1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Ding K, Xu Q, Zhang X, Liu S. Metabolomic insights into neurological effects of BDE-47 exposure in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115558. [PMID: 37820477 DOI: 10.1016/j.ecoenv.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.
Collapse
Affiliation(s)
- Kui Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Eriksson P, Johansson N, Viberg H, Buratovic S, Fredriksson A. Perfluorinated chemicals (PFOA) can, by interacting with highly brominated diphenyl ethers (PBDE 209) during a defined period of neonatal brain development, exacerbate neurobehavioural defects. Neurotoxicol Teratol 2023; 96:107150. [PMID: 36584763 DOI: 10.1016/j.ntt.2022.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent environmental compounds, present in humans and at higher levels in infants/children than in adults. This study shows that co-exposure to pentadecafluorooctanoic acid (PFOA) and 2,2',3,3',4,4',5,5',6,6'-decaBDE (PBDE 209) can significantly exacerbate developmental neurobehavioural defects. Neonatal male NMRI mice, 3 and 10 days old, were exposed perorally to PBDE 209 (1.4 or 8.0 μmol/kg bw), PFOA (1.4 or 14 μmol/kg bw), co-exposed to PBDE 209 and PFOA (at the given doses), or a vehicle (20% fat emulsion) and observed for spontaneous behaviour in a novel home environment when 2 and 4 months old. The behavioural defects observed included hyperactivity and reduced habituation indicating cognitive defects. This interaction appears most likely dependent on the presence of PBDE 209 and/or its metabolites together with PFOA, during a defined critical period of neonatal brain development, corresponding to the perinatal and newborn period in humans.
Collapse
Affiliation(s)
- Per Eriksson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden.
| | - Niclas Johansson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Sonja Buratovic
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Anders Fredriksson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Qi Y. Effects of decabromodiphenyl ether (BDE-209) on ultrasonic vocalizations emitted by rat pups during isolation. Neurotoxicol Teratol 2022; 93:107118. [DOI: 10.1016/j.ntt.2022.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
5
|
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int J Mol Sci 2022; 23:ijms23105710. [PMID: 35628520 PMCID: PMC9145289 DOI: 10.3390/ijms23105710] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has alarming adverse health effects through both hormone-direct and hormone-indirect pathways. Non-chemical agents, including physical agents such as artificial light, radiation, temperature, and stress exposure, are currently poorly investigated, even though they can seriously affect the endocrine system, by modulation of hormonal action. Several mechanisms have been suggested to explain the interference of EDCs with hormonal activity. However, difficulty in quantifying the exposure, low standardization of studies, and the presence of confounding factors do not allow the establishment of a causal relationship between endocrine disorders and exposure to specific toxic agents. In this review, we focus on recent findings on the effects of EDCs and hormone system modulators on the endocrine system, including the thyroid, parathyroid glands, adrenal steroidogenesis, beta-cell function, and male and female reproductive function.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Roberta Amodei
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Section of Endocrinology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
- Correspondence: ; Tel.: +39-0916552110
| |
Collapse
|
6
|
The association between prenatal concentrations of polybrominated diphenyl ether and child cognitive and psychomotor function. Environ Epidemiol 2021; 5:e156. [PMID: 34131617 PMCID: PMC8196085 DOI: 10.1097/ee9.0000000000000156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Previous studies suggest a negative association between prenatal polybrominated diphenyl ethers (PBDEs) exposure and child cognitive and psychomotor development. However, the timing of the relationship between PBDE exposure and neurodevelopment is still unclear. We examined the association between PBDE concentration at two different prenatal times (early and late pregnancy) and cognitive function in children 6-8 years of age. Methods Eight hundred pregnant women were recruited between 2007 and 2009 from Sherbrooke, Canada. Four PBDE congeners (BDE-47, -99, -100, and -153) were measured in maternal plasma samples collected during early pregnancy (12 weeks of gestation) and at delivery. At 6-8 years of age, 355 children completed a series of subtests spanning multiple neuropsychologic domains: verbal and memory skills were measured using the Wechsler Intelligence Scale for Children, Fourth Edition; visuospatial processing using both Wechsler Intelligence Scale for Children, Fourth Edition and Neuropsychological Assessment second edition; and attention was assessed through the Test of Everyday Attention for Children. Additionally, parents completed subtests from the Developmental Coordination Disorder Questionnaire to measure child motor control. We used linear regression and quantile g-computation models to estimate associations of PBDE congener concentrations and psychologic test scores. Results In our models, no significant associations were detected between PBDE mixture and any of the child psychologic scores. BDE-99 concentration at delivery was nominally associated with higher scores on short-term and working memory while a decrease in spatial perception and reasoning was nominally associated with higher BDE-100 concentration at delivery. Conclusion Overall, our results did not show a significant association between PBDEs and child cognitive and motor development.
Collapse
|
7
|
Han Y, Cheng J, He L, Zhang M, Ren S, Sun J, Xing X, Tang Z. Polybrominated diphenyl ethers in soils from Tianjin, North China: distribution, health risk, and temporal trends. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1177-1191. [PMID: 32607699 DOI: 10.1007/s10653-020-00645-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Available information is still insufficient for a comprehensive understanding of the global distribution of polybrominated diphenyl ethers (PBDEs) in the environment. In particular, little is known about the changing trend of their distribution in urban soils. We conducted a survey of 21 PBDEs in urban soils from Tianjin, China. The chemicals were widely present in the area and summed concentrations ranged from 0.65 to 108 ng/g in soil, indicating low to moderate levels of pollution relative to other areas. BDE-209 was the predominant congener, contributing 88.9% of the concentrations of total soil PBDEs. Source assessment indicated that soil PBDEs in the area were mainly derived from the release of commercial deca-BDE from local industrial production processes and consumer products. We found that the soil concentrations of PBDEs appear to have declined in recent years, compared with other previous reports in this region. However, more studies are needed on this possible change trend of PBDE pollution, especially its impact on human health, although their calculated non-carcinogenic health risks in this study were low.
Collapse
Affiliation(s)
- Yu Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Lei He
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Minna Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shan Ren
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jiazheng Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xiangyang Xing
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
8
|
Eze CT, Michelangeli F, Otitoloju AA, Eze OO, Ibraheem O, Ogbuene EB, Ogunwole GA. Occurrence of chemical pollutants in major e-waste sites in West Africa and usefulness of cytotoxicity and induction of ethoxyresorufin-O-deethylase (EROD) in determining the effects of some detected brominated flame retardants and e-waste soil-derived extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10832-10846. [PMID: 33099733 DOI: 10.1007/s11356-020-11155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
We investigated the occurrence of chemical pollutants in major e-waste sites in West Africa and usefulness of cytotoxicity and induction of ethoxyresorufin-O-deethylase (EROD) in determining the effects of some detected brominated flame retardants (BFRs) and e-waste soil-derived extracts. Analysis of the e-waste site samples using AAS and GC-MS techniques revealed the presence of a range of toxic metals as well as persistent and toxic organic pollutants, respectively, in the vicinity of the e-waste sites. As expected, the occurrence (%) of all the detected chemical pollutants in experimental soils significantly (P < 0.05) differs from occurrence (%) in control soil. The calculated LC50 values on RBL-2H3 cells of the detected tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) were 3.75 μM and 4.2 μM, respectively. Tribromophenol (TBP), dibromobiphenyl (DBB), and decabromodiphenyl ether (DBDE) were remarkably less toxic on RBL-2H3 cells compared with TBBPA and HBCD as they did not reduce RBL-2H3 cell viability below 50% in the tested concentration range (0-20 μM). The study revealed that TBBPA and HBCD could induce significant RBL-2H3 cell death through caspase-dependent apoptosis. The study further shows that the cytotoxicity of some of these BFRs could increase synergistically when in mixtures and potentially activate inflammation through the stimulation of mast cell degranulation. The e-waste soil-derived extracts induced a concentration-dependent increase in EROD activity in the exposed RTG-W1 cells. Ultimately, nonpolar extracts had higher EROD-inducing potency compared with polar extracts and hence suggesting the presence in higher amounts of AhR agonists in nonpolar e-waste soil-derived extracts than polar extracts. Overall, there is urgent need for actions in order to improve the environmental quality of the e-waste sites.
