1
|
Dalling JW, Flores MR, Heineman KD. Wood nutrients: Underexplored traits with functional and biogeochemical consequences. THE NEW PHYTOLOGIST 2024; 244:1694-1708. [PMID: 39400942 DOI: 10.1111/nph.20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests. Wood nutrient concentrations also show exceptional interspecific variation, even among co-occurring plant species, yet how they align with other plant functional traits and fit into existing trait economic spectra is unclear. We review the chemical forms and location of nutrient pools in bark and sapwood, and the evidence that nutrient remobilization from sapwood is associated with mast reproduction, seasonal leaf flush, and the capacity to resprout following damage. We also emphasize the role wood nutrients are likely to play in determining decomposition rates. Given the magnitude of wood nutrient stocks, and the importance of tissue stoichiometry to forest productivity, a key unresolved question is whether investment in wood nutrients is a relatively fixed trait, or conversely whether under global change plants will adjust nutrient allocation to wood depending on carbon gain and nutrient supply.
Collapse
Affiliation(s)
- James W Dalling
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Manuel R Flores
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- New York Botanical Garden, New York, NY, 10458, USA
| | - Katherine D Heineman
- Center for Plant Conservation, Escondido, CA, 92027, USA
- Conservation Science, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, USA
| |
Collapse
|
2
|
Wang R, Dijkstra FA, Han X, Jiang Y. Root nitrogen reallocation: what makes it matter? TRENDS IN PLANT SCIENCE 2024; 29:1077-1088. [PMID: 38825557 DOI: 10.1016/j.tplants.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Root nitrogen (N) reallocation involves remobilization of root N-storage pools to support shoot growth. Representing a critical yet underexplored facet of plant function, we developed innovative frameworks to elucidate its connections with key ecosystem components. First, root N reallocation increases with plant species richness and N-acquisition strategies, driven by competitive stimulation of plant N demand and synergies in N uptake. Second, competitive root traits and mycorrhizal symbioses, which enhance N foraging and uptake, exhibit trade-offs with root N reallocation. Furthermore, root N reallocation is attenuated by N-supply attributes such as increasing litter quality, soil fungi-to-bacteria ratios, and microbial recruitment in the hyphosphere/rhizosphere. These frameworks provide new insights and research avenues for understanding the ecological roles of root N reallocation.
Collapse
Affiliation(s)
- Ruzhen Wang
- School of Life Sciences, Hebei University, Baoding 071002, China; Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feike A Dijkstra
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW 2570, Australia
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding 071002, China; Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
3
|
Lan G, Wei Y, Zhang X, Wu Z, Ji K, Xu H, Chen B, He F. Assembly and maintenance of phyllosphere microbial diversity during rubber tree leaf senescence. Commun Biol 2024; 7:1192. [PMID: 39333257 PMCID: PMC11437020 DOI: 10.1038/s42003-024-06907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Phyllosphere microorganisms execute important ecological functions including supporting host plant growth, enhancing host resistance to abiotic stresses, and promoting plant diversity. How leaf developmental stages affect plant-microbiome interactions and phyllosphere microbial community assembly and diversity is poorly understood. In this study, we utilized amplicon sequencing of 16S rRNA and ITS genes to investigate the composition and diversity of microbial communities across different leaf developmental stages of rubber trees. Our findings reveal that endophytic microbial communities, particularly bacterial communities, are more influenced by leaf senescence than by epiphytic communities. The high abundance of metabolism genes in the endosphere of yellow leaves contributes to the degradation and nutrient relocation processes. Nutrient loss leads to a higher abundance of α-Proteobacteria (r-selected microorganisms) in the yellow leaf endosphere, thereby promoting stochastic community assembly. As leaves age, the proportion of microorganisms entering the inner layer of leaves increases, consequently enhancing the diversity of microorganisms in the inner layer of leaves. These results offer insights into the mechanisms governing community assembly and diversity of leaf bacteria and fungi, thereby advancing our understanding of the evolving functions of microbial communities during leaf senescence in general, and for an important tropical crop species in particular.
Collapse
Affiliation(s)
- Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China.
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China.
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Xicai Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Han Xu
- Research, Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong Province, 510520, China
| | - Bangqian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
4
|
Peng H, Zhang X, Bishop K, Marshall J, Nilsson MB, Li C, Björn E, Zhu W. Tree Rings Mercury Controlled by Atmospheric Gaseous Elemental Mercury and Tree Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39248494 PMCID: PMC11428168 DOI: 10.1021/acs.est.4c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Tree rings are an emerging atmospheric mercury (Hg) archive. Questions have arisen, though, regarding their mechanistic controls and reliability. Here, we report contrasting tree-ring Hg records in three collocated conifer species: Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and European larch (Larix decidua), which are from a remote boreal forest. Centennial atmospheric Hg trends at the site, derived from varved lake sediments, peats, and atmospheric monitoring, indicated a steady rise from the 1800s, peaking in the 1970s, and then declining. Prior to ca. 2005, larch and spruce tree rings reproduced the peak in the atmospheric Hg trend, while pine tree rings peaked in the 1930s, likely due to the prolonged sapwood period and ambiguity in the heartwood-sapwood boundary of pine. Since ca. 2005, tree rings from all species showed increasing Hg concentrations in the physiologically active outer rings despite declining atmospheric Hg concentrations. The good agreement between Hg and nitrogen concentrations in active tree-ring cells indicates a similar transport mechanism and cautions against their applicability as atmospheric Hg archives. Our results suggest that tree-ring Hg records are controlled by atmospheric Hg and tree physiology. We provide recommendations for using tree-ring Hg archives that take tree physiology into account.
Collapse
Affiliation(s)
- Haijun Peng
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Xiangwen Zhang
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
- School
of Resources & Environment, Nanchang
University, Nanchang 330031, China
| | - Kevin Bishop
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala SE-75651, Sweden
| | - John Marshall
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Mats B. Nilsson
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Chuxian Li
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
- Institute
of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern 3012, Switzerland
| | - Erik Björn
- Department
of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Wei Zhu
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| |
Collapse
|
5
|
Bandyopadhyay T, Maurya J, Bentley AR, Griffiths H, Swarbreck SM, Prasad M. Identification of the mechanistic basis of nitrogen responsiveness in two contrasting Setaria italica accessions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5008-5020. [PMID: 38736217 DOI: 10.1093/jxb/erae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Nitrogen (N) is a macronutrient limiting crop productivity with varied requirements across species and genotypes. Understanding the mechanistic basis of N responsiveness by comparing contrasting genotypes could inform the development and selection of varieties with lower N demands, or inform agronomic practices to sustain yields with lower N inputs. Given the established role of millets in ensuring climate-resilient food and nutrition security, we investigated the physiological and genetic basis of nitrogen responsiveness in foxtail millet (Setaria italica L.). We had previously identified genotypic variants linked to N responsiveness, and here we dissect the mechanistic basis of the trait by examining the physiological and molecular behaviour of N responsive (NRp-SI58) and non-responsive (NNRp-SI114) accessions at high and low N. Under high N, NRp-SI58 allocates significantly more biomass to nodes, internodes and roots, more N to developing grains, and is more effective at remobilizing flag leaf N compared with NNRp-SI114. Post-anthesis flag leaf gene expression suggests that differences in N induce much higher transcript abundance in NNRp-SI114 than NRp-SI58, a large proportion of which is potentially regulated by APETALA2 (AP2) transcription factors. Overall, the study provides novel insights into the regulation and manipulation of N responsiveness in S. italica.
