1
|
Fang T, Jin G, Liu Z. Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:1771. [PMID: 38999611 PMCID: PMC11243977 DOI: 10.3390/plants13131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Plant water use efficiency (WUE) is a comprehensive physiological indicator of plant growth and ability to adapt to drought. However, research on the mechanisms controlling WUE during plant growth and development remains weak. Here, we studied Pinus koraiensis as a typical evergreen conifer species in Northeast China. After collecting 80 tree samples with varying diameters at breast height (DBH), we measured δ13C and δ18O as an indicator of WUE, leaf morphology (volume, dry weight, and total epidermal area), ecological stoichiometry (carbon, nitrogen, and phosphorus content), and abiotic factors (light environment, soil pH, soil water content, and soil nutrient content). Correlational analysis of these variables revealed distinct differences between smaller/younger and larger/older plants: (1) In plants with DBH less than 52 cm, δ13C was positively related to DBH, and δ18O was negatively related to DBH. Plants with DBH greater than 52 cm showed no relationship between δ13C and DBH, and δ18O was positively related to DBH. (2) In plants with DBH less than 52 cm, there was a negative correlation between δ13C and δ18O and between δ13C and leaf phosphorus content (LP), but a positive correlation between δ13C and DBH, leaf mass per area (LMA), and leaf density (LD). The slopes of DBH-δ13C, δ18O-δ13C, leaf nitrogen content (LN)-δ13C, and LMA-δ13C correlations were greater in smaller plants than large plants. (3) Structural equation modelling showed that in smaller plants, DBH had a direct positive effect on δ13C content and a direct negative effect on δ18O, and there was a direct positive effect of light environment on δ18O. In larger plants, there was a direct negative effect of light environment on δ13C and a direct positive effect of DBH on light environment, as well as a negative effect of soil nitrogen content on leaf nitrogen. In smaller plants, DBH was the most important factor influencing δ13C, followed by δ18O and soil moisture, with light and soil pH showing minimal influence. In larger plants, light environment influenced δ13C the most, followed by soil nitrogen content and soil moisture content, with leaf nitrogen and DBH contributing little. The results suggest that water use efficiency strategies of P. koraiensis vary according to growth stage, and the effects of abiotic factors and functional traits vary at different growth stages.
Collapse
Affiliation(s)
- Tiantian Fang
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhili Liu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Luo Y, Gessler A, D'Odorico P, Hufkens K, Stocker BD. Quantifying effects of cold acclimation and delayed springtime photosynthesis resumption in northern ecosystems. THE NEW PHYTOLOGIST 2023; 240:984-1002. [PMID: 37583086 DOI: 10.1111/nph.19208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate.
Collapse
Affiliation(s)
- Yunpeng Luo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Koen Hufkens
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
| | - Benjamin D Stocker
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Chondrogiannis C, Kotsi K, Grammatikopoulos G, Petropoulou Y. Seasonal Differences in Leaf Photoprotective Potential between Adults and Juveniles of Two Mediterranean Perennials with Distinct Growth Forms: A Comparative Field Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:3110. [PMID: 37687356 PMCID: PMC10489676 DOI: 10.3390/plants12173110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The photosynthetic differences between adult and juvenile Mediterranean plants were previously studied under field conditions, yet the corresponding differentiation of their photoprotective efficiency has not been sufficiently investigated. The present study aims to examine possible differences in the photoprotective potential between adults and juveniles of two native Mediterranean plants with distinct growth forms. Thus, the seasonal variations in individual carotenoids, electron transport rate (ETR), and non-photochemical quenching (NPQ) were monitored in fully exposed mature leaves from adults and juveniles of the winter deciduous tree Cercis siliquastrum L. and the evergreen sclerophyllous shrub Nerium oleander L. All plants were grown under apparently similar field conditions. In both species, juveniles displayed substantially lower ETR and increased NPQ values than adults in spring, with the differences intensifying during summer drought and diminishing in autumn. Concomitantly, juveniles showed significantly higher chlorophyll-based total carotenoids in spring and summer mainly due to the higher investment in xanthophyll cycle components (VAZ), in combination with an increased mid-day de-epoxidation state (DEPS) and partial retention of zeaxanthin in the dark. In N. oleander, although ETR was lower in juveniles during winter, NPQ was extremely low in both ages. In conclusion, juveniles exhibit enhanced photoprotection potential, especially in the summer, due to their reduced photochemical capacity. The photosynthetic superiority of adults during the favorable spring period may be attributed to the needs of the co-existing reproductive effort.
Collapse
Affiliation(s)
| | | | | | - Yiola Petropoulou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece; (C.C.); (G.G.)
| |
Collapse
|
4
|
Functional Traits of Quercus aliena var. acuteserrata in Qinling Huangguan Forest Dynamics Plot: The Relative Importance of Plant Size and Habitat. FORESTS 2022. [DOI: 10.3390/f13060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Variation in intraspecific functional traits is one of the important components of community variation, and has drawn the attention of researchers. Studying the variation of traits under different plant sizes and habitats helps to reveal the adaptation mechanism of plants. We explored intraspecific trait variations by focusing on the widespread species Quercus aliena var. acuteserrata in a 25 ha warm, temperate, deciduous broadleaved forest plot in the Qinling Mountains. We measured nine morphological and chemical traits for 90 individuals from different plant sizes and habitats. In addition, we evaluated the relative impact of plant size and environment on Q. aliena var. acuteserrata with multiple regression models. We found that plant size explained the most variance of traits. As plant size increased, the trees tended to have lower leaf nitrogen concentrations, lower leaf phosphorus concentrations, higher leaf carbon concentrations, higher leaf dry matter content (LDMC), and thinner leaves, indicating the transformation from rapid resource acquisition strategy to conservative resource-use strategy. Habitats could only explain the changes in chemical traits. Leaf carbon concentration was principally affected by topographical factors and was significant different among habitats. Leaf nitrogen concentration and LPC were significantly limited by soil N and P. In conclusion, shifts in size-dependent traits met the growth requirements of Q. aliena var. acutiserrata; the high tolerance traits associated with this tree species might elucidate important mechanisms for coping with changing environments.
