1
|
Harishchandra A, Di Giulio RT, Jayasundara N. Transcriptomic and Methylomic Analyses Show Significant Shifts in Biosynthetic Processes and Reduced Intrapopulation Gene Expression Variance in PAH-Adapted Atlantic Killifish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20859-20872. [PMID: 39552013 DOI: 10.1021/acs.est.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Environmental contaminants pose a significant selection pressure across taxa, potentiating evolved resistance to chemicals. However, rapid evolution may alter molecular and physiological homeostasis leading to trade-offs. To elucidate molecular underpinnings of evolved chemical resistance, we compared liver gene expression and methylation profiles in polycyclic aromatic hydrocarbon (PAH)-adapted Atlantic killifish (Fundulus heteroclitus) in the Republic site (RP), Elizabeth River, Virginia with PAH-sensitive Kings Creek (KC) fish. We found 1607 differentially expressed and 2252 alternatively spliced genes between RP and KC, with highly enriched genes involving lipid and amino acid metabolism, respectively. While 308 genes had differentially methylated regions, only 13 of these genes were differentially expressed. The aryl hydrocarbon receptor 2b gene (ahr2b) was differentially methylated and expressed, as well as alternatively spliced signifying its critical role in mediating PAH tolerance. Notably, the intrapopulation coefficient of variation (CoV) was lower in 82% of 17,566 expressed genes in RP fish compared to KC fish. Among other pathways, these genes with low CoV were highly enriched in bioenergetic processes inferring reduced metabolic physiological variation as a population in RP fish. Altered metabolic gene expression and overall reduced gene expression variance in RP fish warrant further studies on fitness trade-offs including altered susceptibility to other stressors associated with rapid adaptation to anthropogenic pressures.
Collapse
Affiliation(s)
- Akila Harishchandra
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
- School of Marine Sciences, University of Maine, Bangor 44069, Maine, United States
| | - Richard T Di Giulio
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
| |
Collapse
|
2
|
Schmandt B, Diduff M, Smart G, Williams LM. Environmentally Relevant Concentrations of Triphenyl Phosphate (TPhP) Impact Development in Zebrafish. TOXICS 2024; 12:368. [PMID: 38787147 PMCID: PMC11125690 DOI: 10.3390/toxics12050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
A common flame-retardant and plasticizer, triphenyl phosphate (TPhP) is an aryl phosphate ester found in many aquatic environments at nM concentrations. Yet, most studies interrogating its toxicity have used µM concentrations. In this study, we used the model organism zebrafish (Danio rerio) to uncover the developmental impact of nM exposures to TPhP at the phenotypic and molecular levels. At concentrations of 1.5-15 nM (0.5 µg/L-5 µg/L), chronically dosed 5dpf larvae were shorter in length and had pericardial edema phenotypes that had been previously reported for exposures in the µM range. Cardiotoxicity was observed but did not present as cardiac looping defects as previously reported for µM concentrations. The RXR pathway does not seem to be involved at nM concentrations, but the tbx5a transcription factor cascade including natriuretic peptides (nppa and nppb) and bone morphogenetic protein 4 (bmp4) were dysregulated and could be contributing to the cardiac phenotypes. We also demonstrate that TPhP is a weak pro-oxidant, as it increases the oxidative stress response within hours of exposure. Overall, our data indicate that TPhP can affect animal development at environmentally relevant concentrations and its mode of action involves multiple pathways.
Collapse
|
3
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
4
|
Rashid CS, Preston JD, Ngo Tenlep SY, Cook MK, Blalock EM, Zhou C, Swanson HI, Pearson KJ. PCB126 exposure during pregnancy alters maternal and fetal gene expression. Reprod Toxicol 2023; 119:108385. [PMID: 37080397 PMCID: PMC10358324 DOI: 10.1016/j.reprotox.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Polychlorinated biphenyls (PCBs) are organic pollutants that can have lasting impacts on offspring health. Here, we sought to examine maternal and fetal gene expression differences of aryl hydrocarbon receptor (AHR)-regulated genes in a mouse model of prenatal PCB126 exposure. Female mice were bred and gavaged with 1 µmole/kg bodyweight PCB126 or vehicle control on embryonic days 0 and 14, and maternal and fetal tissues were collected on embryonic day 18.5. Total RNAs were isolated, and gene expression levels were analyzed in both maternal and fetal tissues using the NanoString nCounter system. Interestingly, we found that the expression levels of cytochrome P450 (Cyp)1a1 and Cyp1b1 were significantly increased in response to PCB exposure in the tested maternal and fetal tissues. Furthermore, PCB exposure altered the expression of several other genes related to energy balance, oxidative stress, and epigenetic regulation in a manner that was less consistent across tissue types. These results indicate that maternal PCB126 exposure significantly alters gene expression in both developing fetuses and pregnant dams, and such changes vary in intensity and expressivity depending on tissue type. The altered gene expression may provide insights into pathophysiological mechanisms by which in utero PCB exposures contribute to PCB-induced postnatal metabolic diseases.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Joshua D Preston
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sara Y Ngo Tenlep
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Marissa K Cook
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Eric M Blalock
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92507, USA
| | - Hollie I Swanson
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kevin J Pearson
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
5
|
Wirgin I, Chambers RC, Waldman JR, Roy NK, Witting DA, Mattson MT. Effects of Hudson River Stressors on Atlantic Tomcod: Contaminants and a Warming Environment. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2023; 31:342-371. [PMID: 37621745 PMCID: PMC10446889 DOI: 10.1080/23308249.2023.2189483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The Hudson River (HR) Estuary has a long history of pollution with a variety of contaminants including PCBs, and dioxins. In fact, 200 miles of the mainstem HR is designated a U.S. federal Superfund site, the largest in the nation, because of PCB contamination. The tidal HR hosts the southernmost spawning population of Atlantic tomcod, and studies revealed a correlation between exposure of juveniles to warm water temperature during summer to abundance of spawning adults of the same cohort in the following winter. Further, a battery of mechanistically linked biomarkers, ranging from the molecular to the population levels, were significantly impacted from contaminant exposures of the HR tomcod population. In response to xenobiotic insult, the HR tomcod population developed resistance to PCB sand TCDD toxicity resulting from a deletion in the aryl hydrocarbon receptor2 (AHR2) gene. Furthermore, RNA-Seq analysis of global gene expression demonstrated that effects of the AHR2 polymorphism were far more pervasive than anticipated. The most highly PCB-contaminated sediments in the upper HR were dredged between 2009 and 2015 with the objective of lowering PCB concentrations in fishes in the lower HR. Success of the remediation project has been controversial. These observations suggest that tomcod provides an informative model to evaluate the efficacy of HR PCB remediation efforts on downriver fish populations and possible interactive effects between contaminant exposure and a warming environment.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | |
Collapse
|
6
|
Shen C, He J, Zhu K, Zheng N, Yu Y, He C, Yang C, Zuo Z. Mepanipyrim induces cardiotoxicity of zebrafish (Danio rerio) larvae via promoting AhR-regulated COX expression pathway. J Environ Sci (China) 2023; 125:650-661. [PMID: 36375947 DOI: 10.1016/j.jes.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/16/2023]
