1
|
Cox A, Nowshad F, Callaway E, Jayaraman A. Integrated Metagenomic and Metabolomic Analysis of In Vitro Murine Gut Microbial Cultures upon Bisphenol S Exposure. Metabolites 2024; 14:713. [PMID: 39728494 DOI: 10.3390/metabo14120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The gut microbiota are an important interface between the host and the environment, mediating the host's interactions with nutritive and non-nutritive substances. Dietary contaminants like Bisphenol A (BPA) may disrupt the microbial community, leaving the host susceptible to additional exposures and pathogens. BPA has long been a controversial and well-studied contaminant, so its structural analogues like Bisphenol S (BPS) are replacing it in consumer products, but have not been well studied. METHODS This study aimed to determine the impact of BPS on C57BL/6 murine gut microbiota using shotgun metagenomic sequencing and the metabolomic profiling of in vitro anaerobic cultures. RESULTS The results demonstrated that a supraphysiologic BPS dose did not overtly distort the metagenomic or metabolomic profiles of exposed cultures compared to controls. A distinct BPS-associated metabolite profile was not observed, but several metabolites, including saturated fatty acids, were enriched in the BPS-exposed cultures. In the absence of a BPS-associated enterotype, Lactobacillus species specifically were associated with BPS exposure in a discriminant model. CONCLUSIONS Our study provides evidence contrasting the effects of BPS in the gut microbiome to its predecessor, BPA, but also emphasizes the role of inter-animal variation in microbiome composition, indicating that further study is needed to characterize BPS in this context.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Farrhin Nowshad
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Evelyn Callaway
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
3
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
4
|
Ighalo JO, Kurniawan SB, Khongthaw B, Buhari J, Chauhan PK, Georgin J, Pfingsten Franco DS. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv 2024; 14:35128-35162. [PMID: 39529868 PMCID: PMC11552486 DOI: 10.1039/d4ra05628k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A (BPA) raises concerns among the scientific community as it is one of the most widely used compounds in industrial processes and a component of polycarbonate plastics and epoxy resins. In this review, we discuss the mechanism of BPA toxicity in food-grade plastics. Owing to its proliferation in the aqueous environment, we delved into the performance of various biological, physical, and chemical techniques for its remediation. Detailed mechanistic insights into these removal processes are provided. The toxic effects of BPA unravel as changes at the cellular level in the brain, which can result in learning difficulties, increased aggressiveness, hyperactivity, endocrine disorders, reduced fertility, and increased risk of dependence on illicit substances. Bacterial decomposition of BPA leads to new intermediates and products with lower toxicity. Processes such as membrane filtration, adsorption, coagulation, ozonation, and photocatalysis have also been shown to be efficient in aqueous-phase degradation. The breakdown mechanism of these processes is also discussed. The review demonstrates that high removal efficiency is usually achieved at the expense of high throughput. For the scalable application of BPA degradation technologies, removal efficiency needs to remain high at high throughput. We propose the need for process intensification using an integrated combination of these processes, which can solve multiple associated performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University P. M. B. 5025 Awka Nigeria
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC Calle 58 # 55-66 Barranquilla Atlántico Colombia
| | | |
Collapse
|
5
|
Lai Y, Ay M, Hospital CD, Miller GW, Sarkar S. Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:94201. [PMID: 39230330 PMCID: PMC11373422 DOI: 10.1289/ehp13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Haange SB, Riesbeck S, Aldehoff AS, Engelmann B, Jensen Pedersen K, Castaneda-Monsalve V, Rolle-Kampczyk U, von Bergen M, Jehmlich N. Chemical mixture effects on the simplified human intestinal microbiota: Assessing xenobiotics at environmentally realistic concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134683. [PMID: 38820745 DOI: 10.1016/j.jhazmat.2024.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
The microbial community present in our intestines is pivotal for converting indigestible substances into vital nutrients and signaling molecules such as short-chain fatty acids (SCFAs). These compounds have considerable influence over our immune system and the development of diverse human diseases. However, ingested environmental contaminants, known as xenobiotics, can upset the delicate balance of the microbial gut community and enzymatic processes, consequently affecting the host organism. In our study, we employed an in vitro bioreactor model system based on the simplified human microbiome model (SIHUMIx) to investigate the direct effects of specific xenobiotics, such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) or bisphenol S (BPS) and bisphenol F (BPF), either individually or in combination, on the microbiota. We observed increased SCFA production, particularly acetate and butyrate, with PFAS exposure. Metaproteomics revealed pathway alterations across treatments, including changes in vitamin synthesis and fatty acid metabolism with BPX. This study underscores the necessity of assessing the combined effects of xenobiotics to better safeguard public health. It emphasizes the significance of considering adverse effects on the microbiome in the risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Sarah Riesbeck
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Beatrice Engelmann
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Kristian Jensen Pedersen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Victor Castaneda-Monsalve
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany.
| |
Collapse
|
7
|
Li S, Ma X, Zhang X, Bai S, Li X, Huang Y, Yu J, Fan Y, Lu C, Du G, Qin Y. Bisphenol S exposure induces intestinal inflammation via altering gut microbiome. Food Chem Toxicol 2024; 190:114830. [PMID: 38908815 DOI: 10.1016/j.fct.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Bisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.
Collapse
Affiliation(s)
- Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuan Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Singh DP, Kumar A, Prajapati J, Bijalwan V, Kumar J, Amin P, Kandoriya D, Vidhani H, Patil GP, Bishnoi M, Rawal R, Das S. Sexual dimorphism in neurobehavioural phenotype and gut microbial composition upon long-term exposure to structural analogues of bisphenol-A. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135178. [PMID: 39002480 DOI: 10.1016/j.jhazmat.2024.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Bisphenol S (BPS) and Bisphenol F (BPF), the analogues of the legacy endocrine disrupting chemical, Bisphenol A (BPA) are ubiquitous in the environment and present in various consumer goods, and potentially neurotoxic. Here, we studied sex-specific responses of bisphenols on behavioural phenotypes, including their association with pro-inflammatory biomarkers and altered neurotransmitters levels, and the key gut microbial abundances. Neurobehavioural changes, using standard test battery, biochemical and molecular estimations for inflammatory cytokines, neurotransmitters, and oxido-nitrosative stress markers, gene expression analysis using qRT-PCR, H&E based histological investigations, gut permeability assays and Oxford Nanopore-based 16S-rRNA metagenomics sequencing for the gut microbial abundance estimations were performed. Bisphenol(s) exposure induces anxiety and depression-like behaviours, particularly in the male mice, with heightened pro-inflammatory cytokines levels and systemic endotoxemia, altered monoamine neurotransmitters levels/turnovers and hippocampal neuronal degeneration and inflammatory responses in the brain. They also increased gut permeability and altered microbial diversity, particularly in males. Present study provides evidence for sex-specific discrepancies in neurobehavioural phenotypes and gut microbiota, which necessitate a nuanced understanding of sex-dependent responses to bisphenols. The study contributes to ongoing discussions on the multifaceted implications of bisphenols exposure and underscores the need for tailored regulatory measures to mitigate potential health risks associated with them.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| | - Aasish Kumar
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Pranjal Amin
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India; Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Devat Kandoriya
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Heena Vidhani
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Gajanan Pratap Patil
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Mahendra Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab 140603, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| |
Collapse
|
9
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
10
|
Stagaman K, Alexiev A, Sieler MJ, Hammer A, Kasschau KD, Truong L, Tanguay RL, Sharpton TJ. The zebrafish gut microbiome influences benzo[a]pyrene developmental neurobehavioral toxicity. Sci Rep 2024; 14:14618. [PMID: 38918492 PMCID: PMC11199668 DOI: 10.1038/s41598-024-65610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Alexandra Alexiev
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Austin Hammer
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Fischer F, Pierzchalski A, Riesbeck S, Aldehoff AS, Castaneda-Monsalve VA, Haange SB, von Bergen M, Rolle-Kampczyk UE, Jehmlich N, Zenclussen AC, Herberth G. An in vitro model system for testing chemical effects on microbiome-immune interactions - examples with BPX and PFAS mixtures. Front Immunol 2024; 15:1298971. [PMID: 38953021 PMCID: PMC11215145 DOI: 10.3389/fimmu.2024.1298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sarah Riesbeck
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
12
|
Qin J, Qi X, Li Y, Tang Z, Zhang X, Ru S, Xiong JQ. Bisphenols can promote antibiotic resistance by inducing metabolic adaptations and natural transformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134149. [PMID: 38554512 DOI: 10.1016/j.jhazmat.2024.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.
