1
|
Guichard Y, Savoy C, Gaté L. Can a 12-gene expression signature predict the cell transforming potential of tumor promoting agents in Bhas 42 cells? Toxicol Lett 2023; 389:11-18. [PMID: 37813191 DOI: 10.1016/j.toxlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
To date, long-term rodent carcinogenesis assays are the only assays recognized by regulators to assess non-genotoxic carcinogens, but their reliability has been questioned. In vitro cell transformation assays (CTAs) could represent an interesting alternative to animal models as it has the advantage of detecting both genotoxic and non-genotoxic transforming chemicals. Among them, Bhas 42 CTA uses a cell line that has been transfected with the oncogenic sequence v-Ha-ras. This sequence confers an "initiated" status to these cells and makes them particularly sensitive to non-genotoxic agents. In a previous work, transcriptomic analysis revealed that the treatment of Bhas 42 cells with transforming silica (nano)particles and 12-O-tetradecanoylphorbol-13-acetate (TPA) commonly modified the expression of 12 genes involved in cell proliferation and adhesion. In the present study, we assess whether this signature would be the same for four other soluble transforming agents, i.e. mezerein, methylarsonic acid, cholic acid and quercetin. The treatment of Bhas 42 cells for 48 h with mezerein modified the expression of the 12 genes of the signature according to the same profile as that of the TPA. However, methylarsonic acid and cholic acid gave an incomplete signature with changes in the expression of only 7 and 5 genes, respectively. Finally, quercetin treatment induced no change in the expression of all genes but exhibited higher cytotoxicty. These results suggest that among the transforming agents tested, some may share similar mechanisms of action leading to cell transformation while others may activate different additional pathways involved in such cellular process. More transforming and non-transforming agents and gene markers should be tested in order to try to identify a relevant gene signature to predict the transforming potential of non-genotoxic agents.
Collapse
Affiliation(s)
- Yves Guichard
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Dept Toxicology and Biomonitoring, 1 rue Morvan, F-54519 Vandoeuvre les Nancy, France.
| | - Caroline Savoy
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Dept Toxicology and Biomonitoring, 1 rue Morvan, F-54519 Vandoeuvre les Nancy, France
| | - Laurent Gaté
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Dept Toxicology and Biomonitoring, 1 rue Morvan, F-54519 Vandoeuvre les Nancy, France
| |
Collapse
|
2
|
Colacci A, Corvi R, Ohmori K, Paparella M, Serra S, Da Rocha Carrico I, Vasseur P, Jacobs MN. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int J Mol Sci 2023; 24:ijms24065659. [PMID: 36982734 PMCID: PMC10057754 DOI: 10.3390/ijms24065659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.
Collapse
Affiliation(s)
- Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
- Correspondence:
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy
| | - Kyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 253-0087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, A-6020 Innbruck, Austria
| | - Stefania Serra
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
| | | | - Paule Vasseur
- Universite de Lorraine, CNRS UMR 7360 LIEC, Laboratoire Interdisciplinaire des Environnements Continentaux, 57070 Metz, France
| | - Miriam Naomi Jacobs
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton OX11 0RQ, UK
| |
Collapse
|
3
|
Li S, Xu S, Chen Y, Zhou J, Ben S, Guo M, Chu H, Gu D, Zhang Z, Wang M. Metal Exposure Promotes Colorectal Tumorigenesis via the Aberrant N6-Methyladenosine Modification of ATP13A3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2864-2876. [PMID: 36745568 DOI: 10.1021/acs.est.2c07389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Element contamination, including that from heavy metals, is associated with gastrointestinal tumorigenesis, but the effects and mechanisms of crucial element exposure associated with colorectal cancer remain unclear. We profiled 56 elements by ICP-MS and used logistic regression, LASSO, BKMR, and GAM to identify colorectal cancer-relevant elements. A series of biochemical experiments were performed to demonstrate the cytotoxicity and the mechanisms of malignant transformation after metal exposure. Using an elementomics approach, we first found that the metal thallium (Tl) was positively correlated with many toxic metals and was associated with a significantly increased risk of colorectal cancer. Acute exposure to Tl induced cytotoxicity and cell death by accelerating the generation of reactive oxygen species and DNA damage. Chronic exposure to Tl led to the inhibition of cell death and thereby induced the malignant transformation of normal colon cells and xenograft tumor formation in nude mice. Furthermore, we describe the first identification of a significant metal quantitative trait locus for the novel colorectal cancer susceptibility locus rs1511625 near ATP13A3. Mechanistically, Tl increased the level of aberrant N6-methyladenosine (m6A) modification of ATP13A3 via the METLL3/METTL14/ALKBH5-ATP13A3 axis to promote colorectal tumorigenesis. This study provides a basis for the development of public health strategies for reducing metal exposure among populations at high risk for colorectal cancer.