Collapse
Affiliation(s)
| | - Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alison R Bentley
- NIAB, 93 Lawrence Weaver Rd, Cambridge CB3 0LE, UK
- Research School of Biology, Australian National University, Canberra, 2600, Australia
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Stéphanie M Swarbreck
- NIAB, 93 Lawrence Weaver Rd, Cambridge CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
6
|
Tian M, Salmon Y, Lintunen A, Oren R, Hölttä T. Seasonal dynamics and punctuated carbon sink reduction suggest photosynthetic capacity of boreal silver birch is reduced by the accumulation of hexose. THE NEW PHYTOLOGIST 2024; 243:894-908. [PMID: 38853424 DOI: 10.1111/nph.19883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.
Collapse
Affiliation(s)
- Manqing Tian
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Yann Salmon
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, PO Box 64, Helsinki, 00014, Finland
| | - Anna Lintunen
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, PO Box 64, Helsinki, 00014, Finland
| | - Ram Oren
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Nicholas School of the Environment and Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
7
|
Massonnet C, Chuste PA, Zeller B, Tillard P, Gerard B, Cheraft L, Breda N, Maillard P. Does long-term drought or repeated defoliation affect seasonal leaf N cycling in young beech trees? TREE PHYSIOLOGY 2024; 44:tpae054. [PMID: 38769932 DOI: 10.1093/treephys/tpae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.
Collapse
Affiliation(s)
- Catherine Massonnet
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Pierre-Antoine Chuste
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | | | - Pascal Tillard
- UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, INRAE/CNRS/Montpellier SupAgro/Université Montpellier, Place Viala, 34060 Montpellier, Cedex 2, France
| | - Bastien Gerard
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Loucif Cheraft
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Nathalie Breda
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| |
Collapse
|
8
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
9
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
10
|
Ouyang S, Tie L, Saurer M, Bose AK, Duan H, Li M, Xu X, Shen W, Gessler A. Divergent role of nutrient availability in determining drought responses of sessile oak and Scots pine seedlings: evidence from 13C and 15N dual labeling. TREE PHYSIOLOGY 2024; 44:tpad105. [PMID: 37672222 DOI: 10.1093/treephys/tpad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Increased soil nutrient availability can promote tree growth while drought impairs metabolic functioning and induces tree mortality. However, limited information is available about the role of nutrients in the drought responses of trees. A greenhouse experiment was conducted with sessile oak (Quercus petraea (Matt.) Liebl) and Scots pine (Pinus sylvestris L.) seedlings, which were subjected to three fertilization treatments in the first year and two water regimes in the second year. Old and newly fixed carbon (C) and nitrogen (N) allocation were traced by dual labeling with 13C and 15N tracers, respectively, at two time points. Leaf gas exchange, biomass, as well as N and nonstructural carbohydrate (NSC) concentrations of all organs were measured. Fertilization predisposed sessile oak to drought-induced mortality, mainly by prioritizing aboveground growth, C and N allocation, reducing root NSC concentrations and decreasing old C contribution to new growth of leaves. In contrast, fertilization did not additionally predispose Scots pine to drought, with minor effects of fertilization and drought on newly fixed and old C allocation, tissues N and NSC concentrations. The role of nutrients for drought responses of trees seems to be species-specific. Therefore, we suggest nutrient availability and species identity to be considered in the framework of physiological mechanisms affecting drought-induced mortality.
Collapse
Affiliation(s)
- Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf 8903, Switzerland
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf 8903, Switzerland
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf 8903, Switzerland
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Maihe Li
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf 8903, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
- School of Life Science, Hebei University, Baoding 071000, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
11
|
Hart AT, Landhäusser SM, Wiley E. Tracing carbon and nitrogen reserve remobilization during spring leaf flush and growth following defoliation. TREE PHYSIOLOGY 2024:tpae015. [PMID: 38281259 DOI: 10.1093/treephys/tpae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Woody plants rely on the remobilization of carbon (C) and nitrogen (N) reserves to support growth and survival when resource demand exceeds supply at seasonally predictable times like spring leaf flush and following unpredictable disturbances like defoliation. However, we have a poor understanding of how reserves are regulated and whether distance between source and sink tissues affects remobilization. This leads to uncertainty about which reserves-and how much-are available to support plant functions like leaf growth. To better understand the source of remobilized reserves and constraints on their allocation, we created aspen saplings with organ-specific labeled reserves by using stable isotopes (13C,15N) and grafting unlabeled or labeled stems to labeled or unlabeled root stocks. We first determined which organs had imported root or stem-derived C and N reserves after spring leaf flush. We then further tested spatial and temporal variation in reserve remobilization and import by comparing 1) upper and lower canopy leaves, 2) early and late leaves, and 3) early flush and re-flush leaves after defoliation. During spring flush, remobilized root C and N reserves were preferentially allocated to sinks closer to the reserve source (i.e., lower vs upper canopy leaves). However, the reduced import of 13C in late versus early leaves indicates reliance on C reserves declined over time. Following defoliation, re-flush leaves imported the same proportion of root N as spring flush leaves, but they imported a lower proportion of root C. This lower import of reserve C suggests that, after defoliation, leaf re-flush rely more heavily on current photosynthate, which may explain the reduced leaf mass recovery of re-flush canopies (31% of initial leaf mass). The reduced reliance on reserves occurred even though roots retained significant starch concentrations (~5% dry wt), suggesting aspen prioritizes the maintenance of root reserves at the expense of fast canopy recovery.