Collapse
Affiliation(s)
- Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Qi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuyun Tang
- School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Serafini MM, Sepehri S, Midali M, Stinckens M, Biesiekierska M, Wolniakowska A, Gatzios A, Rundén-Pran E, Reszka E, Marinovich M, Vanhaecke T, Roszak J, Viviani B, SenGupta T. Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing. Arch Toxicol 2024; 98:1271-1295. [PMID: 38480536 PMCID: PMC10965660 DOI: 10.1007/s00204-024-03703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Collapse
Affiliation(s)
- Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| | - Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Miriam Midali
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marth Stinckens
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Marta Biesiekierska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Wolniakowska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Alexandra Gatzios
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Elise Rundén-Pran
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tanima SenGupta
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| |
Collapse
|
14
|
Phelps D, Parkinson LV, Boucher JM, Muncke J, Geueke B. Per- and Polyfluoroalkyl Substances in Food Packaging: Migration, Toxicity, and Management Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5670-5684. [PMID: 38501683 PMCID: PMC10993423 DOI: 10.1021/acs.est.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.
Collapse
Affiliation(s)
- Drake
W. Phelps
- Independent
Consultant, Raleigh, North Carolina 27617, United States
| | | | | | - Jane Muncke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Birgit Geueke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| |
Collapse
|
15
|
Giommi C, Lombó M, Habibi HR, Rossi G, Basili D, Mangiaterra S, Ladisa C, Chemello G, Carnevali O, Maradonna F. The probiotic SLAB51 as agent to counteract BPA toxicity on zebrafish gut microbiota -liver-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169303. [PMID: 38135076 DOI: 10.1016/j.scitotenv.2023.169303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
A plethora of studies have so far described the toxic effects of bisphenol A (BPA) on organism health, highlighting the urgent need to find new strategies not only to reduce the presence of this toxicant but also to counteract its adverse effects. In this context, probiotics emerged as a potential tool since they promote organism welfare. Using a multidisciplinary approach, this study explores the effects of SLAB51 dietary administration to counteract BPA toxicity using zebrafish as a model. Adult males and females were maintained under standard conditions (control group; C), exposed for 28 days via the water to an environmental relevant dose of BPA (10 μg/L; BPA), dietary treated with SLAB51 (109 CFU/g of body weight; P) and co-treated with BPA plus SLAB51 (BPA + P). In the gut, exposure to BPA resulted in altered architecture in both males and females, with females also experiencing an increase of pathogenic bacterial species. Co-administration of BPA + P led to the restoration of normal gut architecture, favored beneficial bacteria colonization, and decreased the abundance of pathogenic species. In the liver, male BPA exposure led to steatosis and glycogen depletion, which was partially mitigated by SLAB51 co-administration. In contrast, in females exposed to BPA, the lack of steatosis along with the greater glycogen depletion, suggested an increase in energy demand as supported by the metabolomic phenotype. The analysis of liver metabolites in BPA + P males revealed increased levels of anserine and reduced levels of glutamine, which could lie behind the counteraction of the brain histopathological damage caused by BPA. In BPA + P females, a reduction of retinoic acid was found in the liver, suggesting an increase in retinoids responsible for BPA detoxification. Overall, these results demonstrate that SLAB51 exerts its beneficial effects on the gut microbiota-brain-liver axis through distinct molecular pathways, effectively mitigating the pleiotropic toxicity of BPA.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Marta Lombó
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Danilo Basili
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giulia Chemello
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
16
|
Xia Y, Li Z, Wang C, Zhang X, Li J, Zhou Q, Yang J, Chen Q, Meng X, Wang J. Dynamic alterations of locomotor activity and the microbiota in zebrafish larvae with low concentrations of lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2042-2052. [PMID: 38051486 DOI: 10.1007/s11356-023-31279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Lead (Pb) is a ubiquitous heavy metal associated with developmental and behavioral disorders. The establishment of pioneer microbiota overlaps with the development of the brain during early life, and Pb-induced developmental neurotoxicity may be partially caused by early-life microbiota dysbiosis. This study investigated the locomotor activity and the microbiota in developing zebrafish at multiple developmental time points (five days post fertilization [5 dpf], 6 dpf, and 7 dpf) under exposure to low concentrations of lead (0.05 mg/L). Time-dependent reductions in the number of activities and the average movement distance of larvae compared to the control were observed following Pb exposure. Furthermore, Pb exposure significantly altered the composition of the gut microbiota of zebrafish larvae. At the phylum level, the abundance of Proteobacteria decreased from 5 to 7 dpf, while that of Actinobacteria increased in the control groups. At the class level, the proportion of Alphaproteobacteria decreased, while that of Actinobacteria increased in the control groups. Notably, all showed the opposite trend in Pb groups. A correlation analysis between indices of locomotor activity and microbial communities revealed genus-level features that were clearly linked to the neurobehavioral performance of zebrafish. Seven genera were significantly correlated with the two performance indicators of the locomotion analysis, namely Rhodococcus, Deinococcus, Bacillus, Bosea, Bradyrhizobium, Staphylococcus, and Rhizobium. Rhizobium was dominant in zebrafish and increased in the Pb groups in a time-dependent manner. In addition, the expression levels of bdnf, trkb1, trkb2, and p75ntr changed in zebrafish from 5 to 7 dpf under Pb exposure. Collectively, these results suggest that Pb-induced neurotoxicity could potentially be treated by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Ziyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Chunyu Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China.
