1
|
Lee SY, Choi JW, Lee TG, Heo MB, Son JG. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. NANOSCALE ADVANCES 2024:d4na00743c. [PMID: 39398624 PMCID: PMC11465410 DOI: 10.1039/d4na00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Reliable characterization of protein coronas (PCs) that form when nanomaterials are introduced into biological fluids is a critical step in the development of safe and efficient nanomedicine. We observed that bovine serum albumin (BSA)-coated multi-walled carbon nanotubes (MWCNTs) do not induce cytotoxicity, but have different cellular uptake rates depending on the BSA pretreatment concentration. To determine how these slight differences affect A549 cell responses and intracellular changes, we conducted spectroscopic (circular dichroism and Fourier-transform infrared) and spectrometric (nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses. The various characterization techniques conducted in this study reveal the following. (i) The composition ratio of PCs on MWCNTs differs depending on the BSA concentration. (ii) Analysis of the secondary structure of the proteins revealed that the α-helix structure increased with increasing BSA concentration. (iii) Proteomic analysis showed that different biological pathways were activated at levels higher and lower than 5 mg mL-1. Such combined spectroscopic and spectrometric approaches provide an integrated understanding of PC composition as well as how nano/bio-interface states are linked to cellular-level responses. Our results can support reliable and practical applications of nanomedicine development.
Collapse
Affiliation(s)
- Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jae Won Choi
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Min Beom Heo
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
2
|
He S, Cai J, Jia T, Mao Z, Zhou L, Zhang X, Jiang S, Huang P. New Sight of Renal Toxicity Caused by UV-Aged Polystyrene Nanoplastics: Induced Ferroptosis via Adsorption of Transferrin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309369. [PMID: 38175859 DOI: 10.1002/smll.202309369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Indexed: 01/06/2024]
Abstract
Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.
Collapse
Affiliation(s)
- Shiyu He
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Cai
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Tianjiang Jia
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhen Mao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihong Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaodan Zhang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuqin Jiang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Peili Huang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
3
|
Zhao T, Ren M, Shi J, Wang H, Bai J, Du W, Xiang B. Engineering the protein corona: Strategies, effects, and future directions in nanoparticle therapeutics. Biomed Pharmacother 2024; 175:116627. [PMID: 38653112 DOI: 10.1016/j.biopha.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Nanoparticles (NPs) serve as versatile delivery systems for anticancer, antibacterial, and antioxidant agents. The manipulation of protein-NP interactions within biological systems is crucial to the application of NPs in drug delivery and cancer nanotherapeutics. The protein corona (PC) that forms on the surface of NPs is the interface between biomacromolecules and NPs and significantly influences their pharmacokinetics and pharmacodynamics. Upon encountering proteins, NPs undergo surface alterations that facilitate their clearance from circulation by the mononuclear phagocytic system (MPS). PC behavior depends largely on the biological microenvironment and the physicochemical properties of the NPs. This review describes various strategies employed to engineer PC compositions on NP surfaces. The effects of NP characteristics such as size, shape, surface modification and protein precoating on PC performance were explored. In addition, this study addresses these challenges and guides the future directions of this evolving field.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiajie Shi
- Department of Breast Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Bai Xiang
- Department of Pharmaceutics, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Mohtasham Moein M, Rahmati K, Saradar A, Moon J, Karakouzian M. A Critical Review Examining the Characteristics of Modified Concretes with Different Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:409. [PMID: 38255577 PMCID: PMC10817359 DOI: 10.3390/ma17020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The movement of the construction industry towards sustainable development has drawn attention to the revision of concrete. In addition to reducing pollution, the use of nano-materials should lead to the provision of higher quality concrete in terms of regulatory items (workability, resistance characteristics, durability characteristics, microstructure). The present study investigates 15 key characteristics of concrete modified with nano-CaCO3, nano-clay, nano-TiO2, and nano-SiO2. The results of the study showed that nanomaterials significantly have a positive effect on the hydration mechanism and the production of more C-S-H gel. The evaluation of resistance characteristics also indicates the promising results of these valuable materials. The durability characteristics of nano-containing concrete showed significant improvement despite high dispersion. Concrete in coastal areas (such as bridges or platforms), concrete exposed to radiation (such as hospitals), concrete exposed to impact load (such as nuclear power plants), and concrete containing recycled aggregate (such as bricks, tiles, ceramics) can be effectively improved by using nanomaterials. It is hoped that the current review paper can provide an effective image and idea for future applied studies by other researchers.
Collapse
Affiliation(s)
| | - Komeil Rahmati
- Department of Civil Engineering, Somesara Branch, Islamic Azad University, Somesara 4361947496, Iran;
| | - Ashkan Saradar
- Department of Civil Engineering, University of Guilan, Rasht 419961377, Iran
| | - Jaeyun Moon
- Department of Mechanical Engineering, University of Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA;
| | - Moses Karakouzian
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
5
|
Morozova O, Isaeva E, Klinov D. Biodistribution of Fluorescent Albumin Nanoparticles among Organs of Laboratory Animals after Intranasal and Peroral Administration. Curr Issues Mol Biol 2023; 45:8227-8238. [PMID: 37886962 PMCID: PMC10604952 DOI: 10.3390/cimb45100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Natural, environmental and engineered nanoparticles (NP) penetrate into cells by endocytosis and induce innate immunity. The behaviour of the nanomaterials both in vitro and in vivo should be assessed. Our goal was to study protein NP stability in biological fluids and distribution in organs of animals after intranasal and oral administration. Bovine serum albumin (BSA) was labelled with the fluorescent dye RhoB and NP were fabricated by nanoprecipitation. The fluorescent protein NPwere administered intranasally and orally in laboratory-outbred mice ICR and rabbits. RhoB-BSA NP distribution in organs was detected using spectrofluorometry and fluorescent microscopy. Innate immunity was evaluated using reverse transcription with random hexanucleotide primer and subsequent real-time PCR with specific fluorescent hydrolysis probes. The labelled BSA NP were shown to remain stable in blood sera and nasopharyngeal swabs for 5 days at +37 °C. In vivo the maximal accumulation was found in the brain in 2 days posttreatment without prevalent accumulation in olfactory bulbs. For the intestine, heart and liver, the BSA NP accumulation was similar in 1 and 2 days, whereas for kidney samples even decreased after 1 day. Both intranasal and peroral administration of RhoB-BSA NP did not induce innate immunity. Thus, after intranasal or oral instillation RhoB-BSA NP were found mainly in the brain and intestine without interferon gene expression.