Collapse
Affiliation(s)
- Ashley T Hart
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Erin Wiley
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
12
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
13
|
Zhou M, Zhang Y, Yang J. Analysis of Nitrogen Dynamics and Transcriptomic Activity Revealed a Pivotal Role of Some Amino Acid Transporters in Nitrogen Remobilization in Poplar Senescing Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:4140. [PMID: 38140467 PMCID: PMC10747403 DOI: 10.3390/plants12244140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Leaf senescence is an important developmental process for deciduous trees during which part of leaf nitrogen is remobilized to branches, thus being beneficial for nitrogen conservation. However, the associated regulatory mechanism remains largely unknown in deciduous trees. In this study, nitrogen dynamics and transcriptomic activity in senescing leaves were measured during autumnal senescence in hybrid poplar. Both concentrations of leaf total nitrogen (N) and amine compounds were found to decline from the pre-senescence (PRE) to the middle-senescence (MS) stage. Although the total N concentration decreased further from MS to the late-senescence (LS) and leveled off to abscission (ABS) stage, amine compound concentration increased continuously from MS to ABS, suggesting that translocation of amine compounds underperformed production of amine compounds in leaves during this period. L-glutamate, L-glutamine and α-aminoadipic acid were the top three amine compounds accumulated in senescent leaves. RNA-Seq profiling identified thousands of differentially expressed genes (DEGs) with functional association with a metabolic transition towards disassimilation. Many genes encoding amino acid metabolism enzymes and amino acid transporters (AATs) were up-regulated. Comparison of expression trend with leaf N dynamics and phylogenetic analysis identified several PtAATs which exhibited down-regulation from MS to LS stage and putatively limited leaf N remobilization. This study can serve as a primary basis to further elucidate the molecular mechanisms of nitrogen remobilization in poplar senescing leaves.
Collapse
Affiliation(s)
| | | | - Jiading Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (M.Z.); (Y.Z.)
| |
Collapse
|
14
|
Ren H, Gao G, Ma Y, Li Z, Wang S, Gu J. Shift of root nitrogen-acquisition strategy with tree age is mediated by root functional traits along the collaboration gradient of the root economics space. TREE PHYSIOLOGY 2023; 43:1341-1353. [PMID: 37073458 DOI: 10.1093/treephys/tpad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Root nitrogen (N)-uptake rate and uptake preference, and their association with root morphological and chemical traits are important to characterize root N-acquisition strategies of trees. However, how the root N-acquisition strategy varies with tree age, especially for those species that coexist at a common site, remains unknown. In this study, a field isotopic hydroponic method was used to determine the uptake rate and contribution of NH4+, NO3- and glycine, for three coexisting ectomycorrhizal coniferous species [Pinus koraiensis (Korean pine), Picea koraiensis (Korean spruce) and Abies nephrolepis (smelly fir)] at three age classes (young, middle-aged and mature) in a temperate forest. Concurrently, root morphological and chemical traits, as well as mycorrhizal colonization rate were determined. Our results show that the root uptake rate of total N and NH4+ gradually decreased across all three species with increasing tree age. The three species at all age classes preferred NH4+, except for middle-aged Korean spruce and mature smelly fir, which preferred glycine. In contrast, all three species showed the lowest acquisition of NO3-. According to the conceptual framework of 'root economics space', only a 'collaboration' gradient (i.e. dimension of root diameter vs specific root length or area) was identified for each species, in which root N-uptake rate loaded heavily on the side of 'do-it-yourself' (i.e. foraging N more by roots). Young trees of all species tended to exhibit the 'do-it-yourself' strategy for N uptake, and mature trees had an 'outsourcing' strategy (i.e. foraging N by a mycorrhizal partner), whereas middle-aged trees showed a balanced strategy. These findings suggest that shifts of root N-acquisition strategy with tree age in these species are mainly mediated by root traits along the 'collaboration' gradient, which advances our understanding of belowground competition, species coexistence and N cycling in temperate forests.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Guoqiang Gao
- Sichuan Collegiate Engineering Research Center for Chuanxibei RHS Construction, Mianyang Normal University, Mianyang 621000, China
| | - Yaoyuan Ma
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zuwang Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Siyuan Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiacun Gu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Le Roncé I, Dardevet E, Venner S, Schönbeck L, Gessler A, Chuine I, Limousin JM. Reproduction alternation in trees: testing the resource depletion hypothesis using experimental fruit removal in Quercus ilex. TREE PHYSIOLOGY 2023; 43:952-964. [PMID: 36892403 DOI: 10.1093/treephys/tpad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 06/11/2023]
Abstract
The keystones of resource budget models to explain mast seeding are that fruit production depletes tree stored resources, which become subsequently limiting to flower production the following year. These two hypotheses have, however, rarely been tested in forest trees. Using a fruit removal experiment, we tested whether preventing fruit development would increase nutrient and carbohydrates storage and modify allocation to reproduction and vegetative growth the following year. We removed all the fruits from nine adult Quercus ilex L. trees shortly after fruit set and compared, with nine control trees, the concentrations of nitrogen (N), phosphorus (P), zinc (Zn), potassium (K) and starch in leaves, twigs and trunk before, during and after the development of female flowers and fruits. The following year, we measured the production of vegetative and reproductive organs as well as their location on the new spring shoots. Fruit removal prevented the depletion of N and Zn in leaves during fruit growth. It also modified the seasonal dynamics in Zn, K and starch in twigs, but had no effect on reserves stored in the trunk. Fruit removal increased the production of female flowers and leaves the following year, and decreased the production of male flowers. Our results show that resource depletion operates differently for male and female flowering, because the timing of organ formation and the positioning of flowers in shoot architecture differ between male and female flowers. Our results suggest that N and Zn availability constrain flower production in Q. ilex, but also that other regulatory pathways might be involved. They strongly encourage further experiments manipulating fruit development over multiple years to describe the causal relationships between variations in resource storage and/or uptake, and male and female flower production in masting species.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Elia Dardevet
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Department of Botany and Plant Sciences, University of California, Riverside, CA 9252, USA
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | | |
Collapse
|
16
|
Wu H, Zhang J, Rodríguez-Calcerrada J, Salomón RL, Yin D, Zhang P, Shen H. Large investment of stored nitrogen and phosphorus in female cones is consistent with infrequent reproduction events of Pinus koraiensis, a high value woody oil crop in Northeast Asia. FRONTIERS IN PLANT SCIENCE 2023; 13:1084043. [PMID: 36714788 PMCID: PMC9878279 DOI: 10.3389/fpls.2022.1084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Pinus koraiensis is famous for its high-quality timber production all the way and is much more famous for its high value health-care nut oil production potential since 1990's, but the less understanding of its reproduction biology seriously hindered its nut productivity increase. Exploring the effects of reproduction on nutrient uptake, allocation and storage help to understand and modify reproduction patterns in masting species and high nut yield cultivar selection and breeding. Here, we compared seasonality in growth and in nitrogen ([N]) and phosphorus ([P]) concentrations in needles, branches and cones of reproductive (cone-bearing) and vegetative branches (having no cones) of P. koraiensis during a masting year. The growth of one- and two-year-old reproductive branches was significantly higher than that of vegetative branches. Needle, phloem and xylem [N] and [P] were lower in reproductive branches than in vegetative branches, although the extent and significance of the differences between branch types varied across dates. [N] and [P] in most tissues were high in spring, decreased during summer, and then recovered by the end of the growing season. Overall, [N] and [P] were highest in needles, lowest in the xylem and intermediate in the phloem. More than half of the N (73.5%) and P (51.6%) content in reproductive branches were allocated to cones. There was a positive correlation between cone number and N and P content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-year-old reproductive branches. High nutrient sink strength of cones and vegetative tissues of reproductive branches suggested that customized fertilization practices can help improve crop yield in Pinus koraiensis.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Jianying Zhang