Abstract
The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yue Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
7
|
Martin NR, Patel R, Kossack ME, Tian L, Camarillo MA, Cintrón-Rivera LG, Gawdzik JC, Yue MS, Nwagugo FO, Elemans LMH, Plavicki JS. Proper modulation of AHR signaling is necessary for establishing neural connectivity and oligodendrocyte precursor cell development in the embryonic zebrafish brain. Front Mol Neurosci 2022; 15:1032302. [PMID: 36523606 PMCID: PMC9745199 DOI: 10.3389/fnmol.2022.1032302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-[p]-dioxin (TCDD) is a persistent global pollutant that exhibits a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. Epidemiological studies have associated AHR agonist exposure with multiple human neuropathologies. Consistent with the human data, research studies using laboratory models have linked pollutant-induced AHR activation to disruptions in learning and memory as well as motor impairments. Our understanding of endogenous AHR functions in brain development is limited and, correspondingly, scientists are still determining which cell types and brain regions are sensitive to AHR modulation. To identify novel phenotypes resulting from pollutant-induced AHR activation and ahr2 loss of function, we utilized the optically transparent zebrafish model. Early embryonic TCDD exposure impaired embryonic brain morphogenesis, resulted in ventriculomegaly, and disrupted neural connectivity in the optic tectum, habenula, cerebellum, and olfactory bulb. Altered neural network formation was accompanied by reduced expression of synaptic vesicle 2. Loss of ahr2 function also impaired nascent network development, but did not affect gross brain or ventricular morphology. To determine whether neural AHR activation was sufficient to disrupt connectivity, we used the Gal4/UAS system to express a constitutively active AHR specifically in differentiated neurons and observed disruptions only in the cerebellum; thus, suggesting that the phenotypes resulting from global AHR activation likely involve multiple cell types. Consistent with this hypothesis, we found that TCDD exposure reduced the number of oligodendrocyte precursor cells and their derivatives. Together, our findings indicate that proper modulation of AHR signaling is necessary for the growth and maturation of the embryonic zebrafish brain.
Collapse
Affiliation(s)
- Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Ratna Patel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Michelle E. Kossack
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Lucy Tian
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Manuel A. Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Layra G. Cintrón-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joseph C. Gawdzik
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Monica S. Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Favour O. Nwagugo
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Loes M. H. Elemans
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States,*Correspondence: Jessica S. Plavicki,
| |
Collapse
|
8
|
Roy MA, Mohan A, Karasik Y, Tobiason JE, Reckhow DA, Timme-Laragy AR. The Zebrafish (Danio rerio) Embryo Model as a Tool to Assess Drinking Water Treatment Efficacy for Freshwater Impacted by Crude Oil Spill. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2822-2834. [PMID: 36040130 PMCID: PMC9711864 DOI: 10.1002/etc.5472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Traditional approaches toward evaluating oil spill mitigation effectiveness in drinking water supplies using analytical chemistry can overlook residual hydrocarbons and treatment byproducts of unknown toxicity. Zebrafish (Danio rerio) were used to address this limitation by evaluating the reduction in toxicity to fish exposed to laboratory solutions of dissolved crude oil constituents treated with 3 mg/L ozone (O3 ) with or without a peroxone-based advanced oxidation process using 0.5 M H2 O2 /M O3 or 1 M H2 O2 /M O3 . Crude oil water mixtures (OWMs) were generated using three mixing protocols-orbital (OWM-Orb), rapid (OWM-Rap), and impeller (OWM-Imp) and contained dissolved total aromatic concentrations of 106-1019 µg/L. In a first experiment, embryos were exposed at 24 h post fertilization (hpf) to OWM-Orb or OWM-Rap diluted to 25%-50% of full-strength samples and in a second experiment, to untreated or treated OWM-Imp mixtures at 50% dilutions. Toxicity profiles included body length, pericardial area, and swim bladder inflation, and these varied depending on the OWM preparation, with OWM-Rap resulting in the most toxicity, followed by OWM-Imp and then OWM-Orb. Zebrafish exposed to a 50% dilution of OWM-Imp resulted in 6% shorter body length, 83% increased pericardial area, and no swim bladder inflation, but exposure to a 50% dilution of OWM-Imp treated with O3 alone or with 0.5 M H2 O2 /M O3 resulted in normal zebrafish development and average total aromatic destruction of 54%-57%. Additional aromatic removal occurred with O3 + 1 M H2 O2 /M O3 but without further attenuation of toxicity to zebrafish. This study demonstrates using zebrafish as an additional evaluation component for modeling the effectiveness of freshwater oil spill treatment methods. Environ Toxicol Chem 2022;41:2822-2834. © 2022 SETAC.
Collapse
Affiliation(s)
- Monika A. Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Aarthi Mohan
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Yankel Karasik
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - John E. Tobiason
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - David A. Reckhow
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Scovil AM, de Jourdan BP, Speers-Roesch B. Intraspecific Variation in the Sublethal Effects of Physically and Chemically Dispersed Crude Oil on Early Life Stages of Atlantic Cod (Gadus morhua). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1967-1976. [PMID: 35622057 DOI: 10.1002/etc.5394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The offshore oil industry in Atlantic Canada necessitates a greater understanding of the potential impacts of oil exposure and spill response measures on cold-water marine species. We used a standardized scoring index to characterize sublethal developmental impacts of physically and chemically dispersed crude oil in early life stages of Atlantic cod (Gadus morhua) and assessed intraspecific variation in the response among cod families. Cod (origin: Scotian Shelf, Canada) were laboratory-crossed to produce embryos from five specific families, which were subsequently exposed prehatch to gradient dilutions of a water-accommodated fraction (WAF) and a chemically enhanced WAF (CEWAF; prepared with Corexit 9500A) for 24 h. Postexposure, live embryos were transferred into filtered seawater and monitored to hatch; then, all live fish had sublethal endpoints assessed using the blue-sac disease (BSD) severity index. In both WAF and CEWAF groups, increasing exposure concentrations (measured as total petroleum hydrocarbons) resulted in an increased incidence of BSD symptoms (impaired swimming ability, increased degree of spinal curvature, yolk-sac edemas) in cod across all families. This positive concentration-dependent increase in BSD was similar between physically (WAF) versus chemically (CEWAF) dispersed oil exposures, indicating that dispersant addition does not exacerbate the effect of crude oil on BSD incidence in cod. Sensitivity varied between families, with some families having less BSD than others with increasing exposure concentrations. To our knowledge, our study is the first to demonstrate the occurrence in fishes of intraspecific variation among families in sublethal responses to oil and dispersant exposure. Our results suggest that sublethal effects of crude oil exposure will not be uniformly observed across cod populations and that sensitivity depends on genetic background. Environ Toxicol Chem 2022;41:1967-1976. © 2022 SETAC.