Collapse
Affiliation(s)
- Olga Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology Named after N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya Street, 123098 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Moscow Region, Russia
| | - Elena Isaeva
- Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology Named after N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya Street, 123098 Moscow, Russia
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
6
|
Hartl N, Jürgens DC, Carneiro S, König AC, Xiao X, Liu R, Hauck SM, Merkel OM. Protein corona investigations of polyplexes with varying hydrophobicity - From method development to in vitro studies. Int J Pharm 2023; 643:123257. [PMID: 37482228 DOI: 10.1016/j.ijpharm.2023.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.
Collapse
Affiliation(s)
- Natascha Hartl
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - David C Jürgens
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simone Carneiro
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ann-Christine König
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Ximian Xiao
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Runhui Liu
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Stefanie M Hauck
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
7
|
Guo C, Yuan H, Yu Y, Gao Z, Zhang Y, Yin T, He H, Gou J, Tang X. FRET-based analysis on the structural stability of polymeric micelles: Another key attribute beyond PEG coverage and particle size affecting the blood clearance. J Control Release 2023; 360:734-746. [PMID: 37454913 DOI: 10.1016/j.jconrel.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Various attributes of micelles, such as PEG density and particle size, are considered to be related to blood clearance. The structural stability of micelles is another key attribute that will affect the in vivo fate. This study employed fluorescence resonance energy transfer (FRET) analysis to guide the preparation of polymeric micelles with different structural stability. Micelles prepared using copolymers with longer hydrophobic blocks showed higher structural stability; emulsification was a better method than nanoprecipitation to prepare stable micelles. The fast chain exchange kinetics and the high-water content of micellar cores explained the low structural stability of those micelles. Moreover, this study highlighted the importance of structural stability that affected blood clearance in concert with PEG length and particle size. One-third of the small and stable micelles were detected in the blood 24 h after injection. While unstable micelles would be cleared from the circulation within 4 h. Notably, there would be a threshold of structural stability. Micelles with structural stability below this threshold were quickly cleared even if they possessed a longer PEG length and a smaller size. In contrast, higher structural stability allowed polymeric micelles to maintain higher integrity in vivo and enhance tumor accumulation and anti-tumor efficacy. In conclusion, this study systematically analyzed the importance of the structural stability of micelles on the in vivo fate.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Ying Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Zhencheng Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
8
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
9
|
Karballaei Mirzahosseini H, Sheikhi M, Najmeddin F, Shirangi M, Mojtahedzadeh M. 3D self-assembled nanocarriers for drug delivery. Drug Metab Rev 2023; 55:140-162. [PMID: 36772815 DOI: 10.1080/03602532.2023.2172182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
There are many benefits to drug delivery from drug-carrier nanostructure systems. It might be developed to carefully control drug release rates or to deliver a precise amount of a therapeutic substance to particular body areas. Self-assembling is the process by which molecules and nanoparticles spontaneously organize into organized clusters. For instance, proteins and peptides can interact with one another to create highly organized supramolecular structures with various properties, such as helical ribbons and fibrous scaffolds. Another advantage of self-assembly is that it may be effective with a variety of materials, including metals, oxides, inorganic salts, polymers, semiconductors, and even organic semiconductors. Fullerene, graphene, and carbon nanotubes (CNTs), three of the most fundamental classes of three-dimensionally self-assembling nanostructured carbon-based materials, are essential for the development of modern nanotechnologies. Self-assembled nanomaterials are used in a variety of fields, including nanotechnology, imaging, and biosensors. This review study begins with a summary of various major 3D nanomaterials, including graphene oxide, CNTs, and nanodiamond, as well as 3D self-assembled polyfunctionalized nanostructures and adaptable nanocarriers for drug delivery.
Collapse
Affiliation(s)
| | - Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been demonstrated in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NP surface, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP surface physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discuss the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media are considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
11
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
12
|
Marquetti I, Desai S. Nanoscale Topographical Effects on the Adsorption Behavior of Bone Morphogenetic Protein-2 on Graphite. Int J Mol Sci 2022; 23:2432. [PMID: 35269575 PMCID: PMC8910650 DOI: 10.3390/ijms23052432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/10/2022] Open
Abstract
The interaction between bone morphogenetic protein-2 (BMP-2) and the surface of biomaterials is essential for the restoration of bone and cartilage tissue, inducing cellular differentiation and proliferation. The properties of the surface, including topology features, regulate the conformation and bioactivity of the protein. In this research, we investigated the influence of nanopatterned surfaces on the interaction of a homodimer BMP-2 with graphite material by combining molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. The graphite substrates were patterned as flat, linear grating, square, and circular profiles in combination with BMP-2 conformation in the side-on configuration. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. Results showed two optimal patterns that increased protein adsorption of the lower monomer while preserving the secondary structure and leaving the upper monomer free to interact with the cells. Charged residues arginine and lysine and polar residues histidine and tyrosine were the main residues responsible for the strong interaction with the graphite surface. This research provides new molecular-level insights to further understand the mechanisms underlying protein adsorption on nanoscale patterned substrates.