Collapse
|
5
|
Bin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yue Bin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences Guangzhou 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| | - Yanpeng Li
- Forest Ecology Research Center Research Institute of Tropical Forestry Chinese Academy of Forestry Guangzhou 510520 USA
| | - Sabrina E. Russo
- School of Biological Sciences University of Nebraska Lincoln NE USA 68588‐0118
- Center for Plant Science Innovation University of Nebraska Lincoln NE USA 68588‐0660
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences Guangzhou 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| | - Yunlong Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences Guangzhou 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences Guangzhou 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| | - Juyu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences Guangzhou 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| |
Collapse
|
6
|
Zheng J, Jiang Y, Qian H, Mao Y, Zhang C, Tang X, Jin Y, Yi Y. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecol Evol 2022; 12:e8516. [PMID: 35136561 PMCID: PMC8809444 DOI: 10.1002/ece3.8516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Understanding the joint effects of plant development and environment on shifts of intraspecific leaf traits will advance the understandings of the causes of intraspecific trait variation. We address this question by focusing on a widespread species Clausena dunniana in a subtropical broad-leaved forest. METHODS We sampled 262 individuals of C. dunniana at two major topographic habitat types, the slope and hilltop, within the karst forests in Maolan Nature Reserve in southwestern China. We measured individual plant level leaf traits (i.e., specific leaf area (SLA), leaf area, leaf dry-matter content (LDMC), and leaf thickness) that are associated with plant resource-use strategies. We adopted a linear mixed-effects model in which the plant size (i.e., the first principal component of plant basal diameter and plant height) and environmental factors (i.e., topographic habitat, canopy height, and rock-bareness) were used as independent variables, to estimate their influences on the shifts of leaf traits. KEY RESULTS We found that (1) plant size and the environmental factors independently drove the intraspecific leaf trait shifts of C. dunniana, of which plant size explained less variances than environmental factors. (2) With increasing plant size, C. dunniana individuals had increasingly smaller SLA but larger sized leaves. (3) The most influential environmental factor was topographic habitat; it drove the shifts of all the four traits examined. Clausena dunniana individuals on hilltops had leaf traits representing more conservative resource-use strategies (e.g., smaller SLA, higher LDMC) than individuals on slopes. On top of that, local-scale environmental factors further modified leaf trait shifts. CONCLUSIONS Plant size and environment independently shaped the variations in intraspecific leaf traits of C. dunniana in the subtropical karst forest of Maolan. Compared with plant size, the environment played a more critical role in shaping intraspecific leaf trait variations, and potentially also the underlying individual-level plant resource-use strategies.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Ya Jiang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Hong Qian
- Research and Collections CenterIllinois State MuseumSpringfieldIllinoisUSA
| | - Yanjiao Mao
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Chao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- Key Laboratory of Plant Physiology and Developmental Regulation of Guizhou ProvinceGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
7
|
Osone Y, Hashimoto S, Kenzo T. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database. PLoS One 2021; 16:e0254599. [PMID: 34843472 PMCID: PMC8629320 DOI: 10.1371/journal.pone.0254599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa, which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica, which grows faster but thought to be less drought tolerant, has been planted under wetter conditions. Our analysis generally support the empirical knowledge: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, foliar nutrient concentrations, foliar minimum midday water potential and specific leaf area decreased in C. japonica, suggesting that nutrient and water limitation occurs with the growth. In C. obtusa, the ontogenetic shits of these foliar traits were less pronounced. Among the Cupressaceae worldwide, the drought tolerance of C. obtusa, as well as C. japonica, was not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.
Collapse
Affiliation(s)
- Yoko Osone
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Shoji Hashimoto
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tanaka Kenzo
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
8
|
High Phenotypic Plasticity in a Prominent Plant Invader along Altitudinal and Temperature Gradients. PLANTS 2021; 10:plants10102144. [PMID: 34685954 PMCID: PMC8538053 DOI: 10.3390/plants10102144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/25/2023]
Abstract
Studies on plant growth and trait variation along environmental gradients can provide important information for identifying drivers of plant invasions and for deriving management strategies. We used seeds of the annual plant invader Ambrosia artemisiifolia L. (common ragweed) collected from an agricultural site in Northern Italy (226 m. a.s.l; Mean Annual Air Temperature: 12.9 °C; precipitations: 930 mm) to determine variation in growth trajectories and plant traits when grown along a 1000-m altitudinal gradient in Northern Italy, and under different temperature conditions in the growth chamber (from 14/18 °C to 26/30 °C, night/day), using a non-liner modeling approach. Under field conditions, traits related to plant height (maximum height, stem height, number of internodes) followed a three-parameter logistic curve. In contrast, leaf traits (lateral spread, number of leaves, leaf length and width) followed non-monotonic double-Richards curves that captured the decline patterns evident in the data. Plants grew faster, reaching a higher maximum plant height, and produced more biomass when grown at intermediate elevations. Under laboratory conditions, plants exhibited the same general growth trajectory of field conditions. However, leaf width did not show the recession after the maximum value shown by plants grown in the field, although the growth trajectories of some individuals, particularly those grown at 18 °C, showed a decline at late times. In addition, the plants grown at lower temperatures exhibited the highest value of biomass and preserved reproductive performances (e.g., amount of male inflorescence, pollen weight). From our findings, common ragweed exhibits a high phenotypic plasticity of vegetative and reproductive traits in response to different altitudes and temperature conditions. Under climate warming, this plasticity may facilitate the shift of the species towards higher elevation, but also the in situ resistance and (pre)adaptation of populations currently abundant at low elevations in the invasive European range. Such results may be also relevant for projecting the species management such as the impact by possible biocontrol agents.
Collapse
|
9
|
Dynamics of Nocturnal Evapotranspiration and Its Biophysical Controls over a Desert Shrubland of Northwest China. FORESTS 2021. [DOI: 10.3390/f12101296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge about the dynamics and biophysical controlling mechanism of nocturnal evapotranspiration (ETN) in desert-dwelling shrub ecosystem is still lacking. Using the eddy covariance measurements of latent heat flux in a dried shrubland in northwest China, we examined the dynamics of ETN and its biophysical controls at multiple timescales during growing-seasons from 2012 to 2014. The ETN was larger in the mid-growing season (usually in mid-summer) than in spring and autumn. The maximum daily ETN was 0.21, 0.17, and 0.14 mm night−1 in years 2012–2014, respectively. At the diel scale, ETN decreased from 21:00 to 5:00, then began to increase. ETN were mainly controlled by soil volumetric water content at 30 cm depth (VWC30), by vapor pressure deficit (VPD) and normalized difference vegetation index (NDVI) at leaf expanding and expanded stage, and by air temperature (Ta) and wind speed (Ws) at the leaf coloring stage. At the seasonal scale, variations of ETN were mainly driven by Ta, VPD, and VWC10. Averaged annual ETN was 4% of daytime ET. The summer drought in 2013 and the spring drought in 2014 caused the decline of daily evapotranspiration (ET). The present results demonstrated that ETN is a significant part of the water cycle and needs to be seriously considered in ET and related studies. The findings here can help with the sustainable management of water in desert ecosystems undergoing climate change.