Collapse
Affiliation(s)
- Allie M Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | | | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
10
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
11
|
Grimard C, Mangold-Döring A, Alharbi H, Weber L, Hogan N, Jones PD, Giesy JP, Hecker M, Brinkmann M. Toxicokinetic Models for Bioconcentration of Organic Contaminants in Two Life Stages of White Sturgeon ( Acipenser transmontanus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11590-11600. [PMID: 34383468 DOI: 10.1021/acs.est.0c06867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The white sturgeon (Acipenser transmontanus) is an endangered ancient fish species that is known to be particularly sensitive to certain environmental contaminants, partly because of the uptake and subsequent toxicity of lipophilic pollutants prone to bioconcentration as a result of their high lipid content. To better understand the bioconcentration of organic contaminants in this species, toxicokinetic (TK) models were developed for the embryo-larval and subadult life stages. The embryo-larval model was designed as a one-compartment model and validated using whole-body measurements of benzo[a]pyrene (B[a]P) metabolites from a waterborne exposure to B[a]P. A physiologically based TK (PBTK) model was used for the subadult model. The predictive power of the subadult model was validated with an experimental data set of four chemicals. Results showed that the TK models could accurately predict the bioconcentration of organic contaminants for both life stages of white sturgeon within 1 order of magnitude of measured values. These models provide a tool to better understand the impact of environmental contaminants on the health and the survival of endangered white sturgeon populations.
Collapse
Affiliation(s)
- Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Annika Mangold-Döring
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen 52074, Germany
| | - Hattan Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
12
|
Loerracher AK, Braunbeck T. Cytochrome P450-dependent biotransformation capacities in embryonic, juvenile and adult stages of zebrafish (Danio rerio)-a state-of-the-art review. Arch Toxicol 2021; 95:2299-2334. [PMID: 34148099 PMCID: PMC8241672 DOI: 10.1007/s00204-021-03071-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Given the strong trend to implement zebrafish (Danio rerio) embryos as translational model not only in ecotoxicological, but also toxicological testing strategies, there is an increasing need for a better understanding of their capacity for xenobiotic biotransformation. With respect to the extrapolation of toxicological data from zebrafish embryos to other life stages or even other organisms, qualitative and quantitative differences in biotransformation pathways, above all in cytochrome P450-dependent (CYP) phase I biotransformation, may lead to over- or underestimation of the hazard and risk certain xenobiotic compounds may pose to later developmental stages or other species. This review provides a comprehensive state-of-the-art overview of the scientific knowledge on the development of the CYP1-4 families and corresponding phase I biotransformation and bioactivation capacities in zebrafish. A total of 68 publications dealing with spatiotemporal CYP mRNA expression patterns, activities towards mammalian CYP-probe substrates, bioactivation and detoxification activities, as well as metabolite profiling were analyzed and included in this review. The main results allow for the following conclusions: (1) Extensive work has been done to document mRNA expression of CYP isoforms from earliest embryonic stages of zebrafish, but juvenile and adult zebrafish have been largely neglected so far. (2) There is insufficient understanding of how sex- and developmental stage-related differences in expression levels of certain CYP isoforms may impact biotransformation and bioactivation capacities in the respective sexes and in different developmental stages of zebrafish. (3) Albeit qualitatively often identical, many studies revealed quantitative differences in metabolic activities of zebrafish embryos and later developmental stages. However, the actual relevance of age-related differences on the outcome of toxicological studies still needs to be clarified. (4) With respect to current remaining gaps, there is still an urgent need for further studies systematically assessing metabolic profiles and capacities of CYP isoforms in zebrafish. Given the increasing importance of Adverse Outcome Pathway (AOP) concepts, an improved understanding of CYP capacities appears essential for the interpretation and outcome of (eco)toxicological studies.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
15
|
Roy MA, Duche PR, Timme-Laragy AR. The sulfate metabolite of 3,3'-dichlorobiphenyl (PCB-11) impairs Cyp1a activity and increases hepatic neutral lipids in zebrafish larvae (Danio rerio). CHEMOSPHERE 2020; 260:127609. [PMID: 32693259 PMCID: PMC7530052 DOI: 10.1016/j.chemosphere.2020.127609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 05/25/2023]
Abstract
The environmental contaminant 3,3'-dichlorobiphenyl (PCB-11) is widely detected in environmental samples, and this parent compound along with its metabolites 4-OH-PCB-11 and 4-PCB-11-Sulfate are detected in human serum. Our previous research in zebrafish (Danio rerio) embryos shows exposure to 20 μM PCB-11 inhibits Cyp1a enzyme activity and perturbs lipid metabolism pathways. In this study, wildtype AB embryos underwent acute exposures from 1 to 4 days post fertilization (dpf) to 0.002-20 μM 4-OH-PCB-11 or 0.2-20 μM 4-PCB-11-Sulfate, with and without co-exposures to 100 μg/L benzo[a]pyrene (B[a]P) or 5 nM 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and were assessed for in vivo EROD activity and morphometrics. Chronic exposures from 1 to 15 dpf to assess lipid accumulation using Oil-Red-O staining were also conducted with 0.2 μM parent or metabolite compounds, alongside a co-exposure experiment of 0.002-0.2 μM 4-PCB-11-Sulfate and 10 μg/L B[a]P. For acute experiments, 2 and 20 μM 4-OH-PCB-11 was lethal but no Cyp1a or morphological effects were observed at lower concentrations; 20 μM 4-PCB-11-Sulfate significantly lowered the Cyp1a activity of B[a]P and PCB-126 but did not alter morphological development. For chronic experiments, 0.2 μM 4-PCB-11-Sulfate significantly increased lipid accumulation 30% in single exposures and 44% in co-exposures with B[a]P. Further long-term studies would better elucidate the effects of this contaminant, particularly in the context of environmentally-relevant mixtures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Perseverance R Duche
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
16
|
Price ER, Mager EM. The effects of exposure to crude oil or PAHs on fish swim bladder development and function. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108853. [PMID: 32777466 DOI: 10.1016/j.cbpc.2020.108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America.