Collapse
Affiliation(s)
- Izabele Marquetti
- Department of Biomedical Affairs, Edward Via College of Osteopathic Medicine, Spartanburg, SC 29303, USA;
| | - Salil Desai
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Seo Y, Ghazanfari L, Master A, Vishwasrao HM, Wan X, Sokolsky-Papkov M, Kabanov AV. Poly(2-oxazoline)-magnetite NanoFerrogels: Magnetic field responsive theranostic platform for cancer drug delivery and imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102459. [PMID: 34530163 PMCID: PMC8665074 DOI: 10.1016/j.nano.2021.102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel. In this study, we report the development of novel theranostic system, NanoFerrogels, which is designed to capitalize on the magnetic nanoparticle properties as imaging agents and the poly(2-oxazoline)-based micelles as drug loading compartment. We developed six formulations with magnetic nanoparticle content of 0.3%-12% (w/w), with the z-average sizes of 85-130 nm and ξ-potential of 2.7-28.3 mV. The release profiles of paclitaxel from NanoFerrogels were notably dependent on the degree of dopamine grafting on poly(2-oxazoline)-based micelles. Paclitaxel loaded NanoFerrogels showed efficacy against three breast cancer lines which was comparable to free paclitaxel. They also showed improved tumor and lymph node accumulation and signal reduction in vivo (2.7% in tumor; 8.5% in lymph node) compared to clinically approved imaging agent ferumoxytol (FERAHEME®) 24 h after administration. NanoFerrogels responded to super-low frequency alternating current magnetic field (50 kA m-1, 50 Hz) which accelerated drug release from paclitaxel-loaded NanoFerrogels or caused death of cells loaded with NanoFerrogels. These proof-of-concept experiments demonstrate that NanoFerrogels have potential as remotely actuated theranostic platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Youngee Seo
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lida Ghazanfari
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alyssa Master
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hemant M Vishwasrao
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xiaomeng Wan
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
14
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
15
|
Yadav RD, Chaudhary A. Nano-bio surface interactions, cellular internalisation in cancer cells and e-data portals of nanomaterials: A review. IET Nanobiotechnol 2021; 15:519-531. [PMID: 34694743 PMCID: PMC8675851 DOI: 10.1049/nbt2.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials (NMs) have abundant applications in areas such as electronics, energy, environment industries, biosensors, nano devices, theranostic platforms, etc. Nanoparticles can increase the solubility and stability of drug-loaded materials, enhance their internalisation, protect them from initial destruction in the biological system, and lengthen their circulation time. The biological interaction of proteins present in the body fluid with NMs can change the activity and natural surface properties of NMs. The size and charge of NMs, properties of the coated and uncoated NMs, nature of proteins, cellular interactions direct their internalisation pathway in the cellular system. Thus, the present review emphasises the impact of coated, uncoated NMs, size and charge, nature of proteins on nano-bio surface interactions and on internalisation with specific focus on cancer cells. The increased activity of NPs may also result in toxicity on health and environment, thus emphasis should be given to assess the toxicity of NMs in the medical field. The e-data sharing portals of NMs have also been discussed in this review that will be helpful in providing the information about the chemical, physical, biological properties and toxicity of NMs.
Collapse
Affiliation(s)
- Ram Dhan Yadav
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Abha Chaudhary
- Department of Chemistry, Government Post Graduate College, Ambala Cantt, Haryana, India
| |
Collapse
|
16
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
17
|
Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644564] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With growing interest, a large number of researches have been conducted on carbon-based nanomaterials (CBNs). However, their uses are limited due to comprehensive potential environmental and human health effects. It is often confusing for researchers to make an informed choice regarding the versatile carbon-based nanocarrier system and its potential applications. This review has highlighted emerging applications and cutting-edge progress of CBNs in drug delivery. Some critical factors like enzymatic degradation, surface modification, biological interactions, and bio-corona have been discussed here. These factors will help to fabricate CBNs for effective drug delivery. This review also addresses recent advancements in carbon-based target specific and release controlled drug delivery to improve disease treatment. The scientific community has turned their research efforts into the development of novel production methods of CBNs to make their production more attractive to the industrial sector. Due to the nanosize and diversified physical properties, these CBNs have demonstrated distinct biological interaction. Thus long-term preclinical toxicity study is recommended before finally translating to clinical application.
Collapse
|
18
|
Abdolahpur Monikh F, Chupani L, Karkossa I, Gardian Z, Arenas-Lago D, von Bergen M, Schubert K, Piackova V, Zuskova E, Jiskoot W, Vijver MG, Peijnenburg WJGM. An environmental ecocorona influences the formation and evolution of the biological corona on the surface of single-walled carbon nanotubes. NANOIMPACT 2021; 22:100315. [PMID: 35559972 DOI: 10.1016/j.impact.2021.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 06/15/2023]
Abstract
Nanomaterials (NMs) taken up from the environment carry a complex ecocorona consisting of dissolved organic matter. An ecocorona is assumed to influence the interactions between NMs and endogenous biomolecules and consequently affects the formation of a biological corona (biocorona) and the biological fate of the NMs. This study shows that biomolecules in fish plasma attach immediately (within <5 min) to the surface of SWCNTs and the evolution of the biocorona is a size dependent phenomenon. Quantitative proteomics data revealed that the nanotube size also influences the plasma protein composition on the surface of SWCNTs. The presence of a pre-attached ecocorona on the surface of SWCNTs eliminated the influence of nanotube size on the formation and evolution of the biocorona. Over time, endogenous biomolecules from the plasma partially replaced the pre-attached ecocorona as measured using a fluorescently labelled ecocorona. The presence of an ecocorona offers a unique surface composition to each nanotube. This suggests that understanding the biological fate of NMs taken up from the environment by organisms to support the environmental risk assessment of NMs is a challenging task because each NM may have a unique surface composition in the body of an organism.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Latifeh Chupani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Isabel Karkossa
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Daniel Arenas-Lago
- Department of Plant Biology and soil Science, University of Vigo, As Lagoas, Ourense, Spain
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biochemistry, Leipzig University, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Veronika Piackova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
19
|
Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. NANOMATERIALS 2021; 11:nano11020539. [PMID: 33672587 PMCID: PMC7924066 DOI: 10.3390/nano11020539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023]
Abstract
Previously, we noted that carboxylated multi-walled carbon nanotubes (cMWNTs) coated with Pluronic® F-108 (PF108) bound to and were accumulated by macrophages, but that pristine multi-walled carbon nanotubes (pMWNTs) coated with PF108 were not (Wang et al., Nanotoxicology2018, 12, 677). Subsequent studies with Chinese hamster ovary (CHO) cells that overexpressed scavenger receptor A1 (SR-A1) and with macrophages derived from mice knocked out for SR-A1 provided evidence that SR-A1 was a receptor of PF108-cMWNTs (Wang et al., Nanomaterials (Basel) 2020, 10, 2417). Herein, we replaced the PF108 coat with bovine serum albumin (BSA) to investigate how a BSA corona affected the interaction of multi-walled carbon nanotubes (MWNTs) with cells. Both BSA-coated cMWNTs and pMWNTs bound to and were accumulated by RAW 264.7 macrophages, although the cells bound two times more BSA-coated cMWNT than pMWNTs. RAW 264.7 cells that were deleted for SR-A1 using CRISPR-Cas9 technology had markedly reduced binding and accumulation of both BSA-coated cMWNTs and pMWNTs, suggesting that SR-A1 was responsible for the uptake of both MWNT types. Moreover, CHO cells that ectopically expressed SR-A1 accumulated both MWNT types, whereas wild-type CHO cells did not. One model to explain these results is that SR-A1 can interact with two structural features of BSA-coated cMWNTs, one inherent to the oxidized nanotubes (such as COOH and other oxidized groups) and the other provided by the BSA corona; whereas SR-A1 only interacts with the BSA corona of BSA-pMWNTs.
