1
|
Zhou M, Jiang Q, Wang Q, Pan S, Chen B, Li L, Wang L, Zhou X. Exosome-transmitted circ_0004664 suppresses the migration and invasion of cadmium-transformed human bronchial epithelial cells by regulating PTEN expression via miR-942-5p. Chem Biol Interact 2024; 403:111221. [PMID: 39233264 DOI: 10.1016/j.cbi.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Exosomes play a crucial role in regulating extracellular communication between normal and cancer cells within the tumor microenvironment, thereby affecting tumor progression through their cargo molecules. However, the specific impact of exosomal circular RNAs (circRNAs) on the development of cadmium-induced carcinogenesis remains unclear. To address this, we investigated whether exosomes derived from normal human bronchial epithelial BEAS-2B (N-B2B) cells could transmit circRNA to cadmium-transformed BEAS-2B (Cd-B2B) cells and the potential effects on Cd-B2B cells. Our findings demonstrated a significant downregulation of circ_0004664 in Cd-B2B cells compared to N-B2B cells (P < 0.01). Overexpression of circ_0004664 in Cd-B2B cells led to a significant inhibition of cell migration and invasion (P < 0.01 or P < 0.05). Furthermore, N-B2B cells could transfer circ_0004664 into recipient Cd-B2B cells via exosomes, subsequently inhibiting cell migration and invasion (P < 0.05 or P < 0.01). Mechanistic investigations revealed that exosomal circ_0004664 functioned as a competitive endogenous RNA for miR-942-5p, resulting in an upregulation of PTEN (P < 0.05). Our study highlights the involvement of exosomal circ_0004664 in cell-cell communication during cadmium carcinogenesis, providing a novel insight into the role of exosomal circRNA in this process.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qi Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lujiao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Song C, Xiong DD, He RQ, Yong XZ, Huang ZG, Dang YW, Chen G, Pang YY, Zhao CY, Qu N, Wei DM. Bibliometric study of the application of the chicken embryo chorioallantoic membrane model in cancer research: the top 100 most cited articles. J Comp Pathol 2024; 213:59-72. [PMID: 39116802 DOI: 10.1016/j.jcpa.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The chicken embryo chorioallantoic membrane (CAM) model has played a crucial role in various aspects of cancer research. The purpose of this study is to help researchers clarify the research direction and prospects of the CAM model. A bibliometric analysis was conducted on the top 100 most cited articles on use of the CAM model in tumour research, retrieved from the Web of Science Core Collection database. Tools such as Bibliometrix, VOSviewer, CiteSpace and Excel were utilized for the visualization network analysis. The 100 articles analysed were mainly from the USA, China and European countries such as Germany and France. Tumour research involving CAM model experiments demonstrated reliability and scientific rigor (average citation count = 156.2). The analysis of keywords, topics and subject areas revealed that the applications of this model ranged from the biological characteristics of tumours to molecular mechanisms and signaling pathways, to recent developments in nanotechnology and clinical applications. Additionally, nude mouse experiments have been more frequently performed in recent years. We conclude that the CAM model is efficient, simple and cost-effective, and has irreplaceable value in various aspects of cancer research. In the future, the CAM model can further contribute to nanotechnology research.
Collapse
Affiliation(s)
- Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiang-Zhi Yong
- Department of Periodontal and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ning Qu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
3
|
Amanpour P, Eftekhari Z, Eidi A, Khodarahmi P. Ameliorative mechanism of dietary vitamin d and magnesium on newborn's pulmonary toxicity induced by cadmium. J Trace Elem Med Biol 2024; 84:127469. [PMID: 38759447 DOI: 10.1016/j.jtemb.2024.127469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Cadmium (Cd) exposure in mothers can cause respiratory issues in newborns, but the exact toxicity mechanisms are not fully understood. Vitamin D deficiency in Cd-exposed rats is associated with increased cadmium accumulation in tissues. Finding a cost-effective medication that is vital for the body while also reducing the effects of poisoning is crucial in treating poisonings. To investigate the mechanisms of Cd-induced lung toxicity, we examined the impact of prolonged Cd exposure in female rats before pregnancy on newborn lung health, focusing on sera TNF-α level, lung P53, Foxo1 mRNA, and lung VEGF, and BMP-4 protein level. A total of 50 rats were divided into control, Cd, Cd+Vitamin D, Cd+Mg, and Cd + Vitamin D+Mg groups. Cd exposure resulted in higher serum TNF-α levels and a significant rise in P53 mRNA levels. Additionally, the occurrence of hemorrhage, inflammatory cell infiltration, and thickening of alveolar walls decreased following treatment with vitamin D + Mg. Although Cd did not affect the newborns' body weight, it did impair their lung function. These findings suggest that the Cd-induced increase in the P53 gene expression could be alleviated by vitamin D and Mg, along with the elevation of VEGF and BMP-4 proteins and Foxo1 gene expression. The study revealed that environmental toxins can sometimes harm molecules and proteins, leading to damage in critical fetal tissues. However, these issues can be mitigated through essential supplements. STRUCTURED ABSTRACT: The increasing role of Cd in the erratic behavior of numerous biological and molecular entities, notably the development of fetal lung tissue, has made it beneficial to investigate the possible adverse effects of Cd exposure in pregnant mothers and fetal organ development, where instinctive molecular events occur. Researchers are encouraged to create new aspects of medications to reduce clinical symptoms and improve the quality of life due to exposure to metal toxins, particularly in industrialized countries. The present study aimed to evaluate histopathological and molecular modifications of fetal lungs caused by maternal Cd toxicosis and evaluate the possible ameliorating effects of vitamin D and Mg alone and in combination with fetal lung developmental abnormalities, followed by maternal toxin induction, which can be generalized to humans. Fifty female Wistar rats were purchased from the Pasteur Institute of Iran. To induce the model, cadmium at a dose of 2 mg/kg body weight was injected intraperitoneally into the female rats over 28 days before mating (5 days after injection in a week). Afterward, the female rats were randomly divided into type IV polycarbonate cages and mated with healthy male rats. The pregnancy was confirmed by observation of the vaginal plaque, which was subsequently observed, and the number of days of embryo formation was calculated. Subsequently, the pregnant rats were assigned to the following groups and received PBS, vitamin D, Mg, or vitamin D + Mg. At the end of the nine-day treatment period (the 6th day of pregnancy to the 14th day), the neonates were born vaginally, and their body weight and mortality were recorded. The P53 and Foxo1 gene expression levels in the left and right lobes of the homogenized lungs of the newborns in each group were assessed. TNF-alpha was detected in the sera collected from the newborns by ELISA. The isolated left and right lung tissues were homogenized in radioimmunoprecipitation assay (RIPA) buffer and the superior phase was collected to determine the total protein content by Lowry's method and VEGF and BMP-4 protein levels. The obtained lung samples from newborn rats were fixed in a 10% formalin solution for tissue processing. The fixed samples were embedded in paraffin, and serial paraffin sections were prepared for hematoxylin and eosin staining. This study is the first to examine how maternal Cd exposure affects fetal lung development and to estimate the impact of prescribing Mg and vitamin D during pregnancy. The present study assessed the effects of a repeated dose of Cd for 4 weeks before pregnancy on the lung development of newborn rats born to mothers treated with vitamin D and Mg. The results showed that the P53 gene was overexpressed in the model group, while Foxo1 gene expression was downregulated, negatively impacting the lung structure and developmental indices of the fetuses. Therefore, the intake of vitamin D and Mg may contribute to improving the various stages of Cd-induced lung injury by modulating lung inflammation and mucosal secretion while also positively influencing the number of surviving offspring.