Collapse
Affiliation(s)
- Chukwuebuka ThankGod Eze
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti, Ekiti State, Nigeria.
- Department of Zoology, University of Lagos, Akoka, Lagos State, Nigeria.
| | | | | | - Obianuju Oluchukwu Eze
- Department of Biochemistry, University of Nigeria, Nsukka Campus, Nsukka, Enugu State, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti, Ekiti State, Nigeria
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nsukka, Enugu State, Nigeria
| | | |
Collapse
|
9
|
Alvarez-Gonzalez MY, Sánchez-Islas E, Mucio-Ramirez S, de Gortari P, Amaya MI, Kodavanti PRS, León-Olea M. Perinatal exposure to octabromodiphenyl ether mixture, DE-79, alters the vasopressinergic system in adult rats. Toxicol Appl Pharmacol 2020; 391:114914. [PMID: 32032643 DOI: 10.1016/j.taap.2020.114914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.
Collapse
Affiliation(s)
- Mhar Y Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Samuel Mucio-Ramirez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - María I Amaya
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| |
Collapse
|
10
|
Agarwal P, Brockman JD, Wang Y, Schneider JA, Morris MC. Brain Bromine Levels Associated with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2020; 73:327-332. [PMID: 31771054 PMCID: PMC10964729 DOI: 10.3233/jad-190646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bromine is a naturally occurring element that is widely present in the human environment in various chemical forms primarily as flame retardants, pesticides, and water treatments. OBJECTIVE In this exploratory study, we investigated the association of brain bromine concentrations on Alzheimer's disease (AD) neuropathology, cerebral infarcts, and Lewy bodies. METHODS The study was conducted in 215 deceased participants of the Memory and Aging Project, a clinical-pathologic cohort study. Brain bromine levels were measured using instrumental neutron activation analysis. Multiple brain regions were assessed for diffuse and neuritic plaques, neurofibrillary tangles, cerebral macro-and microinfarcts, and Lewy bodies. Standardized measures of AD pathology (Braak, CERAD, NIA-Reagan, global AD pathology) were computed. RESULTS In linear regression models, the higher brain bromine levels were associated with more AD neuropathology (Braak (p trend = 0.01); CERAD (p trend = 0.02); NIA-Reagan (p trend = 0.02). CONCLUSION Bromine accumulation in the brain is associated with higher level of AD neuropathology. The potential deleterious effects of this element on AD need further exploration.
Collapse
Affiliation(s)
- Puja Agarwal
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | - Yamin Wang
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Martha C. Morris
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Margolis AE, Banker S, Pagliaccio D, De Water E, Curtin P, Bonilla A, Herbstman JB, Whyatt R, Bansal R, Sjödin A, Milham MP, Peterson BS, Factor-Litvak P, Horton MK. Functional connectivity of the reading network is associated with prenatal polybrominated diphenyl ether concentrations in a community sample of 5 year-old children: A preliminary study. ENVIRONMENT INTERNATIONAL 2020; 134:105212. [PMID: 31743804 PMCID: PMC7048018 DOI: 10.1016/j.envint.2019.105212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 05/22/2023]
Abstract
Genetic factors explain 60 percent of variance in reading disorder. Exposure to neurotoxicants, including polybrominated diphenyl ethers (PBDEs), may be overlooked risk factors for reading problems. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between prenatal PBDE concentrations and functional connectivity of a reading-related network (RN) in a community sample of 5-year-old children (N = 33). Maternal serum PBDE concentrations (∑PBDE) were measured at 12.2 ± 2.8 weeks gestation (mean ± SD). The RN was defined by 12 regions identified in prior task-based fMRI meta-analyses; global efficiency (GE) was used to measure network integration. Linear regression evaluated associations between ∑PBDE, word reading, and GE of the RN and the default mode network (DMN); the latter to establish specificity of findings. Weighted quantile sum regression analyses evaluated the contributions of specific PBDE congeners to observed associations. Greater RN efficiency was associated with better word reading in these novice readers. Children with higher ∑PBDE showed reduced GE of the RN; ∑PBDE was not associated with DMN efficiency, demonstrating specificity of our results. Consistent with prior findings, ∑PBDE was not associated word reading at 5-years-old. Altered efficiency and integration of the RN may underlie associations between ∑PBDE concentrations and reading problems observed previously in older children.
Collapse
Affiliation(s)
- Amy E Margolis
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sarah Banker
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Pagliaccio
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Erik De Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anny Bonilla
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Andreas Sjödin
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Pam Factor-Litvak
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Zhang H, Yang X, Li X, Cheng Y, Zhang H, Chang L, Sun M, Zhang Z, Wang Z, Niu Q, Wang T. Oxidative and nitrosative stress in the neurotoxicity of polybrominated diphenyl ether-153: possible mechanism and potential targeted intervention. CHEMOSPHERE 2020; 238:124602. [PMID: 31545211 DOI: 10.1016/j.chemosphere.2019.124602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaorong Yang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Yan Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huajun Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijun Chang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Min Sun
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN, 47408, USA
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Tong Wang
- Department of Health Statistics, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
13
|
Gillera SEA, Marinello WP, Horman BM, Phillips AL, Ruis MT, Stapleton HM, Reif DM, Patisaul HB. Sex-specific effects of perinatal FireMaster® 550 (FM 550) exposure on socioemotional behavior in prairie voles. Neurotoxicol Teratol 2019; 79:106840. [PMID: 31730801 DOI: 10.1016/j.ntt.2019.106840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
The rapidly rising incidence of neurodevelopmental disorders with social deficits is raising concern that developmental exposure to environmental contaminants may be contributory. Firemaster 550 (FM 550) is one of the most prevalent flame-retardant (FR) mixtures used in foam-based furniture and baby products and contains both brominated and organophosphate components. We and others have published evidence of developmental neurotoxicity and sex specific effects of FM 550 on anxiety-like and exploratory behaviors. Using a prosocial animal model, we investigated the impact of perinatal FM 550 exposure on a range of socioemotional behaviors including anxiety, attachment, and memory. Virtually unknown to toxicologists, but widely used in the behavioral neurosciences, the prairie vole (Microtus ochrogaster) is a uniquely valuable model organism for examining environmental factors on sociality because this species is spontaneously prosocial, biparental, and displays attachment behaviors including pair bonding. Dams were exposed to 0, 500, 1000, or 2000 μg of FM 550 via subcutaneous (sc) injections throughout gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring of both sexes were then subjected to multiple tasks including open field, novel object recognition, and partner preference. Effects were dose responsive and sex-specific, with females more greatly affected. Exposure-related outcomes in females included elevated anxiety, decreased social interaction, decreased exploratory motivation, and aversion to novelty. Exposed males also had social deficits, with males in all three dose groups failing to show a partner preference. Our studies demonstrate the utility of the prairie vole for investigating the impact of chemical exposures on social behavior and support the hypothesis that developmental FR exposure impacts the social brain. Future studies will probe the possible mechanisms by which these effects arise.