Collapse
|
10
|
Qiu T, Aravena MC, Andrus R, Ascoli D, Bergeron Y, Berretti R, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Julio Camarero J, Clark CJ, Courbaud B, Delzon S, Donoso Calderon S, Farfan-Rios W, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Journé V, Kilner CL, Kobe RK, Koenig WD, Kunstler G, LaMontagne JM, Ledwon M, Lutz JA, Motta R, Myers JA, Nagel TA, Nuñez CL, Pearse IS, Piechnik Ł, Poulsen JR, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Scher CL, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Swenson JJ, Swift M, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Żywiec M, Clark JS. Is there tree senescence? The fecundity evidence. Proc Natl Acad Sci U S A 2021; 118:e2106130118. [PMID: 34400503 PMCID: PMC8403963 DOI: 10.1073/pnas.2106130118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Collapse
Affiliation(s)
- Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Robert Andrus
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
- Department of Biological Sciences, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC H2L 2C4, Canada
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Thomas Boivin
- l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000 Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Thomas Caignard
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Rafael Calama
- Centro de Investigación Forestal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), 50059 Zaragoza, Spain
| | - Connie J Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Benoit Courbaud
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | - Sylvain Delzon
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - William Farfan-Rios
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, Washington University in Saint Louis, St. Louis, MO 63110
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, US Department of Agriculture Forest Service, Asheville, NC 28801
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, US Department of Agriculture Forest Service, Research Triangle Park, NC 27709
| | - Janneke Hille Ris Lambers
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita 010-0195, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109
| | - Valentin Journé
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | - Walter D Koenig
- Hastings Reservation, University of California Berkeley, Carmel Valley, CA 93924
| | - Georges Kunstler
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 31-016 Krakow, Poland
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT 84322
- Ecology Center, Utah State University, Logan, UT 84322
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chase L Nuñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | | | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, 20133 Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, United States 00936
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708;
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| |
Collapse
|
11
|
Effects of Throughfall Exclusion on Photosynthetic Traits in Mature Japanese Cedar (Cryptomeria japonica (L. f.) D. Don.). FORESTS 2021. [DOI: 10.3390/f12080971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As climate change progresses, it is becoming more crucial to understand how timber species respond to increased drought frequency and severity. Photosynthetic traits in a 40-year-old clonal Japanese cedar (Cryptomeria japonica) plantation were assessed under artificial drought stress using a roof to exclude rainfall and a control with no exclusion. C. japonica is a commercial tree that is native to Japan and has high growth on mesic sites. The maximum carboxylation rate (Vcmax), maximum electron transfer rate (Jmax), and dark respiration rate (Rd) in current-year shoots in the upper canopy were determined from spring to autumn over two growing seasons. In addition, the photosynthetic rate at light saturation (Pmax), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) were measured in the morning and afternoon during the same period. Leaf mass per unit area (LMA) and nitrogen concentration (N) were also measured. The values of Vcmax, Jmax, Rd, N, and LMA did not differ between the two plots. By contrast, significantly lower Pmax and gs and higher WUEi were found in the drought plot, and the reduction in Pmax was accompanied by low gs values. Midday depressions in Pmax and gs were more pronounced in the drought plot relative to the control and were related to higher WUEi. Under drought conditions, mature Japanese cedar experienced little change in photosynthetic capacity, foliar N, or LMA, but they did tend to close the stomata to regulate transpiration, thus avoiding drought-induced damage to the photosynthetic machinery and improving WUEi.
Collapse
|
12
|
Martin AR, Isaac ME. The leaf economics spectrum's morning coffee: plant size-dependent changes in leaf traits and reproductive onset in a perennial tree crop. ANNALS OF BOTANY 2021; 127:483-493. [PMID: 33502446 PMCID: PMC7988517 DOI: 10.1093/aob/mcaa199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Size-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity. METHODS We quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions. KEY RESULTS Leaf economics traits related to resource acquisition - maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations - declined linearly with plant size. Structural traits - leaf mass, leaf thickness, and leaf mass per unit area (LMA) - and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the 'resource-conserving' end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES. CONCLUSIONS Our results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Military Trail, Toronto, Canada
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Military Trail, Toronto, Canada
- Centre for Critical Development Studies, University of Toronto Scarborough, Military Trail, Toronto, Canada
- Department of Geography, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Linking Soil CO2 Efflux to Individual Trees: Size-Dependent Variation and the Importance of the Birch Effect. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil CO2 efflux (FCO2) is a major component of the terrestrial carbon (C) cycle but challenges in explaining local variability hamper efforts to link broad-scale fluxes to their biotic drivers. Trees are the dominant C source for forest soils, so linking tree properties to FCO2 could open new avenues to study plant-soil feedbacks and facilitate scaling; furthermore, FCO2 responds dynamically to meteorological conditions, complicating predictions of total FCO2 and forest C balance. We tested for proximity effects of individual Acer saccharum Marsh. trees on FCO2, comparing FCO2 within 1 m of mature stems to background fluxes before and after an intense rainfall event. Wetting significantly increased background FCO2 (6.4 ± 0.3 vs. 8.6 ± 0.6 s.e. μmol CO2 m−2s−1), with a much larger enhancement near tree stems (6.3 ± 0.3 vs. 10.8 ± 0.4 μmol CO2 m−2s−1). FCO2 varied significantly among individual trees and post-rain values increased with tree diameter (with a slope of 0.058 μmol CO2 m−2s−1cm−1). Post-wetting amplification of FCO2 (the ‘Birch effect’) in root zones often results from the improved mobility of labile carbohydrates and further metabolization of recalcitrant organic matter, which may both occur at higher densities near larger trees. Our results indicate that plant-soil feedbacks change through tree ontogeny and provide evidence for a novel link between whole-system carbon fluxes and forest structure.
Collapse
|
14
|
Guan SP, Chen FQ, Zhou JM, Xie ZQ, Huang YW. Spatiotemporal photosynthetic physiology responses of remnant Myricaria laxiflora populations to regulated water level fluctuations. CONSERVATION PHYSIOLOGY 2020; 8:coaa020. [PMID: 32395247 PMCID: PMC7204325 DOI: 10.1093/conphys/coaa020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/02/2023]
Abstract
The construction of the Three Gorges-Gezhouba Dam cascade hydropower station has changed the water level fluctuation pattern of the habitats for remnant rare and endangered Myricaria laxiflora populations downstream of the dam. The present study utilized biochemical markers of photosynthetic physiology to evaluate the spatiotemporal responses of remnant populations to human-regulated water level fluctuations. The results showed that the photosynthetic physiological activities of remnant M. laxiflora populations underwent a period of rapid growth, followed by a gradual decline in the growth recovery phase after flooding. During the entire experimental period, photosynthetic physiological activities of remnant M. laxiflora populations changed with prolongation of emergence time: specifically, net photosynthetic rate and stomatal conductance initially decreased and then subsequently increased, intercellular carbon dioxide concentrations peaked at mid-phase and transpiration rate continuously increased. The maximum net photosynthetic rate, apparent photosynthetic quantum efficiency and dark respiration rate in the light-response curves of the plants continuously increased during growth. The water level gradient also significantly affected the photosynthetic physiological activities in the remnant populations, i.e. the photosynthetic physiological activities of high-altitude plants were significantly higher than the middle- and low-altitude plants. The changes in photosynthetic pigment content of plants in remnant populations during the growth recovery phase and the entire growth period were similar to those occurring in photosynthetic activities in plants. Further, canonical correspondence analysis showed that photosynthetic physiological activities in the plants were significantly correlated with changes in water levels, emergence time, elevation gradient, soil water and soil nitrogen contents. Therefore, the artificial regulation of water level fluctuations by large hydropower stations will inevitably affect the photosynthetic activities and growth of remnant M. laxiflora populations.