Collapse
Affiliation(s)
- Paria Amanpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohre Eftekhari
- Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
4
|
Zhang X, Zheng W, Sun S, Du Y, Xu W, Sun Z, Liu F, Wang M, Zhao Z, Liu J, Liu Q. Cadmium contributes to cardiac metabolic disruption by activating endothelial HIF1A-GLUT1 axis. Cell Signal 2024; 119:111170. [PMID: 38604344 DOI: 10.1016/j.cellsig.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wendan Zheng
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shiyu Sun
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Yang Du
- Department of Personnel, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wenjuan Xu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering Laboratory for Health Management, Ji'nan, Shandong, China
| | - Zongguo Sun
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Fuhong Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Ju Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Qiang Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Ji'nan, Shandong, China.
| |
Collapse
|
5
|
Xing Y, Wang X, Liu J, Zhang Y, Tianran H, Dong L, Tian J, Liu J. Low-dose cadmium induces lymphangiogenesis through activation of the STAT3 signaling pathway. Biomed Pharmacother 2024; 175:116741. [PMID: 38744218 DOI: 10.1016/j.biopha.2024.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cadmium (Cd) is a widespread environmental toxicant that poses significant threat to public health. After intake, Cd is distributed throughout the body via blood and lymphatic circulation. However, the effect of Cd on lymphatic vessels has not been revealed. In this study, mice were exposed to 10 μM cadmium chloride through drinking water immediately after corneal alkali burn. In vivo analyses showed that Cd treatment enhances the alkali burn-induced corneal lymphangiogenesis, which is characterized by increased expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), prospero-related homeobox 1 (PROX-1) and vascular endothelial growth factor receptor 3 (VEGFR3). In vitro, the proliferation and migration of human dermal lymphatic endothelial cells (HDLECs) are increased by 1 μM Cd treatment, while inhibited by 10 μM Cd treatment. At a concentration of 1 μM, Cd specifically induces phosphorylation of signal transducer and activator of transcription 3 (STAT3), but has no effect on the MAPK, AKT, or NF-κB signaling pathway. In the presence of the STAT3 inhibitor STATTIC, Cd fails to induce HDLECs proliferation and migration. In addition, Cd upregulates VEGFR3 expression and its gene promoter activity in a STAT3-dependent manner. Our study suggests that low-dose Cd promotes lymphangiogenesis through activation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yan Xing
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, 250014, China; Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yuanqing Zhang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Huai Tianran
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Liang Dong
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, 250014, China
| | - Jinghui Tian
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
6
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2024:10.1007/s12011-024-04189-2. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
7
|
Ali Hussein M, Kamalakkannan A, Valinezhad K, Kannan J, Paleati N, Saad R, Kajdacsy-Balla A, Munirathinam G. The dynamic face of cadmium-induced Carcinogenesis: Mechanisms, emerging trends, and future directions. Curr Res Toxicol 2024; 6:100166. [PMID: 38706786 PMCID: PMC11068539 DOI: 10.1016/j.crtox.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Cadmium (Cd) is a malleable element with odorless, tasteless characteristics that occurs naturally in the earth's crust, underground water, and soil. The most common reasons for the anthropological release of Cd to the environment include industrial metal mining, smelting, battery manufacturing, fertilizer production, and cigarette smoking. Cadmium-containing products may enter the environment as soluble salts, vapor, or particle forms that accumulate in food, soil, water, and air. Several epidemiological studies have highlighted the association between Cd exposure and adverse health outcomes, especially renal toxicity, and the impact of Cd exposure on the development and progression of carcinogenesis. Also highlighted is the evidence for early-life and even maternal exposure to Cd leading to devastating health outcomes, especially the risk of cancer development in adulthood. Several mechanisms have been proposed to explain how Cd mediates carcinogenic transformation, including epigenetic alteration, DNA methylation, histone posttranslational modification, dysregulated non-coding RNA, DNA damage in the form of DNA mutation, strand breaks, and chromosomal abnormalities with double-strand break representing the most common DNA form of damage. Cd induces an indirect genotoxic effect by reducing p53's DNA binding activity, eventually impairing DNA repair, inducing downregulation in the expression of DNA repair genes, which might result in carcinogenic transformation, enhancing lipid peroxidation or evasion of antioxidant interference such as catalase, superoxide dismutase, and glutathione. Moreover, Cd mediates apoptosis evasion, autophagy activation, and survival mechanisms. In this review, we decipher the role of Cd mediating carcinogenic transformation in different models and highlight the interaction between various mechanisms. We also discuss diagnostic markers, therapeutic interventions, and future perspectives.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, 57357 Cairo, Egypt
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abishek Kamalakkannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Jhishnuraj Kannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Nikhila Paleati
- Department of Psychology and Neuroscience, College of Undergraduate Studies, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rama Saad
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
8
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
9
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
12
|
Tyagi A, Chandrasekaran B, Navin AK, Shukla V, Baby BV, Ankem MK, Damodaran C. Molecular interplay between NOX1 and autophagy in cadmium-induced prostate carcinogenesis. Free Radic Biol Med 2023; 199:44-55. [PMID: 36764624 DOI: 10.1016/j.freeradbiomed.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Chronic exposure to cadmium (Cd), a class I carcinogen, leads to malignant transformation of normal prostate epithelial cells (RWPE-1). The constant generation of Cd-induced ROS and resulting ER stress induces cellular responses that are needed for cell survival, and autophagy has an important role in this process. However, the mechanisms that regulate Cd-induced ROS and how these differ in terms of acute and chronic cadmium exposure remain unexplained. Here, we show that acute or chronic Cd exposure facilitates NOX1 assembly by activating its cytosolic regulators p47phox and p67phox in RWPE-1 cells. Upregulation of NOX1 complex proteins and generation of ROS activates unfolded protein response (UPR) via phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2 alpha (eIF2α), and selective translation of activating transcription factor 4 (ATF4). Chronic Cd exposure constantly activates NOX1 complex and generates consistent ROS and ER stress that led to defective autophagy, wherein ATG5 expression is downregulated in contrast to acute Cd exposure. As a result, selective/defective autophagy creates depletion of autophagosome-lysosome fusion that gives a survival advantage to transforming cells, which is not available to RWPE-1 cells acutely exposed to Cd. Knockdown of key molecules in a lockstep manner directly affects the most downstream autophagy pathways in transforming cells. Overall, this study demonstrates that assembly of NOX1 complex proteins is indispensable for Cd-induced persistent ROS and controls ER stress-induced defective autophagy in mice and humans.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Balaji Chandrasekaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Ajit K Navin
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Vaibhav Shukla
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Becaa V Baby
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Chendil Damodaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA; Department of Urology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
13
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
14
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
15
|
Arsenic trioxide promotes ERK1/2-mediated phosphorylation and degradation of BIM EL to attenuate apoptosis in BEAS-2B cells. Chem Biol Interact 2023; 369:110304. [PMID: 36509116 DOI: 10.1016/j.cbi.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Inorganic arsenic is highly toxic, widely distributed in the human environment and may result in multisystem diseases and several types of cancers. The BCL-2-interacting mediator of cell death protein (BIM) is a key modulator of the intrinsic apoptosis pathway. Interestingly, in the present study, we found that arsenic trioxide (As2O3) decreased BIMEL levels in human bronchial epithelial cell line BEAS-2B and increased BIMEL levels in human lung carcinoma cell line A549 and mouse Sertoli cell line TM4. Mechanismly, the 26S proteasome inhibitors MG132 and bortezomib could effectively inhibit BIMEL degradation induced by As2O3 in BEAS-2B cells. As2O3 activated extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, but only the ERK1/2 MAPK inhibitor PD98059 blocked BIMEL degradation induced by As2O3. Furthermore, As2O3 induced-phosphorylation of BIMEL at multiple sites was inhibited by ERK1/2 MAPK inhibitor PD98059. Inhibition of As2O3-induced ERK1/2 MAPK phosphorylation increased the levels of BIMEL and cleaved-caspase-3 proteins and decreased BEAS-2B cell viability. As2O3 also markedly mitigated tunicamycin-induced apoptosis of BEAS-2B cells by increasing ERK1/2 phosphorylation and BIMEL degradation. Our results suggest that As2O3-induced activation of the ERK1/2 MAPK pathway increases phosphorylation of BIMEL and promotes BIMEL degradation, thereby alleviating the role of apoptosis in As2O3-induced cell death. This study provides new insights into how to maintain the survival of BEAS-2B cells before malignant transformation induced by high doses of As2O3.
Collapse
|
16
|
Tavakoli Pirzaman A, Ebrahimi P, Niknezhad S, Vahidi T, Hosseinzadeh D, Akrami S, Ashrafi AM, Moeen Velayatimehr M, Hosseinzadeh R, Kazemi S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum Exp Toxicol 2023; 42:9603271231210262. [PMID: 37870872 DOI: 10.1177/09603271231210262] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.
Collapse
Affiliation(s)
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Turan Vahidi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash M Ashrafi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
17
|
Hu Q, Zhang R, Zheng J, Song M, Gu C, Li W. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23220. [PMID: 36094782 DOI: 10.1002/jbt.23220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1β and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1β and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Collapse
Affiliation(s)
- Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Rui Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Menghui Song
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| |
Collapse
|
18
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
19
|
The Central Nervous Mechanism of Stress-Promoting Cancer Progression. Int J Mol Sci 2022; 23:ijms232012653. [PMID: 36293510 PMCID: PMC9604265 DOI: 10.3390/ijms232012653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s immune response, causing tumor cells to escape the “surveillance” of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.