| |
Collapse
|
17
|
Balasubramanian S, Haneen MA, Sharma G, Perumal E. Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. Life Sci 2024; 336:122313. [PMID: 38035991 DOI: 10.1016/j.lfs.2023.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models. However, CuO NPs-induced microbiome alterations in vertebrates have not been reported so far. In this study, for the first time, zebrafish larvae at 96 hpf (hours post fertilization) were exposed to CuO NPs for 24 h at 10, 20, and 40 ppm. After exposure, the control and treated larvae were subjected to 16S rRNA amplicon sequencing followed by relative taxa abundance, alpha and beta diversity analysis, single factor analysis, LEfSe, Deseq2, and functional profiling. No significant alteration was detected in the microbial richness and diversity, however, specific taxa constituting the core microbiome such as phylum Proteobacteria were significantly increased and Bacterioidetes and Firmicutes were decreased in the treated groups, indicating a core microbiota dysbiosis. Further, the family Lachnospiraceae, and genus Syntrophomonas involved in butyrate production and the metabolism of lipids and glucose were significantly altered. In addition, the opportunistic pathogens belonging to order Flavobacteriales were increased in CuO NPs treated groups. Moreover, the taxa involved in host immune response (Shewanella, Delftia, and Bosea) were found to be enriched in CuO NPs exposed larvae. These results indicate that CuO NPs exposure causes alteration in the core microbiota, which could cause colitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
18
|
Huang Z, Chen Z, Yan D, Jiang S, Nie L, Tu X, Jia X, Wågberg T, Chao L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules 2023; 28:8036. [PMID: 38138526 PMCID: PMC10745752 DOI: 10.3390/molecules28248036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.
Collapse
Affiliation(s)
- Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Zihan Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Dexuan Yan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Shuo Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Xinman Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
| | - Xueen Jia
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Thomas Wågberg
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| |
Collapse
|
19
|
Sharpton TJ, Alexiev A, Tanguay RL. Defining the environmental determinants of dysbiosis at scale with zebrafish. CURRENT OPINION IN TOXICOLOGY 2023; 36:100430. [PMID: 38486798 PMCID: PMC10938905 DOI: 10.1016/j.cotox.2023.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The gut microbiome, critical to maintaining vertebrate homeostasis, is susceptible to a various exposures. In some cases, these exposures induce dysbiosis, wherein the microbiome changes into a state conducive to disease progression. To better prevent, manage, and treat health disorders, we need to define which exposures induce dysbiosis. Contemporary methods face challenges due to the immense diversity of the exposome and the restricted throughput of conventional experimental tools used for dysbiosis evaluation. We propose integrating high-throughput model systems as an augment to traditional techniques for rapid identification of dysbiosis-inducing agents. Although high-throughput screening tools revolutionized areas such as pharmacology and toxicology, their incorporation in gut microbiome research remains limited. One particularly powerful high-throughput model system is the zebrafish, which affords access to scalable in vivo experimentation involving a complex gut microbiome. Numerous studies have employed this model to identify potential dysbiosis triggers. However, its potential could be further harnessed via innovative study designs, such as evaluation of synergistic effects from combined exposures, expansions to the methodological toolkit to discern causal effects of microbiota, and efforts to assess and improve the translational relevance of the model. Ultimately, this burgeoning experimental resource can accelerate the discovery of agents that underlie dysbiotic disorders.
Collapse
Affiliation(s)
- Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR
- Department of Statistics, Oregon State University, Corvallis, OR
| | | | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
- Sinnhuber Aquatic Research Center, Oregon State University, Corvallis, OR
| |
Collapse
|
20
|
Cox A, Bomstein Z, Jayaraman A, Allred C. The intestinal microbiota as mediators between dietary contaminants and host health. Exp Biol Med (Maywood) 2023; 248:2131-2150. [PMID: 37997859 PMCID: PMC10800128 DOI: 10.1177/15353702231208486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zach Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton Allred
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
21
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
22
|
Xia Y, Wang C, Zhang X, Li J, Li Z, Zhu J, Zhou Q, Yang J, Chen Q, Meng X. Combined effects of lead and manganese on locomotor activity and microbiota in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115260. [PMID: 37487434 DOI: 10.1016/j.ecoenv.2023.115260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Exposure to lead (Pb) and manganese (Mn) during early life influences neurodevelopment and increases the risk of neurodegenerative disorders. However, the level of developmental neurotoxicity due to combined exposure to the two metals remains unclear. Although the microbiota plays an essential part in the development of the nervous system via the gut-brain axis, there is a paucity of information regarding the interactions between exposure to Pb and Mn, the destruction of the microbiome, and neurodevelopmental impacts. To fill in this knowledge gap, we investigated the developmental neurotoxicity and effects on the microbiota of Pb (0.05 mg·L-1) alone and in combination with Mn (0.3 mg·L-1) in zebrafish larvae. Our results revealed that combined exposure precipitated higher malformation rates and lower locomotor activity levels than exposure to either Pb or Mn alone. Additionally, when we separated the combined exposure group from the other groups by applying unsupervised principal coordinates analysis (PCoA) and linear discriminant analysis (LEfSe) of microflora sequencing results, we observed extensive alterations in microbial abundances under combined-exposure conditions. Functional prediction analysis showed that combined exposure contributed to altered amino acid and lipid metabolism, and also that combined exposure to Pb and Mn reflected the greatest number of differentially activated biological pathways compared to the other three groups. ATP-binding cassette G (ABCG) genes and genes related to serotonin signaling and metabolism were altered following combined Pb and Mn exposure and exhibited disparate trends vis-à-vis Pb or Mn exposure alone. According to the results, the combined exposure to Pb and Mn led to more severe effects on both zebrafish locomotor activity and gut microbial composition. We suggest that the microbiota contributes to the combined neurotoxicity by increasing ABCG5 and ABCG8 gene expression.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Chunyu Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ziyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Institute of Occupational Health Assessment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, Kim KW. Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3567-3583. [PMID: 36450975 DOI: 10.1007/s10653-022-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
24
|
Escher BI, Altenburger R, Blüher M, Colbourne JK, Ebinghaus R, Fantke P, Hein M, Köck W, Kümmerer K, Leipold S, Li X, Scheringer M, Scholz S, Schloter M, Schweizer PJ, Tal T, Tetko I, Traidl-Hoffmann C, Wick LY, Fenner K. Modernizing persistence-bioaccumulation-toxicity (PBT) assessment with high throughput animal-free methods. Arch Toxicol 2023; 97:1267-1283. [PMID: 36952002 PMCID: PMC10110678 DOI: 10.1007/s00204-023-03485-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany.
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, E72076, Tübingen, Germany.