Collapse
Affiliation(s)
- Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shenya Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yehua Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mengfan Guo
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, Jiangsu, China
| |
Collapse
|
4
|
Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of Oncotransformation. Int J Mol Sci 2022; 23:ijms23147603. [PMID: 35886950 PMCID: PMC9321586 DOI: 10.3390/ijms23147603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022] Open
Abstract
The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.
Collapse
|
5
|
Toma C, Manganaro A, Raitano G, Marzo M, Gadaleta D, Baderna D, Roncaglioni A, Kramer N, Benfenati E. QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors. Molecules 2020; 26:E127. [PMID: 33383938 PMCID: PMC7796303 DOI: 10.3390/molecules26010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/21/2022] Open
Abstract
Carcinogenicity is a crucial endpoint for the safety assessment of chemicals and products. During the last few decades, the development of quantitative structure-activity relationship ((Q)SAR) models has gained importance for regulatory use, in combination with in vitro testing or expert-based reasoning. Several classification models can now predict both human and rat carcinogenicity, but there are few models to quantitatively assess carcinogenicity in humans. To our knowledge, slope factor (SF), a parameter describing carcinogenicity potential used especially for human risk assessment of contaminated sites, has never been modeled for both inhalation and oral exposures. In this study, we developed classification and regression models for inhalation and oral SFs using data from the Risk Assessment Information System (RAIS) and different machine learning approaches. The models performed well in classification, with accuracies for the external set of 0.76 and 0.74 for oral and inhalation exposure, respectively, and r2 values of 0.57 and 0.65 in the regression models for oral and inhalation SFs in external validation. These models might therefore support regulators in (de)prioritizing substances for regulatory action and in weighing evidence in the context of chemical safety assessments. Moreover, these models are implemented on the VEGA platform and are now freely downloadable online.
Collapse
Affiliation(s)
- Cosimo Toma
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands;
| | | | - Giuseppa Raitano
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| | - Marco Marzo
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| | - Domenico Gadaleta
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| | - Diego Baderna
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| | - Alessandra Roncaglioni
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands;
| | - Emilio Benfenati
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (C.T.); (G.R.); (M.M.); (D.G.); (A.R.)
| |
Collapse
|
6
|
Predictive early gene signature during mouse Bhas 42 cell transformation induced by synthetic amorphous silica nanoparticles. Chem Biol Interact 2020; 315:108900. [PMID: 31738905 DOI: 10.1016/j.cbi.2019.108900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica nanoparticles (SAS) are used widely in industrial applications. These nanoparticles are not classified for their carcinogenicity in humans. However, some data still demonstrate a potential carcinogenic risk of these compounds in humans. The Bhas 42 cell line was developed to screen chemicals, as tumor-initiators or -promoters according to their ability to trigger cell-to-cell transformation, in a cell transformation assay. In the present study, we performed unsupervised transcriptomic analysis after exposure of Bhas 42 cells to NM-203 SAS as well as to positive (Min-U-Sil 5® crystalline silica microparticles, and 12-O-tetradecanoylphorbol-13-acetate) and negative (diatomaceous earth) control compounds. We identified a common gene signature for 21 genes involved in the early stage of the SAS- Min-U-Sil 5®- or TPA-induced cell transformation. These genes were related to cell proliferation (over expression) and cell adhesion (under expression). Among them, 12 were selected on the basis of their potential impact on cell transformation. RT-qPCR and western blotting were used to confirm the transcriptomic data. Moreover, similar gene alterations were found when Bhas 42 cells were treated with two other transforming SAS. In conclusion, the results obtained in the current study highlight a 12-gene signature that could be considered as a potential early "bio-marker" of cell transformation induced by SAS and perhaps other chemicals.