Collapse
|
20
|
Mao Y, Zhuo R, Ma W, Dai J, Alimu P, Fang C, Xu D, Ye L, Wang W, Sun F. Fibroblasts mediate the angiogenesis of pheochromocytoma by increasing COX4I2 expression. Front Oncol 2022; 12:938123. [PMID: 36172142 PMCID: PMC9511905 DOI: 10.3389/fonc.2022.938123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Our previous work found COX4I2 was associated with angiogenesis in pheochromocytoma. The purpose of this study was to explore the role of COX4I2 in regulating angiogenesis in pheochromocytoma. Methods Distribution of COX4I2 was evaluated by scRNA-seq in one case of pheochromocytoma and the findings were verified by immunostaining. COX4I2 was further knocked down in target cells. Changes of angiogenesis-related genes were evaluated by qPCR in target cells. Results The scRNA-seq revealed high mRNA expression of COX4I2 in fibroblasts rather than tumor cells. Immunostaining of COX4I2 confirmed its distribution in fibroblasts. Knocking down COX4I2 in NIH3T3 cell line led to significant reduction of angiogenesis-related genes, especially ANG1 and HGF. Conclusions Fibroblasts mediate the angiogenesis of pheochromocytoma by increasing COX4I2 expression, possibly by affecting ANG1 and HGF.
Collapse
Affiliation(s)
- Yongxin Mao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhuo
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenming Ma
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Parehe Alimu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Fang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Fukang Sun, ; Weiqing Wang,
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Fukang Sun, ; Weiqing Wang,
| |
Collapse
|
21
|
Thévenod F, Schreiber T, Lee WK. Renal hypoxia-HIF-PHD-EPO signaling in transition metal nephrotoxicity: friend or foe? Arch Toxicol 2022; 96:1573-1607. [PMID: 35445830 PMCID: PMC9095554 DOI: 10.1007/s00204-022-03285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany.
| | - Timm Schreiber
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School EWL, Bielefeld University, R.1 B2-13, Morgenbreede 1, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Mitra S, Patra T, Saha D, Ghosh P, Mustafi SM, Varghese AC, Murmu N. Sub-chronic cadmium and lead compound exposure induces reproductive toxicity and development of testicular germ cell neoplasia in situ in murine model: Attenuative effects of resveratrol. J Biochem Mol Toxicol 2022; 36:e23058. [PMID: 35362238 DOI: 10.1002/jbt.23058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Cadmium and lead are widespread, nonbiodegradable heavy metals of perpetual environmental concerns. The present study aimed to evaluate whether sub-chronic exposure to cadmium chloride (CdCl2 ) and lead acetate [Pb(CH3 COO)2 ] induces reproductive toxicity and development of testicular germ cell neoplasia in situ (GCNIS) in swiss albino mice. The effects of resveratrol to reverse the metal-induced toxicity were also analyzed. The mice were randomly divided into four groups for metal treatments and two groups received two different doses of each metal, CdCl2 (0.25 and 0.5 mg/kg) and Pb(CH3 COO)2 (3 and 6 mg/kg). The fourth group received oral doses of 20 mg/kg resveratrol in combination with 0.5 mg/kg CdCl2 or 6 mg/kg Pb(CH3 COO)2 for 16 weeks. Toxic effects of both metals were estimated qualitatively and quantitatively by the alterations in sperm parameters, oxidative stress markers, testicular histology, and protein expressions of the treated mice. Pronounced perturbation of sperm parameters, cellular redox balance were observed with severe distortion of testicular histo-architecture in metal exposed mice. Significant overexpression of Akt cascade and testicular GCNIS marker proteins were recorded in tissues treated with CdCl2 . Notable improvements were observed in all the evaluated parameters of resveratrol cotreated mice groups. Taken together, the findings of this study showed that long-term exposure to Cd and Pb compounds, induced acute reproductive toxicity and initiation of GCNIS development in mice. Conversely, resveratrol consumption abrogated metal-induced perturbation of spermatogenesis, testicular morphology, and the upregulation of Akt cascade proteins along with GCNIS markers, which could have induced the development of testicular cancer.
Collapse
Affiliation(s)
- Sreyashi Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapas Patra
- E. Doisy Research Center, Saint Louis University, St. Louis, Missouri, USA
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Ghosh
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
23
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
24
|
Albano GD, Montalbano AM, Gagliardo R, Anzalone G, Profita M. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). Int J Mol Sci 2022; 23:2799. [PMID: 35269941 PMCID: PMC8911203 DOI: 10.3390/ijms23052799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Biomedical research is multidisciplinary and often uses integrated approaches performing different experimental models with complementary functions. This approach is important to understand the pathogenetic mechanisms concerning the effects of environmental pollution on human health. The biological activity of the substances is investigated at least to three levels using molecular, cellular, and human tissue models. Each of these is able to give specific answers to experimental problems. A scientific approach, using biological methods (wet lab), cell cultures (cell lines or primary), isolated organs (three-dimensional cell cultures of primary epithelial cells), and animal organisms, including the human body, aimed to understand the effects of air pollution on the onset of diseases of the respiratory system. Biological methods are divided into three complementary models: in vitro, ex vivo, and in vivo. In vitro experiments do not require the use of whole organisms (in vivo study), while ex vivo experiments use isolated organs or parts of organs. The concept of complementarity and the informatic support are useful tools to organize, analyze, and interpret experimental data, with the aim of discussing scientific notions with objectivity and rationality in biology and medicine. In this scenario, the integrated and complementary use of different experimental models is important to obtain useful and global information that allows us to identify the effect of inhaled pollutants on the incidence of respiratory diseases in the exposed population. In this review, we focused our attention on the impact of air pollution in airway diseases with a rapid and descriptive analysis on the role of epithelium and on the experimental cell models useful to study the effect of toxicants on epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Rosalia Gagliardo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| |
Collapse
|
25
|
Wang L, Bayanbold K, Zhao L, Wang Y, Adamcakova-Dodd A, Thorne PS, Yang H, Jiang BH, Liu LZ. Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151118. [PMID: 34718002 PMCID: PMC9387726 DOI: 10.1016/j.scitotenv.2021.151118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known carcinogen that can cause several types of cancer including lung cancer. NF-E2-related factor 2 (Nrf2), the redox sensitive transcription factor, can protect normal cells from a variety of toxicants and carcinogens by inducing the expression of cellular protective genes and maintaining redox balance. However, Nrf2 also protects cancer cells from radio- and chemo-therapies and facilitates cancer progression. Although Cr(VI) treatment has been demonstrated to upregulate Nrf2 expression, the mechanisms for Nrf2 regulation upon chronic Cr(VI) exposure remain to be elucidated. We found that Nrf2 was upregulated in BEAS-2B cells exposed to Cr(VI) from 1 to 5 months, and also in Cr(VI)-induced transformed (Cr-T) cells with Cr(VI) treatment for 6 months. We showed that KEAP1, the classic negative regulator of Nrf2, was downregulated after Cr(VI) exposure for 4 months, suggesting that Nrf2 induction by Cr(VI) treatment is through KEAP1 decrease at late stage. To further decipher the mechanisms of Nrf2 upregulation at early stage of Cr(VI) exposure, we demonstrated that miR-27a and miR-27b were redox sensitive miRNAs, since reactive oxygen species (ROS) scavengers induced miR-27a/b expression. After Cr(VI) exposure for 1 month, the expression levels of miR-27a/b was dramatically decreased. The changes of miR-27a/b and their target Nrf2 were confirmed in vivo by mouse model intranasally exposed to Cr(VI) for 12 weeks. Nrf2 was a direct target of miR-27a/b, which acted as tumor suppressors in vitro and in vivo to inhibit tumorigenesis and cancer development of Cr-T cells. The results suggested that the inhibition of miR-27a/b was responsible for Nrf2 upregulation at both early stage and late stage of Cr(VI) exposure. This novel regulation of Nrf2 upon chronic Cr(VI) exposure through redox-regulated miR-27a/b will provide potential targets for preventing and treating Cr(VI)-induced carcinogenesis in the future.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Khaliunaa Bayanbold
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hushan Yang
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Wu F, Zhang Y, Chen X, Wang Y, Peng H, Zhang Z, Yang Y, Wang Q. Bioinformatics analysis of key genes and potential mechanism in cadmium-induced breast cancer progression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11883-11892. [PMID: 34558042 DOI: 10.1007/s11356-021-16542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) may be associated with breast cancer progression, but the detailed molecular mechanism has not been fully elucidated. In this study, one public dataset (GSE136595) was used to identify differentially expressed genes (DEGs) in Cd-treated MCF-7 breast cancer cells. We determined a total of 2077 DEGs, and Ingenuity Pathway Analysis (IPA) software showed that 246 of them were related to tumor progression. Pathway analysis of these DEGs indicated that the HIF1α signaling and the epithelial-mesenchymal transition (EMT) pathway regulated by growth factors might be activated. Moreover, twist family bHLH transcription factor 1 (TWIST1), lysine demethylase 3A (KDM3A), Kruppel-like factor 4 (KLF4), nuclear protein 1 (NUPR1), neurogenin 3 (NEUROG3), and HNF1 homeobox B (HNF1B) might be the key transcription factors. And the result of protein-protein interaction (PPI) analysis showed that the hub genes in these 246 DEGs were tumor protein p53 (TP53), polo-like kinase 1 (PLK1), sirtuin 1 (SIRT1), protein tyrosine phosphatase non-receptor type 11 (PTPN11), caspase 8 (CASP8), cyclin-dependent kinase 6 (CDK6), calmodulin 3 (CALM3), KRAS proto-oncogene (KRAS), extra spindle pole bodies like 1 (ESPL1), and marker of proliferation Ki-67 (MKI67). Further analysis indicated that TWIST1, NUPR1, KRAS, and PTPN11 were related to the prognostic of breast cancer based on the Cancer Genome Atlas (TCGA) and they were validated to be upregulated in the Cd-treated MCF-7 cells. Our results suggested that the HIF1α signaling and the EMT pathway regulated by growth factors might be participant in the Cd-induced breast cancer progression and TWIST1, NUPR1, KRAS, and PTPN11 might be potential key genes.