Collapse
Affiliation(s)
| | - William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Matthew T Ruis
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - David M Reif
- Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
14
|
Endoplasmic reticulum rather than mitochondria plays a major role in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2019; 311:37-48. [DOI: 10.1016/j.toxlet.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
|
15
|
Liang H, Vuong AM, Xie C, Webster GM, Sjödin A, Yuan W, Miao M, Braun JM, Dietrich KN, Yolton K, Lanphear BP, Chen A. Childhood polybrominated diphenyl ether (PBDE) serum concentration and reading ability at ages 5 and 8 years: The HOME Study. ENVIRONMENT INTERNATIONAL 2019; 122:330-339. [PMID: 30503319 PMCID: PMC6324196 DOI: 10.1016/j.envint.2018.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment and human beings. PBDE concentrations are higher in children than adults. A previous study found that prenatal PBDE exposure was associated with decreased reading skills in children; however, evidence is limited on the potential impact of childhood exposure to PBDEs. The study examined the association between childhood PBDE exposures and reading ability in children at ages 5 and 8 years. METHODS The study included 230 children from an ongoing prospective pregnancy and birth cohort study, the Health Outcomes and Measures of Environment (HOME) Study, conducted in Cincinnati, Ohio. Children's serum concentrations of eleven PBDE congeners were measured at 1, 2, 3, 5, and 8 years. The Woodcock-Johnson Tests of Achievement - III and the Wide Range Achievement Test - 4 were administered to assess children's reading skills at ages 5 and 8 years, respectively. We used multiple informant models to examine the associations between repeated measures of PBDEs and reading scores at ages 5 and 8 years. We also estimated the βs and 95% CIs of the association of PBDE measure at each age by including interaction terms between PBDE concentrations and child age in the models. RESULTS All childhood BDE-153 concentrations were inversely associated with reading scores at 5 and 8 years, but associations were not statistically significant after covariate adjustment. For example, a 10-fold increase in BDE-153 concentrations at ages 3 and 5 years was associated with a -5.0 (95% confidence interval (CI): -11.0, 1.0) and -5.5 (95% CI: -12.5, 1.4) point change in Basic Reading score at age 5 years, respectively. Similarly, the estimates for Brief Reading score at age 5 years were -4.5 (95% CI: -10.5, 1.5) and -5.2 (95% CI: -12.2, 1.7) point changes, respectively. Serum concentration of BDE-47, -99, -100, and Sum4PBDEs (sum of BDE-47, 99, 100, and 153) at every age were inversely associated with reading scores at ages 5 and 8 years in unadjusted analyses. While the adjusted estimates were much attenuated and became non-significant, the direction of most of the associations was not altered. CONCLUSION Our study has shown a suggestive but non-significant trend of inverse associations between childhood PBDE serum concentrations, particularly BDE-153, and children's reading skills. Future studies with a larger sample size are needed to examine these associations.
Collapse
Affiliation(s)
- Hong Liang
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China; Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wei Yuan
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China
| | - Maohua Miao
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Polybrominated diphenyl ether (PBDE) neurotoxicity: a systematic review and meta-analysis of animal evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:269-289. [PMID: 30352012 PMCID: PMC6786272 DOI: 10.1080/10937404.2018.1514829] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A recent systematic review (SR) and meta-analysis of human studies found an association between prenatal serum polybrominated diphenyl ethers (PBDE) concentrations and a decrease in the IQ of children. A SR of experimental developmental animal PBDE-mediated neurotoxicity studies was performed in the present study. Outcomes assessed included measures related to learning, memory, and attention, which parallel the intelligence-related outcomes evaluated in the human studies SR. PubMed, Embase, and Toxline were searched for relevant experimental non-human mammalian studies. Evaluation of risk of bias (RoB) and overall body of evidence followed guidance developed by the National Toxicology Program. Animal studies using varying designs and outcomes were available for BDEs 47, 99, 153, 203, 206, and 209 and the technical mixture DE-71. Study reporting of methods and results was often incomplete leading to concerns regarding RoB. A meta-analysis of 6 Morris water maze studies showed evidence of a significant increase in last trial latency (effect size of 25.8 [CI, 20.3 to 31.2]) in PBDE-exposed animals with low heterogeneity. For most endpoints, there were unexplained inconsistencies across studies and no consistent evidence of a dose-response relationship. There is a "moderate" level of evidence that exposure to BDEs 47, 99, and 209 affects learning. For other PBDEs and other endpoints, the level of evidence was "low" or "very low". The meta-analysis led to stronger conclusions than that based upon a qualitative review of the evidence. The SR also identified RoB concerns that might be remedied by better study reporting.
Collapse
Affiliation(s)
- David C. Dorman
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kamin J. Johnson
- Predictive Safety Center, Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Ellen Mantus
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Susan Martel
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew A. Rooney
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children’s Research Institute, Seattle WA, USA
| | - Susan L. Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
17
|
Oulhote Y, Tremblay É, Arbuckle TE, Fraser WD, Lemelin JP, Séguin JR, Ouellet E, Forget-Dubois N, Ayotte P, Boivin M, Dionne G, Lanphear BP, Muckle G. Prenatal exposure to polybrominated diphenyl ethers and predisposition to frustration at 7 months: Results from the MIREC study. ENVIRONMENT INTERNATIONAL 2018; 119:79-88. [PMID: 29940431 DOI: 10.1016/j.envint.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Prenatal exposure to polybrominated diphenyl ethers (PBDEs) has been associated with cognitive deficits and behavioral problems in children. To date, no study has examined this exposure in association with neurobehavioral development in infants younger than 12 months assessed with observational tasks. OBJECTIVES This study examined the relation between prenatal PBDE concentrations and predisposition to frustration, assessed by the arm restraint task (ART), in Canadian infants. METHODS In a prospective longitudinal study conducted in Canada, exposure to nine PBDE congeners was measured in maternal plasma during the first trimester of pregnancy. The ART was used to measure predisposition to frustration in infancy (N = 333; mean age = 6.9 months), as assessed by negative vocalizations (crying and screaming) and physical reactivity (discomfort movements). RESULTS Maternal plasma PBDE-47 concentrations collected during pregnancy were associated with negative vocalizations using the ART (adjusted Relative Risk [aRR] = 1.04, 95% CI: 1.00, 1.09). Prenatal PBDE-99 concentrations during pregnancy were also related to a shift to the left in the tail of the distribution of onset of negative vocalizations as measured by a decrease of 38 s (95% CI: -78.1, 1.3) in the 75th quantile of the distribution for infants whose mothers had detectable levels of PBDE-99 compared to infants of mothers with undetectable levels. Similarly, infants whose mothers had detectable levels of PBDE-100 showed an increase of 24.1 s (95% CI: 4.1, 44.1) in the 75th quantile of the distribution of proportion of time in negative vocalizations compared with infants of mothers with undetectable levels. Finally, the association between PBDE-47 and PBDE-153, and physical reactivity was significantly modified by sex (p < 0.1), with opposite patterns in girls and boys. CONCLUSIONS Prenatal exposure to PBDEs was associated with increased incidence of crying and screaming with delayed onset of discomfort movement, which may indicate a predisposition to frustration and lack of habituation in infants younger than 12 months from the general population.