Collapse
|
20
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
21
|
Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021; 175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Administration of nanomaterials based medicinal and drug carrier systems into systemic circulation brings about interaction of blood components e.g. albumin and globulin proteins with these nanosystems. These blood or serum proteins either get loosely attached over these nanocarriers and form soft protein corona or are tightly adsorbed over nanoparticles and hard protein corona formation occurs. Formation of protein corona has significant implications over a wide array of physicochemical and medicinal attributes. Almost all pharmacological, toxicological and carrier characteristics of nanoparticles get prominently touched by the protein corona formation. It is this interaction of nanoparticle protein corona that decides and influences fate of nanomaterials-based systems. In this article, authors reviewed several diverse aspects of protein corona formation and its implications on various possible outcomes in vivo and in vitro. A brief description regarding formation and types of protein corona has been included along with mechanisms and pharmacokinetic, pharmacological behavior and toxicological profiles of nanoparticles has been described. Finally, significance of protein corona in context of its in vivo and in vitro behavior, involvement of biomolecules at nanoparticle plasma interface and other interfaces and effects of protein corona on biocompatibility characteristics have also been touched upon.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, PO box 173, Alkharj, 11942, Saudi Arabia
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
22
|
Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization. Chem Biol Interact 2020; 335:109364. [PMID: 33359597 DOI: 10.1016/j.cbi.2020.109364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Metallic nanoparticles are an important and widely used materials in development of nano-enabled medicine. For that reason, their interaction with biological molecules has to be systematically examined, as use of nanoparticles can lead to altered biological functions. In this study, we evaluated the interaction between silver nanoparticles (AgNPs) and two important plasma transport proteins - albumin and α-1-acid glycoprotein. To investigate comprehensively how different physico-chemical properties impact interaction of proteins with nanosurface, AgNPs of different size, shape and surface coating was prepared. The study was conducted using UV-Vis absorption, fluorescence, inductively coupled plasma mass spectrometry, circular dichroism spectroscopy, transmission electron microscopy, dynamic and electrophoretic light scattering techniques. The results showed significant complexities of the nano-bio interface and binding affinities of proteins onto surface of different AgNPs, which were affected by both AgNPs and protein properties. The most significant role on AgNPs-protein interaction had the coating agents used for AgNPs surface stabilization. Our findings should improve safe-by-design approach to development of the metallic nanomaterials for medical use.
Collapse
|
23
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020; 59:23668-23677. [PMID: 32931615 PMCID: PMC7736064 DOI: 10.1002/anie.202008175] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Indexed: 12/15/2022]
Abstract
When nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.
Collapse
Affiliation(s)
- Rebecca L. Pinals
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Darwin Yang
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Daniel J. Rosenberg
- D.J. Rosenberg Graduate Group in Biophysics University of California, Berkeley Berkeley, California 94720, United States
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Tanya Chaudhary
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Andrew R. Crothers
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
| | - Michal Hammel
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Markita P. Landry
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
- Professor M.P. Landry Innovative Genomics Institute (IGI) Berkeley, California 94720, United States
- Professor M.P. Landry Chan-Zuckerberg Biohub San Francisco, California 94158, United States
| |
Collapse
|
24
|
Wang R, Lohray R, Chow E, Gangupantula P, Smith L, Draper R. Selective Uptake of Carboxylated Multi-Walled Carbon Nanotubes by Class A Type 1 Scavenger Receptors and Impaired Phagocytosis in Alveolar Macrophages. NANOMATERIALS 2020; 10:nano10122417. [PMID: 33287183 PMCID: PMC7761752 DOI: 10.3390/nano10122417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
The production and applications of multi-walled carbon nanotubes (MWNTs) have increased despite evidence that MWNTs can be toxic. Recently, we reported that the binding of Pluronic® F-108 (PF108)-coated carboxylated MWNTs (C-MWNTs) to macrophages is inhibited by class A scavenger receptors (SR-As) antagonists (R. Wang et al., 2018. Nanotoxicology 12:677-690). The current study investigates the uptake of PF108-coated MWNTs by macrophages lacking SR-A1 and by CHO cells that ectopically express SR-A1. Macrophages without SR-A1 failed to take up C-MWNTs and CHO cells that expressed SR-A1 did take up C-MWNTs, but not pristine MWNTs (P-MWNTs) or amino-functionalized MWNTs (N-MWNTs). The dependence of C-MWNT uptake on SR-A1 is strong evidence that SR-A1 is a receptor for C-MWNTs. The consequences of SR-A1-dependent C-MWNT accumulation on cell viability and phagocytic activity in macrophages were also studied. C-MWNTs were more toxic than P-MWNTs and N-MWNTs in cell proliferation and colony formation tests. C-MWNTs reduced surface SR-A1 levels in RAW 264.7 cells and impaired phagocytic uptake of three known SR-A1 ligands, polystyrene beads, heat-killed E. coli, and oxLDL. Altogether, results of this study confirmed that SR-A1 receptors are important for the selective uptake of PF108-coated C-MWNTs and that accumulation of the C-MWNTs impairs phagocytic activity and cell viability in macrophages.
Collapse
Affiliation(s)
- Ruhung Wang
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; (R.W.); (R.L.); (P.G.)
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA;
| | - Rishabh Lohray
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; (R.W.); (R.L.); (P.G.)
| | - Erik Chow
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA;
| | - Pratima Gangupantula
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; (R.W.); (R.L.); (P.G.)
| | - Loren Smith
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA;
| | - Rockford Draper
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; (R.W.); (R.L.); (P.G.)
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA;
- Correspondence:
| |
Collapse
|
25
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rebecca L. Pinals
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Daniel J. Rosenberg
- Graduate Group in Biophysics University of California, Berkeley Berkeley California 94720 USA
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Tanya Chaudhary
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Andrew R. Crothers
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94720 USA
- Chan-Zuckerberg Biohub San Francisco California 94158 USA
| |
Collapse
|
26
|
Implications of Biomolecular Corona for Molecular Imaging. Mol Imaging Biol 2020; 23:1-10. [PMID: 33095421 DOI: 10.1007/s11307-020-01559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
The development of nanoparticle probes has opened up new possibilities for molecular imaging in the era of precision medicine. There are a wide range of nanoprobes that are being used for various modalities that have demonstrated promising potential in early detection, disease monitoring, and theranostics. However, the rate of successful clinical translation of the nanoprobes is very low and is affected by the lack of our understanding about nanoparticle interaction with biological fluids after systemic administration, thus representing an unmet clinical need. One of the poorly understood issues relates to the formation of biomolecular corona, a layer of biomolecules formed on the surface of nanoscale materials during their interactions with biological fluids. The biomolecular corona has several significant effects on the biodistribution of nanoprobes and their imaging ability by (i) reducing their targeting efficacy and (ii) affecting the intrinsic imaging properties (e.g., contrast capacity of magnetic nanoprobes). This review provides insights on the importance of considering biomolecular corona in the development of nanoprobes, which may enable their more efficient utilization for molecular imaging applications.