Collapse
Affiliation(s)
- Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengbao Zhang
- Department of Quality Management, Guangdong Provincial Center for Disease Prevention and Control, Guangzhou, China
| | - Ying Yang
- Department of Quality Management, Guangdong Provincial Center for Disease Prevention and Control, Guangzhou, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Melatonin Administration Prevents Placental and Fetal Changes Induced by Gestational Diabetes. Reprod Sci 2022; 29:1111-1123. [PMID: 35025098 DOI: 10.1007/s43032-022-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Gestational diabetes mellitus (GDM) promotes changes in the placenta and fetuses, due to oxidative stress. Antioxidants can reduce oxidative stress in the placenta. We tested the hypothesis that melatonin (Mel) can prevent these effects in the placenta and fetuses, analyzing their histology, histochemistry, morphometry, and immunohistochemistry. Thirty albino rats were used, divided into groups: CG-pregnant non-diabetic rats; GD-pregnant diabetic rats; GD + Mel-pregnant diabetic rats treated with melatonin. Diabetes was induced by streptozotocin at a dosage of 50 mg/kg i.p. Melatonin was administered in daily injections of 0.8 mg/kg i.p. Melatonin prevented the placental weight and fetal weight and length from increasing, in addition to histomoformetric, histochemical, and immunohistochemical changes in the placentas, compared to the placentas of diabetic females (GD). Thus, we conclude that melatonin has a great potential to prevent placental changes due to GDM.
Collapse
|
28
|
Shi W, Meng Z, Luo J. Connexin 43 (Cx43) regulates high-glucose-induced retinal endothelial cell angiogenesis and retinal neovascularization. Front Endocrinol (Lausanne) 2022; 13:909207. [PMID: 36120455 PMCID: PMC9478119 DOI: 10.3389/fendo.2022.909207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of type 1 and type 2 diabetes mellitus (DM) and a major cause of blindness. Retinal neovascularization plays a critical role in the proliferative DR. In this study, high glucose-induced connexin 43 (Cx43) expression in human retinal endothelial cells (hRECs) in a dose-dependent manner. Compared with hRECs under normal culture conditions, high-glucose (HG)-stimulated hRECs showed promoted tubule formation, increased ROS release, and elevated levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor A (VEGFA), and intercellular adhesion molecule 1 (ICAM-1) in the culture medium. HG-induced alterations were further magnified after Cx43 overexpression, whereas partially eliminated after Cx43 knockdown. Finally, in the DR mouse model, impaired retinal structure, increased CD31 expression, and elevated mRNA levels of TNF-α, IL-1β, VEGFA, and ICAM-1 were observed; in-vivo Cx43 knockdown partially reversed these phenomena. Conclusively, Cx43 knockdown could inhibit hREC angiogenesis, therefore improving DR in the mouse model.
Collapse
Affiliation(s)
- Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
29
|
Ditta SA, Yaqub A, Tanvir F, Ullah R, Rashid M, Bilal M. Histopathological evaluation of amino acid capped silver nanoconjugates in albino mice. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various molecules may modify the surface chemistry of commonly used nanomaterials (NMs), resulting in the synthesis of novel and safer NMs. The current study was delineated to evaluate the in vivo toxicity profiling of the silver nanoconjugates (AgNCs) conjugated with different amino acids. The L-glycine capped-AgNCs exhibited toxicity and caused tissue damage, while L-cystine- and L-tyrosine-capped AgNCs showed protective effects against cadmium-induced toxicity. L-cystine-capped AgNCs performed well as compared to other amino-acid AgNCs. The level of serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and blood urea increased (p < 0.05) in G2, G3 and G5 in comparison to G1 (control group), while an increase in bilirubin for G2 was statistically non-significant (p > 0.05). The ALT and AST elevated (p < 0.05) in G4; however, other serological parameters in G4 and G6 did not show any noticeable change in their values. Histological analysis showed disturbed and deformed cellular structures in liver and kidney tissues of G2, G3 and G5. However, G4 and G6 samples demonstrated minute changes in comparison to G1. It is concluded that L-cystine- and L-tyrosine-capped AgNCs exhibited protective effects and should be tested further for developing safer nanoconjugates for biomedical uses.
Collapse
Affiliation(s)
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Bilal
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
30
|
Dang YY, Luo H, Li YM, Zhou Y, Luo X, Lin SM, Liu SP, Lee SMY, Li CW, Dai XY. Curcumin prevents As 3+-induced carcinogenesis through regulation of GSK3β/Nrf2. Chin Med 2021; 16:116. [PMID: 34758851 PMCID: PMC8582166 DOI: 10.1186/s13020-021-00527-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Arsenic (As3+) is a carcinogen with considerable environmental and occupational relevancy. Its mechanism of action and methods of prevention remain to be investigated. Previous studies have demonstrated that ROS is responsible for As3+-induced cell transformation, which is considered as the first stage of As3+ carcinogenesis. The NF-E2 p45-related factor-2 (Nrf2) signaling pathway regulates the cellular antioxidant response, and activation of Nrf2 has recently been shown to limit oxidative damage following exposure to As3+ Methods and results In this study, molecular docking was used to virtually screen natural antioxidant chemical databases and identify molecules that interact with the ligand-binding site of Keap1 (PDB code 4L7B). The cell-based assays and molecular docking findings revealed that curcumin has the best inhibitory activity against Keap1-4L7B. Co-immunoprecipitation (Co-IP) results indicated that curcumin is a potent Keap1 Kelch domain-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. The increased activation of Nrf2 and its target antioxidant genes by curcumin could significantly decrease As3+-generated ROS. Moreover, curcumin induced autophagy in As3+-treated BEAS-2B via inducing autophagy by the formation of a p62/LC-3 complex and increasing autophagic flux by promoting transcription factor EB (TFEB) and lysosome-associated membrane protein 1 (LAMP1) expression. Knockdown of Nrf2 abolished curcumin-induced autophagy and downregulated ROS. Further studies showed that inhibition of autophagosome and lysosome fusion with bafilomycin a1 (BafA1) could block curcumin and prevented As3+-induced cell transformation. These results demonstrated that curcumin prevents As3+-induced cell transformation by inducing autophagy via the activation of the Nrf2 signaling pathway in BEAS-2B cells. However, overexpression of Keap-1 showed a constitutively high level of Nrf2 in As3+-transformed BEAS-2B cells (AsT) is Keap1-independent regulation. Overexpression of Nrf2 in AsT demonstrated that curcumin increased ROS levels and induced cell apoptosis via the downregulation of Nrf2. Further studies showed that curcumin decreased the Nrf2 level in AsT by activating GSK-3β to inhibit the activation of PI3K/AKT. Co-IP assay results showed that curcumin promoted the interaction of Nrf2 with the GSK-3β/β-TrCP axis and ubiquitin. Moreover, the inhibition of GSK-3β reversed Nrf2 expression in curcumin-treated AsT, indicating that the decrease in Nrf2 is due to activation of the GSK-3β/β-TrCP ubiquitination pathway. Furthermore, in vitro and in vivo results showed that curcumin induced cell apoptosis, and had anti-angiogenesis and anti-tumorigenesis effects as a result of activating the GSK-3β/β-TrCP ubiquitination pathway and subsequent decrease in Nrf2. Conclusions Taken together, in the first stage, curcumin activated Nrf2, decreased ROS, and induced autophagy in normal cells to prevent As3+-induced cell transformation. In the second stage, curcumin promoted ROS and apoptosis and inhibited angiogenesis via inhibition of constitutive expression of Nrf2 in AsT to prevent tumorigenesis. Our results suggest that antioxidant natural compounds such as curcumin can be evaluated as potential candidates for complementary therapies in the treatment of As3+-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan-Ye Dang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yong-Mei Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yang Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiu Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shui-Mu Lin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shou-Ping Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chu-Wen Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Xiao-Yan Dai
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
31
|
Lin CT, Chen TH, Yang CC, Luo KH, Chen TH, Chuang HY. Epidermal Growth Factor Receptor (EGFR) Gene Polymorphism May be a Modifier for Cadmium Kidney Toxicity. Genes (Basel) 2021; 12:genes12101573. [PMID: 34680968 PMCID: PMC8535213 DOI: 10.3390/genes12101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The results of many studies indicate that cadmium (Cd) exposure is harmful to humans, with the proximal tubule of the kidney being the main target of Cd accumulation and toxicity. Studies have also shown that Cd has the effect of activating the pathway of epidermal growth factor receptor (EGFR) signaling and cell growth. The EGFR is a family of transmembrane receptors, which are widely expressed in the human kidney. The aim of this study was to investigate the kidney function estimated glomerular filtration rate (eGFR), and its relationship with plasma Cd level and EGFR gene polymorphism. Using data from Academia Sinica Taiwan biobank, 489 subjects aged 30-70 years were analyzed. The demographic characteristics was determined from questionnaires, and biological sampling of urine and blood was determined from physical examination. Kidney function was assessed by the eGFR with CKD-EPI formula. Plasma Cd (ug/L) was measured by inductively coupled plasma mass spectrometry. A total of 97 single-nucleotide polymorphisms (SNPs) were identified in the EGFR on the Taiwan biobank chip, however 4 SNPs did not pass the quality control. Multiple regression analyses were performed to achieve the study aim. The mean (±SD) plasma Cd level of the study subjects was 0.02 (±0.008) ug/L. After adjusting for confounding variables, rs13244925 AA, rs6948867 AA, rs35891645 TT and rs6593214 AA types had higher eGFR (4.89 mL/min/1.73 m2 (p = 0.035), 5.54 mL/min/1.73 m2 (p = 0.03), 4.96 mL/min/1.73 m2 (p = 0.048) and 5.16 mL/min/1.73 m2 (p = 0.048), respectively). Plasma cadmium and rs845555 had an interactive effect on eGFR. In conclusion, EGFR polymorphisms could be modifiers of Cd kidney toxicity, in which rs13244925 AA, rs6948867 AA, rs35891645 TT and rs6593214 AA may be protective, and Cd interacting with rs845555 may affect kidney function.
