1
|
Callewaert E, Louisse J, Kramer N, Sanz-Serrano J, Vinken M. Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity. Methods Mol Biol 2025; 2834:249-273. [PMID: 39312169 DOI: 10.1007/978-1-0716-4003-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.
Collapse
Affiliation(s)
- Ellen Callewaert
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an Adverse Outcome Pathway for the Cardiac Toxicity of Bisphenol A by Using Bioinformatics Analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound mwith ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
3
|
Jeong J, Kim J, Choi J. Identification of molecular initiating events (MIE) using chemical database analysis and nuclear receptor activity assays for screening potential inhalation toxicants. Regul Toxicol Pharmacol 2023; 141:105391. [PMID: 37068727 DOI: 10.1016/j.yrtph.2023.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/13/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
An adverse outcome pathway (AOP) framework can facilitate the use of alternative assays in chemical regulations by providing scientific evidence. Previously, an AOP, peroxisome proliferative-activating receptor gamma (PPARγ) antagonism that leads to pulmonary fibrosis, was developed. Based on a literature search, PPARγ inactivation has been proposed as a molecular initiating event (MIE). In addition, a list of candidate chemicals that could be used in the experimental validation was proposed using toxicity database and deep learning models. In this study, the screening of environmental chemicals for MIE was conducted using in silico and in vitro tests to maximize the applicability of this AOP for screening inhalation toxicants. Initially, potential inhalation exposure chemicals that are active in three or more key events were selected, and in silico molecular docking was performed. Among the chemicals with low binding energy to PPARγ, nine chemicals were selected for validation of the AOP using in vitro PPARγ activity assay. As a result, rotenone, triorthocresyl phosphate, and castor oil were proposed as PPARγ antagonists and stressor chemicals of the AOP. Overall, the proposed tiered approach of the database-in silico-in vitro can help identify the regulatory applicability and assist in the development and experimental validation of AOP.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jiwan Kim
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lambert JC. Adverse Outcome Pathway 'Footprinting': A Novel Approach to the Integration of 21st Century Toxicology Information into Chemical Mixtures Risk Assessment. TOXICS 2022; 11:37. [PMID: 36668763 PMCID: PMC9860797 DOI: 10.3390/toxics11010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
For over a decade, New Approach Methodologies (NAMs) such as structure-activity/read-across, -omics technologies, and Adverse Outcome Pathway (AOP), have been considered within regulatory communities as alternative sources of chemical and biological information potentially relevant to human health risk assessment. Integration of NAMs into applications such as chemical mixtures risk assessment has been limited due to the lack of validation of qualitative and quantitative application to adverse health outcomes in vivo, and acceptance by risk assessors. However, leveraging existent hazard and dose-response information, including NAM-based data, for mixture component chemicals across one or more levels of biological organization using novel approaches such as AOP 'footprinting' proposed herein, may significantly advance mixtures risk assessment. AOP footprinting entails the systematic stepwise profiling and comparison of all known or suspected AOPs involved in a toxicological effect at the level of key event (KE). The goal is to identify key event(s) most proximal to an adverse outcome within each AOP suspected of contributing to a given health outcome at which similarity between mixture chemicals can be confidently determined. These key events are identified as the 'footprint' for a given AOP. This work presents the general concept, and a hypothetical example application, of AOP footprinting as a key methodology for the integration of NAM data into mixtures risk assessment.
Collapse
Affiliation(s)
- Jason C Lambert
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Cincinnati, OH 45268, USA
| |
Collapse
|
5
|
Wang X, Li F, Teng Y, Ji C, Wu H. Potential adverse outcome pathways with hazard identification of organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158093. [PMID: 35985583 DOI: 10.1016/j.scitotenv.2022.158093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Data-driven analysis and pathway-based approaches contribute to reasonable arrangements of limited resources and laboratory tests for continuously emerging commercial chemicals, which provides opportunities to save time and effort for toxicity research. With the widespread usage of organophosphate esters (OPEs) on a global scale, the concentrations generally reached up to micromolar range in environmental media and even in organisms. However, potential adverse effects and toxicity pathways of OPEs have not been systematically assessed. Therefore, it is necessary to review the current situation, formulate the future research priorities, and characterize toxicity mechanisms via data-driven analysis. Results showed that the early toxicity studies focused on neurotoxicity, cytotoxicity, and metabolic disorders. Then the main focus shifted to the mechanisms of cardiotoxicity, endocrine disruption, hepatocytes, reproductive and developmental toxicity to vulnerable sub-populations, such as infants and embryos, affected by OPEs. In addition, several novel OPEs have been emerging, such as bis(2-ethylhexyl)-phenyl phosphate (HDEHP) and oxidation derivatives (OPAsO) generated from organophosphite antioxidants (OPAs), leading to multiple potential ecological and human health risks (neurotoxicity, hepatotoxicity, developmental toxicity, etc.). Notably, in-depth statistical analysis was promising in encapsulating toxicological information to develop adverse outcome pathways (AOPs) frameworks. Subsequently, network-centric analysis and quantitative weight-of-evidence (QWOE) approaches were utilized to construct and evaluate the putative AOPs frameworks of OPEs, showing the moderate confidences of the developed AOPs. In addition, frameworks demonstrated that several events, such as nuclear receptor activation, reactive oxygen species (ROS) production, oxidative stress, and DNA damage, were involved in multiple different adverse outcome (AO), and these AOs had certain degree of connectivity. This study brought new insights into facilitating the complement of AOP efficiently, as well as establishing toxicity pathways framework to inform risk assessment of emerging OPEs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
6
|
Brockmeier EK, Basili D, Herbert J, Rendal C, Boakes L, Grauslys A, Taylor NS, Danby EB, Gutsell S, Kanda R, Cronin M, Barclay J, Antczak P, Viant MR, Hodges G, Falciani F. Data-driven learning of narcosis mode of action identifies a CNS transcriptional signature shared between whole organism Caenorhabditis elegans and a fish gill cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157666. [PMID: 35908689 DOI: 10.1016/j.scitotenv.2022.157666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
With the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question. Here we approach this challenge by testing whether a functional genomics approach in C. elegans and in a fish cell line can identify molecular mechanisms underlying the effects of narcotics, and the effects of more specific acting toxicants. We show that narcosis affects the expression of neuronal genes associated with CNS function in C. elegans and in a fish cell line. Overall, we believe that our study provides an important step in developing mechanistically relevant biomarkers which can be used to screen for hazards, and which prevent the need for repeated animal or cross-species comparisons for each new chemical.