Collapse
|
7
|
Mascolo MG, Perdichizzi S, Vaccari M, Rotondo F, Zanzi C, Grilli S, Paparella M, Jacobs MN, Colacci A. The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 2019; 39:955-967. [PMID: 29554273 PMCID: PMC6031005 DOI: 10.1093/carcin/bgy037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
The development of alternative methods to animal testing is a priority in the context of regulatory toxicology. Carcinogenesis is a field where the demand for alternative methods is particularly high. The standard rodent carcinogenicity bioassay requires a large use of animals, high costs, prolonged duration and shows several limitations, which can affect the comprehension of the human relevance of animal carcinogenesis. The cell transformation assay (CTA) has long been debated as a possible in vitro test to study carcinogenesis. This assay provides an easily detectable endpoint of oncotransformation, which can be used to anchor the exposure to the acquisition of the malignant phenotype. However, the current protocols do not provide information on either molecular key events supporting the carcinogenesis process, nor the mechanism of action of the test chemicals. In order to improve the use of this assay in the integrated testing strategy for carcinogenesis, we developed the transformics method, which combines the CTA and transcriptomics, to highlight the molecular steps leading to in vitro malignant transformation. We studied 3-methylcholanthrene (3-MCA), a genotoxic chemical able to induce in vitro cell transformation, at both transforming and subtransforming concentrations in BALB/c 3T3 cells and evaluated the gene modulation at critical steps of the experimental protocol. The results gave evidence for the potential key role of the immune system and the possible involvement of the aryl hydrocarbon receptor (AhR) pathway as the initial steps of the in vitro transformation process induced by 3-MCA, suggesting that the initiating events are related to non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Maria Grazia Mascolo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Stefania Perdichizzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Monica Vaccari
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Francesca Rotondo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Cristina Zanzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Sandro Grilli
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Martin Paparella
- Chemicals and Biocides, Environment Agency Austria, Vienna, Austria
| | - Miriam N Jacobs
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards Public Health England, Chilton, Oxfordshire, UK
| | - Annamaria Colacci
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| |
Collapse
|
8
|
Callegaro G, Forcella M, Melchioretto P, Frattini A, Gribaldo L, Fusi P, Fabbri M, Urani C. Toxicogenomics applied to in vitro Cell Transformation Assay reveals mechanisms of early response to cadmium. Toxicol In Vitro 2018; 48:232-243. [DOI: 10.1016/j.tiv.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
|
9
|
Jackson MA, Yang L, Lea I, Rashid A, Kuo B, Williams A, Lyn Yauk C, Fostel J. The TGx-28.65 biomarker online application for analysis of transcriptomics data to identify DNA damage-inducing chemicals in human cell cultures. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:529-535. [PMID: 28766826 DOI: 10.1002/em.22114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The TGx-28.65 biomarker is a 65-gene expression profile generated from testing 28 model chemicals (13 that cause DNA damage and 15 that do not) in human TK6 cells. It is used to predict whether a chemical induces DNA damage or not. We expanded availability to the biomarker by developing the online TGx-28.65 biomarker application for predicting the DNA damage inducing (DDI) potential of suspect toxicants tested in p53-proficient human cells and assessing putative mode(s) of action (MOA). Applications like this that analyse gene expression data to predict the hazard potential of test chemicals hold great promise for risk assessment paradigms. The TGx-28.65 biomarker interfaces with an analytical tool to predict the probability that a test chemical can directly or indirectly induce DNA damage. User submitted in vitro microarray data are compared to the 28-chemical x 65-gene signature profile and the probability that the data fit the profile for a DDI or a non-DDI (NDDI) chemical is calculated. The results are displayed in the Results Table, which includes the classification probability and hyperlinks to view heatmaps, hierarchical clustering, and principal component analyses of user-input data in the context of the reference profile. The heatmaps and cluster plots, along with the corresponding text data files of fold changes in gene expression and Euclidean distances can be downloaded. Review of the test chemical data in relationship to the biomarker allows rapid identification of key gene alterations associated with DNA damage as well as chemicals in the reference set that produced a similar response. Environ. Mol. Mutagen. 58:529-535, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Longlong Yang