Collapse
Affiliation(s)
- Chun-Ting Lin
- Department of Public, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.L.); (T.-H.C.)
| | - Ting-Hao Chen
- Department of Public, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.L.); (T.-H.C.)
| | - Chen-Cheng Yang
- Departments of Occupational Medicine and Family Medicine, Kaohsiung Municipal Siaogang Hospital, and Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kuei-Hau Luo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzu-Hua Chen
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, and Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Public Health and Environmental Medicine, College of Medicine, and Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7312-1101 (ext. 6849)
| |
Collapse
|
32
|
Mao Y, Ma W, Zhuo R, Ye L, Xu D, Wang W, Ning G, Sun F. COX4I2 is a novel biomarker of blood supply in adrenal tumors. Transl Androl Urol 2021; 10:2899-2909. [PMID: 34430392 PMCID: PMC8350245 DOI: 10.21037/tau-21-229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous study has been reported that COX4I2 expression level demonstrated a positive correlation with microvessel density in pheochromocytomas (PCC) samples, suggesting that the expression of COX4I2 maybe related to blood supply level in other adrenal tumors as well. The aim of this study is to clarify the correlation of COX4I2 expression and blood supply in adrenal tumors. Methods A total of 84 patients were recruited, among which 46 was diagnosed as adrenocortical adenoma (ACA) and 38 was diagnosed as PCC. Contrast-enhanced CT values were used to evaluate the blood supply levels in those patients. The expression of mRNA was examined by quantitative real-time polymerase chain reaction (qPCR) and protein was detected by immunohistochemistry (IHC). Results The COX4I2 expression level in PCC group is significantly higher than that in ACA group (P<0.01). The expression of angiogenesis-related genes EPAS1, VEGFA and KDR mRNA in PCC group is higher than that of ACA group (P<0.05). Correlation analysis shows COX4I2 expression level is correlated with CT values (P<0.001), intraoperative blood loss (P<0.05) and operation time (P<0.05), and the expression of COX4I2 mRNA is correlated with EPAS1, VEGFA and KDR mRNA (P<0.01). Conclusions The results displayed a distinct expression level of COX4I2 between ACA and PCC, suggesting that COX4I2 is a novel biomarker of blood supply in adrenal tumors. This research also opens the possibility for further research on COX4I2 as a novel target for anti-tumor angiogenesis.
Collapse
Affiliation(s)
- Yongxin Mao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenming Ma
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhuo
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Wang L, Liu LZ, Jiang BH. Dysregulation of microRNAs in metal-induced angiogenesis and carcinogenesis. Semin Cancer Biol 2021; 76:279-286. [PMID: 34428550 DOI: 10.1016/j.semcancer.2021.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate cancer initiation, development, angiogenesis, and therapeutic resistance. Metal exposure widely occurs through air, water, soil, food, and industrial contaminants. Hundreds of millions of people may have metal exposure associated with toxicity, serious health problems, and cancer occurrence. Metal exposure is found to induce oxidative stress, DNA damage and repair, and activation of multiple signaling pathways. However, molecular mechanisms of metal-induced carcinogenesis remain to be elucidated. Recent studies demonstrated that the exposure of metals such as arsenic, hexavalent chromium, cadmium, and nickel caused dysregulation of microRNAs that are implicated to play an important role in cell transformation, tumor growth and angiogenesis. This review focuses on the recent studies that show metal-induced miRNA dysregulation and underlined mechanisms in cell malignant transformation, angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| |
Collapse
|
34
|
Pan S, Wang Q, Zhang Q, Zhou M, Li L, Zhou X. A novel circular RNA, circPUS7 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating Kirsten rat sarcoma viral oncogene homolog expression via sponging miR-770. Metallomics 2021; 13:6316787. [PMID: 34232319 DOI: 10.1093/mtomcs/mfab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022]
Abstract
Cadmium is a human carcinogen, which induces cancers by mechanisms that are not fully understood. Induction of oxidative stress, apoptosis resistance, genotoxic effects, and epigenetic modulations have been indicated to regulate cadmium-induced carcinogenesis. Circular RNAs are epigenetic regulators that have been recognized to play essential roles in carcinogenesis. Yet, the involvement of circular RNAs in cadmium carcinogenesis remains unclear. In this study, a novel circular RNA, circPUS7, was identified and described for the first time. CircPUS7 was significantly upregulated at week 12, 16, and 20 during the cadmium-induced transformation of human bronchial epithelial BEAS-2B cells. Knockdown of circPUS7 in cadmium-transformed BEAS-2B (T-BEAS-2B) cells significantly attenuated transformation markers including cell proliferation, migration, invasion, and anchorage-independent growth. Moreover, circPUS7 promoted malignant phenotypes by competitively binding with miR-770. Overexpression of miR-770 significantly inhibited the transformation properties of T-BEAS-2B cells while inhibition of miR-770 potently reversed the inhibitory effects of circPUS7 knockdown in proliferation, migration, invasion, and anchorage-independent growth of the T-BEAS-2B cells. Kirsten rat sarcoma viral oncogene homolog (KRAS), which was increased synchronically with circPUS7 during cadmium-induced cell transformation, was regulated by circPUS7 through sponging miR-770. In summary, our findings demonstrate that circPUS7 promotes cadmium-induced cell transformation through sponging miR-770 to regulate KRAS expression, providing a new perspective with the involvement of circular RNAs to further understand the mechanisms of cadmium carcinogenesis.