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Jesús Rodríguez-Calcerrada
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Roberto L. Salomón
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Dongsheng Yin
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Peng Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Duan Y, Yang H, Yang H, Wu Y, Fan S, Wu W, Lyu L, Li W. Integrative physiological, metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153888. [PMID: 36577314 DOI: 10.1016/j.jplph.2022.153888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an indispensable element for plant growth and development. To understand the regulation of underlying carbon (C) and N metabolism in blackberry plants, we performed integrated analyses of the physiology, metabolome and transcriptome. Blackberry plants were subjected to no N, nitrate (NO3⁻)-N, ammonium (NH4+)-N and urea treatments. Our results showed that the NH4⁺-N treatment yielded higher values for the biomass, chlorophyll, antioxidants, N contents and antioxidant enzyme activities, as well as lower levels of free radicals and the C/N ratio compared with other treatments. Transcriptome analysis showed that different N forms significantly affected photosynthesis, flavonoid biosynthesis and the TCA cycle. Metabolome analysis indicated that the levels of lipids, carbohydrates, flavonoids and amino acids were markedly changed under different N treatments. Integrated transcriptomic and metabolomic data revealed that amino acids, including proline, arginine, L-isoleucine, L-aspartate, threonine, and L-glutamate, played important roles in maintaining normal plant growth by regulating N metabolism and amino acid metabolism. Overall, blackberry plants preferentially take up NH4⁺-N. Under the NH4⁺-N treatment, N assimilation was stronger, flavonoid biosynthesis was decreased, and the promoting influence of NH4⁺-N on N metabolism was better than that of NO3⁻-N. However, the NO3⁻-N treatment enhanced the C/N ratio, accelerated the process of C metabolism and increased the synthesis of flavonoids, thereby accelerating the flow of N metabolism to C metabolism. These results provide deeper insight into coordinating C and N metabolism and improving N use efficiency in blackberry plants.
Collapse
Affiliation(s)
- Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China.
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Sufan Fan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
18
|
He S, Zhao Y, Liu C, Li Z, Zhang Z, Li B, Tang X. An exploration into the relationship between mineral elements (nitrogen and phosphorus) and nutritional quality in soil-watermelon (Citrullus lanatus) system. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractTo fundamentally explore the correlation between crop nutritional quality and mineral elements, specific tests and accurate analysis were carried out on all organs and root soil of watermelon (Citrullus lanatus). The results showed that the distribution patterns of nitrogen and phosphorus at watermelon maturity were similar, and the average nitrogen and phosphorus contents were in the orders of leaf and seed > stem, peel, root > pulp > root soil, and peel > seed > root, stem, leaf > root soil > pulp, respectively. From the perspective of element geochemistry, biophile and lithophile elements had the strongest correlation with nitrogen and phosphorus, and watermelon did not antagonize soil nitrogen and phosphorus uptake. The prediction model of nitrogen translocation factor in watermelon organs to total acid was established by partial least squares with R2 = 0.81. Significantly, when the isometric log-ratio of nitrogen to phosphorus in watermelon leaves was 1.97 to 2.19, the watermelon pulp showed better quality with total acid > 0.5%, total sugar > 5% and soluble solids > 10%. Therefore, the characterization of nitrogen and phosphorus in watermelon leaves can serve as a non-destructive analysis to predict watermelon fruit quality.
Collapse
|
19
|
Wang F, Chen FS, Fang XM, Wang H, Hu X. Phosphorus addition regulates the growth of Chinese fir by changing needle nitrogen fractions in growing and dormant seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158230. [PMID: 36007640 DOI: 10.1016/j.scitotenv.2022.158230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Forest productivity is generally limited by nutrient scarcity. This study aims to reveal seasonal interactions among leaf carbon (C), nitrogen (N) fractions and tree growth driven by nutrient addition in a subtropical forest. Here, a field nutrient addition experiment was conducted with six treatments, namely, +N5 (5 g N m-2 yr-1), +N10 (10 g N m-2 yr-1), +P5 (5 g P m-2 yr-1), +N5 + P5, +N10 + P5, and control (N0 + P0). C fractions (structural and non-structural carbohydrates) and N fractions (soluble N, nucleic N and protein N) in needles as well as tree growth indicated by basal area increment (BAI) were measured in growing and dormant seasons. Total N and protein N in old needles were significantly increased by P addition, while no significant differences of non-structural carbohydrates in young (<1-year old) and old needles (>1-year old) were detected among the treatments in both seasons. N and P addition increased the structural carbohydrates of old needles in dormant season. P addition decreased and increased tree growth in growing and dormant seasons, respectively. The variation of BAI was explained 18.3 % by total N and 17.8 % by protein N in growing season, and was explained 33.9 % by total N and 34.2 % by protein N in dormant season. Our study suggested that the P addition effect on Chinese fir growth mostly depends on needle N fractions. This study highlights tree seasonal growth driven by nutrient alteration might be characterized by leaf N fractions rather than C fractions in subtropical forests.
Collapse
Affiliation(s)
- Fangchao Wang
- Postdoctoral Research Station of Management Science and Engineering, Nanchang University, Nanchang 330031, China; Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Sheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiang-Min Fang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huimin Wang
- Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofei Hu
- Postdoctoral Research Station of Management Science and Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
20
|
Kitao M, Yazaki K, Tobita H, Agathokleous E, Kishimoto J, Takabayashi A, Tanaka R. Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple ( Acer japonicum). FRONTIERS IN PLANT SCIENCE 2022; 13:1006413. [PMID: 36388579 PMCID: PMC9650427 DOI: 10.3389/fpls.2022.1006413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Leaves of fullmoon maple (Acer japonicum) turn brilliant red with anthocyanins synthesis in autumn. Based on field observations, autumn coloring mainly occurs in outer-canopy leaves exposed to sun, whereas inner-canopy leaves remain green for a certain longer period before finally turn yellowish red with a smaller amount of anthocyanins. Here, we hypothesized that outer-canopy leaves protect themselves against photooxidative stress via anthocyanins while simultaneously shading inner canopy leaves and protecting them from strong light (holocanopy hypothesis). To test this hypothesis, we investigated photoinhibition and leaf N content during autumn senescence in leaves of pot-grown seedlings of fullmoon maple either raised under shade (L0, ≈13% relative irradiance to open) or transferred to full sunlight conditions on 5th (LH1), 12th (LH2), or 18th (LH3) Oct, 2021. Dry mass-based leaf N (Nmass) in green leaves in shade-grown seedlings was ≈ 30 mg N g-1 in summer. Nmass in shed leaves (25th Oct to 1st Nov) was 11.1, 12.0, 14.6, and 10.1 mg N g-1 in L0, LH1, LH2, and LH3 conditions, respectively. Higher Nmass was observed in shed leaves in LH2, compared to other experimental conditions, suggesting an incomplete N resorption in LH2. Fv/Fm after an overnight dark-adaptation, measured on 19th Oct when leaf N was actively resorbed, ranked L0: 0.72 > LH3: 0.56 > LH1: 0.45 > LH2: 0.25. As decreased Fv/Fm indicates photoinhibition, leaves in LH2 condition suffered the most severe photoinhibition. Leaf soluble sugar content decreased, but protein carbonylation increased with decreasing Fv/Fm across shade-grown seedlings (L0, LH1, LH2, and LH3) on 19th Oct, suggesting impaired photosynthetic carbon gain and possible membrane peroxidation induced by photooxidative stress, especially in LH2 condition with less N resorption efficiency. Although the impairment of N resorption seems to depend on the timing and intensity of strong light exposure, air temperature, and consequently the degree of photoinhibition, the photoprotective role of anthocyanins in outer-canopy leaves of fullmoon maple might also contribute to allow a safe N resorption in inner-canopy leaves by prolonged shading.