| | - Edward M Mager
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America
| |
Collapse
|
17
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
18
|
Grimard C, Mangold-Döring A, Schmitz M, Alharbi H, Jones PD, Giesy JP, Hecker M, Brinkmann M. In vitro-in vivo and cross-life stage extrapolation of uptake and biotransformation of benzo[a]pyrene in the fathead minnow (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105616. [PMID: 33039795 DOI: 10.1016/j.aquatox.2020.105616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Understanding internal dose metrics is integral to adequately assess effects environmental contaminants might have on aquatic wildlife, including fish. In silico toxicokinetic (TK) models are a leading approach for quantifying internal exposure metrics for fishes; however, they often do not adequately consider chemicals that are actively biotransformed and have not been validated against early-life stages (ELS) that are often considered the most sensitive to the exposure to contaminants. To address these uncertainties, TK models were parameterized for the rapidly biotransformed chemical benzo[a]pyrene (B[a]P) in embryo-larval and adult life stages of fathead minnows. Biotransformation of B[a]P was determined through measurements of in vitro clearance. Using in vitro-in vivo extrapolation, in vitro clearance was integrated into a multi-compartment TK model for adult fish and a one-compartment model for ELS. Model predictions were validated using measurements of B[a]P metabolites from in vivo flow-through exposures to graded concentrations of water-borne B[a]P. Significantly greater amounts of B[a]P metabolites were observed with exposure to greater concentrations of parent compound in both life stages. However, when assessing biotransformation capacity, no differences in phase I or phase II biotransformation were observed with greater exposures to B[a]P. Results of modelling suggested that biotransformation of B[a]P can be successfully implemented into in silico models to accurately predict life stage-specific abundances of B[a]P metabolites in either whole-body larvae or the bile of adult fish. Models developed increase the scope of applications in which TK models can be used to support environmental risk assessments.
Collapse
Affiliation(s)
- Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Annika Mangold-Döring
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Markus Schmitz
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hattan Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, Texas, USA
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Aranguren-Abadía L, Donald CE, Eilertsen M, Gharbi N, Tronci V, Sørhus E, Mayer P, Nilsen TO, Meier S, Goksøyr A, Karlsen OA. Expression and localization of the aryl hydrocarbon receptors and cytochrome P450 1A during early development of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105558. [PMID: 32673888 DOI: 10.1016/j.aquatox.2020.105558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of dioxins and dioxin-like compounds (DLCs) in vertebrates. Two clades of the Ahr family exist in teleosts (Ahr1 and Ahr2), and it has been demonstrated that Ahr2 is the main protein involved in mediating the toxicity of dioxins and DLCs in most teleost species. Recently, we characterized the Atlantic cod (Gadus morhua) Ahr1a and Ahr2a receptors. To further explore a possible subfunction partitioning of Ahr1a and Ahr2a in Atlantic cod we have mapped the expression and localization of ahr1a and ahr2a in early developmental stages. Atlantic cod embryos were continuously exposed in a passive-dosing exposure system to the Ahr agonist, benzo[a]pyrene (B[a]P), from five days post fertilization (dpf) until three days post hatching (dph). Expression of ahr1a, ahr2a, and the Ahr-target genes, cyp1a and ahrrb, was assessed in embryos (8 dpf and 10 dpf) and larvae (3 dph) with quantitative real-time PCR analyses (qPCR), while in situ hybridization was used to assess the localization of expression of ahr1a, ahr2a and cyp1a. Quantitative measurements showed an increased cyp1a expression in B[a]P-exposed samples at all sampling points, and for ahr2a at 10 dpf, confirming the activation of the Ahr-signalling pathway. Furthermore, B[a]P strongly induced ahr2a and cyp1a expression in the cardiovascular system and skin, respectively, of embryos and larvae. Induced expression of both ahr2a and cyp1a was also revealed in the liver of B[a]P-exposed larvae. Our results suggest that Ahr2a is the major subtype involved in mediating responses to B[a]P in early developmental stages of Atlantic cod, which involves transcriptional regulation of biotransformation genes, such as cyp1a. The focused expression of ahr1a in the eye of embryos and larvae, and the presence of ahr2a transcripts in the jaws and fin nodes, further indicate evolved specialized roles of the two Ahrs in ontogenesis.
Collapse
Affiliation(s)
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Naouel Gharbi
- NORCE Norwegian Research Centre AS, Uni Research Environment, Bergen, Norway
| | - Valentina Tronci
- NORCE Norwegian Research Centre AS, Uni Research Environment, Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Tom Ole Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Song JY, Casanova-Nakayama A, Möller AM, Kitamura SI, Nakayama K, Segner H. Aryl Hydrocarbon Receptor Signaling Is Functional in Immune Cells of Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2020; 21:E6323. [PMID: 32878328 PMCID: PMC7503690 DOI: 10.3390/ijms21176323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The arylhydrocarbon receptor (AhR) is an important signaling pathway in the immune system of mammals. In addition to its physiological functions, the receptor mediates the immunotoxic actions of a diverse range of environmental contaminants that bind to and activate the AhR, including planar halogenated aromatic hydrocarbons (PHAHs or dioxin-like compounds) and polynuclear aromatic hydrocarbons (PAHs). AhR-binding xenobiotics are immunotoxic not only to mammals but to teleost fish as well. To date, however, it is unknown if the AhR pathway is active in the immune system of fish and thus may act as molecular initiating event in the immunotoxicity of AhR-binding xenobiotics to fish. The present study aims to examine the presence of functional AhR signaling in immune cells of rainbow trout (Oncorhynchus mykiss). Focus is given to the toxicologically relevant AhR2 clade. By means of RT-qPCR and in situ hybdridization, we show that immune cells of rainbow trout express ahr 2α and ahr 2β mRNA; this applies for immune cells isolated from the head kidney and from the peripheral blood. Furthermore, we show that in vivo as well as in vitro exposure to the AhR ligand, benzo(a)pyrene (BaP), causes upregulation of the AhR-regulated gene, cytochrome p4501a, in rainbow trout immune cells, and that this induction is inhibited by co-treatment with an AhR antagonist. Taken together, these findings provide evidence that functional AhR signaling exists in the immune cells of the teleost species, rainbow trout.