Collapse
|
27
|
Tan Y, Zhu X, Wu D, Song E, Song Y. Compromised Autophagic Effect of Polystyrene Nanoplastics Mediated by Protein Corona Was Recovered after Lysosomal Degradation of Corona. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11485-11493. [PMID: 32786567 DOI: 10.1021/acs.est.0c04097] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adverse biological and ecological consequences of plastic debris have become a serious problem worldwide. Evidences have uncovered the accumulation of nanoplastics (NPs) in organisms. In a complex biological environment, proteins are prone to adsorbed onto the NPs' surface and form a protein corona layer, which mediates the interaction of NPs with cells. Here, we discovered the interaction of polystyrene (PS) NPs with protein fetal bovine serum (FBS) and altered cytotoxic effects. Mechanistically, prefabricated FBS protein corona mediated the relief of autophagic flux blockage, autophagosomes accumulation, and lysosomal damage in RAW264.7 cells caused by PS NPs. Using an individual fluorescent protein bovine serum albumin (BSA) as a corona surrogate, we demonstrated that coronal BSA remains, at least partially, on the surface of PS NPs during the initial stage of internalization and protects cell membrane from PS NPs-induced damage. However, along with the degradation of corona in lysosomes, reappearance of cytotoxicity was observed. Herein, we provided a proof of principle of the manipulation of corona on NPs' toxicity and we expect the result will promote the further safety assessment of NPs.
Collapse
Affiliation(s)
- Ya Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiangyu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Di Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
28
|
Yah CS, Simate GS. Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact. ACTA ACUST UNITED AC 2020; 10:195-203. [PMID: 32793442 PMCID: PMC7416007 DOI: 10.34172/bi.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns. Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes. Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity. Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.
Collapse
Affiliation(s)
- Clarence S Yah
- Implementation Science Unit, Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Geoffrey S Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Mohanta YK, Hashem A, Abd_Allah EF, Jena SK, Mohanta TK. Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: An up and coming approach. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology DepartmentKing Saud University Riyadh 11451 Saudi Arabia
| | | | - Santosh Kumar Jena
- Department of BiotechnologyNorth Orissa University Baripada 757003 India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research CenterUniversity of Nizwa Nizwa 616 Oman
| |
Collapse
|
30
|
Chernysheva MG, Shnitko AV, Ksenofontov AL, Arutyunyan AM, Petoukhov MV, Badun GA. Structural peculiarities of lysozyme - PLURONIC complexes at the aqueous-air and liquid-liquid interfaces and in the bulk of aqueous solution. Int J Biol Macromol 2020; 158:721-731. [PMID: 32387357 DOI: 10.1016/j.ijbiomac.2020.04.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Interaction between proteins and synthetic polymers that represent a perspective potential in drug delivery or/and already used in medicine plays a key role in biological functioning of both molecules along with a system as a whole. In present study association between hen egg white lysozyme and Pluronic triblock-copolymers (L121, P123 and F127) in the bulk of the solution as well as at the aqueous-air and liquid-liquid interfaces was analyzed by means of spectroscopic and radiochemical assay. In protein-Pluronic complexes lysozyme keeps the secondary structure (CD and SAXS data results), while fluorescence and UV-analysis indicates changes in the local surrounding of fluorophoric amino acid residues. Radiochemical assay in combination with molecular docking reveals the formation of the complexes, in which proline residues turned to the interface between water and hydrophobic medium.
Collapse
Affiliation(s)
| | - Alexey V Shnitko
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Maxim V Petoukhov
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia
| | - Gennadii A Badun
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
31
|
Ross AM, Kennedy T, McNulty D, Leahy CI, Walsh DR, Murray P, Grabrucker AM, Mulvihill JJE. Comparing nanoparticles for drug delivery: The effect of physiological dispersion media on nanoparticle properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110985. [PMID: 32487401 DOI: 10.1016/j.msec.2020.110985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 01/30/2023]
Abstract
Delivering therapeutics to disease sites is a challenge facing modern medicine. Nanoparticle delivery systems are of considerable interest to overcome this challenge, but these systems suffer from poor clinical translation. It is believed this is, in part, due to incomplete understanding of nanoparticle physico-chemical properties in vivo. To understand how nanoparticle properties could change following intravenous delivery, Au, Ag, Fe2O3, TiO2, and ZnO nanoparticles of 5, 20, and 50 nm were characterised in water and physiological fluids. The effects of the dispersion medium, concentration, and incubation time on size, dispersion, and zeta potential were measured. Properties varied significantly depending on material type, size, and concentration over 24 h. Gold and silver nanoparticles were generally the most stable. Meanwhile, 20 nm nanoparticles appeared to be the least stable size, across materials. These results could have important implications for selecting nanoparticles for drug delivery that will elicit the desired physiological response.