Collapse
Affiliation(s)
- Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan
| | - Kenichi Yazaki
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan
| | - Hiroyuki Tobita
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, China
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
22
|
Wang P, Fu C, Wang L, Yan T. Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption. TREE PHYSIOLOGY 2022; 42:1549-1559. [PMID: 35274706 DOI: 10.1093/treephys/tpac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Increased atmospheric nitrogen (N) deposition could create an imbalance between N and phosphorus (P), which may substantially impact ecosystem functioning. Changes in autumnal phenology (i.e., leaf senescence) and associated leaf nutrient resorption may profoundly impact plant fitness and productivity. However, we know little about how and to what extent nutrient addition affects leaf senescence in tree species, or how changes in senescence may influence resorption. We thus investigated the impacts of N and P addition on leaf senescence and leaf N resorption in 2-year-old larch (Larix principisrupprechtii) seedlings in northern China. Results showed that nutrient addition (i.e., N, P or N + P addition) significantly delayed autumnal leaf senescence, and decreased leaf N resorption efficiency (NRE) and proficiency (NRP), particularly in the N and N + P treatments. Improved leaf N concentrations were correlated with delayed leaf senescence, as indicated by the positive relationship between mature leaf N concentrations and the timing of leaf senescence. Following nutrient addition, larch seedlings shifted toward delayed onset, but more rapid, leaf senescence. Additionally, we observed an initial negative correlation between the timing of leaf senescence and NRE and NRP, followed by a positive correlation, indicating delayed and less efficient remobilization during the early stages of senescence, followed by accelerated resorption in the later stages. However, the latter effect was potentially impaired by the increased risk of early autumn frost damage, thus failed to fully compensate for the negative effects observed during the early stages of senescence. Improved soil P availability increased leaf N resorption and thus weakened the negative impact of delayed leaf senescence on leaf N resorption, so P addition had no significant impact on leaf N resorption. Overall, our findings clarify the relationship between nutrient addition-resorption and the linkage with leaf senescence, and would have important implications for plant nutrient conservation strategy and nutrient cycling.
Collapse
Affiliation(s)
- Peilin Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Chen Fu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Liying Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Tao Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| |
Collapse
|
23
|
Fataftah N, Edlund E, Lihavainen J, Bag P, Björkén L, Näsholm T, Jansson S. Nitrate fertilization may delay autumn leaf senescence, while amino acid treatments do not. PHYSIOLOGIA PLANTARUM 2022; 174:e13690. [PMID: 35460591 PMCID: PMC9323471 DOI: 10.1111/ppl.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Fertilization with nitrogen (N)-rich compounds leads to increased growth but may compromise phenology and winter survival of trees in boreal regions. During autumn, N is remobilized from senescing leaves and stored in other parts of the tree to be used in the next growing season. However, the mechanism behind the N fertilization effect on winter survival is not well understood, and it is unclear how N levels or forms modulate autumn senescence. We performed fertilization experiments and showed that treating Populus saplings with inorganic nitrogen resulted in a delay in senescence. In addition, by using precise delivery of solutes into the xylem stream of Populus trees in their natural environment, we found that delay of autumn senescence was dependent on the form of N administered: inorganic N ( NO 3 - ) delayed senescence, but amino acids (Arg, Glu, Gln, and Leu) did not. Metabolite profiling of leaves showed that the levels of tricarboxylic acids, arginine catabolites (ammonium, ornithine), glycine, glycine-serine ratio and overall carbon-to-nitrogen (C/N) ratio were affected differently by the way of applying NO3 - and Arg treatments. In addition, the onset of senescence did not coincide with soluble sugar accumulation in control trees or in any of the treatments. We propose that different regulation of C and N status through direct molecular signaling of NO3 - and/or different allocation of N between tree parts depending on N forms could account for the contrasting effects of NO3 - and tested here amino acids (Arg, Glu, Gln, and Leu) on autumn senescence.
Collapse
Affiliation(s)
- Nazeer Fataftah
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Erik Edlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Lars Björkén
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Towards a More Realistic Simulation of Plant Species with a Dynamic Vegetation Model Using Field-Measured Traits: The Atlas Cedar, a Case Study. FORESTS 2022. [DOI: 10.3390/f13030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Improving the model-based predictions of plant species under a projected climate is essential to better conserve our biodiversity. However, the mechanistic link between climatic variation and plant response at the species level remains relatively poorly understood and not accurately developed in Dynamic Vegetation Models (DVMs). We investigated the acclimation to climate of Cedrus atlantica (Atlas cedar), an endemic endangered species from northwestern African mountains, in order to improve the ability of a DVM to simulate tree growth under climatic gradients. Our results showed that the specific leaf area, leaf C:N and sapwood C:N vary across the range of the species in relation to climate. Using the model parameterized with the three traits varying with climate could improve the simulated local net primary productivity (NPP) when compared to the model parameterized with fixed traits. Quantifying the influence of climate on traits and including these variations in DVMs could help to better anticipate the consequences of climate change on species dynamics and distributions. Additionally, the simulation with computed traits showed dramatic drops in NPP over the course of the 21st century. This finding is in line with other studies suggesting the decline in the species in the Rif Mountains, owing to increasing water stress.