- DS Technologies, Inc., Research Triangle Park, North Carolina
| | - Isabel Lea
- ASRC Federal - Vistronix, Morrisville, North Carolina
| | - Asif Rashid
- ASRC Federal - Vistronix, Morrisville, North Carolina
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole Lyn Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jennifer Fostel
- National Institute of Environmental Health Sciences/National Institutes of Health, National Toxicology Program, Research Triangle Park, North Carolina
| |
Collapse
|
10
|
Callegaro G, Corvi R, Salovaara S, Urani C, Stefanini FM. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay. J Appl Toxicol 2016; 37:709-720. [PMID: 27917502 DOI: 10.1002/jat.3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Abstract
Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giulia Callegaro
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Raffaella Corvi
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Chemical Safety and Alternative Methods Unit; Directorate F, European Commission Joint Research Centre, TP 126, Via E. Fermi, 2749, I-21027, Ispra, (VA), Italy
| | - Susan Salovaara
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Chemical Safety and Alternative Methods Unit; Directorate F, European Commission Joint Research Centre, TP 126, Via E. Fermi, 2749, I-21027, Ispra, (VA), Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Federico M Stefanini
- Department of Statistics, Computer Science, Applications, University of Florence, Viale Morgagni 59, I-50100, Florence, Italy
| |
Collapse
|
11
|
Forcella M, Callegaro G, Melchioretto P, Gribaldo L, Frattini M, Stefanini FM, Fusi P, Urani C. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways. Toxicol In Vitro 2016; 36:71-80. [PMID: 27432484 DOI: 10.1016/j.tiv.2016.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci.
Collapse
Affiliation(s)
- M Forcella
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - G Callegaro
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - P Melchioretto
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - L Gribaldo
- Institute for Health and Consumer Protection, DG JRC, European Commission, Via Enrico Fermi 2749, 21027 Ispra, Varese, Italy
| | - M Frattini
- Istituto Cantonale di Patologia, Via in Selva 24, 6601 Locarno, Switzerland
| | - F M Stefanini
- Department of Statistics, Computer Science, Applications, University of Florence, Viale Morgagni 59, 50100 Florence, Italy
| | - P Fusi
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza 3, 20126 Milan, Italy.
| | - C Urani
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
12
|
Yauk CL, Buick JK, Williams A, Swartz CD, Recio L, Li H, Fornace AJ, Thomson EM, Aubrecht J. Application of the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-genotoxic chemicals in human TK6 cells in the presence of rat liver S9. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:243-60. [PMID: 26946220 PMCID: PMC5021161 DOI: 10.1002/em.22004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 05/05/2023]
Abstract
In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx-28.65) for classifying agents as genotoxic (DNA damaging) and non-genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co-exposed to 1% 5,6 benzoflavone/phenobarbital-induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor-, benzoflavone/phenobarbital-, or ethanol-induced rat liver S9 to expand TGx-28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co-exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor- and 5% ethanol-induced S9 alone did not induce the TGx-28.65 biomarker genes. Seven genotoxic and two non-genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post-exposure. Genotoxic/non-genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co-treated with dexamethasone and 10% Aroclor-induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx-28.65 is a sensitive biomarker of genotoxicity. A meta-analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx-28.65 biomarker.
Collapse
Affiliation(s)
- Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer IncGrotonConnecticut
| |
Collapse
|
13
|
Buick JK, Moffat I, Williams A, Swartz CD, Recio L, Hyduke DR, Li H, Fornace AJ, Aubrecht J, Yauk CL. Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:520-34. [PMID: 25733247 PMCID: PMC4506226 DOI: 10.1002/em.21940] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/24/2014] [Accepted: 01/14/2015] [Indexed: 05/21/2023]
Abstract
The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid- and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells.