Collapse
Affiliation(s)
- Erica K Brockmeier
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Danilo Basili
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - John Herbert
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Cecilie Rendal
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Leigh Boakes
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Christeyns Food Hygiene, Warrington, UK
| | - Arturas Grauslys
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Nadine S Taylor
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Emma Butler Danby
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Jeff Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Philipp Antczak
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Francesco Falciani
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicol In Vitro 2022; 84:105451. [PMID: 35921976 DOI: 10.1016/j.tiv.2022.105451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implications for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical prioritization and regulatory applications without the use of laboratory animals.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
8
|
Jeong J, Choi J. Quantitative adverse outcome pathway (qAOP) using bayesian network model on comparative toxicity of multi-walled carbon nanotubes (MWCNTs): safe-by-design approach. Nanotoxicology 2022; 16:679-694. [PMID: 36353843 DOI: 10.1080/17435390.2022.2140615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While the various physicochemical properties of engineered nanomaterials influence their toxicities, their understanding is still incomplete. A predictive framework is required to develop safe nanomaterials, and a Bayesian network (BN) model based on adverse outcome pathway (AOP) can be utilized for this purpose. In this study, to explore the applicability of the AOP-based BN model in the development of safe nanomaterials, a comparative study was conducted on the change in the probability of toxicity pathways in response to changes in the dimensions and surface functionalization of multi-walled carbon nanotubes (MWCNTs). Based on the results of our previous study, we developed an AOP leading to cell death, and the experimental results were collected in human liver cells (HepG2) and bronchial epithelium cells (Beas-2B). The BN model was trained on these data to identify probabilistic causal relationships between key events. The results indicated that dimensions were the main influencing factor for lung cells, whereas -OH or -COOH surface functionalization and aspect ratio were the main influencing factors for liver cells. Endoplasmic reticulum stress was found to be a more sensitive pathway for dimensional changes, and oxidative stress was a more sensitive pathway for surface functionalization. Overall, our results suggest that the AOP-based BN model can be used to provide a scientific basis for the development of safe nanomaterials.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
9
|
Goyak KO, Sarang SS, Franzen A, Borghoff SJ, Ryman-Rasmussen JP. Adverse outcome pathway (AOP): α2u-globulin nephropathy and kidney tumors in male rats. Crit Rev Toxicol 2022; 52:345-357. [PMID: 35862579 DOI: 10.1080/10408444.2022.2082269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The National Research Council's vision of using adverse outcome pathways (AOPs) as a framework to assist with toxicity assessment for regulatory requirements of chemical assessment has continued to gain traction since its release in 2007. The need to expand the AOP knowledge base has gained urgency, with the U.S. Environmental Protection Agency's directive to eliminate reliance on animal toxicity testing by 2035. To meet these needs, our goal was to elucidate the AOP for male-rat-specific kidney cancer. Male-rat-specific kidney tumors occur through the ability of structurally diverse substances to induce α2u-globulin nephropathy (α2u-N), a well-studied mode of action (MoA) not relevant in humans that results in kidney tumor formation in male rats. An accepted AOP may help facilitate the differentiation from other kidney tumors MoAs. Following identification and review of relevant in vitro and in vivo literature, both the MIE and subsequent KEs were identified. Based on the weight of evidence from the various resources, the confidence in this AOP is high. Uses of this AOP include hazard identification, development of in vitro assays to determine if the MoA is through α2u-N and not relevant to humans resulting in decreased use of animals, and regulatory applications.
Collapse
Affiliation(s)
- Katy O Goyak
- ExxonMobil Biomedical Sciences, Inc., Annandale, VA, USA
| | | | - A Franzen
- ToxStrategies, Inc., Monroe, LA, USA
| | | | | |
Collapse
|
10
|
Razak MR, Aris AZ, Md Yusoff F, Yusof ZNB, Kim SD, Kim KW. Assessment of RNA extraction protocols from cladocerans. PLoS One 2022; 17:e0264989. [PMID: 35472091 PMCID: PMC9041806 DOI: 10.1371/journal.pone.0264989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment studies has intensified in recent years due to their ecological importance in aquatic ecosystems. The molecular assessment such as gene expression analysis has been introduced in ecotoxicological and risk assessment to link the expression of specific genes to a biological process in the cladocerans. The validity and accuracy of gene expression analysis depends on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. However, the standard methods of RNA extraction from the cladocerans are still lacking. This study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recovery of extracted RNA and the extracted RNA was characterised using spectrophotometric analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the RNA extraction method towards downstream gene expression analysis. The results indicate that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the quantity (RNA concentration = 26.90 ± 6.89 ng/μl), quality (A260:230 = 1.95 ± 0.15, A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-PCR analysis shows that the method successfully amplified both alpha tubulin and actin gene at 33-35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with high and comprehensive quality control assessment will increase the accuracy and reliability of downstream gene expression, thus providing more ecotoxicological data at the molecular biological level on other freshwater zooplankton species.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
- Faculty of Agriculture, Department of Aquaculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Faculty of Biotechnology and Biomolecular Science, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Ramšak Ž, Modic V, Li RA, vom Berg C, Zupanic A. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:815754. [PMID: 35295214 PMCID: PMC8915909 DOI: 10.3389/ftox.2022.815754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.
Collapse
Affiliation(s)
- Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vid Modic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Roman A. Li
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Colette vom Berg
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- *Correspondence: Anze Zupanic,
| |
Collapse
|
12
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
13
|
Overview of Adverse Outcome Pathways and Current Applications on Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:415-439. [DOI: 10.1007/978-3-030-88071-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Arnesdotter E, Gijbels E, Dos Santos Rodrigues B, Vilas-Boas V, Vinken M. Adverse Outcome Pathways as Versatile Tools in Liver Toxicity Testing. Methods Mol Biol 2022; 2425:521-535. [PMID: 35188645 DOI: 10.1007/978-1-0716-1960-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adverse outcome pathways (AOPs) are tools to capture and visualize mechanisms driving toxicological effects. They share a common structure consisting of a molecular initiating event, a series of key events connected by key event relationships and an adverse outcome. Development and evaluation of AOPs ideally comply with guidelines issued by the Organization for Economic Cooperation and Development. AOPs have been introduced for major types of hepatotoxicity, which is not a surprise, as the liver is a frequent target for systemic adversity. Various applications for AOPs have been proposed in the areas of toxicology and chemical risk assessment, in particular in relation to the establishment of quantitative structure-activity relationships, the elaboration of prioritization strategies, and the development of novel in vitro toxicity screening tests and testing strategies.