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Munich-German Research Centre for Environmental Health (GmbH) at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Michaela Hein
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Wolfgang Köck
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
- International Sustainable Chemistry Collaboration Centre (ISC3), Friedrich-Ebert-Allee 32 + 36, D-53113, Bonn, Germany
| | - Sina Leipold
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
- Department for Political Science, Friedrich-Schiller-University Jena, Bachstr. 18k, 07743, Jena, Germany
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zurich, Switzerland
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Michael Schloter
- Comparative Microbiome Analysis, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Pia-Johanna Schweizer
- Research Institute for Sustainability-Helmholtz Centre Potsdam, Berliner Strasse 130, 14467, Potsdam, Germany
| | - Tamara Tal
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Igor Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| |
Collapse
|
25
|
Ma N, Ma D, Liu X, Zhao L, Ma L, Ma D, Dong S. Bisphenol P exposure in C57BL/6 mice caused gut microbiota dysbiosis and induced intestinal barrier disruption via LPS/TLR4/NF-κB signaling pathway. ENVIRONMENT INTERNATIONAL 2023; 175:107949. [PMID: 37126915 DOI: 10.1016/j.envint.2023.107949] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Despite being one of the most world's widely used and mass-produced compounds, bisphenol A (BPA) has a wide range of toxic effects. Bisphenol P (BPP), an alternative to BPA, has been detected in many foods. The effects of BPP dietary exposure on gut microbiota and the intestinal barrier were unclear. We designed three batches of animal experiments: The first studied mice were exposed to BPP (30 µg/kg BW/day) for nine weeks and found that they gained weight and developed dysbiosis of the gut microbiota. The second, using typical human exposure levels (L, 0.3 µg/kg BW/day BPP) and higher concentrations (M, 30 µg/kg BW/day BPP; H, 3000 µg/kg BW/day BPP), caused gut microbiota dysbiosis in mice, activated the Lipopolysaccharide (LPS) /TLR4/NF-κB signaling pathway, triggered an inflammatory response, increased intestinal permeability, and promoted bacterial translocation leading to intestinal barrier disruption. The third treatment used a combination of antibiotics and alleviated intestinal inflammation and injury. This study demonstrated the mechanism of injury and concentration effects of intestinal damage caused by BPP exposure, providing reference data for BPP use and control and yielding new insights for human disease prevention.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Diao Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Xia Liu
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lining Zhao
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lei Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Dan Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Sijun Dong
- College of Life Science, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
26
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
27
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
28
|
Yang Y, Yang X, Zhou H, Niu Y, Li J, Fu X, Wang S, Xue B, Li C, Zhao C, Zhang X, Shen Z, Wang J, Qiu Z. Bisphenols Promote the Pheromone-Responsive Plasmid-Mediated Conjugative Transfer of Antibiotic Resistance Genes in Enterococcus faecalis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17653-17662. [PMID: 36445841 DOI: 10.1021/acs.est.2c05349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The enrichment and spread of antibiotic resistance genes (ARGs) induced by environmental chemical pollution further exacerbated the threat to human health and ecological safety. Several compounds are known to induce R plasmid-mediated conjugation through inducing reactive oxygen species (ROS), increasing cell membrane permeability, enhancing regulatory genes expression, and so forth. Up to now, there has been no substantial breakthrough in the studies of models and related mechanisms. Here, we established a new conjugation model using pheromone-responsive plasmid pCF10 and confirmed that five kinds of bisphenols (BPs) at environmentally relevant concentrations could significantly promote the conjugation of ARGs mediated by plasmid pCF10 in E. faecalis by up to 4.5-fold compared with untreated cells. Using qPCR, gene knockout and UHPLC, we explored the mechanisms behind this phenomenon using bisphenol A (BPA) as a model of BPs and demonstrated that BPA could upregulate the expression of pheromone, promote bacterial aggregation, and even directly activate conjugation as a pheromone instead of producing ROS and enhancing cell membrane permeability. Interestingly, the result of mathematical analysis showed that the pheromone effect of most BPs is more potent than that of synthetic pheromone cCF10. These findings provide new insight into the environmental behavior and biological effect of BPs and provided new method and theory to study on enrichment and spread of ARGs induced by environmental chemical pollution.
Collapse
Affiliation(s)
- Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Shanghai Ocean University, Shanghai201306, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Shanghai Ocean University, Shanghai201306, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| |
Collapse
|
29
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
30
|
Stagaman K, Kasschau KD, Tanguay RL, Sharpton TJ. Experimental methods modestly impact interpretation of the effect of environmental exposures on the larval zebrafish gut microbiome. Sci Rep 2022; 12:14538. [PMID: 36008504 PMCID: PMC9411601 DOI: 10.1038/s41598-022-18532-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rapidly growing fields, such as microbiome science, often lack standardization of procedures across research groups. This is especially the case for microbiome investigations in the zebrafish (Danio rerio) model system, which is quickly becoming a workhorse system for understanding the exposure-microbiome-physiology axis. To guide future investigations using this model system, we defined how various experimental decisions affect the outcomes of studies on the effects of exogenous exposure on the zebrafish gut microbiome. Using a model toxicant, benzo[a]pyrene (BaP), we assessed how each of two dissection methods (gut dissection vs. whole fish), three DNA extraction kits (Qiagen Blood & Tissue, Macherey-Nagel NucleoSpin, and Qiagen PowerSoil), and inclusion of PCR replicates (single vs. pooled triplicate reactions) affected our interpretation of how exposure influences the diversity and composition of the gut microbiome, as well as our ability to identify microbiome biomarkers of exposure. We found that inclusion of PCR replicates had the smallest effect on our final interpretations, and the effects of dissection method and DNA extraction kit had significant effects in specific contexts, primarily in the cases of identifying microbial biomarkers.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | | | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental Toxicology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology & Department of Statistics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
31
|
Adaptation and Resistance: How Bacteroides thetaiotaomicron Copes with the Bisphenol A Substitute Bisphenol F. Microorganisms 2022; 10:microorganisms10081610. [PMID: 36014027 PMCID: PMC9414779 DOI: 10.3390/microorganisms10081610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenols are used in the process of polymerization of polycarbonate plastics and epoxy resins. Bisphenols can easily migrate out of plastic products and enter the gastrointestinal system. By increasing colonic inflammation in mice, disrupting the intestinal bacterial community structure and altering the microbial membrane transport system in zebrafish, bisphenols seem to interfere with the gut microbiome. The highly abundant human commensal bacterium Bacteroides thetaiotaomicron was exposed to bisphenols (Bisphenol A (BPA), Bisphenol F (BPF), Bisphenol S (BPS)), to examine the mode of action, in particular of BPF. All chemicals caused a concentration-dependent growth inhibition and the half-maximal effective concentration (EC50) corresponded to their individual logP values, a measure of their hydrophobicity. B. thetaiotaomicron exposed to BPF decreased membrane fluidity with increasing BPF concentrations. Physiological changes including an increase of acetate concentrations were observed. On the proteome level, a higher abundance of several ATP synthase subunits and multidrug efflux pumps suggested an increased energy demand for adaptive mechanisms after BPF exposure. Defense mechanisms were also implicated by a pathway analysis that identified a higher abundance of members of resistance pathways/strategies to cope with xenobiotics (i.e., antibiotics). Here, we present further insights into the mode of action of bisphenols in a human commensal gut bacterium regarding growth inhibition, and the physiological and functional state of the cell. These results, combined with microbiota-directed effects, could lead to a better understanding of host health disturbances and disease development based on xenobiotic uptake.