Collapse
Affiliation(s)
- Youssef Oulhote
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada; École de Psychologie, Université Laval, Québec, Qc, Canada; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Émilie Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada; École de Psychologie, Université Laval, Québec, Qc, Canada
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - William D Fraser
- Centre de Recherche du CHU Sainte-Justine, Centre Hospitalier Universitaire Mère-Enfant, Montréal, Qc, Canada; Département d'Obstétrique et Gynécologie, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Jean-Pascal Lemelin
- Département de psychoéducation, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Jean R Séguin
- Centre de Recherche du CHU Sainte-Justine, Centre Hospitalier Universitaire Mère-Enfant, Montréal, Qc, Canada; Département de psychiatrie et addictologie, Université de Montréal, Montréal, Qc, Canada
| | - Emmanuel Ouellet
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada
| | - Nadine Forget-Dubois
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada; École de Psychologie, Université Laval, Québec, Qc, Canada
| | - Pierre Ayotte
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Qc, Canada
| | - Michel Boivin
- École de Psychologie, Université Laval, Québec, Qc, Canada
| | - Ginette Dionne
- École de Psychologie, Université Laval, Québec, Qc, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Gina Muckle
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Qc, Canada; École de Psychologie, Université Laval, Québec, Qc, Canada
| |
Collapse
|
18
|
Cowell WJ, Margolis A, Rauh VA, Sjödin A, Jones R, Wang Y, Garcia W, Perera F, Wang S, Herbstman JB. Associations between prenatal and childhood PBDE exposure and early adolescent visual, verbal and working memory. ENVIRONMENT INTERNATIONAL 2018; 118:9-16. [PMID: 29787900 PMCID: PMC6460908 DOI: 10.1016/j.envint.2018.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prenatal and childhood exposure to polybrominated diphenyl ether (PBDE) flame retardants has been inversely associated with cognitive performance, however, few studies have measured PBDE concentrations in samples collected during both prenatal and postnatal periods. METHODS We examined prenatal (cord) and childhood (ages 2, 3, 5, 7 and 9 years) plasma PBDE concentrations in relation to memory outcomes assessed between the ages of 9 and 14 years. The study sample includes a subset (n = 212) of the African American and Dominican children enrolled in the Columbia Center for Children's Environmental Health Mothers and Newborns birth cohort. We used multivariable linear regression to examine associations between continuous log10-transformed PBDE concentrations and performance on tests of visual, verbal and working memory in age-stratified models. We additionally used latent class growth analysis to estimate trajectories of exposure across early life, which we analyzed as a categorical variable in relation to memory outcomes. We examined interactions between PBDE exposure and sex using cross-product terms. RESULTS Associations between prenatal exposure and working memory significantly varied by sex (p-interaction = 0.02), with inverse relations observed only among girls (i.e. βBDE-47 = -7.55, 95% CI: -13.84, -1.24). Children with sustained high concentrations of BDEs-47, 99 or 100 across childhood scored approximately 5-8 standard score points lower on tests of visual memory. Children with PBDE plasma concentrations that peaked during toddler years performed better on verbal domains, however, these associations were not statistically significant. CONCLUSIONS Exposure to PBDEs during both prenatal and postnatal periods may disrupt memory domains in early adolescence. These findings contribute to a substantial body of evidence supporting the developmental neurotoxicity of PBDEs and underscore the need to reduce exposure among pregnant women and children.
Collapse
Affiliation(s)
- Whitney J Cowell
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amy Margolis
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Child and Adolescent Psychiatry, Columbia University, New York, NY 10032, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Ya Wang
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Wanda Garcia
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Neurotrophins and cholinergic enzyme regulated by calpain-2: New insights into neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2018; 291:29-38. [DOI: 10.1016/j.toxlet.2018.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/28/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023]
|
20
|
Dingemans MML, Kock M, van den Berg M. Mechanisms of Action Point Towards Combined PBDE/NDL-PCB Risk Assessment. Toxicol Sci 2018; 153:215-24. [PMID: 27672163 DOI: 10.1093/toxsci/kfw129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels, voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several effects on developmental (reproductive) processes have also been observed, but results were more dispersed and insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated with combined exposure to both groups of compounds during early life. Additional validation studies are needed to quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.
Collapse
Affiliation(s)
- Milou M L Dingemans
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marjolijn Kock
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Bramwell L, Harrad S, Abou-Elwafa Abdallah M, Rauert C, Rose M, Fernandes A, Pless-Mulloli T. Predictors of human PBDE body burdens for a UK cohort. CHEMOSPHERE 2017; 189:186-197. [PMID: 28965056 DOI: 10.1016/j.chemosphere.2017.08.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to polybrominated diphenyl ethers (PBDEs) was investigated in a cohort of 20 UK adults along with their anthropometric covariates and relevant properties such as room surveys, lifestyle, diet and activity details. Selected PBDE congeners were measured in matched samples of indoor dust (n = 41), vehicles (n = 8), duplicate diet (n = 24), serum (n = 24) and breast milk (n = 6). Combined exposure estimates via dust and diet revealed total PBDE intakes of 104 to 1,440 pg kg-1 bw d-1 for ΣBDEs3-7 and 1,170 to 17,000 pg kg-1 bw d-1 for BDE-209. These adult intakes are well within health reference doses suggested by the European Food Safety Authority (EFSA) and the US EPA. Diet was the primary source of intake of BDE3-7 congeners for the majority of the cohort, with dust the primary source of BDE-209. Primary sources of PBDE exposure vary between countries and regions with differing fire prevention regulations. Estimated infant exposures (ages 1.5-4.5 years) showed that BDE-99 intake for one of the households did not meet EFSA's recommended margin of exposure, a further two households had borderline PBDE exposures for high level dust and diet intake. Males and those having a lower body fat mass had higher serum BDE-153. Higher meat consumption was significantly correlated with higher BDEs3-7 in serum. A reduction in dietary BDEs3-7 would therefore result in the greatest reduction in BDE-99 exposure. Rooms containing PUF sofas or armchairs over 20 years old had more BDEs3-7 in their dust, and rooms with carpets or rugs of that age had higher dust BDE-209. Dusting rooms more frequently resulted in significantly lower concentrations of all major congeners in their dust. Correlation between BDE-209 body burden and dust or diet exposure was limited by its low bioaccessibility. Although vehicle dust contained the highest concentrations of BDEs3-7 and BDE-209, serum BDEs3-7 correlated most strongly with bedroom dust.
Collapse
Affiliation(s)
- L Bramwell
- Newcastle University, Institute of Health and Society, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, UK.
| | - S Harrad
- University of Birmingham, School of Geography, Earth & Environmental Sciences, Birmingham, UK
| | - M Abou-Elwafa Abdallah
- University of Birmingham, School of Geography, Earth & Environmental Sciences, Birmingham, UK
| | - C Rauert
- University of Birmingham, School of Geography, Earth & Environmental Sciences, Birmingham, UK
| | - M Rose
- Fera Science, Sand Hutton, York, UK
| | | | - T Pless-Mulloli
- Newcastle University, Institute of Health and Society, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Martin OV, Evans RM, Faust M, Kortenkamp A. A Human Mixture Risk Assessment for Neurodevelopmental Toxicity Associated with Polybrominated Diphenyl Ethers Used as Flame Retardants. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087016. [PMID: 28886598 PMCID: PMC5783671 DOI: 10.1289/ehp826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND The European Food Safety Authority recently concluded that the exposure of small children (1-3 y old) to brominated diphenyl ether (BDE)-99 may exceed acceptable levels defined in relation to neurodevelopmental toxicity in rodents. The flame retardant BDE-209 may release BDE-99 and other lower brominated BDEs through biotic and abiotic degradation, and all age groups are exposed not only to BDE-209 and -99 but also to a cocktail of BDE congeners with evidence of neurodevelopmental toxicity. The possible risks from combined exposures to these substances have not been evaluated. OBJECTIVES We performed a congener-specific mixture risk assessment (MRA) of human exposure to combinations of BDE-209 and other BDEs based on estimated exposures via diet and dust intake and on measured levels in biologic samples. METHODS We employed the Hazard Index (HI) method by using BDE congener-specific reference doses for neurodevelopmental toxicity. RESULTS Our HI analysis suggests that combined exposures to polybrominated diphenyl ethers (PBDEs) may exceed acceptable levels in breastfeeding infants (0-3 mo old) and in small children (1-3 y old), even for moderate (vs. high) exposure scenarios. Our estimates also suggest that acceptable levels of combined PBDEs may be exceeded in adults whose diets are high in fish. Small children had the highest combined exposures, with some estimated body burdens that were similar to body burdens associated with developmental neurotoxicity in rodents. CONCLUSIONS Our estimates corroborate reports from several recent epidemiological studies of associations between PBDE exposures and neurobehavioral outcomes, and they support the inclusion of BDE-209 in the persistent organic pollutant (POP) convention as well as the need for strategies to reduce exposures to PBDE mixtures, including maximum residue limits for PBDEs in food and measures for limiting the release of PBDEs from consumer waste. https://doi.org/10.1289/EHP826.