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruna Dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Massei R, Knapen D, Covaci A, Blust R, Mayer P, Vergauwen L. Sublethal Effect Concentrations for Nonpolar Narcosis in the Zebrafish Embryo. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2802-2812. [PMID: 34288096 DOI: 10.1002/etc.5170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Nonpolar narcosis, also known as baseline toxicity, has been described as the minimal toxicity that an organic chemical may elicit based on its lipophilicity. Although lethal effects of narcosis-inducing chemicals (NICs) have been thoroughly investigated, knowledge of sublethal effects is still very limited. We investigated the effects of 3 well-known NICs (phenanthrene, 1,3,5-trichlorobenzene, and pentachlorobenzene) on a variety of organismal endpoints (malformations, swim bladder inflation, respiration, heart rate, swimming activity, and turning angles), which can be plausibly linked to narcosis in zebrafish embryos. Baseline toxicity recorded as mortality is typically observed in similar exposure ranges in a wide variety of species including fish, corresponding to a chemical activity range between 0.01 and 0.1. In the present study, we found that sublethal effects occurred at concentrations approximately 5 times below lethal concentrations. Altered swimming activity and impaired swim bladder inflation were the most sensitive endpoints occurring at exposure levels below the generally accepted threshold for baseline toxicity for 2 out of 3 compounds. Overall, most effective exposure levels across the sublethal endpoints and compounds did fall within the range typically associated with baseline toxicity, and deviations were generally limited to a factor 10. Although there could be benefit in adding sublethal endpoints to toxicity tests, such as the fish embryo acute toxicity (FET) test, based on the present sublethal endpoints and available evidence from our and other studies, the underestimation of toxicity as a result of the sole assessment of mortality as an endpoint in an FET test may be limited for narcosis. Environ Toxicol Chem 2021;40:2802-2812. © 2021 SETAC.
Collapse
Affiliation(s)
- Riccardo Massei
- Zebrafishlab, Veterinary, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
16
|
Sapounidou M, Ebbrell DJ, Bonnell MA, Campos B, Firman JW, Gutsell S, Hodges G, Roberts J, Cronin MTD. Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1897-1907. [PMID: 33478211 DOI: 10.1021/acs.est.0c06551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study developed a novel classification scheme to assign chemicals to a verifiable mechanism of (eco-)toxicological action to allow for grouping, read-across, and in silico model generation. The new classification scheme unifies and extends existing schemes and has, at its heart, direct reference to molecular initiating events (MIEs) promoting adverse outcomes. The scheme is based on three broad domains of toxic action representing nonspecific toxicity (e.g., narcosis), reactive mechanisms (e.g., electrophilicity and free radical action), and specific mechanisms (e.g., associated with enzyme inhibition). The scheme is organized at three further levels of detail beyond broad domains to separate out the mechanistic group, specific mechanism, and the MIEs responsible. The novelty of this approach comes from the reference to taxonomic diversity within the classification, transparency, quality of supporting evidence relating to MIEs, and that it can be updated readily.
Collapse
Affiliation(s)
- Maria Sapounidou
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - David J Ebbrell
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Mark A Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - James W Firman
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Mark T D Cronin
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
17
|
Escher BI, Neale PA. Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:487-499. [PMID: 33252775 DOI: 10.1002/etc.4944] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 05/12/2023]
Abstract
Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read-across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high-potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log-normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response, and 2 nuclear receptor assays targeting the peroxisome proliferator-activated receptor gamma and the arylhydrocarbon receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water. Environ Toxicol Chem 2021;40:487-499. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
18
|
Design, development and assessment of an essential oil based slow release vaporizer against mosquitoes. Acta Trop 2020; 210:105573. [PMID: 32505595 DOI: 10.1016/j.actatropica.2020.105573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Mosquitoes (Diptera; Culicidae) are a biting nuisance and are of economic and health importance, especially for people living in tropical countries like India. Given the environmental concerns and health hazards of synthetic insecticides, development of natural products for the control of mosquito and mosquito-borne diseases are needed. In view of this, an essential oil based novel liquid vaporizer formulation with citronella and eucalyptus oils has been developed using a computer aided Artificial Neural Network and Particle Swarm Optimization (ANN-PSO) algorithm approach, aiming to predict the best optimized formulation (OF). Following the development, OF was characterized by Fourier Transform-Infra Red (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). The efficacy of the OF was assessed against two major mosquito vectors viz. Anopheles stephensi and Aedes albopictus using a Peet-Grady chamber. Finally, toxicological impacts of the OF following its inhalation were investigated as per the Organization for Economic Co-operation and Development (OECD) guidelines. The results revealed all the ideal characteristics of the OF which were found to provide a slow release of up to 450 h at room temperature. Most importantly, the OF, exhibited 50% mosquito knock down (KT50) within 11.49±1.34 and 14.15±2.15 min against An. stephensi and Ae. albopictus respectively. Toxicity assessment showed a non toxic nature of the OF following inhalation. Thus the present development would be beneficial for controlling both An. stephensi and Ae. albopictus without any associated health hazards.
Collapse
|
19
|
Knapen D, Stinckens E, Cavallin JE, Ankley GT, Holbech H, Villeneuve DL, Vergauwen L. Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8491-8499. [PMID: 32584560 PMCID: PMC7477622 DOI: 10.1021/acs.est.9b07205] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.
Collapse
Affiliation(s)
- Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jenna E Cavallin
- Badger Technical Services, United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Henrik Holbech
- Ecotoxicology Lab, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
20
|
Spinu N, Cronin MTD, Enoch SJ, Madden JC, Worth AP. Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Arch Toxicol 2020; 94:1497-1510. [PMID: 32424443 PMCID: PMC7261727 DOI: 10.1007/s00204-020-02774-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
The quantitative adverse outcome pathway (qAOP) concept is gaining interest due to its potential regulatory applications in chemical risk assessment. Even though an increasing number of qAOP models are being proposed as computational predictive tools, there is no framework to guide their development and assessment. As such, the objectives of this review were to: (i) analyse the definitions of qAOPs published in the scientific literature, (ii) define a set of common features of existing qAOP models derived from the published definitions, and (iii) identify and assess the existing published qAOP models and associated software tools. As a result, five probabilistic qAOPs and ten mechanistic qAOPs were evaluated against the common features. The review offers an overview of how the qAOP concept has advanced and how it can aid toxicity assessment in the future. Further efforts are required to achieve validation, harmonisation and regulatory acceptance of qAOP models.