Collapse
Affiliation(s)
- Jun-Young Song
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| | - Anja-Maria Möller
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| |
Collapse
|
21
|
Loerracher AK, Braunbeck T. Inducibility of cytochrome P450-mediated 7-methoxycoumarin-O-demethylase activity in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105540. [PMID: 32569997 DOI: 10.1016/j.aquatox.2020.105540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The zebrafish (Danio rerio) embryo has increasingly been used as an alternative model in human and environmental toxicology. Since the cytochrome P450 (CYP) system is of fundamental importance for the understanding and correct interpretation of the outcome of toxicological studies, constitutive and xenobiotic-induced 7-methoxycoumarin-O-demethylase (MCOD), i.e. 'mammalian CYP2-like', activities were monitored in vivo in zebrafish embryos via confocal laser scanning microscopy. In order to elucidate molecular mechanisms underlying the MCOD induction, dose-dependent effects of the prototypical CYP inducers β-naphthoflavone (aryl hydrocarbon receptor (AhR) agonist), rifampicin (pregnane X receptor (PXR) agonist), carbamazepine and phenobarbital (constitutive androstane receptor (CAR) agonists) were analyzed in zebrafish embryos of varying age. Starting from 36 h of age, all embryonic stages of zebrafish could be shown to have constitutive MCOD activity, albeit with spatial variation and at distinct levels. Whereas carbamazepine, phenobarbital and rifampicin had no effect on in vivo MCOD activity in 96 h old zebrafish embryos, the model aryl hydrocarbon receptor agonist β-naphthoflavone significantly induced MCOD activity in 96 h old zebrafish embryos at 46-734 nM, however, without a clear concentration-effect relationship. Induction of MCOD activity by β-naphthoflavone gradually decreased with progression of embryonic development. By in vivo characterization of constitutive and xenobiotic-induced MCOD activity patterns in 36, 60, 84 and 108 h old zebrafish embryos, this decrease could primarily be attributed to an age-related decline in the induction of MCOD activity in the cardiovascular system. Results of this study provide novel insights into the mechanism and extent, by which specific CYP activities in early life-stages of zebrafish can be influenced by exposure to xenobiotics. The study thus lends further support to the view that zebrafish embryos- at least from an age of 36 h - have an elaborate and inducible biotransformation system.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany
| |
Collapse
|
22
|
Jin H, Ji C, Ren F, Aniagu S, Tong J, Jiang Y, Chen T. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121521. [PMID: 31699484 DOI: 10.1016/j.jhazmat.2019.121521] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE), a widely used chlorinated solvent, is a common environmental pollutant. Current evidence shows that TCE could induce heart defects during embryonic development, but the underlining mechanism(s) remain unclear. Since activation of the aryl hydrocarbon receptor (AHR) could induce oxidative stress, we hypothesized that AHR-mediated oxidative stress may play a role in the cardiac developmental toxicity of TCE. In this study, we found that the reactive oxygen species (ROS) scavenger, N-Acetyl-L-cysteine (NAC), and AHR inhibitors, CH223191 (CH) and StemRegenin 1, significantly counteracted the TCE-induced heart malformations in zebrafish embryos. Moreover, both CH and NAC suppressed TCE-induced ROS and 8-OHdG (8-hydroxy-2' -deoxyguanosine). TCE did not affect ahr2 and cyp1a expression, but increased cyp1b1 expression, which was restored by CH supplementation. CH also attenuated the TCE-induced mRNA expression changes of Nrf2 signalling genes (nrf2b, gstp2, sod2, ho1, nqo1) and cardiac differentiation genes (gata4, hand2, c-fos, sox9b). In addition, the TCE enhanced SOD activity was attenuated by CH. Morpholino knockdown confirmed that AHR mediated the TCE-induced ROS and 8-OHdG generation in the heart of zebrafish embryos. In conclusion, our results suggest that AHR mediates TCE-induced oxidative stress, leading to DNA damage and heart malformations in zebrafish embryos.
Collapse
Affiliation(s)
- Hongmei Jin
- Medical College of Soochow University, Suzhou, PR China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, PR China
| | - Fei Ren
- Medical College of Soochow University, Suzhou, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, PR China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Jian Tong
- Medical College of Soochow University, Suzhou, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, PR China
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, PR China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, PR China.
| |
Collapse
|
23
|
Aranguren-Abadía L, Lille-Langøy R, Madsen AK, Karchner SI, Franks DG, Yadetie F, Hahn ME, Goksøyr A, Karlsen OA. Molecular and Functional Properties of the Atlantic Cod ( Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1033-1044. [PMID: 31852180 PMCID: PMC7003535 DOI: 10.1021/acs.est.9b05312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr's with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr's.
Collapse
Affiliation(s)
| | | | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Meyer-Alert H, Larsson M, Hollert H, Keiter SH. Benzo[a]pyrene and 2,3-benzofuran induce divergent temporal patterns of AhR-regulated responses in zebrafish embryos (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109505. [PMID: 31394372 DOI: 10.1016/j.ecoenv.2019.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| |
Collapse
|
25
|
Roy MA, Sant KE, Venezia OL, Shipman AB, McCormick SD, Saktrakulkla P, Hornbuckle KC, Timme-Laragy AR. The emerging contaminant 3,3'-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113027. [PMID: 31421573 PMCID: PMC7027435 DOI: 10.1016/j.envpol.2019.113027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 05/25/2023]
Abstract
3,3'-dichlorobiphenyl (PCB-11) is an emerging PCB congener widely detected in environmental samples and human serum, but its toxicity potential is poorly understood. We assessed the effects of three concentrations of PCB-11 on embryotoxicity and Aryl hydrocarbon receptor (Ahr) pathway interactions in zebrafish embryos (Danio rerio). Wildtype AB or transgenic Tg(gut:GFP) strain zebrafish embryos were exposed to static concentrations of PCB-11 (0, 0.2, 2, or 20 μM) from 24 to 96 h post fertilization (hpf), and gross morphology, Cytochrome P4501a (Cyp1a) activity, and liver development were assessed via microscopy. Ahr interactions were probed via co-exposures with PCB-126 or beta-naphthoflavone (BNF). Embryos exposed to 20 μM PCB-11 were also collected for PCB-11 body burden, qRT-PCR, RNAseq, and histology. Zebrafish exposed to 20 μM PCB-11 absorbed 0.18% PCB-11 per embryo at 28 hpf and 0.61% by 96 hpf, and their media retained 1.36% PCB-11 at 28 hpf and 0.84% at 96 hpf. This concentration did not affect gross morphology, but altered the transcription of xenobiotic metabolism and liver development genes, impeded liver development, and increased hepatocyte vacuole formation. In co-exposures, 20 μM PCB-11 prevented deformities caused by PCB-126 but exacerbated deformities in co-exposures with BNF. This study suggests that PCB-11 can affect liver development, act as a partial agonist/antagonist of the Ahr pathway, and act as an antagonist of Cyp1a activity to modify the toxicity of compounds that interact with the Ahr pathway.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Karilyn E Sant
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Olivia L Venezia
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alix B Shipman
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Stephen D McCormick
- US Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Panithi Saktrakulkla
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
26
|
Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. Impacts of deepwater horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108558. [PMID: 31202903 DOI: 10.1016/j.cbpc.2019.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