Collapse
Affiliation(s)
- Shou-Peng Guan
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area, China Three Gorges University, Daxue Road 8, Yichang 443002, Hubei Province, P.R. China
| | - Fang-Qing Chen
- Engineering Research Center of Eco-environment in the Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Daxue Road 8, Yichang 443002, Hubei Province, P.R. China
| | - Ju-Mei Zhou
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area, China Three Gorges University, Daxue Road 8, Yichang 443002, Hubei Province, P.R. China
| | - Zong-Qiang Xie
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area, China Three Gorges University, Daxue Road 8, Yichang 443002, Hubei Province, P.R. China
| | - Yong-Wen Huang
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area, China Three Gorges University, Daxue Road 8, Yichang 443002, Hubei Province, P.R. China
| |
Collapse
|
15
|
Liu Z, Hikosaka K, Li F, Jin G. Variations in leaf economics spectrum traits for an evergreen coniferous species: Tree size dominates over environment factors. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhili Liu
- Center for Ecological Research Northeast Forestry University Harbin China
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of Education Northeast Forestry University Harbin China
| | - Kouki Hikosaka
- Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Fengri Li
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of Education Northeast Forestry University Harbin China
- School of Forestry Northeast Forestry University Harbin China
| | - Guangze Jin
- Center for Ecological Research Northeast Forestry University Harbin China
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of Education Northeast Forestry University Harbin China
| |
Collapse
|
16
|
Park M, Cho S, Park J, Lee H, Song W, Park IK, Kim HS. Size-dependent variation in leaf functional traits and nitrogen allocation trade-offs in Robinia pseudoacacia and Cornus controversa. TREE PHYSIOLOGY 2019; 39:755-766. [PMID: 30924868 DOI: 10.1093/treephys/tpy150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/24/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Tree species vary in how they invest resources to different functions throughout their life histories, and investigating the detailed patterns of ontogenetic changes in key functional traits will aid in predicting forest dynamics and ecosystem processes. In this context, we investigated size-dependent changes in key leaf functional traits and nitrogen (N) allocation trade-offs in black locust (Robinia pseudoacacia L., an N-fixing pioneer species) and giant dogwood (Cornus controversa Hemsl., a mid-successional species), which have different life-history strategies, especially in their light use. We found that the leaf mass per area and leaf carbon concentrations increased linearly with tree size (diameter at breast height, DBH), whereas leaf N concentrations decreased nonlinearly, with U- and hump-shaped patterns in black locust and giant dogwood, respectively. We also discovered large differences in N allocation between the two species. The fraction of leaf N invested in cell walls was much higher in black locust than in giant dogwood, while the opposite was true for the light harvesting N fraction. Furthermore, these fractions were related to DBH to varying degrees: the cell wall N fraction increased with DBH for both species, whereas the light harvesting N fraction of giant dogwood decreased nonlinearly and that of black locust remained constant. Instead, black locust reduced the fraction of leaf N invested in other N pools, resulting in a smaller fraction compared to that of giant dogwood. On the other hand, both species had similar fraction of leaf N invested in ribulose-1,5-bisphosphate carboxylase/oxygenase across tree size. This study indicated that both species increased leaf mechanical toughness through characteristic changes in N allocation trade-offs over the lifetimes of the trees.
Collapse
Affiliation(s)
- Minjee Park
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungsik Cho
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of Korea
- National Center for Agro Meteorology, Seoul, Republic of Korea
| | - Juhan Park
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- National Center for Agro Meteorology, Seoul, Republic of Korea
| | - HoonTaek Lee
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wookyung Song
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Il-Kwon Park
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Seok Kim
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of Korea
- National Center for Agro Meteorology, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR. Intraspecific variation in soy across the leaf economics spectrum. ANNALS OF BOTANY 2019; 123:107-120. [PMID: 30107396 PMCID: PMC6344108 DOI: 10.1093/aob/mcy147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Background and Aims Intraspecific trait variation (ITV) is an important dimension of plant ecological diversity, particularly in agroecosystems, where phenotypic ITV (within crop genotypes) is an important correlate of key agroecosystem processes including yield. There are few studies that have evaluated whether plants of the same genotype vary along well-defined axes of biological variation, such as the leaf economics spectrum (LES). There is even less information disentangling environmental and ontogenetic determinants of crop ITV along an intraspecific LES, and whether or not a plant's position along an intraspecific LES is correlated with reproductive output. Methods We sought to capture the extent of phenotypic ITV within a single cultivar of soy (Glycine max) - the world's most commonly cultivated legume - using a data set of nine leaf traits measured on 402 leaves, sampled from 134 plants in both agroforestry and monoculture management systems, across three distinct whole-plant ontogenetic stages (while holding leaf age and canopy position stable). Key Results Leaf traits covaried strongly along an intraspecific LES, in patterns that were largely statistically indistinguishable from the 'universal LES' observed across non-domesticated plants. Whole-plant ontogenetic stage explained the highest proportion of phenotypic ITV in LES traits, with plants progressively expressing more 'resource-conservative' LES syndromes throughout development. Within ontogenetic stages, leaf traits differed systematically across management systems, with plants growing in monoculture expressing more 'resource-conservative' trait syndromes: trends largely owing to an approximately ≥50% increases in leaf mass per area (LMA) in high-light monoculture vs. shaded agroforestry systems. Certain traits, particularly LMA, leaf area and maximum photosynthetic rates, correlated closely with plant-level reproductive output. Conclusions Phenotypic ITV in soy is governed by constraints in trait trade-offs along an intraspecific LES, which in turn (1) underpins plant responses to managed environmental gradients, and (2) reflects shifts in plant functional biology and resource allocation that occur throughout whole-plant ontogeny.