Collapse
|
25
|
Löiez S, Piper FI. Phenology explains different storage remobilization in two congeneric temperate tree species with contrasting leaf habit. TREE PHYSIOLOGY 2022; 42:501-512. [PMID: 34542156 DOI: 10.1093/treephys/tpab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The dependence of trees on carbon and nutrient storage is critical to predicting the forest vulnerability under climate change, but whether evergreen and deciduous species differ in their use and allocation of stored resources during spring phenology is unclear. Using a high temporal resolution, we evaluated the role of spring phenology and shoot growth as determinants of the carbon and nutrient storage dynamics in contrasting leaf habits. We recorded the phenology and shoot elongation and determined the concentrations of total non-structural carbohydrates (NSCs), starch, soluble carbohydrates, nitrogen (N) and phosphorus (P) in buds, expanding shoots and previously formed shoots of two sympatric Nothofagus species with contrasting leaf habit. Species reached similar shoot lengths, though shoot expansion started 35 days earlier and lasted c. 40 days more in the deciduous species. Thus, although the deciduous species had a relatively constant shoot growth rate, the evergreen species experienced a conspicuous growth peak for c. 20 days. In the evergreen species, the greatest decreases in NSC concentrations of previously formed shoots and leaves coincided with the maximum shoot expansion rate and fruit filling, with minimums of 63 and 65% relative to values at bud dormancy, respectively. In contrast, minimum NSC concentrations of the previously formed shoots of the deciduous species were only 73% and occurred prior to the initiation of shoot expansion. Bud N and P concentrations increased during budbreak, whereas previously formed shoots generally did not decrease their nutrient concentrations. Late spring phenology and overlapping of phenophases contributed to the greater dependence on storage of proximal tissues in the studied evergreen compared with deciduous species, suggesting that phenology is a key determinant of the contrasting patterns of storage use in evergreen and deciduous species.
Collapse
Affiliation(s)
- Sidonie Löiez
- Agrocampus Ouest, 65, rue de Saint-Brieuc, CS 84215, Rennes Cedex 35042, France
| | - Frida I Piper
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| |
Collapse
|
26
|
Blagden M, Harrison JL, Minocha R, Sanders‐DeMott R, Long S, Templer PH. Climate change influences foliar nutrition and metabolism of red maple (
Acer rubrum
) trees in a northern hardwood forest. Ecosphere 2022. [DOI: 10.1002/ecs2.3859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Megan Blagden
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| | - Jamie L. Harrison
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| | - Rakesh Minocha
- USDA Forest Service Northeastern Research Station Durham New Hampshire 03824 USA
| | - Rebecca Sanders‐DeMott
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
- Woods Hole Coastal and Marine Science Center Woods Hole Massachusetts 02543 USA
| | - Stephanie Long
- USDA Forest Service Northeastern Research Station Durham New Hampshire 03824 USA
| | - Pamela H. Templer
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| |
Collapse
|
27
|
Csilléry K, Buchmann N, Brendel O, Gessler A, Glauser A, Doris Kupferschmid A. Recovery of silver fir (Abies alba Mill.) seedlings from ungulate browsing mirrors soil nitrogen availability. TREE PHYSIOLOGY 2022; 42:273-288. [PMID: 34528673 DOI: 10.1093/treephys/tpab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Abies alba (Mill.) has a high potential for mitigating climate change in European mountain forests; yet, its natural regeneration is severely limited by ungulate browsing. Here, we simulated browsing in a common garden experiment to study growth and physiological traits, measured from bulk needles, using a randomized block design with two levels of browsing severity and seedlings originating from 19 populations across Switzerland. Genetic factors explained most variation in growth (on average, 51.5%) and physiological traits (10.2%) under control conditions, while heavy browsing considerably reduced the genetic effects on growth (to 30%), but doubled those on physiological traits related to carbon storage. While browsing reduced seedling height, it also lowered seedling water-use efficiency (decreased $\delta ^{13}$C) and increased their $\delta ^{15}$N. Different populations reacted differently to browsing stress, and for seedling height, starch concentration and $\delta ^{15}$N, population differences appeared to be the result of natural selection. First, we found that populations originating from the warmest regions recovered the fastest from browsing stress, and they did so by mobilizing starch from their needles, which suggests a genetic underpinning for a growth-storage trade-off across populations. Second, we found that seedlings originating from mountain populations growing on steep slopes had a higher $\delta ^{15}$N in the common garden than those originating from flat areas, indicating that they have been selected to grow on N-poor, potentially drained, soils. This finding was corroborated by the fact that nitrogen concentration in adult needles was lower on steep slopes than on flat ground, strongly indicating that steep slopes are the most N-poor environments. These results suggest that adaptation to climate and soil nitrogen availability, as well as ungulate browsing pressure, co-determine the regeneration and range limit of silver fir.
Collapse
Affiliation(s)
- Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Brendel
- UMR Silva, INRAE, AgroParisTech, Université de Lorraine, Nancy, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Alexandra Glauser
- Forest Resources and Management, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
28
|
Ferraretto D, Nair R, Shah NW, Reay D, Mencuccini M, Spencer M, Heal KV. Forest canopy nitrogen uptake can supply entire foliar demand. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Ferraretto
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - R. Nair
- Department Biogeochemical Integration Max Planck Institute for Biogeochemistry Jena Germany
| | - N. W. Shah
- Forest Research Northern Research Station Roslin Midlothian EH25 9SY UK
| | - D. Reay
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - M. Mencuccini
- CREAF Bellaterra (Cerdanyola del Vallès) 08193 Spain
- ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain
| | - M. Spencer
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - K. V. Heal
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| |
Collapse
|
29
|
Zhang Q, Tang W, Peng S, Li Y. Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:77-91. [PMID: 34704647 DOI: 10.1111/tpj.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
30
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
31
|
Xiong H, Ma H, Hu B, Zhao H, Wang J, Rennenberg H, Shi X, Zhang Y. Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153556. [PMID: 34737128 DOI: 10.1016/j.jplph.2021.153556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The spring shoot leaves are important sites of nitrogen (N) metabolism in citrus trees. Understanding the physiological and metabolic response of the spring shoot leaves under varying N fertilization is fundamental to the fertilization management in citrus orchards. Thus, the processes affecting N composition, the activities of N metabolism related enzymes, and the expression of relevant genes were explored in spring shoot leaves under four N levels (0, 207, 275, 413 g N tree-1 y-1, as N0, N207, N275, N413). The results showed that, compared with N0, N275 significantly increased total N by 24.81%, which was mainly attributed to enhancement of structural N by 30.92%, free amino acid N by 40.91% and nitrate N by 41.33%. The relative expression of nitrate reductase (NR) and glutamate dehydrogenase (GDH) under N275 increased by 19.32% and 73.48%, respectively, compared with that under N0 treatment. Compared with N0 treatment, the NR transcription level under N275 treatment increased by 381%. The relative transcription levels of NADP-GDH and GDH1 also increased with increasing N fertilization. However, compared with that under N275, the relative transcription of GDH2 under N413 treatment was inhibited. Therefore, the transcript abundance of NR, NADP-GDH,GDH1 and GDH2 affected the activities of NR and GDH and thereby contributed to the regulation of N composition in the leaves. In addition, the activities of glutamine synthetase and nitrite reductase were largely unaffected or even declined in the N207, N275 and N413 treatments compared with the N0. This study elucidated the mechanism of primary N metabolism and partitioning in citrus leaves and provided a theoretical basis for N management in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Haotian Ma
- College of Forensic Medicine, Xi' an Jiaotong University, Xi'an, 710061, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Huanyu Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China.
