell
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
42
|
Harbeitner RC, Hahn ME, Timme-Laragy AR. Differential sensitivity to pro-oxidant exposure in two populations of killifish (Fundulus heteroclitus). ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:387-401. [PMID: 23329125 PMCID: PMC3573531 DOI: 10.1007/s10646-012-1033-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 05/06/2023]
Abstract
New Bedford Harbor (MA, U.S.A.; NBH) is a Superfund site inhabited by Atlantic killifish (Fundulus heteroclitus) with altered aryl hydrocarbon receptor (Ahr) signaling, leading to resistance to effects of polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Ahr is a transcription factor that regulates gene expression of many Phase I and II detoxifying enzymes and interacts with Nrf2, a transcription factor that regulates the response to oxidative stress. This study tested the hypothesis that PCB-resistant killifish exhibit altered sensitivity to oxidative stress. Killifish F(1) embryos from NBH and a clean reference site (Scorton Creek, MA, U.S.A.; SC) were exposed to model pro-oxidant and Nrf2-activator, tert-butylhydroquinone (tBHQ). Embryos were exposed at specific embryonic developmental stages (5, 7, and 9 days post fertilization) and toxicity was assessed, using a deformity score, survival, heart rate, and gene expression to compare sensitivity between PCB -resistant and -sensitive (reference) populations. Acute exposure to tBHQ resulted in transient reduction in heart rate in NBH and SC F(1) embryos. However, embryos from NBH were more sensitive to tBHQ, with more frequent and severe deformities, including pericardial edema, tail deformities, small body size, and reduced pigment and erythrocytes. NBH embryos had lower basal expression of antioxidant genes catalase and glutathione-S-transferase alpha (gsta), and upon exposure to tBHQ, exhibited lower levels of expression of catalase, gsta, and superoxide dismutase compared to controls. This result suggests that adaptation to tolerate PCBs has altered the sensitivity of NBH fish to oxidative stress during embryonic development, demonstrating a cost of the PCB resistance adaptation.
Collapse
Affiliation(s)
- Rachel C Harbeitner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
43
|
Bugel SM, White LA, Cooper KR. Inhibition of vitellogenin gene induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin is mediated by aryl hydrocarbon receptor 2 (AHR2) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:1-8. [PMID: 23142599 DOI: 10.1016/j.aquatox.2012.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Vitellogenins are hepatically derived yolk-protein precursors required for oogenesis in all oviparous teleosts. Altered gene-regulation of vitellogenesis by environmental contaminants can have profound effects on reproductive success, and ultimately population sustainability. To better understand chemical effects on vitellogenin gene regulation, we tested the hypothesis that activation of the aryl hydrocarbon receptor 2 (AHR2) by dioxin inhibits the estrogen receptor pathway regulation of 3 vitellogenin genes (vtg1-3) in vivo, using zebrafish (Danio rerio) as a model teleost. Using an embryo-larval bioassay, embryos were either treated with 1000 pptr (parts-per-trillion, pg/mL) 17α-ethynylestradiol (EE2) alone from 6h post fertilization (hpf) to 4 days post fertilization (dpf), or pre-treated with dioxin (4-5 hpf) prior to EE2. Pre-treatment with 400 pptr 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) or 1,2,3,7,8-pentachlorodibenzo-p-dioxin inhibited the EE2 induction of vtg1, vtg2 and vtg3 by >95% (p≤0.05). In comparison, a splice-blocking AHR2 morpholino used to down-regulate ahr2 expression significantly reduced the inhibition of vtg1, vtg2 and vtg3 by 400 pptr 2,3,7,8-TCDD (20.7-27.4% rescue). These studies demonstrate that 2,3,7,8-TCDD directly inhibits the vitellogenin pathway in vivo through activation of the AHR2. This work provides evidence for AHR2 dependent cross-talk inhibition of vitellogenin genes and offers insight into anti-estrogenic reproductive effects observed in oviparous species exposed to AHR agonist contaminants.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, 08901, United States.