Collapse
Affiliation(s)
- Olwenn V Martin
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| | - Richard M Evans
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| | - Michael Faust
- Faust & Backhaus, BITZ - Bremer Innovations- und Technologie-Zentrum , Bremen, Germany
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| |
Collapse
|
23
|
Mucio-Ramírez S, Sánchez-Islas E, Sánchez-Jaramillo E, Currás-Collazo M, Juárez-González VR, Álvarez-González MY, Orser LE, Hou B, Pellicer F, Kodavanti PRS, León-Olea M. Perinatal exposure to organohalogen pollutants decreases vasopressin content and its mRNA expression in magnocellular neuroendocrine cells activated by osmotic stress in adult rats. Toxicol Appl Pharmacol 2017; 329:173-189. [PMID: 28579251 PMCID: PMC5996972 DOI: 10.1016/j.taap.2017.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.
Collapse
Affiliation(s)
- Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco. México D.F. C.P. 14370, México.
| | - Margarita Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA.
| | - Victor R Juárez-González
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.
| | - Mhar Y Álvarez-González
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - L E Orser
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Borin Hou
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Francisco Pellicer
- Laboratorio de Fisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| |
Collapse
|
24
|
Jiang Y, Tang X, Zhou B, Sun T, Chen H, Zhao X, Wang Y. The ROS-mediated pathway coupled with the MAPK-p38 signalling pathway and antioxidant system plays roles in the responses of Mytilus edulis haemocytes induced by BDE-47. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:55-63. [PMID: 28371659 DOI: 10.1016/j.aquatox.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Our previous study found that BDE-47 could change the immune function of haemocytes in Mytilus edulis, and reactive oxygen species (ROS) might be involved in the process of physiological alteration. Here, we aimed to better understand this relationship. To accomplish this, we analysed changes in different ROS as well as various antioxidant system components. Additionally, the expression of MAPK-p38, a signalling protein regulated by ROS that helps to regulate numerous cellular processes, was also analysed. BDE-47 was given at low, medium, and high amounts. The results showed that (1) BDE-47 significantly affected ROS component levels in haemocytes. O2- content was increased under all conditions. H2O2 content was also increased under all conditions, except in the middle concentration group. In contrast, OH content was increased in the low and middle concentration groups and decreased in the high concentration group. (2) Estimations of the antioxidant systems revealed concentration-dependent changes. Catalase activity was increased throughout the experiment, while superoxide dismutase (SOD) exhibited a decreasing trend in the tested groups with an increase of exposure time. On day 21, only the high concentration group showed a slight increase in SOD activity compared to the control. Furthermore, glutathione peroxidase and glutathione reductase activity increased in the low and middle concentration groups but decreased in the high concentration group. The GSH/GSSG ratio increased for all treatments over time, indicating that changes in redox status occurred. (3) MAPK-p38 was activated following BDE-47 exposure. Based on our previous study, we speculate that BDE-47 exposure induces ROS production and affects the ROS-mediated pathway, which may explain the resultant functional damage observed in haemocytes. Furthermore, BDE-47 also affected the antioxidant system and altered redox status, although these changes did not ameliorate the damage caused by ROS.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Hongmei Chen
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Xinyu Zhao
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
25
|
Zhang H, Chang L, Zhang H, Nie J, Zhang Z, Yang X, Vuong AM, Wang Z, Chen A, Niu Q. Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2017; 277:41-53. [PMID: 28559121 DOI: 10.1016/j.toxlet.2017.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been demonstrated to induce neurotoxicity in experimental rats and mice, with neuronal apoptosis as one of the major mechanisms, however, the mechanisms underlying PBDEs-induced neuronal apoptosis remain unclear. In this study, we aimed to investigate the role of calpain/p35-p25/Cdk5 pathway in BDE-153-induced neuronal apoptosis in the hippocampus and primary neurons in rats. Results showed that compared to the controls, neuronal apoptosis was significantly increased in vivo and ex vivo, as manifested by the increased hippocampus TUNEL-positive cell rates, apoptotic neurons in Hoechst and AO/EB staining, and the increased LDH activity and percentage of Annexin V-positive cells in rat hippocampus and primary neurons. Calpain activity was significantly increased in all the BDE-153-treated groups in vivo and ex vivo when compared to non-treatment controls. In addition, we showed that calpain-2 accounted for the calpain activation instead of calpain-1, as demonstrated by the up-regulated mRNA and protein expressions in calpain-2 but not calpain-1. Activated calpain truncated p35 into p25, which resulted in the p25/Cdk5 formation and activation. Calpain inhibitor PD150606 or p25/Cdk5 inhibitor Roscovitine relieved neuronal apoptosis mainly via inhibiting the p25/Cdk5 activation. Overall, the findings suggested that calpain-2/p35-p25/Cdk5 pathway was involved in BDE-153-induced neuronal apoptosis, which provides novel insight into the mechanisms of PBDE neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Lijun Chang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huajun Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jisheng Nie
- Department of Occupational Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhihong Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaorong Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ann M Vuong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
26
|
Jung YS, Lee J, Seo J, Hwang GS. Metabolite profiling study on the toxicological effects of polybrominated diphenyl ether in a rat model. ENVIRONMENTAL TOXICOLOGY 2017; 32:1262-1272. [PMID: 27442109 DOI: 10.1002/tox.22322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used to retard the combustion of materials such as foam padding, textiles, or plastics, and numerous studies have confirmed the accumulation thereof in the environment and in fish, mammals, and humans. In this study, we used metabolomics to conduct an environmental risk assessment of the PBDE-209. We profiled the urinary metabolites of control and PBDE-treated rats (exposed to PBDE-209) using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Global metabolic profiling indicated that the effects of PBDE-209 on the urinary metabolic profile were not significant. However, targeted metabolic profiling revealed progressive effects of PBDE-209 over a 7-day PBDE-209 treatment. Moreover, despite the weak PBDE-209 effects, we observed that choline, acetylcholine, 3-indoxylsulfate, creatinine, urea, and dimethyl sulfone levels were decreased, whereas that of pyruvate was significantly increased. Furthermore, we suggest that the increased pyruvate level and decreased levels of choline, acetylcholine, and uremic toxins were suggestive of endocrine disruption and neurodevelopmental toxicity caused by PBDEs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1262-1272, 2017.