Collapse
|
32
|
Dong H, Wu H, Bai C, Ye K, Mao L, Lei Y, Liu Y, Xu H, Lin J, Zhu J, Dong Q. Transient MPTP exposure at a sensitive developmental window altered gut microbiome and led to male-biased motor and social behavioral deficits in adult zebrafish. Neurotoxicology 2022; 91:360-368. [PMID: 35772574 DOI: 10.1016/j.neuro.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/25/2022] [Accepted: 06/25/2022] [Indexed: 12/24/2022]
Abstract
Zebrafish is an economical alternative model for developmental neurotoxicity (DNT) testing. DNT studies in zebrafish have been focused on acute effects; few studies explore enduring neurotoxicity in adults. More recently, gut microbiome has emerged as an important modulator between chemical exposure and neurotoxicity, rendering its necessity to be included in DNT testing. The present study used a well-known dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model chemical to explore long-lasting neurotoxicity in adults after transient exposure during early development. We demonstrated that transient MPTP exposure at 1μM during a sensitive developmental window of 48-96hours post-fertilization (hpf) altered gut microbiome and led to male-biased locomotion and behavioral deficits in adult fish. The locomotion deficit was manifested as hypoactivity observed in adult males under light conditions or specifically the reduction of fast swim bouts. The social behavioral deficits were characterized by the reduced number of times fish crossed the mirror zone in the mirror response assay and the reduced percent time fish spent at the area proximal to conspecific fish shoal in the social preference test. Gut microbiome analysis revealed that transient MPTP exposure during early development might render fish more susceptible to the colonization of the pathogenic Vibrio. In conclusion, our study revealed that transient MPTP exposure during early development could lead to long-lasting neurotoxicity in adult fish and cause altered gut microbiome composition in both larval and adult fish.
Collapse
Affiliation(s)
- Haojiao Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Han Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiwei Ye
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Luying Mao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhang Lei
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jianhong Zhu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoxiang Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
33
|
Dos Santos B, Ivantsova E, Guzman AP, Martyniuk CJ. Critical review of the toxicity mechanisms of bisphenol F in zebrafish (Danio rerio): Knowledge gaps and future directions. CHEMOSPHERE 2022; 297:134132. [PMID: 35240145 DOI: 10.1016/j.chemosphere.2022.134132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Replacement chemicals for bisphenol A, such as bisphenol F (BPF), are detected in aquatic environments worldwide and can potentially exert negative effects on aquatic organisms. We synthesized peer-reviewed literature reporting molecular and physiological responses in zebrafish following exposure to BPF, as BPF is closely related to BPA structure and is a dominant replacement chemical in the marketplace. Global concentrations of BPF in aquatic environments were compiled and compared to physiological and behavioral impacts reported in zebrafish (e.g., developmental abnormalities, oxidative stress, immunotoxicity, endocrine disruption, and neurotoxicity). Using computational approaches, we elucidate BPF-mediated molecular networks and reveal novel biomarkers associated with BPF exposure. Functional classes of proteins including inflammatory cytokines, ATPases, peroxidases, and aromatic l-amino decarboxylases represent novel, underexplored targets of toxicity. Most revealing of this critical review is that few studies report biological responses to BPF at levels present in aquatic environments. Recommendations for future investigations based on knowledge gaps include: (1) Mechanistic studies in the central nervous system of zebrafish to address neurotoxicity; (2) Behavioral assays in zebrafish that assess the effects of BPF on anxiolytic, social, and fear-related behaviors; (3) Studies that broaden understanding of potential endocrine disrupting effects of BPF, for example insulin signaling is predicted to be sensitive to BPF exposure; (4) Studies into metabolic disruption with a focus on glutathione and aromatic amino acids, based upon pathway analysis data; (5) Studies utilizing mixture exposures with other BPA analogs to reflect environmental conditions more accurately.
Collapse
Affiliation(s)
- Bruna Dos Santos
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Andrea P Guzman
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
34
|
Zhong X, Li J, Lu F, Zhang J, Guo L. Application of zebrafish in the study of the gut microbiome. Animal Model Exp Med 2022; 5:323-336. [PMID: 35415967 PMCID: PMC9434591 DOI: 10.1002/ame2.12227] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reliable model for gut microbiome research. Owing to their low cost, strong genetic and development coherence, efficient preparation of germ-free (GF) larvae, availability in high-throughput chemical screening, and fitness for intravital imaging in vivo, zebrafish have been extensively used to investigate microbiome-host interactions and evaluate the toxicity of environmental pollutants. In this review, the advantages and disadvantages of zebrafish for studying the role of the gut microbiome compared with warm-blooded animal models are first summarized. Then, the roles of zebrafish gut microbiome on host development, metabolic pathways, gut-brain axis, and immune disorders and responses are addressed. Furthermore, their applications for the toxicological assessment of aquatic environmental pollutants and exploration of the molecular mechanism of pathogen infections are reviewed. We highlight the great potential of the zebrafish model for developing probiotics for xenobiotic detoxification, resistance against bacterial infection, and disease prevention and cure. Overall, the zebrafish model promises a brighter future for gut microbiome research.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Furong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| |
Collapse
|
35
|
Sabry R, Nguyen M, Younes S, Favetta LA. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Mol Cell Endocrinol 2022; 545:111574. [PMID: 35065199 DOI: 10.1016/j.mce.2022.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol A is a widespread endocrine disruptor with numerous effects on reproductive functions. Limitations on BPA in manufacturing has prompted the use of analogs, such as BPS and BPF, with limited research on their safety. The objective of this study was to evaluate the effects of BPA and its analogs on oxidative stress levels within bovine granulosa cells and to measure the expression of key antioxidant genes. Results indicate that BPA and BPF reduce cell viability and induce mitochondrial dysfunction and all three bisphenols increased production of reactive oxygen species as early as 12hrs post exposure. BPA increased the levels of antioxidants at 12hrs at the mRNA and protein levels, while these results were not significant at 48hrs. These results together suggest that BPA and its analogs can induce oxidative stress within bovine granulosa cells, although not necessarily through common mechanisms. Therefore, the use of BPA analogs may have to be re-considered.