| | | | | |
Collapse
|
44
|
Nault R, Al-Hameedi S, Moon TW. Effects of polychlorinated biphenyls on whole animal energy mobilization and hepatic cellular respiration in rainbow trout, Oncorhynchus mykiss. CHEMOSPHERE 2012; 87:1057-1062. [PMID: 22410624 DOI: 10.1016/j.chemosphere.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
The production of polychlorinated biphenyls (PCBs) was banned in 1977 but these chemicals persist in the environment and threaten aquatic organisms. PCB exposure often results in activation of the aryl hydrocarbon receptor (AhR) and increases in hepatic detoxification mechanisms. Activation of these detoxification mechanisms is believed to be associated with energetic demands that may come at the expense of other physiological processes such as growth, activity and reproduction. We tested the hypothesis that exposure to sub-lethal levels of PCBs results in increased energy demand and energy mobilization using both an in vivo and in vitro approach. Rainbow trout (Oncorhynchus mykiss) received a single intraperitoneal sub-lethal dose (50μgkg(-1)) of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) and left for 10d after which standard oxygen consumption and plasma and liver metabolites were assessed. PCB 126 exposed trout did not alter standard oxygen consumption but did increase plasma glucose concentration implying the mobilization of glucose to cope with this exposure regime. Cellular respiration was assessed in trout hepatocytes exposed to PCB 126 or PCB 77 (3,3'4,4'-tetrachlorobiphenyl) two AhR activators but with different potencies (PCB 126≫PCB 77). Mitochondrial respiration was assessed by stimulating complex II with succinate and although no increases in respiration were associated with PCB exposure in non-stimulated cells, PCB 77 impaired mitochondrial respiration by preventing stimulation of complex II respiration and potentially masking any actual energetic costs of PCB exposure. These studies suggest that energy is mobilized upon exposure to PCBs, however, actual increases in energy demand may be overshadowed by impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Rance Nault
- Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, Ottawa, Canada.
| | | | | |
Collapse
|
45
|
Clark BW, Di Giulio RT. Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:465-74. [PMID: 22037695 PMCID: PMC3278525 DOI: 10.1007/s10646-011-0807-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 05/05/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) from the Atlantic Wood Superfund site on the Elizabeth River (ER), VA are dramatically resistant to the acute toxicity and teratogenesis caused by polycyclic aromatic hydrocarbons (PAHs). To understand the consequences of adaptation to chronic PAH pollution, we have attempted to further define the chemical tolerance associated with this resistance. An important component of the PAH adaptation of ER fish is the dramatic down-regulation of the aryl hydrocarbon receptor (AHR) pathway, resulting in decreased cytochrome p450 (CYP) 1 activity. Herein, we compared the susceptibility to several insecticides of ER fish to that of reference site (King's Creek; KC) fish; use of these chemicals as probes of the resistance will help to demonstrate if the contaminant adaptation exhibited by ER fish is broad or narrow and AHR-focused. We hypothesized that ER fish would be less susceptible to the organophosphate chlorpyrifos (activated by CYP) and more susceptible to the pyrethroid permethrin (detoxified by CYP). Comparison of acute toxicity in 5-day-old larvae supported this hypothesis for chlorpyrifos. As expected, chemical up-regulation of CYP by co-exposure to β-naphthoflavone (BNF) enhanced the susceptibility of KC but it did not affect ER larvae. Unexpectedly, ER larvae were much less susceptible to permethrin than KC larvae. However, co-exposure to BNF greatly decreased the susceptibility of KC larvae, indicating that metabolism of permethrin by CYP was protective. Additionally, fish from each population were compared for susceptibility to the carbamate carbaryl, an acute neurotoxicant and weak AHR agonist that induces teratogenesis similar to that caused by PAHs. ER embryos and larvae were less susceptible than KC fish. These results suggest that the adaptive phenotype of ER fish is multi-faceted and that aspects other than CYP response are likely to greatly affect their response to contaminants.