Collapse
Affiliation(s)
- Fallon J Hayes
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Serra W Buchanan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Brent Coleman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Andrew M Gordon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
- Centre for Critical Development Studies, University of Toronto Scarborough, Canada
| |
Collapse
|
18
|
Experimental Study of Environmental Effects: Leaf Traits of Juvenile Fagus sylvatica, Acer pseudoplatanus, and Carpinus betulusAre Comparable to Leaves of Mature Trees in Upper Canopies. INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1155/2018/3710128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Morphological and functional leaf traits like leaf toughness and nutrient content are essentially influenced by the environment, especially through light and climatic conditions. Varying light conditions have been identified as a significant predictor for the variation of many leaf traits. However, the leaf acclimation to light is suggested to be of secondary importance. The aim of the experimental study was to analyse environmental effects (microclimate and soil moisture), which are present in upper canopies of forest stands, on leaf traits of juvenileFagus sylvaticaL. (European beech; Fagaceae),Acer pseudoplatanusL. (sycamore maple; Sapindaceae), andCarpinus betulusL. (hornbeam; Betulaceae). The experimental design managed to imitate two distinct microclimates causing different temperature and air humidity conditions. Furthermore, the irrigation treatment with different levels of applied water caused distinct soil moisture conditions in the trial pots. As a result of the treatments, leaves ofC. betulusshowed a tendency of decreased specific leaf area (SLA) caused by the treatment with warmer and drier microclimate. The environmental effect on SLA was even stronger with lower soil moisture conditions. Chlorophyll content showed lower values in treatments with higher soil moisture conditions in both greenhouses forF. sylvaticaandA. pseudoplatanus. The trends are in accordance with combined effects of temperature, air humidity, and soil moisture on SLA, and increased leaf chlorophyll content caused by slight drought stress. Plants in the greenhouses were exposed to full sunlight indicating a microclimatic environment comparable to upper canopies in forest stands. The comparable SLA and chlorophyll content between leaves of matureF. sylvaticatrees in upper canopies and juvenile trees of the greenhouses suggest similar environmental conditions instead of ontogenetic effects that are responsible for the formation of leaf trait characteristics.
Collapse
|
19
|
He D, Yan ER. Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species. AMERICAN JOURNAL OF BOTANY 2018; 105:1165-1174. [PMID: 30070684 DOI: 10.1002/ajb2.1132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/08/2018] [Indexed: 05/26/2023]
Abstract
PREMISE OF STUDY The plant size-trait relationship is a fundamental dimension in the spectrum of plant form and function. However, it remains unclear whether the trait scaling relationship within species is modified by tree size. Investigating size-dependent trait covariations within species is crucial for understanding the ontogenetic constraints on the intraspecific economic spectrum and, more broadly, the structure and causes of intraspecific trait variations. METHODS We measured eight morphological, stoichiometric, and hydraulic traits for 604 individual plants of a shade-tolerant evergreen tree species, Litsea elongata, in a subtropical evergreen forest of eastern China. Individual trait values were regressed against tree basal diameter to evaluate size-dependent trait variations. Standardized major axis regression was employed to examine trait scaling relationships and to test whether there was a common slope and elevation in the trait scaling relationship across size classes. KEY RESULTS Small trees tended to have larger, thinner leaves and longer, slenderer stems than larger trees, which indicates an acquisitive economic strategy in juvenile trees. Leaf nitrogen concentrations increased with plant size, which was likely due to a high ratio of structural to photosynthetic nitrogen in the evergreen leaves of large trees. Bivariate trait scaling was minimally modified by tree size, although the elevation of some relationships differed between size classes. CONCLUSIONS Our results suggest that there are common economic and biophysical constraints on intraspecific trait covariation, independent of tree size. Small and large trees tend to be located at opposite ends of an intraspecific plant economic spectrum.
Collapse
Affiliation(s)
- Dong He
- Forest Ecosystem Research and Observation Station in Putuo Island, Tiantong National Station for Forest Ecosystem Research, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration; School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), Shanghai, 200062, China
| | - En-Rong Yan
- Forest Ecosystem Research and Observation Station in Putuo Island, Tiantong National Station for Forest Ecosystem Research, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration; School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), Shanghai, 200062, China
| |
Collapse
|
20
|
Smith NG, Dukes JS. Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology 2018; 99:1610-1620. [PMID: 29705984 DOI: 10.1002/ecy.2370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nicholas G. Smith
- Department of Biological Sciences; Texas Tech University; Lubbock Texas 79409 USA
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| |
Collapse
|
21
|
A New Algorithm for MLS-Based DBH Mensuration and Its Preliminary Validation in an Urban Boreal Forest: Aiming at One Cornerstone of Allometry-Based Forest Biometrics. REMOTE SENSING 2018. [DOI: 10.3390/rs10050749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Kuusk V, Niinemets Ü, Valladares F. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. TREE PHYSIOLOGY 2018; 38:543-557. [PMID: 29281105 DOI: 10.1093/treephys/tpx139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Pine (Pinus) species exhibit extensive variation in needle shape and size between juvenile (primary) and adult (secondary) needles (heteroblasty), but few studies have quantified the changes in needle morphological, anatomical and chemical traits upon juvenile-to-adult transition. Mediterranean pines keep juvenile needles longer than most other pines, implying that juvenile needles play a particularly significant role in seedling and sapling establishment in this environment. We studied needle anatomical, morphological and chemical characteristics in juvenile and different-aged adult needles in Mediterranean pines Pinus halepensis Mill., Pinus pinea L. and Pinus nigra J. F. Arnold subsp. salzmannii (Dunal) Franco hypothesizing that needle anatomical modifications upon juvenile-to-adult transition lead to a trade-off between investments in support and photosynthetic tissues, and that analogous changes occur with needle aging albeit to a lower degree. Compared with adult needles, juvenile needles of all species were narrower with 1.6- to 2.4-fold lower leaf dry mass per unit area, and had ~1.4-fold thinner cell walls, but needle nitrogen content per dry mass was similar among plant ages. Juvenile needles also had ~1.5-fold greater mesophyll volume fraction, ~3-fold greater chloroplast volume fraction and ~1.7-fold greater chloroplast exposed to mesophyll exposed surface area ratio, suggesting overall greater photosynthetic activity. Changes in needle traits were similar in aging adult needles, but the magnitude was generally less than the changes upon juvenile to adult transition. In adult needles, the fraction in support tissues scaled positively with known ranking of species tolerance of drought (P. halepensis > P. pinea > P. nigra). Across all species, and needle and plant ages, a negative correlation between volume fractions of mesophyll and structural tissues was observed, manifesting a trade-off between biomass investments in different needle functions. These results demonstrate that within the broad trade-off, juvenile and adult needle morphophysiotypes are separated by varying investments in support and photosynthetic functions. We suggest that the ecological advantage of the juvenile morphophysiotype is maximization of carbon gain of establishing saplings, while adult needle physiognomy enhances environmental stress tolerance of established plants.