Collapse
Affiliation(s)
- Young-Sang Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Jungju Seo
- Mass Spectrometry & Advanced Instrumentation Group, Ochang Headquters, Korea Basic Science Institute, Cheongju, 363-886, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea
| |
Collapse
|
27
|
Vuong AM, Braun JM, Yolton K, Xie C, Webster GM, Sjödin A, Dietrich KN, Lanphear BP, Chen A. Prenatal and postnatal polybrominated diphenyl ether exposure and visual spatial abilities in children. ENVIRONMENTAL RESEARCH 2017; 153:83-92. [PMID: 27915227 PMCID: PMC5222735 DOI: 10.1016/j.envres.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 05/22/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are associated with impaired visual spatial abilities in toxicological studies, but no epidemiologic study has investigated PBDEs and visual spatial abilities in children. The Health Outcomes and Measures of the Environment Study, a prospective birth cohort (2003-2006, Cincinnati, OH), was used to examine prenatal and childhood PBDEs and visual spatial abilities in 199 children. PBDEs were measured at 16±3 weeks gestation and at 1, 2, 3, 5, and 8 years using gas chromatography/isotope dilution high-resolution mass spectrometry. We used the Virtual Morris Water Maze to measure visual spatial abilities at 8 years. In covariate-adjusted models, 10-fold increases in BDE-47, -99, and -100 at 5 years were associated with shorter completion times by 5.2s (95% Confidence Interval [CI] -9.3, -1.1), 4.5s (95% CI -8.1, -0.9), and 4.7s (95% CI -9.0, -0.3), respectively. However, children with higher BDE-153 at 3 years had longer completion times (β=5.4s, 95% CI -0.3, 11.1). Prenatal PBDEs were associated with improved visual spatial memory retention, with children spending a higher percentage of their search path in the correct quadrant. Child sex modified some associations between PBDEs and visual spatial learning. Longer path lengths were observed among males with increased BDE-47 at 2 and 3 years, while females had shorter paths. In conclusion, prenatal and postnatal BDE-28, -47, -99, and -100 at 5 and 8 years were associated with improved visual spatial abilities, whereas a pattern of impairments in visual spatial learning was noted with early childhood BDE-153 concentrations.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Li X, Wang C, Wang W, Yue C, Tang Y. Neonatal exposure to BDE 209 impaired learning and memory, decreased expression of hippocampal core SNAREs and synaptophysin in adult rats. Neurotoxicology 2017; 59:40-48. [PMID: 28104350 DOI: 10.1016/j.neuro.2017.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants. While the mechanism remains unknown, the potential neurotoxic effects of PBDEs remain a relevant issue. In the present study, neonatal Sprague-Dawley rats of both sexes were administered BDE 209 (1, 10, or 20mg/kg body weight) or peanut oil once daily from postnatal day (PND) 5 to PND 10. We examined the spatial learning and memory by Morris water maze and the working and reference memory by eight-arm radial maze in the stage of adulthood. Compared with controls, significantly longer escape latencies and fewer platform-crossings in the Morris water maze were observed in rats exposed to 1, 10, and 20mg/kg BDE 209, and these effects were dose-dependent. Significantly higher working and reference memory error rates in the eight-arm radial maze were also observed in rats exposed to 10 and 20mg/kg BDE 209. Furthermore, we detected the mRNA and protein expressions of hippocampal synaptobrevin 2, syntaxin 1A, Synaptosome Associated Protein 25 (SNAP-25), and synaptophysin using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot methods. Compared with controls, the mRNA expressions of synaptobrevin 2, syntaxin 1A, SNAP-25, and synaptophysin were significantly decreased in the hippocampi of rats exposed to 1, 10, and 20 mg/kg BDE 209, and the protein expressions of synaptobrevin 2 and SNAP-25 were significantly decreased in the hippocampi of rats exposed to 10 and 20 mg/kg BDE 209, while syntaxin 1A and synaptophysin were significantly decreased in rats exposed to 1, 10, and 20 mg/kg BDE 209. Alterations that may be involved in the learning and memory deficits induced by BDE 209 reveal the possibility of synapse loss.
Collapse
Affiliation(s)
- Xiong Li
- Department of Occupational Medicine, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Wen Wang
- Department of Public Health, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Chengwei Yue
- Department of Prevention Medicine, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China.
| |
Collapse
|
29
|
Yang L, Lu Y, Wang L, Chang F, Zhang J, Liu Y. Levels and Profiles of Polybrominated Diphenyl Ethers in Breast Milk During Different Nursing Durations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:510-516. [PMID: 27553216 DOI: 10.1007/s00128-016-1908-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Eight PBDE congeners, BDE-28, 47, 99, 100, 153, 154, 183 and 209, were measured using gas chromatography coupled to mass spectrometry. The concentrations of Σ8PBDEs ranged from 0.04 to 19.93 ng g(-1) lipid weight (lw), with median and mean value of 1.21 and 2.72 ng g(-1) lw. PBDE congeners were detected in approximately 90 % of samples with BDE-209 as the dominant one. No significant correlations were found between the mothers' age, body mass index and PBDEs concentrations. We estimated the infant's dietary intake of the studied PBDEs via human milk during different nursing durations, and found that babies younger than 1 month might take a relatively higher body burden of PBDEs. The median levels of Σ8PBDEs were 0.74, 2.80, 2.43 and 0.90 ng g(-1) lw in colostrum, milk sampled at 1, 3 and 6 months after birth, respectively. High consumption of animal-origin food after birth may lead to the elevated ΣPBDEs concentrations in breast milk. A rational nutrition deployment is essential for postpartum mother.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yang Lu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Liying Wang
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Fengqi Chang
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China.
| | - Yinping Liu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China.
| |
Collapse
|
30
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
31
|
Ajarem J, Altoom NG, Allam AA, Maodaa SN, Abdel-Maksoud MA, Chow BK. Oral administration of potassium bromate induces neurobehavioral changes, alters cerebral neurotransmitters level and impairs brain tissue of swiss mice. Behav Brain Funct 2016; 12:14. [PMID: 27169539 PMCID: PMC4865012 DOI: 10.1186/s12993-016-0098-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/08/2016] [Indexed: 11/25/2022] Open
Abstract
Background Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration on the brain functions and behaviour of albino mice. Methods Animals were divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Results Administration of KBrO3 led to a significant change in the body weight in the animals of the high dose group in the first, second and the last weeks while water consumption was not significantly changed. Neurobehavioral changes and a reduced Neurotransmitters levels were observed in both KBrO3 groups of mice. Also, the brain level of reduced glutathione (GSH) in KBrO3 receiving animals was decreased. Histological studies favoured these biochemical results showing extensive damage in the histological sections of brain of KBrO3-treated animals. Conclusions These results show that KBrO3 has serious damaging effects on the central nervous system and therefore, its use should be avoided.
Collapse
Affiliation(s)
- Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif G Altoom
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Department of Zoology, Faculty of Science, Beni-suef University, Beni-Suef, Egypt
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Billy Kc Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Hirsch C, Striegl B, Mathes S, Adlhart C, Edelmann M, Bono E, Gaan S, Salmeia KA, Hoelting L, Krebs A, Nyffeler J, Pape R, Bürkle A, Leist M, Wick P, Schildknecht S. Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants. Arch Toxicol 2016; 91:407-425. [PMID: 26928308 PMCID: PMC5225203 DOI: 10.1007/s00204-016-1680-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Halogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives and assessed their toxicological profile using a battery of in vitro test systems in order to provide toxicological information before their large-scale production and use. PBDE-99, applied as a reference compound, exhibited distinct neuro-selective cytotoxicity at concentrations ≥10 µM. 6-(2-((6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)amino)ethoxy)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ETA-DOPO) and 6,6′-(ethane-1,2-diylbis(oxy))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EG-DOPO) displayed adverse effects at concentrations >10 µM in test systems reflecting the properties of human central and peripheral nervous system neurons, as well as in a set of non-neuronal cell types. DOPO and its derivative 6,6′-(ethane-1,2-diylbis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide) (EDA-DOPO) were neither neurotoxic, nor did they exhibit an influence on neural crest cell migration, or on the integrity of human skin equivalents. The two compounds furthermore displayed no inflammatory activation potential, nor did they affect algae growth or daphnia viability at concentrations ≤400 µM. Based on the superior flame retardation properties, biophysical features suited for use in polyurethane foams, and low cytotoxicity of EDA-DOPO, our results suggest that it is a candidate for the replacement of currently applied flame retardants.