Collapse
Affiliation(s)
- Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
35
|
Hu C, Iwasaki M, Liu Z, Wang B, Li X, Lin H, Li J, Li JV, Lian Q, Ma D. Lung but not brain cancer cell malignancy inhibited by commonly used anesthetic propofol during surgery: Implication of reducing cancer recurrence risk. J Adv Res 2021; 31:1-12. [PMID: 34194828 PMCID: PMC8240101 DOI: 10.1016/j.jare.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Intravenous anesthesia with propofol was reported to improve cancer surgical outcomes when compared with inhalational anesthesia. However, the underlying molecular mechanisms largely remain unknown. Objectives The anti-tumor effects of propofol and the possible underlying mechanism including altered metabolic and signaling pathways were studied in the current study. Methods The cell viability, proliferation, migration, and invasion of cancer cells were analyzed with CCK-8, Ki-67 staining, wound healing, and Transwell assay, respectively. The protein changes were analyzed with Western blot and immunofluorescent staining. The metabolomics alteration was studied with 1H-NMR spectroscopy. The gene expression regulations were analyzed with PCR gene array and qRT-PCR experiments. Results In this study, we found that propofol reduced cell viability and inhibited cell proliferation, migration and invasion of lung cancer cells, but not neuroglioma cells. In lung cancer cells, propofol downregulated glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), p-Akt, p-Erk1/2, and hypoxia- inducible factor 1 alpha (HIF-1 α ) expressions and upregulated pigment epithelium-derived factor (PEDF) expression. Propofol increased intracellular glutamate and glycine but decreased acetate and formate whilst increased glucose, lactate, glutamine, succinate, pyruvate, arginine, valine, isoleucine, and leucine and glycerol, and decreased acetate, ethanol, isopropanol in the culture media of lung cancer cells. Furthermore, VEGFA, CTBP1, CST7, CTSK, CXCL12, and CXCR4 gene expressions were downregulated, while NR4A3, RB1, NME1, MTSS1, NME4, SYK, APC, and FAT1 were upregulated following the propofol treatment. Consistent with the phenotypical changes, these molecular and metabolic changes were not found in the neuroglioma cells. Conclusion Our findings indicated anti-tumor effects of propofol on the lung cancer but not brain cancer, through the regulation of tumor metastasis-related genes, multi-cellular signaling and cellular metabolism.
Collapse
Affiliation(s)
- Cong Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, United Kingdom
| | - Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, United Kingdom
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, United Kingdom
| | - Xiaomeng Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, United Kingdom
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
36
|
Wang Q, Pan S, Jiang Q, Li L, Tu W, Zhang Q, Zhou X. CircSPAG16 suppresses cadmium-induced transformation of human bronchial epithelial cells by decoying PIP5K1α to inactivate Akt. Mol Carcinog 2021; 60:582-594. [PMID: 34081812 DOI: 10.1002/mc.23325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
Circular RNAs (circRNAs) have been implicated to have important regulatory functions in chemical carcinogenesis via sponging microRNAs to regulate gene expression. Our study revealed a novel mechanism of circRNA in cadmium carcinogenesis through directly binding with protein. Here, we used cadmium-transformed human bronchial epithelial BEAS-2B cells to study the involvement and mechanism of circRNA in lung carcinogenesis caused by cadmium. By high-throughput sequencing, circSPAG16 was identified to be the most significantly downregulated circRNA in cadmium-transformed cells. CircSPAG16 was downregulated at Week 8, 12, 16, and 20 during cadmium-induced cell transformation. In addition, circSPAG16 overexpression prevented cadmium-induced transformation of BEAS-2B cells. Mechanistically, circSPAG16 inhibited the function of phosphatidylinositol 4-phosphate 5-kinase type-1 α (PIP5K1α) by binding with it. We demonstrated that PIP5K1α acted as an oncogene to activate Akt and promoted cancer hallmarks including proliferation, migration, invasion, and anchorage-independent growth in cadmium-transformed cells. CircSPAG16 overexpression inactivates PIP5K1α/Akt signaling in the transformed cells. Furthermore, PIP5K1α overexpression significantly rescued the inhibitory effects of circSPAG16 overexpression on pAkt and cancer hallmarks in cadmium-transformed cells. Collectively, our results revealed that circSPAG16 could prevent cadmium-induced transformation through binding with PIP5K1α to inactivate Akt. These results provide a novel regulatory mechanism of circRNA into carcinogenesis induced by cadmium.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuya Pan
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Jiang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luyao Li
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zhang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
38
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
39
|
Chatterjee R, Ghosh B, Mandal M, Nawn D, Banerjee S, Pal M, Paul RR, Banerjee S, Chatterjee J. Pathophysiological relationship between hypoxia associated oxidative stress, Epithelial-mesenchymal transition, stemness acquisition and alteration of Shh/ Gli-1 axis during oral sub-mucous fibrosis and oral squamous cell carcinoma. Eur J Cell Biol 2020; 100:151146. [PMID: 33418093 DOI: 10.1016/j.ejcb.2020.151146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Oral sub-mucous fibrosis (OSF) is a pathophysiological state of oral cavity or oropharynx having a high chance of conversion to oral squamous cell carcinoma (OSCC). It involves fibrotic transformation of sub-epithelial matrix along with epithelial abnormalities. The present work aims to unveil the mechanistic domain regarding OSF to OSCC conversion exploring the scenario of hypoxia associated oxidative stress, epithelial-mesenchymal transition (EMT), metastasis and stemness acquisition. The study involves histopathological analysis of the diseased condition along with the exploration of oxidative stress status, assessment of mitochondrial condition, immunohistochemical analysis of HIF-1α, E-cadherin, vimentin, ERK, ALDH-1, CD133, Shh, Gli-1 and survivin expressions in the oral epithelial region together with the quantitative approach towards collagen deposition in the sub-epithelial matrix. Oxidative stress was found to be associated with type-II EMT in case of OSF attributing the development of sub-epithelial fibrosis and type-III EMT in case of OSCC favoring malignancy associated metastasis. Moreover, the acquisition of stemness during OSCC can also be correlated with EMT. Alteration of Shh and Gli-1 expression pattern revealed the mechanistic association of hypoxia with the phenotypic plasticity and disease manifestation in case of OSF as well as OSCC. Shh/ Gli-1 signaling can also be correlated with survivin mediated cytoprotective phenomenon under oxidative stress. Overall, the study established the correlative network of hypoxia associated oxidative stress, EMT and manifestation of oral pre-cancerous and cancerous condition in a holistic approach that may throw rays of hope in the therapeutic domain of the concerned diseases.
Collapse
Affiliation(s)
- Ritam Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Debaleena Nawn
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Satarupa Banerjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - Mousumi Pal
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | - Ranjan Rashmi Paul
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | | | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
40
|
Kulkarni P, Dasgupta P, Bhat NS, Hashimoto Y, Saini S, Shahryari V, Yamamura S, Shiina M, Tanaka Y, Dahiya R, Majid S. Role of the PI3K/Akt pathway in cadmium induced malignant transformation of normal prostate epithelial cells. Toxicol Appl Pharmacol 2020; 409:115308. [PMID: 33129824 DOI: 10.1016/j.taap.2020.115308] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
This study investigated the role of the PI3K/Akt pathway in cadmium (Cd) induced malignant transformation of normal prostate epithelial (PWR1E and RWPE1) cells. Both PWR1E and RWPE1 cells were exposed to 10 μM Cd for one year and designated as Cd-PWR1E and Cd-RWPE1. Cd-RWPE1 cells robustly formed tumors in athymic nude mice. Functionally, Cd-exposure induced tumorigenic attributes indicated by increased wound healing, migration and invasion capabilities in both cell lines. RT2-array analysis revealed many oncogenes including P110α, Akt, mTOR, NFKB1 and RAF were induced whereas tumor suppressor (TS) genes were attenuated in Cd-RWPE1. This was validated by individual quantitative-real-time-PCR at transcriptional and by immunoblot at translational levels. These results were consistent in Cd-PWR1E vs parental PWR1E cells. Gene Set Enrichment Analysis revealed that five prostate cancer (PCa) related pathways were enriched in Cd-exposed cells compared to their normal controls. These pathways include the KEGG- Pathways in cancer, Prostate Cancer Pathway, ERBB, Apoptosis and MAPK pathways. We selected up- and down-regulated genes randomly from the PI3K/Akt pathway array and profiled these in the TCGA/GDC prostate-adenocarcinoma (PRAD) patient cohort. An upregulation of oncogenes and downregulation of TS genes was observed in PCa compared to their normal controls. Taken together, our study reveals that the PI3K/Akt signaling is one of the main molecular pathways involved in Cd-driven transformation of normal prostate epithelial cells to malignant form. Understanding the molecular mechanisms involved in the Cd-driven malignant transformation of normal prostate cells will provide a significant insight to develop better therapeutic strategies for Cd-induced prostate cancer.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Pritha Dasgupta
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Nadeem S Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| |
Collapse
|
41
|
Liu T, Gao Q, Yang B, Yin C, Chang J, Qian H, Xing G, Wang S, Li F, Zhang Y, Chen D, Cai J, Shi H, Aschner M, Appiah-Kubi K, He D, Lu R. Differential susceptibility of PC12 and BRL cells and the regulatory role of HIF-1α signaling pathway in response to acute methylmercury exposure under normoxia. Toxicol Lett 2020; 331:82-91. [PMID: 32461003 PMCID: PMC7366344 DOI: 10.1016/j.toxlet.2020.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a critical nuclear transcription factor for adaptation to hypoxia; its regulatable subunit, HIF-1α, is a cytoprotective regulatory factor. We examined the effects of methylmercury (MeHg) in rat adrenal pheochromocytoma (PC12) cells and the rat hepatocyte cell line BRL. MeHg treatment led to time- and concentration-dependent toxicity in both lines with statistically significant cytotoxic effects at 5 μM and 10 μM in PC12 and BRL, respectively, at 0.5 h. HIF-1α protein levels were significantly decreased at 2.5 (PC12) and 5 (BRL) μM MeHg. Furthermore, MeHg reduced the protein levels of HIF-1α and its target genes (glucose transporter-1, vascular endothelial growth factor-A and erythropoietin). Overexpression of HIF-1α significantly attenuated MeHg-induced toxicity in both cell types. Notably, cobalt chloride, a pharmacological inducer of HIF-1α, significantly attenuated MeHg-induced toxicity in BRL but not PC12. In both cell lines, an inhibitor of prolyl hydroxylase, 3, 4-dihydroxybenzoic acid, and the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal(MG132), antagonized MeHg toxicity, while 2-methoxyestradiol, a HIF-1α inhibitor, significantly increased it. These data establish that: (a) neuron-like PC12 cells are more sensitive to MeHg than non-neuronal BRL cells; (b) HIF-1α plays a similar role in MeHg-induced toxicity in both cell lines; and (c) upregulation of HIF-1α offers general cytoprotection against MeHg toxicity in PC12 and BRL cell lines.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Gao
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Chang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiyang Cai
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Lindsay, Oklahoma City, OK 73104, USA
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Dawei He
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China.