Collapse
Affiliation(s)
- Bryan W Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA.
| | | |
Collapse
|
46
|
Benedetti M, Ciaprini F, Piva F, Onorati F, Fattorini D, Notti A, Ausili A, Regoli F. A multidisciplinary weight of evidence approach for classifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. ENVIRONMENT INTERNATIONAL 2012; 38:17-28. [PMID: 21982029 DOI: 10.1016/j.envint.2011.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/13/2011] [Accepted: 08/08/2011] [Indexed: 05/27/2023]
Abstract
Evaluation of chemical bioavailability and onset of biological alterations is fundamental to assess the hazard of environmental pollutants, particularly when associated to sediments which need to be removed. In the present work, five sediment samples were collected from the Venice Lagoon and data from sediment chemistry were integrated with those of bioaccumulation of chemicals in European eel (Anguilla anguilla) exposed under laboratory conditions, responses of a wide battery of biomarkers, and standardized ecotoxicological bioassays. The overall results were elaborated within a recently developed, software-assisted weight of evidence (WOE) model which provides synthetic indices for each of considered line of evidence (LOE), before a general evaluation of sediment hazard. Levels of chemicals in sediments were not particularly elevated when compared to sediment quality guidelines of Venice Protocol. On the other hand, bioavailability was evident in some samples for Cd, Cu, Zn and, especially, polycyclic aromatic hydrocarbons. The ecotoxicological approach provided further evidence on the biological and potentially harmful effects due to released contaminants, and oxidative-mediated responses appeared of primary importance in modulating sublethal responses and the onset of cellular alterations. Biomarkers variations were sensitive, and more evident variations included significant changes of cytochrome P450 biotransformation pathway, antioxidant responses, onset of oxidative damages, lysosomal membrane stability and genotoxic effects. The results obtained from the battery of bioassays indicated that responses measured at organism level were in general accordance but less marked compared to the onset of sublethal changes measured through biomarkers. Overall this study revealed differences when comparing evaluations obtained from different LOEs, confirming the importance of considering synergistic effects between chemicals in complex mixtures. Compared to a qualitative pass-fail approach toward normative values, the proposed WOE model allowed a quantitative characterization of sediment hazard and a better discrimination of on the basis of various types of chemical and biological data.
Collapse
Affiliation(s)
- Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Williams LM, Oleksiak MF. Evolutionary and functional analyses of cytochrome P4501A promoter polymorphisms in natural populations. Mol Ecol 2011; 20:5236-47. [PMID: 22093087 DOI: 10.1111/j.1365-294x.2011.05360.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional importance of variable, transcriptional regulatory sequences within and among natural populations is largely unexplored. We analysed the cytochrome P4501A (CYP1A) promoter in three populations of the minnow, Fundulus heteroclitus, because two SNPs in the promoter and first intron of CYP1A are under selection in populations adapted to pollutants. To define the importance of these SNPs, 1630 bp of the CYP1A promoter and first intron and exon were sequenced in eight individuals from three populations: a population from a polluted environment resistant to some aromatic pollutants and two flanking reference populations. CYP1A is induced by many aromatic pollutants, but in populations adapted to pollutants, CYP1A has been shown to be refractory to induction. We were interested in understanding whether variation in the CYP1A promoter explains mechanism(s) of adaptation to these aromatic pollutants. The CYP1A promoter was extremely variable (an average of 9.3% of the promoter nucleotides varied among all populations) and exhibited no fixed differences between populations. As CYP1A is poorly inducible in adapted fish, we hypothesized that CYP1A promoter regions might vary functionally between populations. Unexpectedly, in vitro analysis showed significantly greater transcription from CYP1A promoters found in the population from the polluted environment relative to promoters found in both reference populations. Thus, despite extensive variation among populations and lack of fixed differences between populations, individuals from a polluted environment have significantly enhanced promoter activity. These data demonstrate that intraspecific variation, which provides the raw material for natural selection to act on, can occur while maintaining promoter function.