Collapse
Affiliation(s)
- Cordula Hirsch
- Particles-Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| | - Britta Striegl
- ZHAW, Life Sciences and Facility Management, Einsiedlerstr. 31, 8820, Waedenswil, Switzerland
| | - Stephanie Mathes
- ZHAW, Life Sciences and Facility Management, Einsiedlerstr. 31, 8820, Waedenswil, Switzerland
| | - Christian Adlhart
- ZHAW, Life Sciences and Facility Management, Einsiedlerstr. 31, 8820, Waedenswil, Switzerland
| | - Michael Edelmann
- ZHAW, Life Sciences and Facility Management, Einsiedlerstr. 31, 8820, Waedenswil, Switzerland
| | - Epifania Bono
- ZHAW, Life Sciences and Facility Management, Einsiedlerstr. 31, 8820, Waedenswil, Switzerland
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Khalifah A Salmeia
- Additives and Chemistry Group, Advanced Fibers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Lisa Hoelting
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Alice Krebs
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Johanna Nyffeler
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Regina Pape
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Alexander Bürkle
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Marcel Leist
- University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | | |
Collapse
|
33
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
34
|
Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol Appl Pharmacol 2015; 288:429-38. [DOI: 10.1016/j.taap.2015.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
35
|
Behavioral and thyroid effects of in utero and lactational exposure of Sprague–Dawley rats to the polybrominated diphenyl ether mixture DE71. Neurotoxicol Teratol 2015; 52:127-42. [DOI: 10.1016/j.ntt.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/30/2022]
|
36
|
Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, Shafer TJ, Cowden J. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol 2015; 52:25-35. [PMID: 26476195 DOI: 10.1016/j.ntt.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans.
Collapse
Affiliation(s)
- William R Mundy
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joseph M Breier
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kevin M Crofton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David W Herr
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Karl F Jensen
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicholas M Radio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen C Raffaele
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Genskow KR, Bradner JM, Hossain MM, Richardson JR, Caudle WM. Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD. Neurotoxicol Teratol 2015; 52:162-9. [PMID: 26073293 DOI: 10.1016/j.ntt.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 12/01/2022]
Abstract
Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0-25 μM) for 24 h causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0-10 μM) after 72 h of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated.
Collapse
Affiliation(s)
- Kelly R Genskow
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA
| | - Muhammad M Hossain
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
38
|
Lyche JL, Rosseland C, Berge G, Polder A. Human health risk associated with brominated flame-retardants (BFRs). ENVIRONMENT INTERNATIONAL 2015; 74:170-80. [PMID: 25454234 DOI: 10.1016/j.envint.2014.09.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 05/20/2023]
Abstract
The purposes of this review are to assess the human exposure and human and experimental evidence for adverse effects of brominated flame-retardants (BFRs) with specific focus on intake from seafood. The leakage of BFRs from consumer products leads to exposure of humans from fetal life to adulthood. Fish and fish products contain the highest levels of BFRs and dominate the dietary intake of frequent fish eaters in Europe, while meat, followed by seafood and dairy products accounted for the highest US dietary intake. House dust is also reported as an important source of exposure for children as well as adults. The levels of BFRs in the general North American populations are higher than those in Europe and Japan and the highest levels are detected in infants and toddlers. The daily intake via breast milk exceeds the RfD in 10% of US infants. BFRs including PBDEs, HBCDs and TBBP-A have induced endocrine-, reproductive- and behavior effects in laboratory animals. Furthermore, recent human epidemiological data demonstrated association between exposure to BFRs and similar adverse effects as observed in animal studies. Fish including farmed fish and crude fish oil for human consumption may contain substantial levels of BFRs and infants and toddlers consuming these products on a daily basis may exceed the tolerable daily intake suggesting that fish and fish oil alone represent a risk to human health. This intake comes in addition to exposure from other sources (breast milk, other food, house dust). Because potential harmful concentrations of BFRs and other toxicants occur in fish and fish products, research on a wider range of products is warranted, to assess health hazard related to the contamination of fish and fish products for human consumption.
Collapse
Affiliation(s)
- Jan L Lyche
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | | | - Gunnar Berge
- Pronova BioPharma AS, P.O. Box 420, NO-1327 Lysaker, Norway
| | - Anuschka Polder
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
39
|
Li W, Sheng P, Cai J, Feng H, Cai Q. Highly sensitive and selective photoelectrochemical biosensor platform for polybrominated diphenyl ether detection using the quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode. Biosens Bioelectron 2014; 61:209-14. [DOI: 10.1016/j.bios.2014.04.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/05/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
|
40
|
Selected oxidative stress parameters after single and repeated administration of octabromodiphenyl ether to rats. Int J Occup Med Environ Health 2014; 27:808-20. [PMID: 25323988 DOI: 10.2478/s13382-014-0312-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Octabromodiphenyl ether (OctaBDE) was used as a flame retardant applied mostly in the manufacture of plastics utilized in the electrical and electronic industries. Owing to its long half-life and being regarded as an environmental pollutant, OctaBDE, like other polybrominated diphenyl ethers, has been classified as a persistent organic pollutant (POP). This study was carried out to assess the effects of oxidative stress (redox homeostasis) induced in rats by OctaBDE. MATERIAL AND METHODS Female Wistar rats exposed intragastrically to OctaBDE at single (25, 200 or 2000 mg/kg b.w.), or repeated (0.4, 2, 8, 40 or 200 mg/kg/day) doses during 7-28 days were used in the experiment. Selected oxidative stress parameters were determined in the liver and blood serum. RESULTS Administration (single or repeated) of OctaBDE to rats resulted in the impaired redox homeostasis, as evidenced by the increased levels of reduced (GSH) and oxidized (GSSG) glutathione in the liver, the reduced total antioxidant status (TAS) in serum and the increased concentration of malondialdehyde (MDA) in the liver. After multiple doses of OctaBDE, elevated activity of glutathione transferase (GST) in the liver was also noted. CONCLUSIONS After repeated administration of OctaBDE at the lowest dose (0.4 mg/kg/day), changes were observed in the parameters (MDA, TAS, GSSG) indicative of oxidative stress.
Collapse
|
41
|
Buratovic S, Viberg H, Fredriksson A, Eriksson P. Developmental exposure to the polybrominated diphenyl ether PBDE 209: Neurobehavioural and neuroprotein analysis in adult male and female mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:570-85. [PMID: 25194327 DOI: 10.1016/j.etap.2014.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/13/2014] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), used as flame retardants in polymer products, are reported to cause developmental neurotoxic effects in mammals. The present study have investigated neurotoxic effects arising from neonatal exposure to PBDE 209, including alterations in sex differences, spontaneous behaviour, learning and memory, neuroproteins and altered susceptibility of the cholinergic system in adults. Three-day-old NMRI mice, of both sexes, were exposed to PBDE 209 (2,2',3,3',4,4',5,5',6,6'-decaBDE at 0, 1.4, 6.0 and 14.0μmol/kg b.w.). At adult age (2-7 months) a similar developmental neurotoxic effects in both male and female mice were seen, including lack of or reduced habituation to a novel home environment, learning and memory defects, modified response to the cholinergic agent's paraoxon (males) and nicotine (females) indicating increased susceptibility of the cholinergic system. The behavioural defects were dose-response related and persistent. In mice of both sexes and showing behavioural defects, neuroprotein tau was increased.