| |
Collapse
|
42
|
Larson-Casey JL, Gu L, Fiehn O, Carter AB. Cadmium-mediated lung injury is exacerbated by the persistence of classically activated macrophages. J Biol Chem 2020; 295:15754-15766. [PMID: 32917723 DOI: 10.1074/jbc.ra120.013632] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Dasgupta P, Kulkarni P, Bhat NS, Majid S, Shiina M, Shahryari V, Yamamura S, Tanaka Y, Gupta RK, Dahiya R, Hashimoto Y. Activation of the Erk/MAPK signaling pathway is a driver for cadmium induced prostate cancer. Toxicol Appl Pharmacol 2020; 401:115102. [PMID: 32512071 PMCID: PMC7425797 DOI: 10.1016/j.taap.2020.115102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Cadmium (Cd) is reported to be associated with carcinogenesis. The molecular mechanisms associated with Cd-induced prostate cancer (PCa) remain elusive. MATERIALS AND METHODS RWPE1, PWR1E and DU 145 cells were used. RT2 Profiler Array, real-time-quantitative-PCR, immunofluorescence, cell cycle, apoptosis, proliferation and colony formation assays along with Gene Set Enrichment Analysis (GSEA) were performed. RESULT Chronic Cd exposure of non-malignant RWPE1 and PWR1E cells promoted cell survival, proliferation and colony formation with inhibition of apoptosis. Even a two-week Cd exposure of PCa cell line (DU 145) significantly increased the proliferation and decreased apoptosis. RT2 profiler array of 84 genes involved in the Erk/MAPK pathway revealed induction of gene expression in Cd-RWPE1 cells compared to RWPE1. This was confirmed by individual TaqMan gene expression analysis in both Cd-RWPE1 and Cd-PWR1E cell lines. GSEA showed an enrichment of the Erk/MAPK pathway along with other pathways such as KEGG-ERBB, KEGG-Cell Cycle, KEGG-VEGF, KEGG-Pathways in cancer and KEGG-prostate cancer pathway. We randomly selected upregulated genes from Erk/MAPK pathway and performed profile analysis in a PCa data set from the TCGA/GDC data base. We observed upregulation of these genes in PCa compared to normal samples. An increase in phosphorylation of the Erk1/2 and Mek1/2 was observed in Cd-RWPE1 and Cd-PWR1E cells compared to parental cells, confirming that Cd-exposure induces activation of the Erk/MAPK pathway. CONCLUSION This study demonstrates that Erk/MAPK signaling is a major pathway involved in Cd-induced malignant transformation of normal prostate cells. Understanding these dominant oncogenic pathways may help develop optimal therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Pritha Dasgupta
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Nadeem S Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, 4150 Clement Street, Miami, FL 94121, USA
| | - Shahana Majid
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Ravi Kumar Gupta
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
44
|
Xie W, Zhou P, Qu M, Dai Z, Zhang X, Zhang C, Dong X, Sun G, Sun X. Ginsenoside Re Attenuates High Glucose-Induced RF/6A Injury via Regulating PI3K/AKT Inhibited HIF-1α/VEGF Signaling Pathway. Front Pharmacol 2020; 11:695. [PMID: 32528282 PMCID: PMC7253708 DOI: 10.3389/fphar.2020.00695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperglycaemia-induced retinal microvascular endothelial cell apoptosis is a critical and principle event in diabetic retinopathy (DR), which involves a series of complex processes such as mitochondrial dysfunction and oxidative stress. Ginsenoside Re (Re), a key ingredients of ginseng, is considered to have various pharmacologic functions, such as antioxidative, inhibition of inflammation and anti-apoptotic properties. However, the effects of Re in DR and the related mechanisms of endothelial cell injury induced by high glucose (HG) exposure remain unclear. The present study was designed to investigate and evaluate the ability of Re to ameliorate HG-induced retinal endothelial RF/6A cell injury and the potential mechanisms involved in the hypoxia-inducible factor-1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling regulated by phosphoinositide 3-kinase (PI3K)/AKT pathway. Our results showed that preincubation with Re exerted cytoprotective effects by reversing the HG-induced decrease in RF/6A cell viability, downregulation of apoptosis rate and inhibition of oxidative-related enzymes, thereby reducing the excess intracellular reactive oxygen species (ROS) and HG-triggered RF/6A cell injury. In addition, Western blot analysis results showed ginsenoside Re significantly increased HIF-1α expression in the cytoplasm but decreased its expression in the nucleus, suggesting that it reduced the translocation of HIF-1α from the cytoplasm to the nucleus, and downregulated VEGF level. Moreover, this effect is involved in the activation of the PI3K/Akt pathway. LY294002, a PI3K inhibitor, was used to block the Akt pathway. Afterwards, the effects of Re on the regulation of apoptotic related proteins, VEGF and HIF-1α nuclear transcription was partially reversed. These findings suggested the exerting protective effects of ginsenoside Re were associated with regulating of PI3K/AKT and HIF-1α/VEGF signaling pathway, which indicates that ginsenoside Re may ameliorates HG-induced retinal angiogenesis and suggests the potential for the development of Re as a therapeutic for DR.
Collapse
Affiliation(s)
- Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Muwen Qu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Ziru Dai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Andrade FDO, Furtado KS, Heidor R, Sandri S, Hebeda CB, Miranda MLP, Fernandes LHG, Yamamoto RC, Horst MA, Farsky SHP, Moreno FS. Antiangiogenic effects of the chemopreventive agent tributyrin, a butyric acid prodrug, during the promotion phase of hepatocarcinogenesis. Carcinogenesis 2020; 40:979-988. [PMID: 30590392 DOI: 10.1093/carcin/bgy190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Agents that inhibit angiogenic factors may prevent the development of hepatocellular carcinoma (HCC). Thus, the objective of this study was to kinetically evaluate the antiangiogenic activity of tributyrin (TB), a butyric acid prodrug, in the promotion stage of hepatocarcinogenesis. For this purpose, the resistant hepatocyte (RH) model was used for induction of preneoplastic lesions in Wistar rats. During the promotion phase, the animals received TB or maltodextrin (MD) as control daily. The rats were killed at three time-points (P1, P2 and P3). Increased expression of Vegfa and Vegfr2 was observed during promotion phase of hepatocarcinogenesis, which was not reversed by TB treatment. However, TB treatment reduced the expression of cluster of differentiation (CD) 34-positive vessels at P3 and α-smooth muscle actin (α-SMA)-positive vessels at P2 compared with MD. Enhanced levels of hypoxia inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinases (pERK) were detected at P3 when compared with P1 and P2 in the MD treatment. TB treatment reduced the levels of HIF-1α and pERK at P3 relative to the MD control. Experiments with human umbilical vein endothelial cells (HUVEC) showed that sodium butyrate (NaBu) inhibited cell migration and tube formation, confirming the antiangiogenic activity of its prodrug TB. In conclusion, antiangiogenic activity of TB is an early event that already occurs in preneoplastic livers, reinforcing its potential chemopreventive effects against HCC.