Collapse
Affiliation(s)
- Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
21
|
Cendoya X, Quevedo C, Ipiñazar M, Planes FJ. Computational approach for collection and prediction of molecular initiating events in developmental toxicity. Reprod Toxicol 2020; 94:55-64. [PMID: 32344110 DOI: 10.1016/j.reprotox.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Developmental toxicity is defined as the occurrence of adverse effects on the developing organism as a result from exposure to a toxic agent. These alterations can have long-term acute effects. Current in vitro models present important limitations and the evaluation of toxicity is not entirely objective. In silico methods have also shown limited success, in part due to complex and varied mechanisms of action that mediate developmental toxicity, which are sometimes poorly understood. In this article, we compiled a dataset of compounds with developmental toxicity categories and annotated mechanisms of action for both toxic and non-toxic compounds (DVTOX). With it, we selected a panel of protein targets that might be part of putative Molecular Initiating Events (MIEs) of Adverse Outcome Pathways of developmental toxicity. The validity of this list of candidate MIEs was studied through the evaluation of new drug-target relationships that include such proteins, but were not part of the original database. Finally, an orthology analysis of this protein panel was conducted to select an appropriate animal model to assess developmental toxicity. We tested our approach using the zebrafish embryo toxicity test, finding positive results.
Collapse
Affiliation(s)
- Xabier Cendoya
- TECNUN, University of Navarra, San Sebastian, 20018, Spain
| | | | | | | |
Collapse
|
22
|
Abstract
AbstractExposure to multiple synthetic chemicals is a permanent feature of modern life. Many of these chemicals are suspected to disrupt endocrine systems of humans and animals. Endocrine disrupting chemicals (EDCs) act at very low concentrations and non-linearly, defying mainstream single-substance chemical regulation. Here we provide an analysis of findings from the first phase of the European Horizon2020-funded “EDC-MixRisk” project as a case of contemporary life-science enterprise, which addresses health-risks related to real-life exposure to mixtures of EDCs. Real-life EDC mixtures were inferred in the project from biological samples taken from pregnant women in a large epidemiological study that followed up their children over several years across major health domains; responses to these mixtures were then experimentally identified, and based on these findings, mixture risk assessment models were developed. The project consequently advocated for European chemical regulation more attentive to real-life exposure. Locating it within historical and sociological analyses of chemical exposure and within the European chemical political context, we argue that scientific uncertainty related to real-life EDC mixture exposure enables a form of epistemological approach and scientific activism, simultaneously in continuity with, and in break from, mainstream toxicology. In a chemically polluted world, this kind of science still occupies a place in the tension between public health and market-oriented regulation.
Collapse
|
23
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
24
|
De Oliveira J, Chadili E, Piccini B, Turies C, Maillot-Maréchal E, Palluel O, Pardon P, Budzinski H, Cousin X, Brion F, Hinfray N. Refinement of an OECD test guideline for evaluating the effects of endocrine disrupting chemicals on aromatase gene expression and reproduction using novel transgenic cyp19a1a-eGFP zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105403. [PMID: 31927064 DOI: 10.1016/j.aquatox.2020.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Transgenic fish are powerful models that can provide mechanistic information regarding the endocrine activity of test chemicals. In this study, our objective was to use a newly developed transgenic zebrafish line expressing eGFP under the control of the cyp19a1a promoter in the OECD Fish Short Term Reproduction Assay (TG 229) to provide additional mechanistic information on tested substances. For this purpose, we exposed adult transgenic zebrafish to a reference substance of the TG 229, i.e. prochloraz (PCZ; 1.7, 17.2 and 172.6 μg/L). In addition to "classical" endpoints used in the TG 229 (reproductive outputs, vitellogenin), the fluorescence intensity of the ovaries was monitored at 4 different times of exposure using in vivo imaging. Our data revealed that 172.6 μg/L PCZ significantly decreased the number of eggs laid per female per day and the concentrations of vitellogenin in females, reflecting the decreasing E2 synthesis due to the inhibition of the ovarian aromatase activities. At 7 and 14 days, GFP intensities in ovaries were similar over the treatment groups but significantly increased after 21 days at 17.2 and 172.6 μg/L. A similar profile was observed for the endogenous cyp19a1a expression measured by qPCR thereby confirming the reliability of the GFP measurement for assessing aromatase gene expression. The overexpression of the cyp19a1a gene likely reflects a compensatory response to the inhibitory action of PCZ on aromatase enzymatic activities. Overall, this study illustrates the feasibility of using the cyp19a1a-eGFP transgenic line for assessing the effect of PCZ in an OECD test guideline while providing complementary information on the time- and concentration-dependent effects of the compound, without disturbing reproduction of fish. The acquisition of this additional mechanistic information on a key target gene through in vivo fluorescence imaging of the ovaries was realized without increasing the number of individuals.
Collapse
Affiliation(s)
- Julie De Oliveira
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Cyril Turies
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | | | - Olivier Palluel
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Patrick Pardon
- University of Bordeaux, LPTC, UMR EPOC, Bordeaux, France
| | | | - Xavier Cousin
- IFREMER, L3AS, UMR MARBEC, Palavas-les-Flots, France; INRA, UMR GABI, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - François Brion
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Nathalie Hinfray
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France.