Collapse
Affiliation(s)
- Vivian Kuusk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1 Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1 Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Fernando Valladares
- LINCGlobal, Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 dpdo, 28006 Madrid, Spain
- Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
23
|
Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci Rep 2018; 8:285. [PMID: 29321479 PMCID: PMC5762662 DOI: 10.1038/s41598-017-18525-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
Collapse
|
24
|
Modeling Variation in Crown Profile with Tree Status and Cardinal Directions for Planted Larix olgensis Henry Trees in Northeast China. FORESTS 2017. [DOI: 10.3390/f8050139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crown profile models were developed for north, east, south, and west crown directions of dominant trees, intermediate trees, and suppressed trees in planted stands of Larix olgensis Henry in Northeast China. A total of 139 sample trees were randomly selected, and all branches of each tree were measured. A segmented power equation, segmented polynomial equation, modified Weibull equation, and Kozak equation were selected as the candidate models. A traditional approach that did not consider the differences between tree status and crown directions was also developed. Three steps were conducted to analyze the effect of tree status (dominant, intermediate, and suppressed tree) and crown direction (north, east, south, and west) on the crown profiles using a dummy variable approach. Step 1 considered only tree status, Step 2 considered only crown direction, and Step 3 took both tree status and crown direction into account. Nonlinear mixed-effects model was used to express the effect of individual tree level on crown shape, and was also compared to the ordinary least-squares and generalized least-squares model. The results demonstrated that the modified Kozak equation showed good performance in the crown profile description. The nonlinear mixed-effects model significantly improved the model performance compared to the ordinary least-squares and generalized least-squares model. There were differences among the crown profiles among the four directions of dominant, intermediate, and suppressed trees. South-oriented crowns had the tendency to be the largest, which is likely to be mainly a result of light conditions. The competition status of the subject tree was the main reason leading to an asymmetric crown. Individual trees with strong competition levels had smaller crowns.
Collapse
|
25
|
Chondrogiannis C, Grammatikopoulos G. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms. PHOTOSYNTHESIS RESEARCH 2016; 130:427-444. [PMID: 27220729 DOI: 10.1007/s11120-016-0276-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/16/2016] [Indexed: 05/14/2023]
Abstract
Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.
Collapse
Affiliation(s)
- Christos Chondrogiannis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Rio, 26504, Patras, Greece
| | - George Grammatikopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Rio, 26504, Patras, Greece.
| |
Collapse
|
26
|
Sheil D, Eastaugh CS, Vlam M, Zuidema PA, Groenendijk P, Sleen P, Jay A, Vanclay J. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12775] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Douglas Sheil
- Department of Ecology and Natural Resource Management Norwegian University of Life Sciences P.O. Box 5003 NO‐1432 Ås Norway
| | - Chris S. Eastaugh
- Forest Research Centre Southern Cross University PO Box 157 Lismore NSW 2480 Australia
- Forestry Corporation NSW Western Division PO Box 865 Dubbo NSW 2830 Australia
| | - Mart Vlam
- Forest Ecology and Forest Management Group Wageningen University & Research PO Box 47 6700 AA Wageningen The Netherlands
| | - Pieter A. Zuidema
- Forest Ecology and Forest Management Group Wageningen University & Research PO Box 47 6700 AA Wageningen The Netherlands
| | - Peter Groenendijk
- Forest Ecology and Forest Management Group Wageningen University & Research PO Box 47 6700 AA Wageningen The Netherlands
- Departamento de Botánica Escola Politécnica Superior Universidade de Santiago de Compostela Campus de Lugo Lugo 27002 Spain
| | - Peter Sleen
- Forest Ecology and Forest Management Group Wageningen University & Research PO Box 47 6700 AA Wageningen The Netherlands
- Marine Science Institute University of Texas at Austin Port Aransas TX 78373 USA
- Instituto Boliviano de Investigación Forestal Km 9 carretera al norte Casilla 6204 Santa Cruz de la Sierra Bolivia
| | - Alex Jay
- Forest Research Centre Southern Cross University PO Box 157 Lismore NSW 2480 Australia
| | - Jerome Vanclay
- Forest Research Centre Southern Cross University PO Box 157 Lismore NSW 2480 Australia
| |
Collapse
|
27
|
Light-exposed shoots of seven coexisting deciduous species show common photosynthetic responses to tree height. Oecologia 2016; 182:373-83. [PMID: 27262582 DOI: 10.1007/s00442-016-3664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Functional traits of light-exposed leaves have been reported to show tree height-dependent change. However, it remains unknown how plastic response of leaf traits to tree height is linked with shoot-level carbon gain. To answer this question, we examined the photosynthetic properties of fully lit current-year shoots in crown tops with various heights for seven deciduous broad-leaved species dominated in a cool-temperate forest in northern Japan. We measured leaf mass, stomatal conductance, nitrogen content, light-saturated net photosynthetic rate (all per leaf lamina area), foliar stable carbon isotope ratio, and shoot mass allocation to leaf laminae. We employed hierarchical Bayesian models to simultaneously quantify inter-trait relationships for all species. We found that leaf and shoot traits were co-varied in association with height, and that there was no quantitative inter-specific difference in leaf- and shoot-level plastic responses to height. Nitrogen content increased and stomatal conductance decreased with height. Reflecting these antagonistic responses to height, photosynthetic rate was almost unchanged with height. Photosynthetic rate divided by stomatal conductance as a proxy of photosynthetic water use efficiency sufficiently explained the variation of foliar carbon isotope ratio. The increase in mass allocation to leaves in a shoot compensated for the height-dependent decline in photosynthetic rate per leaf lamina mass. Consequently, photosynthetic gain at the scale of current-year shoot mass was kept unchanged with tree height. We suggest that the convergent responses of shoot functional traits across species reflect common requirements for trees coexisting in a forest.
Collapse
|
28
|
Pappas C, Fatichi S, Burlando P. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter? THE NEW PHYTOLOGIST 2016; 209:137-51. [PMID: 26389742 DOI: 10.1111/nph.13590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/04/2015] [Indexed: 05/22/2023]
Abstract
Plant trait diversity in many vegetation models is crudely represented using a discrete classification of a handful of 'plant types' (named plant functional types; PFTs). The parameterization of PFTs reflects mean properties of observed plant traits over broad categories ignoring most of the inter- and intraspecific plant trait variability. Taking advantage of a multivariate leaf-trait distribution (leaf economics spectrum), as well as documented plant drought strategies, we generate an ensemble of hypothetical species with coordinated attributes, rather than using few PFTs. The behavior of these proxy species is tested using a mechanistic ecohydrological model that translates plant traits into plant performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in the European Alps. Using this framework we investigate the sensitivity of ecosystem response to plant trait diversity and compare it with the sensitivity to climate variability. Plant trait diversity leads to highly divergent vegetation carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (transpiration). Abiotic variables, such as soil water content and evaporation, are only marginally affected. These results highlight the need for revising the representation of plant attributes in vegetation models. Probabilistic approaches, based on observed multivariate whole-plant trait distributions, provide a viable alternative.
Collapse
Affiliation(s)
- Christoforos Pappas
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, Zurich, Switzerland
| | - Simone Fatichi
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, Zurich, Switzerland
| | - Paolo Burlando
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, Zurich, Switzerland
| |
Collapse
|
29
|
Wenk EH, Falster DS. Quantifying and understanding reproductive allocation schedules in plants. Ecol Evol 2015; 5:5521-38. [PMID: 27069603 PMCID: PMC4813122 DOI: 10.1002/ece3.1802] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/13/2015] [Accepted: 09/20/2015] [Indexed: 11/15/2022] Open
Abstract
A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer-lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles.