Collapse
Affiliation(s)
- Aisling M Ross
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland
| | - Tadhg Kennedy
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - David McNulty
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Ciara I Leahy
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Darragh R Walsh
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland
| | - Paul Murray
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
32
|
Abstract
Even so, the metal nanoparticles (metal NPs) have attractive optical and biomedical applications, the translation of metal NPs into the clinical practice remains a challenge due to their severe accumulation in the body. Active targeting to renal podocytes opens the door for enhancing kidney targeting and clearance. The goal of this study was to assess the excretion of larger particle size through kidney podocyte via active targeting. To reach this goal, PEGylated quantum dots (QDs) were coated with vapreotide (VAP) for selectively reaching somatostatin receptors (SSTRs) expressed in the podocyte cells. This QDs-VAP was tested on isolated primary podocytes, while the flow cytometry (FACS), confocal microscopy (CLSM), and inductively coupled plasma mass spectrometry (ICP-MS) were used to confirm this hypothesis. The results showed highly specific interactions with podocyte cells as detected by FACS, and CLSM. Moreover, ICP-MS demonstrated higher amount of QDs in the podocyte cells one-hour post-incubation (67.99% ID/g tissue), while the unmodified QDs did not accumulate. This study confirmed that QDs-VAP can target the podocyte's SSTRs then can be cleared via podocyte cells. Moreover, these results are considered as a highly promising approach for future therapy, targeting, clearance, and diagnosis of podocyte-associated diseases.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
33
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
34
|
Almeida TCS, Martins-Júnior PA, Joviano-Santos JV, Andrade VB, Ladeira LCD, Vieira MAR, Corrêa Junior A, Caliari MV, Ladeira LO, Ferreira AJ. Carbon nanotubes functionalized with sodium hyaluronate: Sterilization, osteogenic capacity and renal function analysis. Life Sci 2020; 248:117460. [PMID: 32092331 DOI: 10.1016/j.lfs.2020.117460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 10/25/2022]
Abstract
AIM This study determined the optimum gamma irradiation dosage to sterilize sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and CNT functionalized with HY (HY-SWCNT and HY-MWCNT), evaluated the structural integrity of the materials and assessed whether sterilized materials kept biological properties without affecting renal function. MAIN METHODS Materials were submitted to dosages of 100 gγ to 30 Kgγ and plated onto agar mediums for colony forming units (CFUs) counting. Sterilized samples were inoculated with 107Bacillus clausii, submitted again to gamma irradiation, and plated in agar mediums for CFUs counting. Scanning electron microscope was used for structural evaluation of sterilized materials. Tooth sockets of rats were treated with sterilized materials for bone formation assessment and renal function of the animals was analyzed. KEY FINDINGS The optimum gamma dosage for sterilization was 250 gγ for HY and 2.5 Kgγ for the other materials without meaningful structural changes. Sterilized materials significantly increased bone formation (p < 0.05) and they did not compromise renal function and structure. SIGNIFICANCE Gamma irradiation efficiently sterilized HY, SWCNT, MWCNT, HY-SWCNT and HY-MWCNT without affecting structural aspects while maintaining their desirable biological properties.
Collapse
Affiliation(s)
- Tatiane Cristina Silva Almeida
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil; Nuclear Technology Development Center (CDTN), Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Paulo Antônio Martins-Júnior
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Julliane Vasconcellos Joviano-Santos
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Vanessa Barbosa Andrade
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | | | - Maria Aparecida Ribeiro Vieira
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Ary Corrêa Junior
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| |
Collapse
|
35
|
Mijiritsky E, Gardin C, Ferroni L, Lacza Z, Zavan B. Albumin-impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110678. [PMID: 32204105 DOI: 10.1016/j.msec.2020.110678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/22/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
Bone regeneration around newly implanted biomaterials is a complex process, which in its early phases involves the interactions between Mesenchymal Stem Cells (MSCs) and immune cells. The response of these cells to the biomaterial depends both on the local microenvironment and on the characteristics of the inserted bone substitute. In this work, bone allografts impregnated with albumin are loaded with a co-culture of human MSCs and monocytes; bone granules without albumin are used for comparison. Co-cultures are contextually treated with pro-inflammatory cytokines to simulate the inflammatory milieu naturally present during the bone regeneration process. As revealed by microscopic images, albumin-impregnated bone granules promote adhesion and interactions between cells populations. Compared to control granules, albumin coating diminishes reactive species production by cells. This reduced oxidative stress may be attributable to antioxidant properties of albumin, and it is also reflected in the mitigated gene expression of mitochondrial electron transport chain complexes, where most intracellular reactive molecules are generated. MSCs-monocytes co-cultured onto albumin-impregnated bone granules additionally release higher amounts of immunomodulatory cytokines and growth factors. In summary, this work demonstrates that impregnation of bone granules with albumin positively modulates the interactions between MSCs and immune cells, consequently influencing their mutual activities and immunomodulatory functions.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Department of Otolaryngology, Head and Neck and Maxillofacial Surgery, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
| | - Chiara Gardin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy.
| | - Letizia Ferroni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| | - Zsombor Lacza
- Institute of Clinical Experimental Research, Semmelweis University, 1094 Budapest, Hungary
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy.
| |
Collapse
|
36
|
Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102149. [PMID: 31927133 DOI: 10.1016/j.nano.2020.102149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which leads to progressive dysfunction of cognition, memory and learning in elderly people. Common therapeutic agents are not only inadequate to suppress the progression of AD pathogenesis but also produce deleterious side effects; hence, development of alternative therapies is required to specifically suppress complications of AD. The current review provides a commentary on conventional as well as novel therapeutic approaches with an emphasis on stem cell and nano-based therapies for improvement and management of AD pathogenesis. According to our overview of the current literature, AD is a multi-factorial disorder with various pathogenic trajectories; hence, a multifunctional strategy to create effective neuroprotective agents is required to treat this disorder.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Moakedi
- Health Science Center, West Virginia University, Morgantown, USA
| | | | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
37
|
Gupta N, Rai DB, Jangid AK, Kulhari H. A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials. Curr Drug Metab 2020; 20:506-532. [PMID: 30251600 DOI: 10.2174/1389200219666180925094515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last few years, the use of modified Carbon Nanomaterials (CNMs) for theranostics (therapeutic and diagnosis) applications is a new and rapidly growing area in pharmacy and medical fields. Owing to this, their specific physicochemical behaviors like high stability, drug loading, surface area to volume ratio, with low toxicity and immunogenicity are mainly responsible to be considered those as smart nanomaterials. OBJECTIVES This review describes the different dimensions of carbon-based nanocarriers including 0-D fullerene, 1-D Carbon Nanotubes (CNTs), and 2-D graphene and Graphene Oxide (GO) and their surface modification with different biocompatible and biodegradable molecules via covalent or non-covalent functionalization. The major focus of this article is on the different theranostics applications of CNMs like targeted drugs and genes delivery, photodynamic therapy, photothermal therapy, bioimaging, and biosensing. The therapeutic efficacy of drugs could be enhanced by delivering them directly on a specific site using different targeted ligands such as vitamins, peptide, carbohydrates, proteins, etc. A section of the article also discusses the toxicity of the CNMs to the living systems. CONCLUSIONS In brief, this review article discusses the numerous theranostics applications and toxicities of CNMs.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Divya Bharti Rai