| |
Collapse
|
25
|
Land WG. Role of Damage-Associated Molecular Patterns in Light of Modern Environmental Research: A Tautological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2020; 14:583-604. [PMID: 32837525 PMCID: PMC7415330 DOI: 10.1007/s41742-020-00276-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 05/06/2023]
Abstract
Two prominent models emerged as a result of intense interdisciplinary discussions on the environmental health paradigm, called the "exposome" concept and the "adverse outcome pathway" (AOP) concept that links a molecular initiating event to the adverse outcome via key events. Here, evidence is discussed, suggesting that environmental stress/injury-induced damage-associated molecular patterns (DAMPs) may operate as an essential integrating element of both environmental health research paradigms. DAMP-promoted controlled/uncontrolled innate/adaptive immune responses reflect the key events of the AOP concept. The whole process starting from exposure to a distinct environmental stress/injury-associated with the presence/emission of DAMPs-up to the manifestation of a disease may be regarded as an exposome. Clinical examples of such a scenario are briefly sketched, in particular, a model in relation to the emerging COVID-19 pandemic, where the interaction of noninfectious environmental factors (e.g., particulate matter) and infectious factors (SARS CoV-2) may promote SARS case fatality via superimposition of both exogenous and endogenous DAMPs.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany
- Molecular ImmunoRheumatology, Laboratory of Excellence Transplantex, Faculty of Medicine, INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
27
|
Omics-based input and output in the development and use of adverse outcome pathways. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Matsuzaka Y, Uesawa Y. Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library. Int J Mol Sci 2019; 20:ijms20194855. [PMID: 31574921 PMCID: PMC6801383 DOI: 10.3390/ijms20194855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
The constitutive androstane receptor (CAR) plays pivotal roles in drug-induced liver injury through the transcriptional regulation of drug-metabolizing enzymes and transporters. Thus, identifying regulatory factors for CAR activation is important for understanding its mechanisms. Numerous studies conducted previously on CAR activation and its toxicity focused on in vivo or in vitro analyses, which are expensive, time consuming, and require many animals. We developed a computational model that predicts agonists for the CAR using the Toxicology in the 21st Century 10k library. Additionally, we evaluate the prediction performance of novel deep learning (DL)-based quantitative structure-activity relationship analysis called the DeepSnap-DL approach, which is a procedure of generating an omnidirectional snapshot portraying three-dimensional (3D) structures of chemical compounds. The CAR prediction model, which applies a 3D structure generator tool, called CORINA-generated and -optimized chemical structures, in the DeepSnap-DL demonstrated better performance than the existing methods using molecular descriptors. These results indicate that high performance in the prediction model using the DeepSnap-DL approach may be important to prepare suitable 3D chemical structures as input data and to enable the identification of modulators of the CAR.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| |
Collapse
|
29
|
Desprez B, Birk B, Blaauboer B, Boobis A, Carmichael P, Cronin MT, Curie R, Daston G, Hubesch B, Jennings P, Klaric M, Kroese D, Mahony C, Ouédraogo G, Piersma A, Richarz AN, Schwarz M, van Benthem J, van de Water B, Vinken M. A mode-of-action ontology model for safety evaluation of chemicals: Outcome of a series of workshops on repeated dose toxicity. Toxicol In Vitro 2019; 59:44-50. [DOI: 10.1016/j.tiv.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
|
30
|
Hill T, Conolly RB. Development of a Novel AOP for Cyp2F2-Mediated Lung Cancer in Mice. Toxicol Sci 2019; 172:1-10. [PMID: 31407013 DOI: 10.1093/toxsci/kfz185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/26/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Traditional methods for carcinogenicity testing rely heavily on the rodent bioassay as the standard for identification of tumorigenic risk. As such, identification of species-specific outcomes and/or metabolism are a frequent argument for regulatory exemption. One example is the association of tumor formation in the mouse lung after exposure to Cyp2F2 ligands. The adverse outcome pathway (AOP) framework offers a theoretical platform to address issues of species specificity that is consistent, transparent, and capable of integrating data from new approach methodologies as well as traditional data streams. A central premise of the AOP concept is that pathway progression from the molecular initiating event (MIE) implies a definable “response-response” (R-R) relationship between each key event (KE) that drives the pathway towards a specific adverse outcome (AO). This article describes an AOP for lung cancer in the mouse from an MIE of Cyp2F2-specific reactive metabolite formation, advancing through KE that include protein and/or nucleic acid adducts, diminished Club Cell 10 kDa (CC10) protein expression, hyperplasia of CC10 deficient Club cells, and culminating in the AO of mixed-cell tumor formation in the distal airways. This tumor formation is independent of route of exposure and our AOP construct is based on overlapping mechanistic events for naphthalene, styrene, ethyl benzene, isoniazid, and fluensulfone in the mouse. This AOP is intended to accelerate the explication of an apparent mouse-specific outcome and serve as a starting point for a quantitative analysis of mouse-human differences in susceptibility to the tumorigenic effects of Cyp2F2 ligands.
Collapse
Affiliation(s)
- Thomas Hill
- Oak Ridge Institute for Science and Education Fellow at the National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
31
|
Coady K, Browne P, Embry M, Hill T, Leinala E, Steeger T, Maślankiewicz L, Hutchinson T. When Are Adverse Outcome Pathways and Associated Assays "Fit for Purpose" for Regulatory Decision-Making and Management of Chemicals? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:633-647. [PMID: 30908812 PMCID: PMC6771501 DOI: 10.1002/ieam.4153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/22/2019] [Indexed: 05/11/2023]
Abstract
There have been increasing demands for chemical hazard and risk assessments in recent years. Chemical companies have expanded internal product stewardship initiatives, and jurisdictions have increased the regulatory requirements for the manufacture and sale of chemicals. There has also been a shift in chemical toxicity evaluations within the same time frame, with new methodologies being developed to improve chemical safety assessments for both human health and the environment. With increased needs for chemical assessments coupled with more diverse data streams from new technologies, regulators and others tasked with chemical management activities are faced with increasing workloads and more diverse types of data to consider. The Adverse Outcome Pathway (AOP) framework can be applied in different scenarios to integrate data and guide chemical assessment and management activities. In this paper, scenarios of how AOPs can be used to guide chemical management decisions during research and development, chemical registration, and subsequent regulatory activities such as prioritization and risk assessment are considered. Furthermore, specific criteria (e.g., the type and level of AOP complexity, confidence in the AOP, as well as external review and assay validation) are proposed to examine whether AOPs and associated tools are fit for purpose when applied in different contexts. Certain toxicity pathways are recommended as priority areas for AOP research and development, and the continued use of AOPs and defined approaches in regulatory activities are recommended. Furthermore, a call for increased outreach, education, and enhanced use of AOP databases is proposed to increase their utility in chemicals management. Integr Environ Assess Manag 2019;15:633-647. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Katie Coady
- Toxicology & Environmental Research & ConsultingDow Chemical CompanyMidlandMichiganUSA
| | - Patience Browne
- Environment, Health and Safety Division, Environment DirectorateOrganisation for Economic and Cooperative DevelopmentParisFrance
| | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDCUSA
| | - Thomas Hill
- US Environmental Protection AgencyNational Health and Environmental Effects Research Laboratory, Research Triangle ParkNorth Carolina
| | - Eeva Leinala
- Environment, Health and Safety Division, Environment DirectorateOrganisation for Economic and Cooperative DevelopmentParisFrance
| | - Thomas Steeger
- US Environmental Protection Agency, Office of Pesticide ProgramsWashingtonDC
| | - Lidka Maślankiewicz
- National Institute of Public Health and the Environment (RIVM)Centre for Safety of Substances and Products, BilthovenThe Netherlands
| | | |
Collapse
|
32
|
Characterizing the coverage of critical effects relevant in the safety evaluation of food additives by AOPs. Arch Toxicol 2019; 93:2115-2125. [DOI: 10.1007/s00204-019-02501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
|
33
|
Estimating uncertainty in the context of new approach methodologies for potential use in chemical safety evaluation. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Dreier DA, Denslow ND, Martyniuk CJ. Computational in Vitro Toxicology Uncovers Chemical Structures Impairing Mitochondrial Membrane Potential. J Chem Inf Model 2019; 59:702-712. [PMID: 30645939 DOI: 10.1021/acs.jcim.8b00433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Technological advances in molecular biology have enabled high-throughput screening (HTS) of large chemical libraries. These approaches have provided valuable toxicity data for many physiological responses, including mitochondrial dysfunction. While several quantitative structure-activity relationship (QSAR) models have been developed for mitochondrial dysfunction, there remains a need to identify specific chemical features associated with this response. Thus, the objective of this study was to identify chemical structures associated with altered mitochondrial membrane potential (MMP). To achieve this, we developed computational models to examine the relationship between specific chemotypes (e.g., ToxPrints) and bioactivity in ToxCast/Tox21 HTS assays for altered MMP. The analysis revealed that the "bond:COH_alcohol_aromatic", "bond:COH_alcohol_aromatic_phenol", and "ring:aromatic_benzene" ToxPrints had the highest average correlations (phi coefficient) with ToxCast/Tox21 assay component endpoints for decreased MMP. These structures also constituted a "core" group of ToxPrints for decreased MMP in a force-directed network model and were the most important chemotypes in a random forest (RF) classification model for the "TOX21_MMP_ratio_down" assay component endpoint. Based on multiple lines of evidence, these structures, which are present in numerous chemicals (e.g., aromatic hydrocarbons, pesticides, and industrial chemicals) are likely involved in mitochondrial dysfunction. Because of the hierarchical structure of ToxPrints, these chemotypes were highly convergent and, when excluded from training data, had limited effects on the classification performance as related structures compensated for predictor loss. These results highlight the flexibility of the RF algorithm and ToxPrints for QSAR modeling, which is useful to identify chemicals affecting mitochondrial function.