An explosion on the Deepwater Horizon (DWH) oil rig in 2010 lead to the largest marine oil spill to occur in US history, resulting in significant impacts to the ecosystems and organisms in the Northern Gulf of Mexico (GoM). The present review sought to summarize and discuss findings from the 50+ peer-reviewed publications reporting effects of DWH oil exposure on teleost fish, and concludes that oil toxicity is a multi-target, multi-organ syndrome with substantial species-specific sensitivity differences. Of the 15 species tested with characterized exposures, 20% show effects at concentrations <1 μg l-1 while 50% display effects at <8.6 μg l-1 ΣPAH50, concentrations well within the range of reported environmental levels during the spill. Cardiotoxic effects are among the most frequently reported endpoints in DWH oil exposure studies and are thought to have significant downstream effects on fitness and survival. However, additional and possibly cardio-toxic independent impacts on sensory function and behavior are reported at very low exposure concentrations (< 1 μg l-1 ∑PAH50) and are clearly deserving of further study. Available information about modes of action leading to different categories of effects are summarized in the present review. An overview of the literature illustrates that early life stages (ELS) are approximately 1-order of magnitude more sensitive than corresponding later life stages, but also illustrates that adults can be impacted at concentrations as low as 4 μg l-1 ΣPAH50. The majority of studies exploring DWH oil toxicity in fish are performed using acute exposures (1-2 days), mid-range test temperatures (26-28 °C) and measure effects at the molecular to organismal levels, leaving a pressing need for more long-term exposures, exposures at the upper and lower levels of GoM relevant temperatures, and studies investigating population level impacts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA
| |
Collapse
|
27
|
Han J, Park JC, Choi BS, Kim MS, Kim HS, Hagiwara A, Park HG, Lee BY, Lee JS. The genome of the marine monogonont rotifer Brachionus plicatilis: Genome-wide expression profiles of 28 cytochrome P450 genes in response to chlorpyrifos and 2-ethyl-phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105230. [PMID: 31306923 DOI: 10.1016/j.aquatox.2019.105230] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Brachionus spp. (Rotifera: Monogononta) are globally distributed in aquatic environments and play important roles in the aquatic ecosystem. The marine monogonont rotifer Brachionus plicatilis is considered a suitable model organism for ecology, evolution, and ecotoxicology. In this study, we assembled and characterized the B. plicatilis genome. The total length of the assembled genome was 106.9 Mb and the number of final scaffolds was 716 with an N50 value of 1.15 Mb and a GC content of 26.75%. A total of 20,154 genes were annotated after manual curation. To demonstrate the use of whole genome data, we targeted one of the main detoxifying enzyme of phase I detoxification system and identified in a total of 28 cytochrome P450 s (CYPs). Based on the phylogenetic analysis using the maximum likelihood, 28 B. plicatilis-CYPs were apparently separated into five different clans, namely, 2, 3, 4, mitochondrial (MT), and 46 clans. To better understand the CYPs-mediated xenobiotic detoxification, we measured the mRNA expression levels of 28 B. plicatilis CYPs in response to chlorpyrifos and 2-ethyl-phenanthrene. Most B. plicatilis CYPs were significantly modulated (P < 0.05) in response to chlorpyrifos and 2-ethyl-phenanthrene. In addition, xenobiotic-sensing nuclear receptor (XNR) response element sequences were identified in the 5 kb upstream of promoter regions of 28 CYPs from the genome of B. plicatilis, indicating that these XNR can be associated with detoxification of xenobiotics. Overall, the assembled B. plicatilis genome presented here will be a useful resource for a better understanding the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification in this species.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam 13558, Republic of Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Sci Rep 2019; 9:10878. [PMID: 31350436 PMCID: PMC6659674 DOI: 10.1038/s41598-019-47350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
As a first host barrier, the skin is constantly exposed to environmental insults that perturb its integrity. Tight regulation of skin homeostasis is largely controlled by the aryl hydrocarbon receptor (AhR). Here, we demonstrate that Henna and its major pigment, the naphthoquinone Lawsone activate AhR, both in vitro and in vivo. In human keratinocytes and epidermis equivalents, Lawsone exposure enhances the production of late epidermal proteins, impacts keratinocyte differentiation and proliferation, and regulates skin inflammation. To determine the potential use of Lawsone for therapeutic application, we harnessed human, murine and zebrafish models. In skin regeneration models, Lawsone interferes with physiological tissue regeneration and inhibits wound healing. Conversely, in a human acute dermatitis model, topical application of a Lawsone-containing cream ameliorates skin irritation. Altogether, our study reveals how a widely used natural plant pigment is sensed by the host receptor AhR, and how the physiopathological context determines beneficial and detrimental outcomes.
Collapse
|
29
|
Cardiovascular Effects of PCB 126 (3,3',4,4',5-Pentachlorobiphenyl) in Zebrafish Embryos and Impact of Co-Exposure to Redox Modulating Chemicals. Int J Mol Sci 2019; 20:ijms20051065. [PMID: 30823661 PMCID: PMC6429282 DOI: 10.3390/ijms20051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
The developing cardiovascular system of zebrafish is a sensitive target for many environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and circulatory failure, and a concentration-dependent reduction of cardiac output and body length at 80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be both positively and negatively modulated by different compounds; co-treatment with α-tocopherol (vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126 effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative potential of environmental pollutants.
Collapse
|
30
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
31
|
Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. A temporal high-resolution investigation of the Ah-receptor pathway during early development of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:117-129. [PMID: 30245344 DOI: 10.1016/j.aquatox.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kim Ladermann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| |
Collapse
|
32
|
Otte JC, Schultz B, Fruth D, Fabian E, van Ravenzwaay B, Hidding B, Salinas ER. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio). Toxicol Sci 2018; 159:86-93. [PMID: 28903500 DOI: 10.1093/toxsci/kfx116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology.
Collapse
Affiliation(s)
| | - Bernadette Schultz
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Daniela Fruth
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Eric Fabian
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | | | - Björn Hidding
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Edward R Salinas
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| |
Collapse
|
33
|
Rahman MS, Thomas P. Interactive effects of hypoxia and PCB co-exposure on expression of CYP1A and its potential regulators in Atlantic croaker liver. ENVIRONMENTAL TOXICOLOGY 2018; 33:411-421. [PMID: 29316220 DOI: 10.1002/tox.22527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, 78373
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, 78373
| |
Collapse
|
34
|
Kais B, Ottermanns R, Scheller F, Braunbeck T. Modification and quantification of in vivo EROD live-imaging with zebrafish (Danio rerio) embryos to detect both induction and inhibition of CYP1A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:330-347. [PMID: 28982082 DOI: 10.1016/j.scitotenv.2017.09.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/14/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
The visualization of specific activation of the aryl hydrocarbon receptor (AhR) directly in the zebrafish embryo (Danio rerio) via live-imaging is a reliable tool to investigate the presence of dioxin-like substances in environmental samples. The co-existence of inducers and inhibitors of cytochrome P450-dependent monooxygenases (CYP1A) is typical of complex environmental mixtures and requires modifications of the in vivo EROD assay: For this end, zebrafish embryos were used to evaluate the EROD-modifying potentials of common single-compound exposures as well as binary mixtures with the PAH-type Ah-receptor agonist β-naphthoflavone. For chemical testing, chlorpyrifos and Aroclor 1254 were selected; β-naphthoflavone served as maximum EROD induction control. Chlorpyrifos (≤EC10) could be documented to be a strong CYP1A inhibitor causing characteristic edema-related toxicity. Aroclor 1254 resulted in inhibition of CYP1A catalytic activity in a concentration- and specific time-dependent manner. Next to a fast CYP1A induction, CYP1A inhibition could also be detected after 3h short-term exposure of zebrafish embryos to chlorpyrifos. This communication also describes techniques for the quantification of fluorescence signals via densitometry as a basis for subsequent statistical assessment. The co-exposure approach with zebrafish embryos accounts for the nature of potential interaction between CYP1A inducers and inhibitors and thus pays tribute to the complexity of environmental mixtures. The co-exposure EROD live-imaging assay thus facilitates a better understanding of mixture effects and allows a better assessment and interpretation of (embryo) toxic potentials.