Collapse
Affiliation(s)
- R Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Nguyen
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - S Younes
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
36
|
Charitos IA, Topi S, Gagliano-Candela R, De Nitto E, Polimeno L, Montagnani M, Santacroce L. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA). A review. Endocr Metab Immune Disord Drug Targets 2022; 22:716-727. [PMID: 35339192 DOI: 10.2174/1871530322666220325114045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. AIM OF THE STUDY finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. RESULTS evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. CONCLUSIONS Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- National Poison Center, OO. RR. University Hospital of Foggia, Foggia, Italy
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Skender Topi
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Roberto Gagliano-Candela
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
| | - Emanuele De Nitto
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, Section of Biochemistry, School of Medicine, University of Bari, Bari, Italy
| | - Lorenzo Polimeno
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari, Bari, Italy
| | - Luigi Santacroce
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| |
Collapse
|
37
|
Krause JL, Engelmann B, Nunes da Rocha U, Pierzchalski A, Chang HD, Zenclussen AC, von Bergen M, Rolle-Kampczyk U, Herberth G. MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. ENVIRONMENT INTERNATIONAL 2022; 158:106985. [PMID: 34991247 DOI: 10.1016/j.envint.2021.106985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Oral uptake is the primary route of human bisphenol exposure, resulting in an exposure of the intestinal microbiota and intestine-associated immune cells. Therefore, we compared the impact of bisphenol A (BPA), bisphenol F (BPF) and bisphenol S (BPS) on (i) intestinal microbiota, (ii) microbiota-mediated immunomodulatory effects and (iii) direct effects on mucosal-associated invariant T (MAIT) cells in vitro. We acutely exposed human fecal microbiota, Bacteroides thetaiotaomicron and Escherichia coli to BPA and its analogues BPF and BPS referring to the European tolerable daily intake (TDI), i.e. 2.3 µg/mL, 28.3 µg/mL and 354.0 µg/mL. Growth and viability of E. coli was most susceptible to BPF, whereas B.thetaiotaomicron and fecal microbiota were affected by BPA > BPF > BPS. At 354.0 µg/mL bisphenols altered microbial diversity in compound-specific manner and modulated microbial metabolism, with BPA already acting on metabolism at 28.3 µg/mL. Microbiota-mediated effects on MAIT cells were observed for the individual bacteria at 354.0 µg/mL only. However, BPA and BPF directly modulated MAIT cell responses at low concentrations, whereby bisphenols at concentrations equivalent for the current TDI had no modulatory effects for microbiota or for MAIT cells. Our findings indicate that acute bisphenol exposure may alter microbial metabolism and impact directly on immune cells.
Collapse
Affiliation(s)
- J L Krause
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany
| | - B Engelmann
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - U Nunes da Rocha
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - A Pierzchalski
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - H D Chang
- present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany; Chair of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - A C Zenclussen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - M von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany
| | - U Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - G Herberth
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany.
| |
Collapse
|
38
|
Castro I, Arroyo R, Aparicio M, Martínez MÁ, Rovira J, Ares S, Cunha SC, Casal S, Oliveira Fernandes J, Schuhmacher M, Nadal M, Rodríguez JM, Fernández L. Dietary Habits and Relationship with the Presence of Main and Trace Elements, Bisphenol A, Tetrabromobisphenol A, and the Lipid, Microbiological and Immunological Profiles of Breast Milk. Nutrients 2021; 13:nu13124346. [PMID: 34959899 PMCID: PMC8708081 DOI: 10.3390/nu13124346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother’s habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.
Collapse
Affiliation(s)
- Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Marina Aparicio
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - María Ángeles Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Susana Ares
- Department of Neonatology, Universitary Hospital La Paz, P° de la Castellana, 261, 28046 Madrid, Spain;
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Jose Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943745
| |
Collapse
|
39
|
Wang Y, Wang B, Wang Q, Liu Y, Liu X, Wu B, Lu G. Intestinal toxicity and microbial community disorder induced by bisphenol F and bisphenol S in zebrafish. CHEMOSPHERE 2021; 280:130711. [PMID: 34162083 DOI: 10.1016/j.chemosphere.2021.130711] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/27/2021] [Indexed: 05/27/2023]
Abstract
The intestine is the important bioaccumulation and target organ of Bisphenol F (BPF) and Bisphenol S (BPS). Morphological and functional abnormalities induced by BPS and BPF exposure in zebrafish intestine have been reported. However, the underlying mechanisms are not well understood, and the combined toxicities of BPS and BPF in the intestine have not been studied. Here, the zebrafish were treated by single and combined exposure of BPF and BPS at 1, 10, 100, 1000 μg/L. Oxidative damage, inflammation, and transcriptome profiles in the zebrafish intestine were determined. Changes in microbial community structure in zebrafish intestine were analyzed. Results showed that BPF, BPS, and BPF + BPS exposures significantly increased MDA, 8-OHdG, 1L-1β, and TNF-α levels in the zebrafish intestine, indicating oxidative damage and inflammatory effects. Co-exposure of BPS and BPF did not cause synergistic effects on the above effects but induced more changes in gene expression profiles. The changes in the PPAR signaling pathway might be associated with oxidative damage and inflammation. The amino acid metabolism and steroid biosynthesis were specifically altered by co-exposure of BPF and BPS. Moreover, BPF and/or BPS exposures altered microbial community structure in the zebrafish intestine, which showed different influence patterns. Increased abundance of potentially pathogenic bacteria (such as Flavobacterium, Pseudomonas, and Stenotrophomonas) might indicate one of the potential health hazards in zebrafish intestine. The above results provide basic information for the health risk assessment of BPS and BPF in aquatic organisms.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Beibei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Qianqian Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Wuxi Water Group Co. LTD, Wuxi, 214000, PR China
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
40
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
41
|
Chiu K, Warner G, Nowak RA, Flaws JA, Mei W. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicol Sci 2021; 176:253-284. [PMID: 32392306 DOI: 10.1093/toxsci/kfaa065] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the surge of microbiome research in the last decade, many studies have provided insight into the causes and consequences of changes in the gut microbiota. Among the multiple factors involved in regulating the microbiome, exogenous factors such as diet and environmental chemicals have been shown to alter the gut microbiome significantly. Although diet substantially contributes to changes in the gut microbiome, environmental chemicals are major contaminants in our food and are often overlooked. Herein, we summarize the current knowledge on major classes of environmental chemicals (bisphenols, phthalates, persistent organic pollutants, heavy metals, and pesticides) and their impact on the gut microbiome, which includes alterations in microbial composition, gene expression, function, and health effects in the host. We then discuss health-related implications of gut microbial changes, which include changes in metabolism, immunity, and neurological function.
Collapse
Affiliation(s)
- Karen Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802.,Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences
| | - Genoa Warner
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Romana A Nowak
- Carl R. Woese Institute for Genomic Biology.,Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802.,Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences.,Carl R. Woese Institute for Genomic Biology
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802.,Carl R. Woese Institute for Genomic Biology
| |
Collapse
|
42
|
Reidelbach C, Garcia-Käufer M, Wingert N, Arif A, Vach K, Hellwig E, Gminski R, Polydorou O. Cytotoxicity and estrogenicity in simulated dental wastewater after grinding of resin-based materials. Dent Mater 2021; 37:1486-1497. [PMID: 34376295 DOI: 10.1016/j.dental.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study evaluated the cytotoxic and estrogenic effects of dust and eluates released into simulated wastewater after grinding of dental resin-based materials. METHODS Four materials were used: ceram.x® universal, Filtek™ Supreme XTE, Lava™ Ultimate and Core-X™ flow. From each composite material, samples (5 × 2 mm, n = 50) were prepared according to the manufacturers' instructions. Lava™ Ultimate was used as blocks. All samples were ground to dust with a diamond bur (106 μm) and suspended in distilled water at 60 mg/mL. After storage for 72 h, the suspensions were separated into a soluble (eluate) and a particulate (dust) fraction. Eluates and dusts were evaluated for inhibition of Vibrio fischeri bioluminescence and cytotoxicity on human A549 lung cells (WST-1-Assay). The estrogenic activity was assessed by YES-Assay using Saccharomyces cerevisiae. Additionally, dental monomers (BisGMA, BisEMA, UDMA, TEGDMA, HEMA) and Bisphenol A were investigated. RESULTS All eluates showed inhibition of V. fischeri bioluminescence at concentrations above 1.1 mg/mL (p < 0.05). The activity of the eluates of ceram.x® universal and Filtek™ Supreme XTE was significantly higher than Lava™ Ultimate and Core-X™ flow (p < 0.05). In the WST-1-Assay, all materials induced cytotoxic effects at concentrations of 0.1 mg/mL (p < 0.05), while no significant differences were detected among them. The tested materials revealed no estrogenic activity. All dental monomers and Bisphenol A showed concentration dependent cytotoxic effects (p < 0.05), whereas only Bisphenol A induced an estrogenic effect (p < 0.01). SIGNIFICANCE Dust and eluates of resin-based dental materials released into wastewater exert bactericidal and cytotoxic effects in vitro. However, they reveal no estrogenic effect.