Collapse
Affiliation(s)
- David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine , University of Florida , Gainesville , Florida 32611 , United States
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine , University of Florida , Gainesville , Florida 32611 , United States
| | - Christopher J Martyniuk
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
35
|
Renaud L, Agarwal N, Richards DJ, Falcinelli S, Hazard ES, Carnevali O, Hyde J, Hardiman G. Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:926-937. [PMID: 30469287 DOI: 10.1016/j.envpol.2018.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | | | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC, USA
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA; Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA; MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC, USA; School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
36
|
Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, Leblanc J, Desrosiers M, Stuart M, Brossard M, Vuong NQ, Wilkins R, Qutob S, McNamee J, Wang Y, Yauk C. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol 2018; 95:225-232. [PMID: 30373433 DOI: 10.1080/09553002.2019.1532617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE In 2012, the Organization for Economic Cooperation and Development (OECD) formally launched the Adverse Outcome Pathway (AOP) Programme. The AOP framework has the potential for predictive utility in identifying early biological endpoints linked to adverse effects. It uses the weight of correlative evidence to identify a minimal set of measurable key events that link molecular initiating events to an adverse outcome. AOPs have the capability to identify knowledge gaps and priority areas for future research based on relevance to an adverse outcome. In addition, AOPs can identify pathways that are common among multiple stressors, thereby allowing for the possibility of refined risk assessments based on co-exposure considerations. The AOP framework is increasingly being used in chemical and ecological risk assessment; however, its use in the development of radiation-specific pathways has yet to be fully explored. To bring awareness of the AOP framework to the Canadian radiation community, a workshop was held in Canada in June 2018 that brought together radiation experts from Health Canada, the Canadian Nuclear Laboratories, and the Canadian Nuclear Safety Commission. METHODS The purpose of the workshop was to share knowledge on the AOP framework, specifically (1) to introduce the concept of the AOP framework and its possible utility to Canadian radiation experts; (2) to provide examples on how it has advanced risk assessment; (3) to discuss an illustrative example specific to ionizing radiation; and lastly (4) to identify the broad benefits and challenges of the AOP framework to the radiation community. RESULTS The participants showed interest in the framework, case examples were described and areas of challenge were identified. Herein, we summarize the outcomes of the workshop. CONCLUSIONS Overall, participants agreed that by building AOPs in the radiation field, a network of data-sharing initiatives will enhance our interpretation of existing knowledge where current scientific evidence is minimal. They would provide new avenues to understand effects at low-dose and dose-rates and help to quantify the combined effect of multiple stressors on shared mechanistic pathways.
Collapse
Affiliation(s)
- Vinita Chauhan
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Zakaria Said
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada.,b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Joseph Daka
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Baki Sadi
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Deepti Bijlani
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Francesco Marchetti
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Danielle Beaton
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Adelene Gaw
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Chunsheng Li
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Julie Burtt
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Julie Leblanc
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Marc Desrosiers
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Marilyne Stuart
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Mathieu Brossard
- c Regulatory Operations and Regions Branch , Health Canada , Ottawa , Ontario , Canada
| | - Ngoc Q Vuong
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Ruth Wilkins
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Sami Qutob
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - James McNamee
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Yi Wang
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Carole Yauk
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| |
Collapse
|
37
|
Clippinger AJ, Allen D, Behrsing H, BéruBé KA, Bolger MB, Casey W, DeLorme M, Gaça M, Gehen SC, Glover K, Hayden P, Hinderliter P, Hotchkiss JA, Iskandar A, Keyser B, Luettich K, Ma-Hock L, Maione AG, Makena P, Melbourne J, Milchak L, Ng SP, Paini A, Page K, Patlewicz G, Prieto P, Raabe H, Reinke EN, Roper C, Rose J, Sharma M, Spoo W, Thorne PS, Wilson DM, Jarabek AM. Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro 2018; 52:131-145. [PMID: 29908304 PMCID: PMC6760245 DOI: 10.1016/j.tiv.2018.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023]
Abstract
New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.