Collapse
|
30
|
Sendall KM, Lusk CH, Reich PB. Trade‐offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kerrie M. Sendall
- Department of Forest Resources University of Minnesota 1530 Cleveland Avenue N St. Paul MN 55108 USA
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - Christopher H. Lusk
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Environmental Research Institute University of Waikato Private Bag 3105 Hamilton New Zealand
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota 1530 Cleveland Avenue N St. Paul MN 55108 USA
- Hawkesbury Institute for the Environment University of Western Sydney Penrith NSW 2753 Australia
| |
Collapse
|
31
|
Sendall KM, Lusk CH, Reich PB. Becoming less tolerant with age: sugar maple, shade, and ontogeny. Oecologia 2015; 179:1011-21. [DOI: 10.1007/s00442-015-3428-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/13/2015] [Indexed: 11/29/2022]
|
32
|
Affiliation(s)
- Eadaoin M. Quinn
- Faculty of Forestry; University of Toronto; Earth Sciences Building 33 Willcocks Street Toronto Ontario M5S 3B3 Canada
| | - Sean C. Thomas
- Faculty of Forestry; University of Toronto; Earth Sciences Building 33 Willcocks Street Toronto Ontario M5S 3B3 Canada
| |
Collapse
|
33
|
Lilles EB, Astrup R, Lefrançois ML, David Coates K. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance. TREE PHYSIOLOGY 2014; 34:1334-1347. [PMID: 25422385 DOI: 10.1093/treephys/tpu092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances.
Collapse
Affiliation(s)
- Erica B Lilles
- Bulkley Valley Centre for Natural Resources Research and Management, Box 4274, Smithers, BC V0J 2N0, Canada
| | - Rasmus Astrup
- Bulkley Valley Centre for Natural Resources Research and Management, Box 4274, Smithers, BC V0J 2N0, Canada Norwegian Forest and Landscape Institute, Høgskoleveien 8, Postboks 115, 1431 Ås, Norway
| | - Marie-Lou Lefrançois
- Bulkley Valley Centre for Natural Resources Research and Management, Box 4274, Smithers, BC V0J 2N0, Canada
| | - K David Coates
- Bulkley Valley Centre for Natural Resources Research and Management, Box 4274, Smithers, BC V0J 2N0, Canada Ministry of Forests, Lands and Natural Resource Operations, Bag 6000, Smithers, BC V0J2N0, Canada
| |
Collapse
|
34
|
Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 2014; 177:191-202. [PMID: 25362582 DOI: 10.1007/s00442-014-3126-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.
Collapse
Affiliation(s)
- Tanaka Kenzo
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan,
| | | | | | | | | | | |
Collapse
|
35
|
Price CA, Wright IJ, Ackerly DD, Niinemets Ü, Reich PB, Veneklaas EJ. Are leaf functional traits ‘invariant’ with plant size and what is ‘invariance’ anyway? Funct Ecol 2014. [DOI: 10.1111/1365-2435.12298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles A. Price
- School of Plant Biology; University of Western Australia; Perth Western Australia 6009 Australia
| | - Ian J. Wright
- Department of Biological Sciences; Macquarie University; Sydney New South Wales 2109 Australia
| | - David D. Ackerly
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley California 94720-3140 USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences; Estonian University of Life Sciences; Kreutzwaldi 1 Tartu 51014 Estonia
| | - Peter B. Reich
- Department of Forest Resources; University of Minnesotam; 1530 Cleveland Avenue North St. Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment; University of Western Sydney; Locked Bag 1797 Penrith New South Wales 2751 Australia
| | - Erik J. Veneklaas
- School of Plant Biology; University of Western Australia; Perth Western Australia 6009 Australia
| |
Collapse
|
36
|
Filewod B, Thomas SC. Impacts of a spring heat wave on canopy processes in a northern hardwood forest. GLOBAL CHANGE BIOLOGY 2014; 20:360-371. [PMID: 24038752 DOI: 10.1111/gcb.12354] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.
Collapse
|
37
|
Rate of tree carbon accumulation increases continuously with tree size. Nature 2014; 507:90-3. [PMID: 24429523 DOI: 10.1038/nature12914] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022]
Abstract
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
Collapse
|
38
|
Martin AR, Thomas SC. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. TREE PHYSIOLOGY 2013; 33:1338-1353. [PMID: 24336517 DOI: 10.1093/treephys/tpt085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tree functional traits and their link to patterns of growth and demography are central to informing trait-based analyses of forest communities, and mechanistic models of forest dynamics. However, few data are available on how functional traits in trees vary through ontogeny, particularly in tropical species; and less is known about how patterns of size-dependent changes in traits may differ across species of contrasting life-history strategies. Here we describe size-dependent variation in seven leaf functional traits and four wood chemical traits, in two Dominican rainforest tree species (Dacryodes excelsa Vahl. and Miconia mirabilis (Aubl.) L.O. Williams), ranging from small saplings to the largest canopy trees. With one exception, all traits showed pronounced variation with tree size (diameter at breast height, DBH). Leaf mass per area (LMA), thickness and tissue density increased monotonically with DBH in both species. Leaf area, leaf nitrogen (N) and carbon (C) : nitrogen (N) ratios also varied significantly with DBH; however, these patterns were unimodal, with peak trait values preceding the DBH at reproductive onset in both species. Size-dependent changes in leaf structural traits (LMA and leaf thickness) were generally similar in both species, while traits associated with leaf-level investment in C gain (leaf area, leaf C : N ratio) showed contrasting ontogenetic trends between species. Wood starch concentration varied with DBH in both species, also showing unimodal patterns with peaks preceding size at reproductive onset. Wood C concentration increased linearly with DBH in both species, though significantly only in M. mirabilis. Size-dependent patterns in wood chemical traits were similar between both species. Our data demonstrate pronounced variation in functional traits through tree ontogeny, probably due to a combination of environmental factors and shifts in resource allocation. Such ontogenetic variation is comparable in magnitude with interspecific variation, and so should be accounted for in trait-based studies of forest dynamics, structure and function.