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| |
Collapse
|
38
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
39
|
Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019; 59:962-979. [PMID: 34045771 PMCID: PMC8152826 DOI: 10.1002/ijch.201900080] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
Collapse
Affiliation(s)
- Y Randika Perera
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
40
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|
41
|
Fornaguera C, Guerra‐Rebollo M, Lázaro MÁ, Cascante A, Rubio N, Blanco J, Borrós S. In Vivo Retargeting of Poly(beta aminoester) (OM-PBAE) Nanoparticles is Influenced by Protein Corona. Adv Healthc Mater 2019; 8:e1900849. [PMID: 31478348 DOI: 10.1002/adhm.201900849] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/28/2019] [Indexed: 12/29/2022]
Abstract
One of the main bottlenecks in the translation of nanomedicines from research to clinics is the difficulty in designing nanoparticles actively vectorized to the target tissue, a key parameter to ensure efficacy and safety. In this group, a library of poly(beta aminoester) polymers is developed, and it is demonstrated that adding specific combinations of terminal oligopeptides (OM-PBAE), in vitro transfection is cell selective. The current study aims to actively direct the nanoparticles to the liver by the addition of a targeting molecule. To achieve this objective, retinol, successfully attached to OM-PBAE, is selected as hepatic targeting moiety. It is demonstrated that organ biodistribution is tailored, achieving the desired liver accumulation. Regarding cell type transfection, antigen presenting cells in the liver are those showing the highest transfection. Thanks to proteomics studies, organ but not cellular biodistribution can be explained by the formation of differential protein coronas. Therefore, organ biodistribution is governed by differential protein corona formed when retinol is present, while cellular biodistribution is controlled by the end oligopeptides type. In summary, this work is a proof of concept that demonstrates the versatility of these OM-PBAE nanoparticles, in terms of the modification of the biodistribution of OM-PBAE nanoparticles adding active targeting moieties.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
| | - Marta Guerra‐Rebollo
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
| | | | - Anna Cascante
- Sagetis‐Biotech SL Via Augusta 390 08017 Barcelona Spain
| | - Núria Rubio
- Grup de Terapia CellularInstitut de Química Avançada de Catalunya (IQAC‐CSIC) C/Jordi Girona 28‐26 08034 Barcelona Spain
| | - Jerónimo Blanco
- Grup de Terapia CellularInstitut de Química Avançada de Catalunya (IQAC‐CSIC) C/Jordi Girona 28‐26 08034 Barcelona Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat)Institut Químic de Sarrià (IQS)Ramon Llull University (URL) Via Augusta 390 08017 Barcelona Spain
- Sagetis‐Biotech SL Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
42
|
Barui AK, Oh JY, Jana B, Kim C, Ryu J. Cancer‐Targeted Nanomedicine: Overcoming the Barrier of the Protein Corona. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900124] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jun Yong Oh
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Batakrishna Jana
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chaekyu Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ja‐Hyoung Ryu
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
43
|
Tien CY, Li JP, Han D, Li Z, Fu PK, Chen JK, Tsai CJ. Development of a Novel Shallow Liquid Interface Exposure System for MWCNT Toxicity Assessment. Chem Res Toxicol 2019; 32:1925-1939. [PMID: 31469549 DOI: 10.1021/acs.chemrestox.9b00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing applications of multiwalled carbon nanotubes (MWCNT) lead to significant occupational exposure and potential health concerns. Toxicity of MWCNT should be carefully elucidated since the conventional (CON) method with fully immersed condition fails to mimic the air-liquid interface (ALI) in airways. Additionally, quantification of MWCNT in cells was a real challenge. Currently available ALI exposure devices are costly, posing problems to conducting in vitro evaluations for emerging nanomaterials. A novel system, consisting of a shaker fluidized-bed atomizer (SFA) and electrostatic shallow liquid interface (ESLI) exposure chamber, has been developed for investigating nanotoxicity of well-dispersed pristine-MWCNT (pMWCNT) and carboxylized-MWCNT (cMWCNT). After 24-h exposure, LDH, MCP-1, IL-1β, IL-6, and TNF-α releases were determined, and cell uptakes were quantified according to the molybdenum content in cells. Biological responses triggered by SLI exposure are obviously more sensitive compared with those caused by CON exposure at equivalent doses. Exposure dose-dependent release of LDH and IL-6 was highlighted in A549 cells, indicating higher cytotoxicity and inflammatory responses of cMWCNT attributed to its shorter length, smaller size, and higher cell uptake. Cell-associated dose-dependent release of LDH and IL-6 was highlighted in RAW264.7 cells, revealing the higher adverse health risk of pMWCNT due to frustrated phagocytosis and its much higher molybdenum content. These results suggest that inherent characteristics of cells and distinct physicochemical properties of pMWCNT and cMWCNT lead to either exposure dose-dependent or cell-associated dose-dependent responses. Notably, the SLI is superior to the CON exposure method and well suited for nanotoxicity assessment of different MWCNTs.
Collapse
Affiliation(s)
- Chi-Yu Tien
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , 35 Keyan Road , Miaoli 35053 , Taiwan
| | - Ding Han
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| | - Ziyi Li
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Pin-Kuei Fu
- Department of Critical Care Medicine , Taichung Veterans General Hospital , Taichung 40705 , Taiwan.,College of Human Science and Social Innovation , Hungkuang University , Taichung 43302 , Taiwan.,College of Science , Tunghai University , Taichung 40704 , Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , 35 Keyan Road , Miaoli 35053 , Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| |
Collapse
|
44
|
Liu F, Li X, Sheng A, Shang J, Wang Z, Liu J. Kinetics and Mechanisms of Protein Adsorption and Conformational Change on Hematite Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10157-10165. [PMID: 31373804 DOI: 10.1021/acs.est.9b02651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adsorption kinetics and conformational changes of a model protein, bovine serum albumin (BSA, 0.1, 0.5, or 1.0 g/L), on the surface of hematite (α-Fe2O3) particles in 39 ± 9, 68 ± 9, and 103 ± 8 nm, respectively, were measured using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. As the particle size increases, the amount of adsorbed BSA decreases, but the loss in the helical structure of adsorbed BSA increases due to the stronger interaction forces between adsorbed BSA and the larger particles. On 39 or 68 nm hematite particles, refolding of adsorbed BSA can be induced by protein-protein interactions, when the protein surface coverage exceeds certain critical values. Two-dimensional correlation spectroscopy (2D-COS) analysis of time-dependent ATR-FTIR spectra indicate that the increase in the amount of adsorbed BSA occurs prior to the loss in the BSA helical structure in the initial stage of adsorption processes, whereas an opposite sequence of the changes to BSA conformation and surface coverage is observed during the subsequent refolding processes. Desorption experiments show that replacing the protein solution with water can quench the refolding, but not the unfolding, of adsorbed BSA. A kinetic model was proposed to quantitatively describe the interplay of adsorption kinetics and conformational change, as well as the effects of particle size and initial protein concentration on the rate constants of elementary steps in protein adsorption onto a mineral surface.