Collapse
Affiliation(s)
- Sonja Buratovic
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Anders Fredriksson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Per Eriksson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden.
| |
Collapse
|
42
|
Rasinger J, Carroll T, Lundebye A, Hogstrand C. Cross-omics gene and protein expression profiling in juvenile female mice highlights disruption of calcium and zinc signalling in the brain following dietary exposure to CB-153, BDE-47, HBCD or TCDD. Toxicology 2014; 321:1-12. [DOI: 10.1016/j.tox.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
43
|
Abstract
Exposure to polybrominated diphenyl ethers (PBDE) during sensitive developmental windows can interfere with cognitive function and behavior, which are critical components of neurodevelopment. The association between developmental exposure to PBDEs and neurodevelopment has been extensively studied using animal models. In this review, we focus on the accumulating evidence in humans. Despite methodological, geographical, and temporal differences between studies, the majority of the epidemiologic evidence supports that early life exposure to PBDEs measured during pregnancy and/or during childhood is detrimental to child neurodevelopment in domains related to child behavior, cognition, and motor skills. While the precise mechanism of action of PBDEs on neurodevelopment is unknown, PBDE-induced neurotoxicity via thyroid hormone disruption and direct action of PBDEs on the developing brain have been proposed and tested. Additional studies are suggested to better understand how early life and/or childhood PBDE exposures, including exposure to specific PBDE congeners, impact neurodevelopmental indices.
Collapse
|
44
|
A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants. Neurotoxicology 2014; 43:134-142. [PMID: 24674958 DOI: 10.1016/j.neuro.2014.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6h post fertilization to 5 days post fertilization to either PBDE 47 (0.1μM), PBDE 99 (0.1μM) or PBDE 153 (0.1μM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P<0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n=39; P<0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n=36; P>0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals.
Collapse
|
45
|
|
46
|
An J, Chen C, Wang X, Zhong Y, Zhang X, Yu Y, Yu Z. Oligomeric proanthocyanidins alleviate hexabromocyclododecane-induced cytotoxicity in HepG2 cells through regulation on ROS formation and mitochondrial pathway. Toxicol In Vitro 2014; 28:319-26. [DOI: 10.1016/j.tiv.2013.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/25/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
47
|
Chen YH, Li ZH, Tan Y, Zhang CF, Chen JS, He F, Yu YH, Chen DJ. Prenatal exposure to decabrominated diphenyl ether impairs learning ability by altering neural stem cell viability, apoptosis, and differentiation in rat hippocampus. Hum Exp Toxicol 2014:0960327113509661. [PMID: 24567298 DOI: 10.1177/0960327113509661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background:Polybrominated diphenyl ether (PBDE) levels in children and teenagers were higher than those of the adults and the highest levels were found in infants and toddlers. 2,2',3,3',4,4',5,5',6,6'-Decabrominated diphenyl ether (BDE-209) readily crosses the placental barrier and produces toxicity in the developing fetus, particularly to the developing brain.Objectives:This present study aims to investigate the potential effects of prenatal BDE-209 exposure on regulation of neurogenesis and learning function in an experimental rat model.Methods:Pregnant rats received BDE-209 (10, 30, or 50 mg kg-1 day-1) or vehicle (arachis oil) through gastric gavage from gestation day 1 to 14 (n = 10 per group). The embryonic hippocampal neural stem cells (NSCs) from five pregnant rats in each group were collected on day 14 and cultured in vitro to determine the cell viability, apoptosis, and differentiation of NSCs using cell counting kit 8 assay, flow cytometry, and immunofluorescence staining, respectively. In total, 20 male offspring on postnatal day 25 from each group were chosen to evaluate learning ability using a Morris water navigation task assay.Results:The data showed that prenatal exposure to BDE-209 decreased cell viability and differentiation of NSCs but promoted apoptosis in a dose-dependent manner. Prenatal BDE-209 exposure also impaired rat-learning acquisition in a dose-dependent manner.Conclusions:Prenatal BDE-209 exposure impairs rat-learning acquisition, possibly by affecting neurogenesis in the hippocampus during embryonic development.
Collapse
Affiliation(s)
- Y-H Chen
- 1Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Alterations to the circuitry of the frontal cortex following exposure to the polybrominated diphenyl ether mixture, DE-71. Toxicology 2013; 312:48-55. [PMID: 23916505 DOI: 10.1016/j.tox.2013.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Recent studies have identified exposure to polybrominated diphenyl ethers (PBDEs) as a risk factor for deficits in cognitive functioning seen in children as well as adults. Additionally, similar alterations in learning and memory have also been observed in animal models of PBDE exposure. However, given these findings, the molecular alterations that may underlie these neurobehavioral endpoints have not been identified. As the frontal cortex is involved in modulating several cognitive functions, the purpose of our study was to investigate the possible changes to the GABAergic and glutamatergic neurotransmitter systems located in the frontal cortex following exposure to the PBDE mixture, DE-71. Primary cultured neurons isolated from the frontal cortex showed a dose-dependent reduction in neurons as well as neurite outgrowth. Furthermore, evaluation of DE-71 neurotoxicity in the frontal cortex using an in vivo model showed alterations to specific proteins involved in mediating GABA and glutamate neurotransmission, including GAD67, vGAT, vGlut, and GABA(A) 2α receptor subunit. Interestingly, these alterations appeared to be preferential for the GABA and glutamate systems located in the frontal cortex. These findings identify specific targets of PBDE neurotoxicity and provide a possible molecular mechanism for PBDE-mediated neurobehavioral deficits that arise from the frontal cortex.
Collapse
|
49
|
Lee I, Viberg H. A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology 2013; 37:190-6. [DOI: 10.1016/j.neuro.2013.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
|
50
|
Zhao Y, Ruan X, Li Y, Yan M, Qin Z. Polybrominated diphenyl ethers (PBDEs) in aborted human fetuses and placental transfer during the first trimester of pregnancy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5939-46. [PMID: 23621775 DOI: 10.1021/es305349x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Data on early human fetal exposure to polybrominated diphenyl ethers (PBDEs) is limited. However, early pregnancy, in particular the first trimester, is critical for fetal development. We investigated exposure to PBDEs and placental transfer during early pregnancy by analyzing PBDEs in paired aborted fetuses (n = 65), placentas (n = 65), and maternal blood samples (n = 31) at 10-13 weeks gestation, which were collected in a hospital near electronic wastes (e-wastes) recycling sites in Taizhou, China. Mean total PBDE (∑PBDE) concentrations were 4.46, 7.90, and 15.7 ng/g of lipid weight (lw) in the fetuses, placentas, and blood, respectively. The three matrices had roughly similar PBDE congener profiles, dominated by BDE-209, BDE-197, BDE-153, BDE-47, and BDE-28. Significant correlations were found between ∑PBDE concentrations in the paired matrices. Comparing the concentration ratios between the paired samples, we observed significantly higher fetus/blood and fetus/placenta ratios for BDE-28, BDE-99, and BDE-47 than for BDE-197, BDE-209, and BDE-153, while opposite results were found in placenta/blood ratios. Our results indicate that PBDEs can enter the fetus during the first trimester and low-brominated congeners cross the placenta more easily than high-brominated congeners, which tend to remain in the placenta. This phenomenon is consistent with findings at the end of pregnancy.
Collapse
Affiliation(s)
- Yaxian Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | | | | | | | | |
Collapse
|