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
32
|
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021; 10:cells10123303. [PMID: 34943810 PMCID: PMC8699818 DOI: 10.3390/cells10123303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Low nitrogen availability is one of the main limiting factors for plant growth and development, and high doses of N fertilizers are necessary to achieve high yields in agriculture. However, most N is not used by plants and pollutes the environment. This situation can be improved by enhancing the nitrogen use efficiency (NUE) in plants. NUE is a complex trait driven by multiple interactions between genetic and environmental factors, and its improvement requires a fundamental understanding of the key steps in plant N metabolism—uptake, assimilation, and remobilization. This review summarizes two decades of research into bioengineering modification of N metabolism to increase the biomass accumulation and yield in crops. The expression of structural and regulatory genes was most often altered using overexpression strategies, although RNAi and genome editing techniques were also used. Particular attention was paid to woody plants, which have great economic importance, play a crucial role in the ecosystems and have fundamental differences from herbaceous species. The review also considers the issue of unintended effects of transgenic plants with modified N metabolism, e.g., early flowering—a research topic which is currently receiving little attention. The future prospects of improving NUE in crops, essential for the development of sustainable agriculture, using various approaches and in the context of global climate change, are discussed.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Correspondence:
| | - Anna A. Popova
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| |
Collapse
|
33
|
Watkinson AD, Naeth MA, Pruss SD. Nutrient loading
Artemisia cana
seedlings in greenhouse increases nitrogen tissue content and post‐outplanting survival. Restor Ecol 2021. [DOI: 10.1111/rec.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Autumn D. Watkinson
- Department of Renewable Resources University of Alberta 751 General Services Building, Edmonton AB T6G 2H1 Canada
| | - M. Anne Naeth
- Department of Renewable Resources University of Alberta 751 General Services Building, Edmonton AB T6G 2H1 Canada
| | - Shelley D. Pruss
- Species Conservation, Conservation Programs Branch Parks Canada, Government of Canada Elk Island National Park, 1‐54401 Range Road 203, Fort Saskatchewan AB T8L 0V3 Canada
| |
Collapse
|
34
|
Zhu F, Dai L, Hobbie EA, Qu Y, Huang D, Gurmesa GA, Zhou X, Wang A, Li Y, Fang Y. Quantifying nitrogen uptake and translocation for mature trees: an in situ whole-tree paired 15N labeling method. TREE PHYSIOLOGY 2021; 41:2109-2125. [PMID: 34014313 DOI: 10.1093/treephys/tpab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is one of the major nutrients limiting plant growth in terrestrial ecosystems. To avoid plant-microbe competition, previous studies on plant N uptake preference often used hydroponic experiments on fine roots of seedlings and demonstrated ammonium preference for conifer species; however, we lack information about N uptake and translocation in the field. In this paper, we described a method of in situ paired 15N labeling and reported the rates and time course of N uptake and translocation by mature trees in situ. We added 15N-enriched ammonium or nitrate, together with the nitrification inhibitor dicyandiamide, to paired Larix kaempferi (Lamb.) Carr (larch) trees from 30-, 40- and 50-year-old plantations. Fine roots, coarse roots, leaves and small branches were collected 2, 4, 7, 14 and 30 days after labeling. Nitrate uptake and translocation averaged 1.59 ± 0.16 μg 15N g-1 day-1, which is slightly higher than ammonium (1.08 ± 0.10 μg 15N g-1 day-1), in all tree organs. Nitrate contributed 50-78% to N uptake and translocation, indicating efficient nitrate use by larch in situ. We observed no age effect. We suggest that sampling leaves after 4 days of 15N labeling is sufficient to detect mature tree N uptake preference in situ. Whole-tree 15N-ammonium recovery equaled that of 15N-nitrate 30 days after 15N addition, implying the importance of both ammonium and nitrate to mature larch N use in the long run. We conclude that our method is promising for studying mature tree N uptake preference in situ and can be applied to other conifer and broadleaf species. We suggest using highly enriched 15N tracer to overcome soil dilution and a nitrification inhibitor to minimize ammonium transformation to nitrate. Our study revealed mature tree N preference in situ and demonstrated the strong contribution of nitrate toward mature larch growth on soils rich in nitrate.
Collapse
Affiliation(s)
- Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Luming Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Erik A Hobbie
- Earth Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH 03824-3525, USA
| | - Yuying Qu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Dan Huang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Geshere A Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Xulun Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| |
Collapse
|
35
|
Wang M, Li G, Feng Z, Liu Y, Xu Y, Uscola M. Uptake of nitrogen forms by diploid and triploid white poplar depends on seasonal carbon use strategy and elevated summer ozone. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7180-7190. [PMID: 34228101 DOI: 10.1093/jxb/erab317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The ability of plants to acquire soil nitrogen (N) sources is plastic in response to abiotic and biotic factors. However, information about how plant preferences among N forms changes in response to internal plant N demand through growth phases, or to environmental stress such as ozone (O3), is scarce. Diploid and triploid Chinese white poplar were used to investigate N form preferences at two key developmental periods (spring, summer) and in response to summer O3 (ambient, 60 ppb above ambient). We used stable isotopes to quantify NH4+, NO3- and glycine N-uptake rates. Carbon acquisition was recorded simultaneously. Both ploidy levels differed in growth, N form preferences, and N and C use strategies. Diploid white poplars grew faster in spring but slower in summer compared with triploids. Diploid white poplars also showed plasticity among N form preferences through the season, with no preferences in spring, and NO3- preferred in summer, while triploids showed an overall preference for NO3-. Carbon acquisition and NO3- uptake were inhibited in both ploidy levels of poplar at elevated O3, which also reduced diploid total N uptake. However, triploid white poplars alleviated N uptake reduction, switching to similar preferences among N forms. We conclude that N form preferences by white poplar are driven by internal C and N use in response to nutrient demands, and external factors such as O3.