Collapse
Affiliation(s)
- Amy J Clippinger
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom.
| | - David Allen
- Integrated Laboratory Systems, Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | - Holger Behrsing
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Kelly A BéruBé
- Cardiff School of Biosciences, Museum Avenue, CF10 3AX, Wales, United Kingdom
| | - Michael B Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, United States
| | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, North Carolina 27709, United States
| | | | - Marianna Gaça
- British American Tobacco plc, Globe House, 4 Temple Place, London WC2R 2PG, United Kingdom
| | - Sean C Gehen
- Dow AgroSciences, Indianapolis, IN, United States
| | - Kyle Glover
- Defense Threat Reduction Agency, Aberdeen Proving Ground, MD 21010, United States
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | | | | | - Anita Iskandar
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Brian Keyser
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Karsta Luettich
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Lan Ma-Hock
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Anna G Maione
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | - Patrudu Makena
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Jodie Melbourne
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | | | - Sheung P Ng
- E.I. du Pont de Nemours and Company, DuPont Haskell Global Center for Health Sciences, P. O. Box 30, Newark, DE 19714, United States
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Kathryn Page
- The Clorox Company, 4900 Johnson Dr, Pleasanton, CA 94588, United States
| | - Grace Patlewicz
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, NC, United States
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hans Raabe
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Emily N Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd. Bldg. E-5158, ATTN: MCHB-PH-HEF Gunpowder, MD 21010-5403, United States
| | - Clive Roper
- Charles River Edinburgh Ltd., Edinburgh EH33 2NE, United Kingdom
| | - Jane Rose
- Procter & Gamble Co, 11530 Reed Hartman Highway, Cincinnati, OH 45241, United States
| | - Monita Sharma
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | - Wayne Spoo
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Peter S Thorne
- University of Iowa College of Public Health, Iowa City, IA, United States
| | | | - Annie M Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
38
|
Shin YJ, Kim KA, Kim ES, Kim JH, Kim HS, Ha M, Bae ON. Identification of aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) as novel renal damage biomarkers following exposure to mercury. Hum Exp Toxicol 2018; 37:1025-1036. [PMID: 29298499 DOI: 10.1177/0960327117751234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The kidney is one of the main targets for toxicity induced by xenobiotics. Sensitive detection of early impairment is critical to assess chemical-associated renal toxicity. The aim of this study was to identify potential nephrotoxic biomarkers in rat kidney tissues after exposure to mercury (Hg), a representative nephrotoxicant, and to evaluate these new biomarkers employing in vivo and in vitro systems. Mercuric chloride was administered orally to Sprague-Dawley rats for 2 weeks. Proteomic analysis revealed that aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) were significantly elevated in kidney after Hg exposure. While the levels of conventional nephrotoxic clinical markers including blood urea nitrogen and serum creatinine were not elevated, the mRNA and protein levels of AKR7A1 and GSTP1 were increased upon Hg exposure in a dose-dependent manner. The increases in AKR7A1 and GSTP1 were also observed in rat kidneys after an extended exposure for 6 weeks to low-dose Hg. In in vitro rat kidney proximal tubular cells, changes in AKR7A1 and GSTP1 levels correlated well with the extent of cytotoxicity induced by Hg, cadmium, or cisplatin. AKR7A1 and GSTP1 were identified as new candidates for Hg-induced nephrotoxicity, suggesting that these biomarkers have potential for evaluating or predicting nephrotoxicity.
Collapse
Affiliation(s)
- Y-J Shin
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - K-A Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - E-S Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - J-H Kim
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - H-S Kim
- 2 College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - M Ha
- 3 Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - O-N Bae
- 1 College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
39
|
Piersma A, Burgdorf T, Louekari K, Desprez B, Taalman R, Landsiedel R, Barroso J, Rogiers V, Eskes C, Oelgeschläger M, Whelan M, Braeuning A, Vinggaard A, Kienhuis A, van Benthem J, Ezendam J. Workshop on acceleration of the validation and regulatory acceptance of alternative methods and implementation of testing strategies. Toxicol In Vitro 2018; 50:62-74. [DOI: 10.1016/j.tiv.2018.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
|
40
|
Watford SM, Grashow RG, De La Rosa VY, Rudel RA, Friedman KP, Martin MT. Novel application of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene sets associated with disease: use case in breast carcinogenesis. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 7:46-57. [PMID: 32274464 PMCID: PMC7144681 DOI: 10.1016/j.comtox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in technology within biomedical sciences have led to an inundation of data across many fields, raising new challenges in how best to integrate and analyze these resources. For example, rapid chemical screening programs like the US Environmental Protection Agency's ToxCast and the collaborative effort, Tox21, have produced massive amounts of information on putative chemical mechanisms where assay targets are identified as genes; however, systematically linking these hypothesized mechanisms with in vivo toxicity endpoints like disease outcomes remains problematic. Herein we present a novel use of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene associations with biological concepts as represented by Medical Subject Headings (MeSH terms) in PubMed. Resources that tag genes to articles were integrated, then cross-species orthologs were identified using UniRef50 clusters. MeSH term frequency was normalized to reflect the MeSH tree structure, and then the resulting GeneID-MeSH associations were ranked using NPMI. The resulting network, called Entity MeSH Co-occurrence Network (EMCON), is a scalable resource for the identification and ranking of genes for a given topic of interest. The utility of EMCON was evaluated with the use case of breast carcinogenesis. Topics relevant to breast carcinogenesis were used to query EMCON and retrieve genes important to each topic. A breast cancer gene set was compiled through expert literature review (ELR) to assess performance of the search results. We found that the results from EMCON ranked the breast cancer genes from ELR higher than randomly selected genes with a recall of 0.98. Precision of the top five genes for selected topics was calculated as 0.87. This work demonstrates that EMCON can be used to link in vitro results to possible biological outcomes, thus aiding in generation of testable hypotheses for furthering understanding of biological function and the contribution of chemical exposures to disease.
Collapse
Affiliation(s)
- Sean M Watford
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Oak Ridge, TN
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Rachel G Grashow
- Silent Spring Institute, Newton, MA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Vanessa Y De La Rosa
- Silent Spring Institute, Newton, MA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA
| | | | | | - Matthew T Martin
- U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC, USA
- Currently at Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|
41
|
Ankley GT, Edwards SW. The Adverse Outcome Pathway: A Multifaceted Framework Supporting 21 st Century Toxicology. CURRENT OPINION IN TOXICOLOGY 2018; 9:1-7. [PMID: 29682628 DOI: 10.1016/j.cotox.2018.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The adverse outcome pathway (AOP) framework serves as a knowledge assembly, interpretation, and communication tool designed to support the translation of pathway-specific mechanistic data into responses relevant to assessing and managing risks of chemicals to human health and the environment. As such, AOPs facilitate the use of data streams often not employed by risk assessors, including information from in silico models, in vitro assays and short-term in vivo tests with molecular/biochemical endpoints. This translational capability can increase the capacity and efficiency of safety assessments both for single chemicals and chemical mixtures. Our mini-review describes the conceptual basis of the AOP framework and aspects of its current status relative to use by toxicologists and risk assessors, including four illustrative applications of the framework to diverse assessment scenarios.