Collapse
Affiliation(s)
- Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Richard Ottermanns
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Franziska Scheller
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Hausen J, Otte JC, Legradi J, Yang L, Strähle U, Fenske M, Hecker M, Tang S, Hammers-Wirtz M, Hollert H, Keiter SH, Ottermanns R. Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4023-4036. [PMID: 28391457 DOI: 10.1007/s11356-017-8977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/03/2017] [Indexed: 05/10/2023]
Abstract
In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.
Collapse
Affiliation(s)
- Jonas Hausen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jens C Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jessica Legradi
- Environment and Health, VU Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group for Translational Medicine and Pharmacology, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Kackertstraße 10, 52072, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
36
|
Aluru N, Karchner SI, Glazer L. Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci 2017; 160:386-397. [PMID: 28973690 PMCID: PMC5837202 DOI: 10.1093/toxsci/kfx192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| |
Collapse
|
37
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Effects of the soya isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: Thyroid, estrogenic and metabolic biomarkers. Gen Comp Endocrinol 2017; 250:136-151. [PMID: 28634083 DOI: 10.1016/j.ygcen.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Maria Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
38
|
Blanc M, Kärrman A, Kukucka P, Scherbak N, Keiter S. Mixture-specific gene expression in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonic acid (PFOS), perfluorohexanoic acid (PFHxA) and 3,3',4,4',5-pentachlorobiphenyl (PCB126). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:249-257. [PMID: 28283292 DOI: 10.1016/j.scitotenv.2017.02.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are persistent organic pollutants of high concern because of their environmental persistence, bioaccumulation and toxic properties. Besides, the amphiphilic properties of fluorinated compounds such as PFOS and perfluorohexanoic acid (PFHxA) suggest a role in increasing cell membrane permeability and solubilizing chemicals. The present study aimed at investigating whether PFOS and PFHxA are capable of modifying the activation of PCB126 toxicity-related pathways. For this purpose, zebrafish embryos were exposed in semi-static conditions to 7.5μg/L of PCB126 alone, in the presence of 25mg/L of PFOS, 15.7mg/L of PFHxA or in the presence of both PFOS and PFHxA. Quantitative PCR was performed on embryos aged from 24h post fertilization (hpf) to 96 hpf to investigate expression changes of genes involved in metabolism of xenobiotics (ahr2, cyp1a), oxidative stress (gpx1a, tp53), lipids metabolism (acaa2, osbpl1a), and epigenetic mechanisms (dnmt1, dnmt3ba). Cyp1a and ahr2 expression were significantly induced by the presence of PCB126. However, after 72 and 78h of exposure, induction of cyp1a expression was significantly lower when embryos were co-exposed to PCB126+PFOS+PFHxA when compared to PCB126-exposed embryos. Significant upregulation of gpx1a occurred after exposure to PCB126+PFHxA and to PCB126+PFOS+PFHxA at 30 and 48 hpf. Besides, embryos appeared more sensitive to PCB126+PFOS+PFHxA at 78 hpf: acaa2 and osbpl1a were significantly downregulated; dnmt1 was significantly upregulated. While presented as environmentally safe, PFHxA demonstrated that it could affect gene expression patterns in zebrafish embryos when combined to PFOS and PCB126, suggesting that such mixture may increase PCB126 toxicity. This is of particular relevance since PFHxA is persistent and still being ejected into the environment. Moreover, it provides additional information as to the importance to integrate mixture effects of chemicals in risk assessment and biomonitoring frameworks.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Petr Kukucka
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
39
|
Kais B, Schiwy S, Hollert H, Keiter SH, Braunbeck T. In vivo EROD assays with the zebrafish (Danio rerio) as rapid screening tools for the detection of dioxin-like activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:269-280. [PMID: 28268020 DOI: 10.1016/j.scitotenv.2017.02.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The present study compares two alternative in vivo approaches for the measurement of ethoxyresorufin-O-deethylase (EROD) activity in zebrafish (Danio rerio) following exposure to acetonic model sediment extracts: (1) the live-imaging EROD assay for the direct detection of EROD induction in individual livers via epifluorescence, and (2) the fish embryo EROD assay in subcellular fractions derived from entire zebrafish embryos after in vivo exposure. For toxicity assessment, each sediment extract was tested with the standard fish embryo test (FET). Upon completion of a functioning liver after 72h, the embryos gave a distinct fluorescent signal in the liver, and a corresponding EROD activity could be detected in the fish embryo EROD assay. The exposure time in the live-imaging EROD assay was reduced to 3h, which resulted in a stronger, less variable and more sensitive EROD response. Overall, the live-imaging and the fish embryo EROD assays showed the same tendencies and gave comparable results, e.g. a concentration-dependent increase in EROD activity at concentrations one order of magnitude below concentrations producing macroscopically visible abnormalities. At higher concentrations, however, a decrease of EROD activity was observed in either test. Both tests ranked the three model sediment extracts in the same order. Results indicate that both test systems complement each other and together provide a rapid and reliable in vivo tool to investigate the presence of dioxin-like substances in environmental samples.
Collapse
Affiliation(s)
- Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| |
Collapse
|
40
|
de Perre C, Murphy TM, Lydy MJ. Mixture toxicity of phostebupirim and cyfluthrin: Species-specific responses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1947-1954. [PMID: 28019697 DOI: 10.1002/etc.3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Currently, the potential impact of insecticide mixtures to nontarget organisms is largely unknown, and additional study is needed. The present study investigated the mixture toxicity of the organophosphate insecticide phostebupirim and the pyrethroid insecticide cyfluthrin using 4 nontarget species including Daphnia magna, Hyalella azteca, Pimephales promelas (fathead minnow), and Danio rerio (zebrafish). For each species, the toxicity of equipotent mixtures was compared with the expected toxicity estimated using the independent action (IA) and concentration addition (CA) models. Lethal and sublethal responses to D. magna and H. azteca were best described with the IA model. For both fish species, mixture toxicity was significantly higher than that estimated using either mixture model. The synergism noted in fish exposed to the combination of phostebupirim and cyfluthrin was confirmed by exposing P. promelas larvae to a nontoxic dose of phostebupirim and a range of toxic cyfluthrin concentrations, and vice versa. Sublethal and lethal concentrations to fish were up to 7 times lower for the mixture than in concurrently run individual compound exposures. Potential mechanisms for the synergistic responses found in fish are presented. Environ Toxicol Chem 2017;36:1947-1954. © 2016 SETAC.