Collapse
Affiliation(s)
- Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Ivy Moffat
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
- Water and Air Quality Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Daniel R. Hyduke
- Biological Engineering DepartmentUtah State UniversityLoganUtah
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer Inc.GrotonConnecticut
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| |
Collapse
|
14
|
Sakai R, Kondo C, Oka H, Miyajima H, Kubo K, Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology 2013; 315:8-16. [PMID: 24211769 DOI: 10.1016/j.tox.2013.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022]
Abstract
The in vitro mammalian cytogenetic tests monitor chromosomal aberrations in cultured mammalian cells to test the mutagenicity of compounds. Although these tests are especially useful for evaluating the potential clastogenic effects of chemicals, false positives associated with excessive toxicity occur frequently. There is a growing demand for mechanism-based assays to confirm positive results from cytogenetic tests. We hypothesized that a toxicogenomic approach that is based on gene expression profiles could be used to investigate mechanisms of genotoxicity. Human lymphoblastoid TK6 cells were treated with each of eight different genotoxins that included six DNA damaging compounds-mitomycin C, methyl methanesulfonate, ethyl methanesulfonate, cisplatin, etoposide, hydroxyurea-and two compounds that do not damage DNA-colchicine and adenine. Cells were exposed to each compound for 4h, and Affymetrix U133A microarrays were then used to comprehensively examine gene expression. A statistical analysis was used to select biomarker candidates, and 103 probes met our statistical criteria. Expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21 was ranked highest for discriminating DNA-damaging compounds. To further characterize the biological significance of alterations in gene expression, functional network analysis was performed with the 103 selected probes. Interestingly, a CDKN1A-centered interactome was identified as the most significant network. Together, these findings indicated that DNA-damaging compounds often induced changes in the expression of a large number of these 103 probes and that upregulation of CDKN1A was a common key feature of DNA damage stimuli. The utility of CDKN1A as a biomarker for assessing the genotoxicity of drug candidates was further evaluated; specifically, quantitative RT-PCR was used to assess the effects of 14 additional compounds-including DNA damaging genotoxins and genotoxins that do not damage DNA and five newly-synthesized drug candidates-on CDKN1A expression. In these assays, DNA damage-positive clastogens were clearly separated from DNA damage-negative compounds based on CDKN1A expression. In conclusion, CDKN1A may be a valuable biomarker for identifying DNA damage-inducing clastogens and as a follow-up assay for mammalian cytogenetic tests.
Collapse
Affiliation(s)
- Rina Sakai
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Chiaki Kondo
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Oka
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kihei Kubo
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeki Uehara
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
15
|
Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, Valverde M, Rojas E. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 2013; 533:508-14. [PMID: 24080485 DOI: 10.1016/j.gene.2013.09.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022]
Abstract
Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.
Collapse
Affiliation(s)
- M Martínez-Pacheco
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, C.U., 04510 México, México
| | | | | | | | | |
Collapse
|
16
|
Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors. Toxicol In Vitro 2013; 27:1905-12. [DOI: 10.1016/j.tiv.2013.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022]
|
17
|
van Kesteren PCE, Zwart PE, Schaap MM, Pronk TE, van Herwijnen MHM, Kleinjans JCS, Bokkers BGH, Godschalk RWL, Zeilmaker MJ, van Steeg H, Luijten M. Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: toxicokinetics is essential for in vivo-in vitro comparisons. Arch Toxicol 2012; 87:505-15. [PMID: 23052197 DOI: 10.1007/s00204-012-0949-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022]
Abstract