Collapse
Affiliation(s)
| | | | | | - Jianying Shang
- Department of Soil and Water Sciences , China Agricultural University , Beijing 100193 , China
| | - Zimeng Wang
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | | |
Collapse
|
45
|
Zeng L, Gao J, Liu Y, Gao J, Yao L, Yang X, Liu X, He B, Hu L, Shi J, Song M, Qu G, Jiang G. Role of protein corona in the biological effect of nanomaterials: Investigating methods. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Gualtieri AF, Lusvardi G, Pedone A, Di Giuseppe D, Zoboli A, Mucci A, Zambon A, Filaferro M, Vitale G, Benassi M, Avallone R, Pasquali L, Lassinantti Gualtieri M. Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chem Res Toxicol 2019; 32:2063-2077. [DOI: 10.1021/acs.chemrestox.9b00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alessandro Zoboli
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alfonso Zambon
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic, and Neuro-Sciences, The University of Modena and Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Monia Benassi
- Department of Biomedical, Metabolic, and Neuro-Sciences, The University of Modena and Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Luca Pasquali
- Department of Engineering “Enzo Ferrari”, The University of Modena and Reggio Emilia, Via P. Vivarelli 10, I-41125 Modena, Italy
| | - Magdalena Lassinantti Gualtieri
- Department of Engineering “Enzo Ferrari”, The University of Modena and Reggio Emilia, Via P. Vivarelli 10, I-41125 Modena, Italy
| |
Collapse
|
47
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
48
|
Cox A, Vinciguerra D, Re F, Magro RD, Mura S, Masserini M, Couvreur P, Nicolas J. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm 2019; 142:70-82. [PMID: 31176723 DOI: 10.1016/j.ejpb.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Nanoparticles may provide a viable way for neuroprotective drugs to cross the blood-brain barrier (BBB), which limits the passage of most drugs from the peripheral circulation to the brain. Heterotelechelic polymer prodrugs comprising a neuroprotective model drug (adenosine) and a maleimide functionality were synthesized by the "drug-initiated" approach and subsequent nitroxide exchange reaction. Nanoparticles were obtained by nanoprecipitation and exhibited high colloidal stability with diameters in the 162-185 nm range and narrow size distributions. Nanoparticles were then covalently surface-conjugated to different proteins (albumin, α2-macroglobulin and fetuin A) to test their capability of enhancing BBB translocation. Their performances in terms of endothelial permeability and cellular uptake in an in vitro BBB model were compared to that of similar nanoparticles with surface-adsorbed proteins, functionalized or not with the drug. It was shown that bare NPs (i.e., NPs not surface-functionalized with proteins) without the drug exhibited significant permeability and cellular uptake, which were further enhanced by NP surface functionalization with α2-macroglobulin. However, the presence of the drug at the polymer chain-end prevented efficient passage of all types of NPs through the BBB model, likely due to adecrease in the hydrophobicity of the nanoparticle surface and alteration of the protein binding/coupling, respectively. These results established a new and facile synthetic approach for the surface-functionalization of polymer nanoparticles for brain delivery purposes.
Collapse
Affiliation(s)
- Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Daniele Vinciguerra
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy.
| | - Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Simona Mura
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Massimo Masserini
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
49
|
Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU, Langer K. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm 2019; 141:70-80. [PMID: 31082511 DOI: 10.1016/j.ejpb.2019.05.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 01/11/2023]
Abstract
Upon intravenous administration of nanoparticles (NP) into the bloodstream, proteins bind rapidly on their surface resulting in a formation of a so-called 'Protein Corona'. These proteins are strongly attached to the NP surface and provide a new biological identity which is crucial for the reaction at the nano-biointerface. The structure and composition of the protein corona is greatly determined by the physico-chemical properties of the NP and the characteristics of the biological environment. The overall objective of this study was to characterize the role of NP size/surface curvature and PEGylation on the formation of the protein corona. Therefore, we prepared NP in a size of 100 and 200 nm using the biodegradable polymers poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactide-co-glycolide)-co-polyethylene glycol diblock (PLGA-PEG) and subsequently incubated them with fetal bovine serum (FBS) to induce the formation of a protein corona. After removal of unbound protein, we employed different analytical approaches to study the corona in detail. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to gain a first impression about amount and composition of the corona proteins. Identification was carried out after tryptic in-solution digestion and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In addition, we successfully established the Bradford protein assay as a suitable colorimetric method to quantify total adsorbed protein amount after alkaline hydrolysis of PLGA based NP. Our results revealed that protein adsorption on PLGA- and PLGA-PEG-NP didn't depend on NP size within the range of 100 and 200 nm. PEGylation led to a significant reduced amount of bound proteins. The depletion of proteins which are involved in immune response was remarkable and indicated a prolonged circulation time in body.
Collapse
Affiliation(s)
- Katrin Partikel
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Robin Korte
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Nora C Stein
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Fabian C Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
50
|
Abstract
The chemical and biological nonproliferation regime stands at a watershed moment, when failure seems a real possibility. After the unsuccessful outcome of the 2016 Eighth Review Conference, the future of the Biological and Toxin Weapons Convention is uncertain. As the Chemical Weapons Convention (CWC) approaches its Fourth Review Conference in 2018, it has almost completed removing the huge stocks of chemical weapons, but it now faces the difficult organizational task of moving its focus to preventing the reemergence of chemical weapons at a time when the international security situation appears to be increasingly more difficult and dangerous. In this article, we assess the current and near-term state (5-10 years) and impact of three related areas of science and technology that could be of dual-use concern: targeted delivery of agents to the central nervous system (CNS), particularly by means of nanotechnology; direct impact of nanomaterials on synaptic functions in the CNS; and neuronal circuits in the brain that might be targeted by those with hostile intent. We attempt to assess the implications of our findings, particularly for the consideration of the problem of state-level interest in so-called nonlethal incapacitating chemical agents for law enforcement at the CWC Review Conference in 2018, but also more generally for the longer-term future of the chemical and biological nonproliferation regime.
Collapse
|