Collapse
Affiliation(s)
- C Reidelbach
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - M Garcia-Käufer
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - N Wingert
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - A Arif
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - K Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Stefan-Meier-Straße 26, 79104 Freiburg, Germany
| | - E Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - R Gminski
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - O Polydorou
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
43
|
Kaimal A, Al Mansi MH, Dagher JB, Pope C, Varghese MG, Rudi TB, Almond AE, Cagle LA, Beyene HK, Bradford WT, Whisnant BB, Bougouma BDK, Rifai KJ, Chuang YJ, Campbell EJ, Mandal A, MohanKumar PS, MohanKumar SMJ. Prenatal exposure to bisphenols affects pregnancy outcomes and offspring development in rats. CHEMOSPHERE 2021; 276:130118. [PMID: 33714148 DOI: 10.1016/j.chemosphere.2021.130118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the effects of gestational exposure to low doses of bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) on pregnancy outcomes and offspring development. Pregnant Sprague-Dawley rats were orally dosed with vehicle, 5 μg/kg body weight (BW)/day of BPA, BPS and BPF, or 1 μg/kg BW/day of BPF on gestational days 6-21. Pregnancy and gestational outcomes, including number of abortions and stillbirths, were monitored. Male and female offspring were subjected to morphometry at birth, followed by pre- and post-weaning body weights, post-weaning food and water intakes, and adult organ weights. Ovarian follicular counts were also obtained from adult female offspring. We observed spontaneous abortions in over 80% of dams exposed to 5 μg/kg of BPF. BPA exposure increased Graafian follicles in female offspring, while BPS and BPF exposure decreased the number of corpora lutea, suggesting reduced ovulation rates. Moreover, BPA exposure increased male kidney and prostate gland weights, BPF decreased epididymal adipose tissue weights, and BPS had modest effects on male abdominal adipose tissue weights. Prenatal BPS exposure reduced anogenital distance (AGD) in male offspring, suggesting possible feminization, whereas both BPS and BPA induced oxidative stress in the testes. These results indicate that prenatal exposure to BPF affects pregnancy outcomes, BPS alters male AGD, and all three bisphenols alter certain organ weights in male offspring and ovarian function in female offspring. Altogether, it appears that prenatal exposure to BPA or its analogues can induce reproductive toxicity even at low doses.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA
| | - Maryam H Al Mansi
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Josephine Bou Dagher
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA
| | - Catherine Pope
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Marissa G Varghese
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Thomas B Rudi
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Ansley E Almond
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Loren A Cagle
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Hermela K Beyene
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - William T Bradford
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Benjamin B Whisnant
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Baobsom D K Bougouma
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Karim J Rifai
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Yen-Jun Chuang
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Elyssa J Campbell
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Abhyuday Mandal
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Puliyur S MohanKumar
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Sheba M J MohanKumar
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA.
| |
Collapse
|
44
|
McDonough CM, Xu J, Guo TL. Behavioral changes and hyperglycemia in NODEF mice following bisphenol S exposure are affected by diets. Neurotoxicology 2021; 85:209-221. [PMID: 34097938 DOI: 10.1016/j.neuro.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol S (BPS), an analogue of the controversial bisphenol A (BPA) that is found in epoxy resins and plastics, is a potential endocrine-disrupting chemical that can mimic endogenous hormone signaling. However, little is known about the behavioral or immunologic effects of BPS. The purpose of this study was to examine the impact of diets in BPS-treated mice in relation to hyperglycemia, development of type 1 diabetes, immunomodulation, and behavioral changes. Adult male and female nonobese diabetic excluded flora (NODEF) mice were exposed to environmentally relevant doses of BPS (VH, 30, or 300 μg/kg BW) and fed either a soy-based diet, a phytoestrogen-free diet, or a Western diet. NODEF male mice fed a soy-based diet exhibited a decreased curiosity/desire to explore, and possibly increased anxiety-like behavior and decreased short-term memory when exposed to BPS (300 μg/kg BW). In addition, these mice had significant increases in non-fasting blood glucose levels along with increased insulin sensitivity, impaired glucose tolerance, resistance to fasting and proinflammation. Although BPS had little effect on the glucose parameters in NODEF male mice fed a Western diet, there were decreases in %CD24+CD5+ and %B220+CD40L-cell populations and increases in distance traveled during the novel object test, suggesting hyperactivity. NODEF females fed a phytoestrogen-free diet exhibited slight decreases in time spent immobile during the tail suspension test in both the 30 and 300 μg/kg BW dose groups along with increases in %CD4+CD8+ and %Mac3+CD45R+ cell populations, signifying increased hyperactivity and anxiety-like behavior. In conclusion, BPS-exposed NODEF mice exhibited sex and diet-related changes in hyperglycemia, behaviors and immune endpoints.
Collapse
Affiliation(s)
- Callie M McDonough
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joella Xu
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
45
|
McDonough CM, Xu HS, Guo TL. Toxicity of bisphenol analogues on the reproductive, nervous, and immune systems, and their relationships to gut microbiome and metabolism: insights from a multi-species comparison. Crit Rev Toxicol 2021; 51:283-300. [PMID: 33949917 DOI: 10.1080/10408444.2021.1908224] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenols are common chemicals found in plastics and epoxy resins. Over the past decades, many studies have shown that bisphenol A (BPA) is a potential endocrine-disrupting chemical that may cause multisystem toxicity. However, the relative safety of BPA analogues is a controversial subject. Herein, we conducted a review of the reproductive toxicity, neurotoxicity, immunotoxicity, metabolic toxicity and gut microbiome toxicity of the BPA analogues in various species, including Caenorhabditis elegans, zebrafish, turtles, sheep, rodents, and humans. In addition, the mechanisms of action were discussed with focus on bisphenol S and bisphenol F. It was found that these BPA analogues exert their toxic effects on different organs and systems through various mechanisms including epigenetic modifications and effects on cell signaling pathways, microbiome, and metabolome in different species. More research is needed to study the relative toxicity of the lesser-known BPA analogues compared to BPA, both systemically and organ specifically, and to better define the underlying mechanisms of action, in particular, the potentials of disrupting microbiome and metabolism.