Collapse
Affiliation(s)
- Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Stephen W Edwards
- US Environmental Protection Agency, Office of Research and Development, Integrated Systems Toxicology Division, RTP, NC, USA
| |
Collapse
|
42
|
Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer 2018; 18:408. [PMID: 29649981 PMCID: PMC5897933 DOI: 10.1186/s12885-018-4302-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost. MAIN BODY We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell's functional organization up to model building for predictive systems. CONCLUSION Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest refined translational models and testing methods based on integrative analyses and the incorporation of computational biology within cancer research.
Collapse
Affiliation(s)
- Claire Jean-Quartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Fleur Jeanquartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Igor Jurisica
- Krembil Research Institute, University Health Network; Depts. of Medical Bioph. and Comp. Sci., University of Toronto; Institute of Neuroimmunology, Slovak Academy of Sciences, Toronto, Canada
| | - Andreas Holzinger
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| |
Collapse
|
43
|
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
44
|
The future trajectory of adverse outcome pathways: a commentary. Arch Toxicol 2018; 92:1657-1661. [PMID: 29549413 PMCID: PMC5882624 DOI: 10.1007/s00204-018-2183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 01/12/2023]
Abstract
The advent of adverse outcome pathways (AOPs) has provided a new lexicon for description of mechanistic toxicology, and a renewed enthusiasm for exploring modes of action resulting in adverse health and environmental effects. In addition, AOPs have been used successfully as a framework for the design and development of non-animal approaches to toxicity testing. Although the value of AOPs is widely recognised, there remain challenges and opportunities associated with their use in practise. The purpose of this article is to consider specifically how the future trajectory of AOPs may provide a basis for addressing some of those challenges and opportunities.
Collapse
|
45
|
Mehinto AC, Kroll KJ, Jayasinghe BS, Lavelle CM, VanDervort D, Adeyemo OK, Bay SM, Maruya KA, Denslow ND. Linking in vitro estrogenicity to adverse effects in the inland silverside (Menidia beryllina). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:884-892. [PMID: 29091346 DOI: 10.1002/etc.4024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/09/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
High-throughput cell assays that detect and integrate the response of multiple chemicals acting via a common mode of action have the potential to enhance current environmental monitoring practices. Establishing the linkage between in vitro and in vivo responses is key to demonstrating that in vitro cell assays can be predictive of ecologically relevant outcomes. The present study investigated the potency of 17β-estradiol (E2), estrone (E1), nonylphenol (NP), and treated wastewater effluent using the readily available GeneBLAzer® estrogen receptor transactivation assay and 2 life stages of the inland silverside (Menidia beryllina). In vitro estrogenic potencies were ranked as follows: E2 > E1 >> NP. All 3 model estrogens induced vitellogenin and choriogenin expression in a dose-dependent manner in larvae and juveniles. However, apical effects were only found for E2 and E1 exposures of juveniles, which resulted in female-skewed sex ratios. Wastewater effluent samples exhibiting low in vitro estrogenicity (below the 10% effective concentration [EC10]), did not cause significant changes in M. beryllina. Significant induction of estrogen-responsive genes was observed at concentrations 6 to 26 times higher than in vitro responses. Gonadal feminization occurred at concentrations at least 19 to 26 times higher than the in vitro responses. These findings indicated that in vitro cell assays were more sensitive than the fish assays, making it possible to develop in vitro effect thresholds protective of aquatic organisms. Environ Toxicol Chem 2018;37:884-892. © 2017 SETAC.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Southern California Coastal Water Research Project Authority (SCCWRP), Costa Mesa, California, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - B Sumith Jayasinghe
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Candice M Lavelle
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Darcy VanDervort
- Southern California Coastal Water Research Project Authority (SCCWRP), Costa Mesa, California, USA
| | - Olanike K Adeyemo
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Steven M Bay
- Southern California Coastal Water Research Project Authority (SCCWRP), Costa Mesa, California, USA
| | - Keith A Maruya
- Southern California Coastal Water Research Project Authority (SCCWRP), Costa Mesa, California, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
47
|
Ives C, Campia I, Wang RL, Wittwehr C, Edwards S. Creating a Structured AOP Knowledgebase via Ontology-Based Annotations. ACTA ACUST UNITED AC 2017; 3:298-311. [PMID: 30057931 DOI: 10.1089/aivt.2017.0017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction The Adverse Outcome Pathway framework is increasingly used to integrate data generated based on traditional and emerging toxicity testing paradigms. As the number of AOP descriptions has increased, so has the need to define the AOP in computable terms. Materials and Methods Herein, we present a comprehensive annotation of 172 AOPs housed in the AOP-Wiki as of December 4, 2016 using terms from existing biological ontologies. Results AOP Key Events (KEs) were assigned ontology terms using a concept called the Event Component, which consists of a Process, an Object, and an Action term, with each term originating from ontologies and other controlled vocabularies. Annotation of KEs with ontology classes from fourteen ontologies and controlled vocabularies resulted in a total of 685 KEs being annotated with a total of 809 Event Components. A set of seven conventions resulted, defining the annotation of KEs via Event Components. Discussion This expanded annotation of AOPs allows computational reasoners to aid in both AOP development and applications. In addition, the incorporation of explicit biological objects will reduce the time required for converting a qualitative AOP description into a conceptual model that can support computational modeling. As high throughput genomics becomes a more important part of the high throughput toxicity testing landscape, the new approaches described here for annotating key events will also promote the visualization and analysis of genomics data in an AOP context.
Collapse
Affiliation(s)
- Cataia Ives
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Ivana Campia
- European Commission's Joint Research Centre, NERL, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Rong-Lin Wang
- Exposure Methods and Measurements Division, NERL, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Clemens Wittwehr
- European Commission's Joint Research Centre, NERL, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Stephen Edwards
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
48
|
Cronin MT, Richarz AN. Relationship Between Adverse Outcome Pathways and Chemistry-BasedIn SilicoModels to Predict Toxicity. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Andrea-Nicole Richarz
- European Commission, Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
49
|
Sachana M, Leinala E. Approaching Chemical Safety Assessment Through Application of Integrated Approaches to Testing and Assessment: Combining Mechanistic Information Derived from Adverse Outcome Pathways and Alternative Methods. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Organization for Economic Co-operation and Development (OECD), Paris, France
| | - Eeva Leinala
- Environment Health and Safety Division, Organization for Economic Co-operation and Development (OECD), Paris, France
| |
Collapse
|
50
|
Gabbert S, Leontaridou M, Landsiedel R. A Critical Review of Adverse Outcome Pathway-Based Concepts and Tools for Integrating Information from Nonanimal Testing Methods: The Case of Skin Sensitization. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Silke Gabbert
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | - Maria Leontaridou
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|