Collapse
Affiliation(s)
- Fabia de Oliveira Andrade
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Kelly Silva Furtado
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mayara Lilian Paulino Miranda
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Laura Helena Gasparini Fernandes
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Roberto Carvalho Yamamoto
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Qiu L, Chen H, Zhou Z, Zhang H, Liu R, Yi Q, Yang C, Gao L, Wang L. Transcriptomic profile of oyster Crassostrea gigas hemocyte after short-term cadmium exposure and bacteria stimulation. FISH & SHELLFISH IMMUNOLOGY 2020; 98:138-146. [PMID: 31891811 DOI: 10.1016/j.fsi.2019.12.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Oyster Crassostrea gigas, is considered as a useful environmental indicator since it is widely distributed along the intertidal zone whereby it tends to accumulate cadmium and is always exposed to various pathogen agents. However, its molecular responses to both cadmium and pathogen stimulation remain unclear. In the present study, transcriptome data of hemocytes from oysters were analyzed to reveal specific molecular responses of oyster to cadmium or cadmium/bacteria stimulation. A total of 21591, 22872 and 20107 genes were detected in the BLANK, Cd24h and Cd/Bac24h group, respectively. Among them, there were 685 differentially expressed genes collected in the comparison of Cd24h versus BLANK. GO analysis of these genes found that sixteen terms into the Molecular Function category displayed transporter activities, and were all over-enrichment by cadmium exposure, whereas twelve terms into Biological Process category involved mainly in metabolic process of the various cellular components and two terms into Cellular Component category were all under-enrichment. The 330 immune responsive genes were shared by two gene lists of CdBac24h versus BLANK and CdBac24h versus Cd24h, and seven out of thirty terms in GO analysis were related to the immune process. Further annotation of these genes from the KEGG database revealed fourteen pathways, including two nervous system related pathways, arachidonic acid pathway, four immune pathways, MAPK cascade and other four cell signaling pathways, and two energy related pathways. Twenty-two differentially expressed genes were identified to responsive to both cadmium exposure and bacteria stimulation, but in different expression patterns, suggesting that bilateral responsive genes, such as alkaline phosphatase and sodium and chloride-dependent glycine transporter gene, could be candidate biomarkers for early warning of cadmium pollution. The present results collectively indicated that a profound neuro-endocrine-immune regulatory network was activated in response to cadmium and bacteria stimulation in oyster C. gigas, and the expression pattern of some cadmium responsive genes may be either reversed or strengthened by bacteria stimulation. The results provide knowledge on the transcriptomic response profile of oyster after short-term cadmium exposure and bacteria stimulation, which would be useful for future studies on stress response mechanism of mollusc, and some cadmium-bacteria responsive genes may be explored as potential biomarkers for monitoring marine pollution.
Collapse
Affiliation(s)
- Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
47
|
Ruiz CE, Manuguerra S, Curcuraci E, Santulli A, Messina CM. Carbamazepine, cadmium chloride and polybrominated diphenyl ether-47, synergistically modulate the expression of antioxidants and cell cycle biomarkers, in the marine fish cell line SAF-1. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104844. [PMID: 31784109 DOI: 10.1016/j.marenvres.2019.104844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A wide range of contaminants, industrial by-products, plastics, and pharmaceutics belonging to various categories, have been found in sea water. Although these compounds are detected at concentrations that might be considered as sub-lethal, under certain conditions they could act synergistically producing unexpected effects in term of toxicity or perturbation of biochemical markers leading to standard pathway. In this study, the Sparus aurata fibroblast cell line SAF-1, was exposed to increasing concentrations of carbamazepine (CBZ), polybrominated diphenyl ether 47 (BDE-47) and cadmium chloride (CdCl2) until 72 h, to evaluate the cytotoxicity and the expression of genes related to antioxidant defense, cell cycle and energetic balance. In general, both vitality and gene expression were affected by the exposure to the different toxicants, in terms of antioxidant defense and cell cycle control, showing the most significant effects in cells exposed to the mixture of the three compounds, respect to the single compounds separately. The synergic effect of the compounds on the analyzed biomarkers, underlie the potential negative impact of the contaminants on health of marine organisms.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept. of Earth and Sea Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept. of Earth and Sea Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Eleonora Curcuraci
- University of Palermo, Dept. of Earth and Sea Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Andrea Santulli
- University of Palermo, Dept. of Earth and Sea Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept. of Earth and Sea Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
48
|
Amadou A, Praud D, Coudon T, Danjou AMN, Faure E, Leffondré K, Le Romancer M, Severi G, Salizzoni P, Mancini FR, Fervers B. Chronic long-term exposure to cadmium air pollution and breast cancer risk in the French E3N cohort. Int J Cancer 2020; 146:341-351. [PMID: 30851122 DOI: 10.1002/ijc.32257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Cadmium, due to its estrogen-like activity, has been suspected to increase the risk of breast cancer; however, epidemiological studies have reported inconsistent findings. We conducted a case-control study (4,059 cases and 4,059 matched controls) nested within the E3N French cohort study to estimate the risk of breast cancer associated with long-term exposure to airborne cadmium pollution, and its effect according to molecular subtype of breast cancer (estrogen receptor negative/positive [ER-/ER+] and progesterone receptor negative/positive [PR-/PR+]). Atmospheric exposure to cadmium was assessed using a Geographic Information System-based metric, which included subject's residence-to-cadmium source distance, wind direction, exposure duration and stack height. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. Overall, there was no significant association between cumulative dose of airborne cadmium exposure and the risk of overall, premenopausal and postmenopausal breast cancer. However, by ER and PR status, inverse associations were observed for ER- (ORQ5 vs. Q1 = 0.63; 95% CI: 0.41-0.95, ptrend = 0.043) and for ER-/PR- breast tumors (ORQ4 vs. Q1 = 0.62; 95% CI: 0.40-0.95, ORQ5 vs. Q1 = 0.68; 95% CI: 0.42-1.07, ptrend = 0.088). Our study provides no evidence of an association between exposure to cadmium and risk of breast cancer overall but suggests that cadmium might be related to a decreased risk of ER- and ER-/PR- breast tumors. These observations and other possible effects linked to hormone receptor status warrant further investigations.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environnement, 69008 Lyon, France
| | - Delphine Praud
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, Lyon, France
| | - Thomas Coudon
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Aurélie M N Danjou
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Elodie Faure
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Karen Leffondré
- Université de Bordeaux, ISPED, Centre Inserm U1219 Bordeaux Population Health, Bordeaux, France
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, Lyon, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Béatrice Fervers
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environnement, 69008 Lyon, France
| |
Collapse
|
49
|
Sun Z, Xie Q, Pan J, Niu N. Cadmium regulates von Willebrand factor and occludin expression in glomerular endothelial cells of mice in a TNF-α-dependent manner. Ren Fail 2019; 41:354-362. [PMID: 31057027 PMCID: PMC6507816 DOI: 10.1080/0886022x.2019.1604383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cadmium (Cd) is an environmental pollutant that leads to nephrotoxicity. However, the mechanisms of Cd-induced glomerular injury have not been fully clarified. Von Willebrand factor (vWF) and occludin are important endothelial cell markers in renal vasculature. In this study, the effects of Cd on the vWF and occludin expression in mouse glomeruli was investigated. Objectives: The goal of this study was to analyze the expression of von Willebrand factor and occludin in glomerular endothelial cells of tumor necrosis factor-α−/− (TNF-α−/−) mice after treatment with Cd. Material and methods: C57BL6/J wild-type (WT) mice and TNF-α−/− mice (n = 6) were treated with Cd, and the kidney tissues were collected. The expression of von Willebrand factor and occludin was detected by using quantitative real-time PCR, immunofluorescence, and immunohistochemistry. In vitro, Human umbilical vascular endothelial cells (HUVECs) were used to examine the regulatory role of TNF-α on expression of von Willebrand factor and occludin. Results: We found that Cd significantly increases mRNA and protein expressions of von Willebrand factor and occludin in TNF-α−/− mice, but not in WT mice. In vitro, Cd significantly increased mRNA and protein expression of von Willebrand factor and occludin in HUVECs with TNF-α small interfering RNA (siRNA) transfection. Conclusions: These results suggest that TNF-α acts to balance homeostasis of glomerular endothelium after Cd treatments.
Collapse
Affiliation(s)
- Zongguo Sun
- a College of Life Sciences , Shandong Normal University , Jinan , China.,b Medical Research Center, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Qi Xie
- b Medical Research Center, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Jie Pan
- a College of Life Sciences , Shandong Normal University , Jinan , China
| | - Na Niu
- c Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
50
|
The roles of TG-interacting factor in cadmium exposure-promoted invasion and migration of lung cancer cells. Toxicol In Vitro 2019; 61:104630. [DOI: 10.1016/j.tiv.2019.104630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022]
|