Collapse
Affiliation(s)
- Callie M McDonough
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Hannah Shibo Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
46
|
Adamovsky O, Bisesi JH, Martyniuk CJ. Plastics in our water: Fish microbiomes at risk? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100834. [PMID: 33930774 DOI: 10.1016/j.cbd.2021.100834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Water contaminated with plastic debris and leached plasticizers can be ingested or taken up by aquatic invertebrates and vertebrates alike, exerting adverse effects on multiple tissues including the gastrointestinal tract. As such, gut microbiomes of aquatic animals are susceptible targets for toxicity. Recent studies conducted in teleost fishes report that microplastics and plasticizers (e.g., phthalates, bisphenol A) induce gastrointestinal dysbiosis and alter microbial diversity in the gastrointestinal system. Here we synthesize the current state of the science regarding plastics, plasticizers, and their effects on microbiomes of fish. Literature suggests that microplastics and plasticizers increase the abundance of opportunistic pathogenic microorganisms (e.g. Actinobacillus, Mycoplasma and Stenotrophomonas) in fish and reveal that gamma-proteobacteria are sensitive to microplastics. Recommendations moving forward for the research field include (1) environmentally relevant exposures to improve understanding of the long-term impacts of microplastic and plasticizer contamination on the fish gastrointestinal microbiome; (2) investigation into the potential impacts of understudied polymers such as polypropylene, polyamide and polyester, and (3) studies with elastomers such as rubbers that are components of tire materials, as these chemicals often dominate plastic debris. Focus on both microplastics and the gut microbiota is intensifying in environmental toxicology, and herein lies an opportunity to improve evaluation of global ecological impacts associated with plastic contamination. This is important as the microbiota is intimately tied to an individual's health and fragmentation of microbial community networks and gut dysbiosis can result in disease susceptibility and early mortality events.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Yu L, Cheng J, Yang H, Lv J, Wang P, Li JR, Su X. Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework. Mikrochim Acta 2021; 188:83. [PMID: 33585953 DOI: 10.1007/s00604-021-04742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
A chemically stable Zr(IV)-based metal-organic framework (BUT-17) has been explored for simultaneous adsorption and determination of bisphenol compounds (BPs) in aqueous medium. The prepared BUT-17 possesses a large surface area (2936 m2 g-1) and excellent fluorescent performance. An adsorption capacity of 111 mg g-1 for bisphenol A (BPA) with a rapid adsorption rate (1.76 g mg-1 min-1) is achieved by BUT-17. The excellent adsorption performance could be attributed to the hydrogen bond interaction between BPs and BUT-17. Furthermore, the fluorescent intensity of BUT-17 was quenched up to 92% due to the formation of complexes between BPs and BUT-17. Thus, a BUT-17-based fluorescent sensing method for the rapid determination of BPs has been established with the limit of detection of 10.0 ng mL-1 for BPA and a linear range from 2.0 to 23.0 μg mL-1. These results indicate that as an outstanding multifunctional platform, BUT-17 is promising for the simultaneous removal and determination of BPs in water medium. Simultaneous removal and detection of BPs with BUT-17.
Collapse
Affiliation(s)
- Liming Yu
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Haosen Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
48
|
Weitekamp CA, Kvasnicka A, Keely SP, Brinkman NE, Howey XM, Gaballah S, Phelps D, Catron T, Zurlinden T, Wheaton E, Tal T. Monoassociation with bacterial isolates reveals the role of colonization, community complexity and abundance on locomotor behavior in larval zebrafish. Anim Microbiome 2021; 3:12. [PMID: 33499997 PMCID: PMC7818562 DOI: 10.1186/s42523-020-00069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. Results As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. Conclusions These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00069-x.
Collapse
Affiliation(s)
| | - Allison Kvasnicka
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Scott P Keely
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Nichole E Brinkman
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Xia Meng Howey
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Shaza Gaballah
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Drake Phelps
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Tara Catron
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Todd Zurlinden
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Emily Wheaton
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Tamara Tal
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA. .,Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. .,Present Address: Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
49
|
Phylogenetic Integration Reveals the Zebrafish Core Microbiome and Its Sensitivity to Environmental Exposures. TOXICS 2021; 9:toxics9010010. [PMID: 33467528 PMCID: PMC7829988 DOI: 10.3390/toxics9010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Zebrafish are increasingly used to study how environmental exposures impact vertebrate gut microbes. However, we understand little about which microbial taxa are common to the zebrafish gut across studies and facilities. Here, we define the zebrafish core gut microbiome to resolve microbiota that are both relatively robust to study or facility effects and likely to drive proper microbiome assembly and functioning due to their conservation. To do so, we integrated publicly available gut microbiome 16S gene sequence data from eight studies into a phylogeny and identified monophyletic clades of gut bacteria that are unexpectedly prevalent across individuals. Doing so revealed 585 core clades of bacteria in the zebrafish gut, including clades within Aeromonas, Pseudomonas, Cetobacterium, Shewanella, Chitinibacter, Fluviicola, Flectobacillus, and Paucibacter. We then applied linear regression to discern which of these core clades are sensitive to an array of different environmental exposures. We found that 200 core clades were insensitive to any exposure we assessed, while 134 core clades were sensitive to more than two exposures. Overall, our analysis defines the zebrafish core gut microbiome and its sensitivity to exposure, which helps future studies to assess the robustness of their results and prioritize taxa for empirical assessments of how gut microbiota mediate the effects of exposure on the zebrafish host.
Collapse
|
50
|
Mohajer N, Du CY, Checkcinco C, Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front Endocrinol (Lausanne) 2021; 12:780888. [PMID: 34899613 PMCID: PMC8655100 DOI: 10.3389/fendo.2021.780888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Adult and childhood obesity have reached pandemic level proportions. The idea that caloric excess and insufficient levels of physical activity leads to obesity is a commonly accepted answer for unwanted weight gain. This paradigm offers an inconclusive explanation as the world continually moves towards an unhealthier and heavier existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are chemicals that resemble natural hormones and disrupt endocrine function by interfering with the body's endogenous hormones. A subset of EDCs called obesogens have been found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens act on the metabolic system through multiple avenues and have been found to affect the homeostasis of a variety of systems such as the gut microbiome and adipose tissue functioning. Obesogenic compounds have been shown to cause metabolic disturbances later in life that can even pass into multiple future generations, post exposure. The rising rates of obesity and related metabolic disease are demanding increasing attention on chemical screening efforts and worldwide preventative strategies to keep the public and future generations safe. This review addresses the most current findings on known obesogens and their effects on the metabolic system, the mechanisms of action through which they act upon, and the screening efforts through which they were identified with. The interplay between obesogens, brown adipose tissue, and the gut microbiome are major topics that will be covered.
Collapse
Affiliation(s)
- Nicole Mohajer
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Chrislyn Y. Du
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Christian Checkcinco
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Bruce Blumberg
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Deparment of Biomedical Engineering, University of California, Irvine, CA, United States
- *Correspondence: Bruce Blumberg,
| |
Collapse
|