Collapse
Affiliation(s)
- Adam R Martin
- Faculty of Forestry, University of Toronto, Earth Sciences Building, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada
| | | |
Collapse
|
39
|
Sendall KM, Reich PB. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. TREE PHYSIOLOGY 2013; 33:713-729. [PMID: 23872734 DOI: 10.1093/treephys/tpt048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rates of tissue-level function have been hypothesized to decline as trees grow older and larger, but relevant evidence to assess such changes remains limited, especially across a wide range of sizes from saplings to large trees. We measured functional traits of leaves and twigs of three cold-temperate deciduous tree species in Minnesota, USA, to assess how these vary with tree height. Individuals ranging from 0.13 to 20 m in height were sampled in both relatively open and closed canopy environments to minimize light differences as a potential driver of size-related differences in leaf and twig properties. We hypothesized that (H1) gas-exchange rates, tissue N concentration and leaf mass per unit area (LMA) would vary with tree size in a pattern reflecting declining function in taller trees, yet maintaining (H2) bivariate trait relations, common among species as characterized by the leaf economics spectrum. Taking these two ideas together yielded a third, integrated hypothesis that (H3) nitrogen (N) content and gas-exchange rates should decrease monotonically with tree size and LMA should increase. We observed increasing LMA and decreasing leaf and twig Rd with increasing size, which matched predictions from H1 and H3. However, opposite to our predictions, leaf and twig N generally increased with size, and thus had inverse relations with respiration, rather than the predicted positive relations. Two exceptions were area-based leaf N of Prunus serotina Ehrh. in gaps and mass-based leaf N of Quercus ellipsoidalis E. J. Hill in gaps, both of which showed qualitatively hump-shaped patterns. Finally, we observed hump-shaped relationships between photosynthetic capacity and tree height, not mirroring any of the other traits, except in the two cases highlighted above. Bivariate trait relations were weak intra-specifically, but were generally significant and positive for area-based traits using the pooled dataset. Results suggest that different traits vary with tree size in different ways that are not consistent with a universal shift towards a lower 'return on investment' strategy. Instead, species traits vary with size in patterns that likely reflect complex variation in water, light, nitrogen and carbon availability, storage and use.
Collapse
Affiliation(s)
- Kerrie M Sendall
- Department of Plant Biological Sciences, University of Minnesota, 1445 Gortner Avenue, St Paul, MN 55108, USA.
| | | |
Collapse
|
40
|
Vitasse Y. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. THE NEW PHYTOLOGIST 2013; 198:149-155. [PMID: 23347086 DOI: 10.1111/nph.12130] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/03/2012] [Indexed: 05/21/2023]
Abstract
In a temperate climate, understory trees leaf out earlier than canopy trees, but the cause of this discrepancy remains unclear. This study aims to investigate whether this discrepancy results from ontogenic changes or from microclimatic differences. Seedlings of five deciduous tree species were grown in spring 2012 in the understory and at canopy height using a 45-m-high construction crane built into a mature mixed forest in the foothills of the Swiss Jura Mountains. The leaf development of these seedlings, as well as conspecific adults, was compared, taking into account the corresponding microclimate. The date of leaf unfolding occurred 10-40 d earlier in seedlings grown at canopy level than in conspecific adults. Seedlings grown in the understory flushed c. 6 d later than those grown at canopy height, which can be attributed to the warmer temperatures recorded at canopy height (c. 1°C warmer). This study demonstrates that later leaf emergence of canopy trees compared with understory trees results from ontogenic changes and not from the vertical thermal profile that exists within forests. This study warns against the assumption that phenological data obtained in warming and photoperiod experiments on juvenile trees can be used for the prediction of forest response to climate warming.
Collapse
Affiliation(s)
- Yann Vitasse
- Institute of Botany, University of Basle, 4056, Basle, Switzerland
| |
Collapse
|
41
|
Fang XW, Turner NC, Xu DH, Jin Y, He J, Li FM. Limits to the height growth of Caragana korshinskii resprouts. TREE PHYSIOLOGY 2013; 33:275-284. [PMID: 23462313 DOI: 10.1093/treephys/tpt006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Predawn leaf water potential (LWP), the LWP between 09:00 and 10:30 h (termed minimum LWP), stem xylem hydraulic conductivity, foliar nitrogen, leaf gas exchange and leaf traits were measured on the same days in adults and 1-year-old to 7-year-old resprouts that had regrown after removing all the aboveground shoots. Height growth and accumulation of aboveground biomass quickly decreased with resprout age and there was no difference between 7-year-old resprouts and the uncut adults. Predawn LWP showed no significant difference between resprouts and adults, but the minimum LWP decreased gradually from -2.0 MPa in 1-year-old resprouts to -3.0 MPa in 7-year-old resprouts. The decrease in minimum LWP was associated with increased hydraulic resistance, as indicated by the gradual decrease in leaf area-specific hydraulic conductivity (KL) and sapwood area-specific hydraulic conductivity (KS) and the associated increase in stem native percentage loss of hydraulic conductivity in older than 2-year-old resprouts. The leaf nitrogen content per unit area (Narea) also decreased steadily from 3.6 g m(-2) in 1-year-old resprouts to 1.7 g m(-2) in 7-year-old resprouts. With the decline in LWP and Narea, the rate of leaf photosynthesis per unit area (Aarea) decreased from 20 μ mol m(-2) s(-1) in 1-year-old resprouts to 11 μ mol m(-2) s(-1) in 7-year-old resprouts. In adults, although KS decreased further compared with 7-year-old resprouts, the minimum LWP, KL, Narea and the rate of photosynthesis increased by 0.3 MPa, 29, 34 and 23%, respectively. The results show that a progressive loss of stem hydraulic conductivity and a steady decrease in foliar nitrogen with age were associated with a decrease in the photosynthetic rate of Caragana korshinskii Kom. resprouts, possibly changing the allocation of photosynthetic assimilates and slowing resprout height growth.
Collapse
Affiliation(s)
- Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Koyama K, Hidaka Y, Ushio M. Dynamic scaling in the growth of a non-branching plant, Cardiocrinum cordatum. PLoS One 2012; 7:e45317. [PMID: 23028928 PMCID: PMC3446904 DOI: 10.1371/journal.pone.0045317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated whole-plant leaf area in relation to ontogenetic variation in leaf-size for a forest perennial herb, Cardiocrinum cordatum. The 200-fold ontogenetic variability in C. cordatum leaf area followed a power-law dependence on total leaf number, a measure of developmental stage. When we normalized for plant size, the function describing the size of single leaves along the stem was similar among different-sized plants, implying that the different-sized canopies observed at different times in the growth trajectory were fundamentally similar to each other. We conclude that the growth trajectory of a population of C. cordatum plant leaves obeyed a dynamic scaling law, the first reported for a growth trajectory at the whole-plant level.
Collapse
Affiliation(s)
- Kohei Koyama
- Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.
| | | | | |
Collapse
|
43
|
Differential photosynthetic characteristics between seedlings and saplings of Abies sachalinensis and Picea glehnii, in the field. Ecol Res 2012. [DOI: 10.1007/s11284-012-0973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Coopman RE, Briceño VF, Corcuera LJ, Reyes-Díaz M, Alvarez D, Sáez K, García-Plazaola JI, Alberdi M, Bravo LA. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. TREE PHYSIOLOGY 2011; 31:1128-41. [PMID: 21990025 DOI: 10.1093/treephys/tpr094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5-40 mol m(-2). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A(max), light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration (R(d)) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to sun.
Collapse
Affiliation(s)
- Rafael E Coopman
- Forest Ecophysiology Laboratory, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Independencia 641, Casilla 567, Valdivia, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Patankar R, Thomas SC, Smith SM. A gall-inducing arthropod drives declines in canopy tree photosynthesis. Oecologia 2011; 167:701-9. [DOI: 10.1007/s00442-011-2019-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|