The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa (-/-) p53 (+/-) primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa (-/-) p53 (+/-) hepatocytes only. Here, we investigated pathway regulation upon in vivo B[a]P exposure of wild-type and Xpa (-/-) p53 (+/-) mice. In vivo transcriptomics analysis revealed a limited gene expression response in mouse livers, but with a significant induction of DNA replication and apoptotic/anti-apoptotic cellular responses in Xpa (-/-) p53 (+/-) livers only. In order to be able to make a meaningful in vivo-in vitro comparison we estimated internal in vivo B[a]P concentrations using DNA adduct levels and physiologically based kinetic modeling. Based on these results, the in vitro concentration that corresponded best with the internal in vivo dose was chosen. Comparison of in vivo and in vitro data demonstrated similarities in transcriptomics response: xenobiotic metabolism, lipid metabolism and oxidative stress. However, we were unable to detect cancer-related pathways in either wild-type or Xpa (-/-) p53 (+/-) exposed livers, which were previously found to be induced by B[a]P in Xpa (-/-) p53 (+/-) primary hepatocytes. In conclusion, we showed parallels in gene expression responses between livers and primary hepatocytes upon exposure to equivalent concentrations of B[a]P. Furthermore, we recommend considering toxicokinetics when modeling a complex in vivo endpoint with in vitro models.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Benzo(a)pyrene/pharmacokinetics
- Benzo(a)pyrene/toxicity
- Carcinogenicity Tests/methods
- Carcinogens/pharmacokinetics
- Carcinogens/toxicity
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Computer Simulation
- DNA Adducts/metabolism
- DNA Replication/drug effects
- Dose-Response Relationship, Drug
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- High-Throughput Screening Assays
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Primary Cell Culture
- Risk Assessment
- Transcription, Genetic/drug effects
- Tumor Suppressor Protein p53/genetics
- Xeroderma Pigmentosum Group A Protein/genetics
Collapse
Affiliation(s)
- P C E van Kesteren
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hueper K, Elalfy M, Laenger F, Halter R, Rodt T, Galanski M, Borlak J. PET/CT imaging of c-Myc transgenic mice identifies the genotoxic N-nitroso-diethylamine as carcinogen in a short-term cancer bioassay. PLoS One 2012; 7:e30432. [PMID: 22319569 PMCID: PMC3271108 DOI: 10.1371/journal.pone.0030432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCIPAL FINDINGS μCT and ¹⁸F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. CONCLUSIONS/SIGNIFICANCE The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mahmoud Elalfy
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Florian Laenger
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Roman Halter
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Rodt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Michael Galanski
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Juergen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
19
|
Bouvier d'Yvoire M, Bremer S, Casati S, Ceridono M, Coecke S, Corvi R, Eskes C, Gribaldo L, Griesinger C, Knaut H, Linge JP, Roi A, Zuang V. ECVAM and new technologies for toxicity testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:154-80. [PMID: 22437818 DOI: 10.1007/978-1-4614-3055-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of alternative empirical (testing) and non-empirical (non-testing) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity ('pathways' of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.
Collapse
|
20
|
Doktorova TY, Pauwels M, Vinken M, Vanhaecke T, Rogiers V. Opportunities for an alternative integrating testing strategy for carcinogen hazard assessment? Crit Rev Toxicol 2011; 42:91-106. [DOI: 10.3109/10408444.2011.623151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Pronk TE, van der Veen JW, Ezendam J, Van Loveren H, Pennings JL. Effects of pooling RNA from samples treated with different compounds for determining class specific biomarkers and processes in toxicogenomics. Toxicol In Vitro 2011; 25:1841-7. [DOI: 10.1016/j.tiv.2011.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 12/14/2022]
|
22
|
Fabian G, Farago N, Feher LZ, Nagy LI, Kulin S, Kitajka K, Bito T, Tubak V, Katona RL, Tiszlavicz L, Puskas LG. High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity. Int J Mol Sci 2011; 12:6116-34. [PMID: 22016648 PMCID: PMC3189772 DOI: 10.3390/ijms12096116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/24/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment.
Collapse
Affiliation(s)
| | - Nora Farago
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Liliana Z. Feher
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Lajos I. Nagy
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Sandor Kulin
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Klara Kitajka
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Tamas Bito
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Szeged, Semmelweis u. 1., Szeged H-6725, Hungary; E-Mail:
| | - Vilmos Tubak
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
| | - Robert L. Katona
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
- Laboratory of Chromosome Structure and Function, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Laszlo Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H-6725, Hungary; E-Mail:
| | - Laszlo G. Puskas
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-62-546-973; Fax: +36-62-546-972
| |
Collapse
|
23
|
Breheny D, Oke O, Faux SP. The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 2011; 39:233-55. [PMID: 21777038 DOI: 10.1177/026119291103900301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.
Collapse
|
24
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|