Collapse
Affiliation(s)
- Chloe de Perre
- Center for Fisheries, Aquaculture, and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Tracye M Murphy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
41
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
42
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
43
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
44
|
Chen YY, Chan KM. Differential effects of metal ions on TCDD-induced cytotoxicity and cytochrome P4501A1 gene expression in a zebrafish liver (ZFL) cell-line. Metallomics 2016; 8:236-51. [PMID: 26612010 DOI: 10.1039/c5mt00219b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Trace metal ions and trace organic compounds are common co-contaminants in the environment that pose risks to human health. We evaluated the effects of four metal ions (As(3+), Cu(2+), Hg(2+), and Zn(2+)) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced cytotoxicity and the expression of the cytochrome P4501A1 gene (cyp1a1) in the zebrafish liver (ZFL) cell line. A metal accumulation study showed that Cu and Zn did not accumulate in ZFL cells. However, As and Hg did accumulate, which resulted in the inhibition of TCDD-mediated induction of cyp1a1 mRNA and protein expression, and 7-ethoxyresorufin O-deethylase activity. A luciferase assay showed that both As(3+) and Hg(2+) inhibited the TCDD-induced activity of gene constructs containing either synthetic 3XRE or a distal cyp1a1 promoter region, implying that the decreased levels of TCDD-induced cyp1a1 were due to transcriptional effects. A proteomic study showed that the toxic effects of As(3+) might be due to changes in cellular metabolic processes, the cellular stimulation response and the cellular redox state in ZFL cells.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, Chinese University, Sha Tin, Hong Kong SAR, China.
| | - King Ming Chan
- School of Life Sciences, Chinese University, Sha Tin, Hong Kong SAR, China.
| |
Collapse
|
45
|
Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:113-123. [PMID: 27829195 DOI: 10.1016/j.aquatox.2016.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|
46
|
Williams LM, Lago BA, McArthur AG, Raphenya AR, Pray N, Saleem N, Salas S, Paulson K, Mangar RS, Liu Y, Vo AH, Shavit JA. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:141-154. [PMID: 27716579 PMCID: PMC5274700 DOI: 10.1016/j.aquatox.2016.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 05/17/2023]
Abstract
Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants as compared to an adult. In response to pro-oxidant exposure, members of the Cap'n'Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including Nfe2 and Nfe2-related factors, Nrfs) activate the expression of genes whose protein products contribute to reduced toxicity. Here, we studied the role of the CNC protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish (Danio rerio). Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at one of three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Early in development, KO animals suffered from hypochromia that was made more severe through exposure to pro-oxidants; this phenotype in the KO may be linked to decreased expression of alas2, a gene involved in heme synthesis. WT and KO eleutheroembryos and larvae were phenotypically equally affected by exposure to pro-oxidants, where tBOOH caused more pronounced phenotypes as compared to diquat. Comparing diquat and tBOOH exposed embryos relative to the WT untreated control, a greater number of genes were up-regulated in the tBOOH condition as compared to diquat (tBOOH: 304 vs diquat: 148), including those commonly found to be differentially regulated in the vertebrate oxidative stress response (OSR) (e.g. hsp70.2, txn1, and gsr). When comparing WT and KO across all treatments and times, there were 1170 genes that were differentially expressed, of which 33 are known targets of the Nrf proteins Nrf1 and Nrf2. More specifically, in animals exposed to pro-oxidants a total of 968 genes were differentially expressed between WT and KO across developmental time, representing pathways involved in coagulation, embryonic organ development, body fluid level regulation, erythrocyte differentiation, and oxidation-reduction, amongst others. The greatest number of genes that changed in expression between WT and KO occurred in animals exposed to diquat at 2h post fertilization (hpf). Across time and treatment, there were six genes (dhx40, cfap70, dnajb9b, slc35f4, spi-c, and gpr19) that were significantly up-regulated in KO compared to WT and four genes (fhad1, cyp4v7, nlrp12, and slc16a6a) that were significantly down-regulated. None of these genes have been previously identified as targets of Nfe2 or the Nrf family. These results demonstrate that the zebrafish Nfe2 may be a regulator of both primitive erythropoiesis and the OSR during development.
Collapse
Affiliation(s)
- Larissa M Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Briony A Lago
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Nicholas Pray
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Nabil Saleem
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Sophia Salas
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Katherine Paulson
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Roshni S Mangar
- The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA; College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA.
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andy H Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Plant lignan secoisolariciresinol suppresses pericardial edema caused by dioxin-like compounds in developing zebrafish: Implications for suppression of morphological abnormalities. Food Chem Toxicol 2016; 96:160-6. [DOI: 10.1016/j.fct.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
|
48
|
In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage. Reprod Toxicol 2016; 64:50-6. [DOI: 10.1016/j.reprotox.2016.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
|
49
|
Time-dependent transcriptomic and biochemical responses of 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are explained by AHR activation time. Biochem Pharmacol 2016; 115:134-43. [PMID: 27301797 DOI: 10.1016/j.bcp.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
6-Formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are ligands of the aryl hydrocarbon receptor (AHR) and bind to the AHR with high affinity. Until recently, TCDD was considered to be the most potent AHR agonist, but several recent studies indicate that FICZ binds with greater affinity to the AHR than TCDD. To advance our understanding of the similarities and differences of the effects of FICZ and TCDD exposure in chicken embryo hepatocyte (CEH) cultures, we compared relative expression changes of 27 dioxin-responsive genes by the use of a chicken PCR array, porphyrin accumulation and ethoxyresorufin-O-deethylase (EROD) activity at different time points. In addition, an egg injection study was performed to assess the effects of FICZ on the developing chicken embryo. The results of the current study showed: (1) mean EROD-derived relative potency values for FICZ compared to TCDD changed as a function of time (i.e. 9, 0.004, 0.0008 and 0.00008 at 3, 8, 24, and 48h, respectively) in CEH cultures; (2) FICZ exposure did not result in porphyrin accumulation in CEH cultures; (3) concordance between gene expression profiles for FICZ and TCDD was time- and concentration-dependent, and (4) no mortality or morphological abnormalities were observed in chicken embryos injected with 0.87ng FICZ/g egg into the air cell. The results presented herein suggest that while FICZ and TCDD share similar molecular targets, transient versus sustained AHR activation by FICZ and TCDD result in differential transcriptomic responses. Moreover, rapid metabolism of FICZ in hepatocytes resulted in a significant decrease in the induction of EROD activity.
Collapse
|
50
|
Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders. Toxicol Appl Pharmacol 2016; 296:73-84. [PMID: 26853319 DOI: 10.1016/j.taap.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease.
Collapse
|