Collapse
Affiliation(s)
- Larissa M Williams
- Department of Environmental and Molecular Toxicology, PO Box 7633, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | |
Collapse
|
48
|
Regoli F, Giuliani ME, Benedetti M, Arukwe A. Molecular and biochemical biomarkers in environmental monitoring: a comparison of biotransformation and antioxidant defense systems in multiple tissues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:56-66. [PMID: 22099345 DOI: 10.1016/j.aquatox.2011.06.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
The cytochrome P450 pathway and antioxidant responses are known for their responsiveness to environmental pollutants and are frequently used as biomarkers at the transcriptional, translational and catalytic levels. Although molecular responses are often assumed to reflect similar changes in enzyme function, several factors can influence intracellular effects, including mRNA stability and protein turnover, signal sensing and transduction, post-translational modifications of proteins, and multiple mode of action of chemicals in complex mixtures. The aim of this study was to use experimental data for a general discussion on the importance of mechanisms modulating transcriptional and catalytic responses of these pathways, and the resulting implications for environmental monitoring. The European eel Anguilla anguilla was selected as fish model to compare the effects of polluted sediments on gene expression and functional levels of cytochrome P450, glutathione S-transferases, UDP-glucoronosyl transferases, catalase, glutathione peroxidases, superoxide dismutase, glutathione, glutathione reductase, glucose 6-phosphate dehydrogenase and γ-glutamylcysteine ligase in the liver and gills. The overall results confirmed significant changes in gene transcription related to biotransformation and oxyradical metabolism, but also supported the evidence of a frequent dissociation between mRNA expression and protein activity. More similar trends of variations and exposure-dependent relationships was observed in the liver for transcriptional and catalytic responses of those pathways closely regulated by specific interactions between substrate, transcription factors, gene and metabolizing protein (i.e. phase I and phase II). On the other hand, the lower metabolism and the cellular machinery of gill cells may prevent elevated transcriptional responsiveness to be translated to an adequate functional response of a protein. Relationships between transcriptional and catalytic effects were often inconsistent for antioxidant responses confirming the complexity of interactions between exposure to chemical pollutants and regulation of oxidative stress responses. Oxidative stress responses may not necessarily be associated with transcriptional variations of genes, but rather with post-translational modifications of proteins. These mechanisms are just beginning to be revealed in marine organisms, but their characterization will be fundamental for better understanding of the implications of variations in gene expressions according to system, tissue, intensity and duration of exposure.
Collapse
Affiliation(s)
- Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | |
Collapse
|
49
|
Oleksiak MF, Karchner SI, Jenny MJ, Franks DG, Welch DBM, Hahn ME. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site. BMC Genomics 2011; 12:263. [PMID: 21609454 PMCID: PMC3213123 DOI: 10.1186/1471-2164-12-263] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022] Open
Abstract
Background Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive). Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing). Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.
Collapse
Affiliation(s)
- Marjorie F Oleksiak
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | | | | | | | | | | |
Collapse
|
50
|
Richardson KL, Schlenk D. Biotransformation of 2,2′,5,5′-Tetrachlorobiphenyl (PCB 52) and 3,3′,4,4′-Tetrachlorobiphenyl (PCB 77) by Liver Microsomes from Four Species of Sea Turtles. Chem Res Toxicol 2011; 24:718-25. [DOI: 10.1021/tx1004562] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristine L. Richardson
- Environmental Toxicology Program, Department of Environmental Sciences, University of California, Riverside, California 92521
| | - Daniel Schlenk
- Environmental Toxicology Program, Department of Environmental Sciences, University of California, Riverside, California 92521
| |
Collapse
|