Collapse
Affiliation(s)
- Miaomiao Wang
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yong Liu
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mercedes Uscola
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, U.D. Ecología, Universidad de Alcalá, Apdo. 20, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
36
|
Andivia E, Villar-Salvador P, Oliet JA, Puértolas J, Dumroese RK, Ivetić V, Molina-Venegas R, Arellano EC, Li G, Ovalle JF. Climate and species stress resistance modulate the higher survival of large seedlings in forest restorations worldwide. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02394. [PMID: 34164882 DOI: 10.1002/eap.2394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Seedling planting plays a key role in active forest restoration and regeneration of managed stands. Plant attributes at outplanting can determine tree seedling survival and consequently early success of forest plantations. Although many studies show that large seedlings of the same age within a species have higher survival than small ones, others report the opposite. This may be due to differences in environmental conditions at the planting site and in the inherent functional characteristics of species. Here, we conducted a global-scale meta-analysis to evaluate the effect of seedling size on early outplanting survival. Our meta-analysis covered 86 tree species and 142 planting locations distributed worldwide. We also assessed whether planting site aridity and key plant functional traits related to abiotic and biotic stress resistance and growth capacity, namely specific leaf area and wood density, modulate this effect. Planting large seedlings within a species consistently increases survival in forest plantations worldwide. Species' functional traits modulate the magnitude of the positive seedling size-outplanting survival relationship, showing contrasting effects due to aridity and between angiosperms and gymnosperms. For angiosperms planted in arid/semiarid sites and gymnosperms in subhumid/humid sites the magnitude of the positive effect of seedling size on survival was maximized in species with low specific leaf area and high wood density, characteristics linked to high stress resistance and slow growth. By contrast, high specific leaf area and low wood density maximized the positive effect of seedling size on survival for angiosperms planted in subhumid/humid sites. Results have key implications for implementing forest plantations globally, especially for adjusting nursery cultivation to species' functional characteristics and planting site aridity. Nursery cultivation should promote large seedlings, especially for stress sensitive angiosperms planted in humid sites and for stress-resistant species planted in dry sites.
Collapse
Affiliation(s)
- Enrique Andivia
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pedro Villar-Salvador
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Juan A Oliet
- Departamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - R Kasten Dumroese
- Rocky Mountain Research Station, U.S. Department of Agriculture Forest Service, Moscow, Idaho, 83843, USA
| | - Vladan Ivetić
- Faculty of Forestry, University of Belgrade, Belgrade, 11030, Serbia
| | - Rafael Molina-Venegas
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Eduardo C Arellano
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, 8940855, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile
| | - Guolei Li
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Juan F Ovalle
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile
- Departamento de Silvicultura y Conservación de la Naturaleza, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, 8820000, Chile
| |
Collapse
|
37
|
Ouyang SN, Gessler A, Saurer M, Hagedorn F, Gao DC, Wang XY, Schaub M, Li MH, Shen WJ, Schönbeck L. Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought. TREE PHYSIOLOGY 2021; 41:1400-1412. [PMID: 33595075 PMCID: PMC8436808 DOI: 10.1093/treephys/tpab019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The role of carbon (C) and nutrient uptake, allocation, storage and especially their interactions in survival and recovery of trees under increased frequencies and intensities of drought events is not well understood. A full factorial experiment with four soil water content regimes ranging from extreme drought to well-watered conditions and two fertilization levels was carried out. We aimed to investigate whether nutrient addition mitigates drought effects on downy oak (Quercus pubescens Willd.) and whether storage pools of non-structural carbohydrates (NSC) are modified to enhance survival after 2.5 years of drought and recovery after drought relief. Physiological traits, such as photosynthesis, predawn leaf water potential as well as tissue biomass together with pools and dynamics of NSC and nutrients at the whole-tree level were investigated. Our results showed that fertilization played a minor role in saplings' physiological processes to cope with drought and drought relief, but reduced sapling mortality during extreme drought. Irrespective of nutrient supply, Q. pubescens showed increased soluble sugar concentration in all tissues with increasing drought intensity, mostly because of starch degradation. After 28 days of drought relief, tissue sugar concentrations decreased, reaching comparable values to those of well-watered plants. Only during the recovery process from extreme drought, root NSC concentration strongly declined, leading to an almost complete NSC depletion after 28 days of rewetting, simultaneously with new leaves flushing. These findings suggest that extreme drought can lead to root C exhaustion. After drought relief, the repair and regrowth of organs can even exacerbate the root C depletion. We concluded that under future climate conditions with repeated drought events, the insufficient and lagged C replenishment in roots might eventually lead to C starvation and further mortality.
Collapse
Affiliation(s)
- Sheng-Nan Ouyang
- South China Botanical Garden, Chinese Academy of Sciences,723 XingKe Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Ramistrasse 101, Zurich 8902, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - De-Cai Gao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- School of Geographical Sciences, Northeast Normal University, 5268 Renming Road, Nanguan District, Changchun 130024, China
| | - Xiao-Yu Wang
- Jiyang College, Zhejiang A&F University, 72 Puyang Road,Jiyang District, Zhuji 311800, China
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- School of Geographical Sciences, Northeast Normal University, 5268 Renming Road, Nanguan District, Changchun 130024, China
| | | | - Leonie Schönbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Route Cantonale, Lausanne 1015, Switzerland
| |
Collapse
|
38
|
Lirette AO, Despland E. Defensive Traits during White Spruce ( Picea glauca) Leaf Ontogeny. INSECTS 2021; 12:insects12070644. [PMID: 34357304 PMCID: PMC8306798 DOI: 10.3390/insects12070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Leaves can only toughen after they have finished growing and, as a result, many herbivorous insects specialize in newly developing leaves because softer leaves are easier to chew. The foliage of conifer trees is particularly tough, and so one would expect conifers to invest more defensive chemicals into soft vulnerable growing needles than into tough mature ones. We summarize the literature describing how chemical defenses of foliage change during the growing season in white spruce, an economically important conifer tree. We next report measurements of the toughness of white spruce buds as they swell, burst, and grow into young needles. As expected, buds soften as they swell in spring, but after budburst, needles become tougher until they are similar to previous-year foliage in mid-summer. Leaves grown in the sun are slightly tougher than leaves grown in the shade. However, there was no indication that trees invest more in chemical defense of growing leaves than of mature leaves. Abstract Changes during leaf ontogeny affect palatability to herbivores, such that many insects, including the eastern spruce budworm (Choristoneura fumiferana (Clem.)), are specialist feeders on growing conifer leaves and buds. Developmental constraints imply lower toughness in developing foliage, and optimal defense theory predicts higher investment in chemical defense in these vulnerable yet valuable developing leaves. We summarize the literature on the time course of defensive compounds in developing white spruce (Picea glauca (Moench) Voss) needles and report original research findings on the ontogeny of white spruce needle toughness. Our results show the predicted pattern of buds decreasing in toughness followed by leaves increasing in toughness during expansion, accompanied by opposite trends in water content. Toughness of mature foliage decreased slightly during the growing season, with no significant relationship with water content. Toughness of sun-grown leaves was slightly higher than that of shade-grown leaves. However, the literature review did not support the expected pattern of higher defensive compounds in expanding leaves than in mature leaves, suggesting that white spruce might instead exhibit a fast-growth low-defense strategy.
Collapse
|
39
|
Joseph J, Luster J, Bottero A, Buser N, Baechli L, Sever K, Gessler A. Effects of drought on nitrogen uptake and carbon dynamics in trees. TREE PHYSIOLOGY 2021; 41:927-943. [PMID: 33147631 DOI: 10.1093/treephys/tpaa146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/29/2020] [Indexed: 05/21/2023]
Abstract
Research on drought impact on tree functioning is focussed primarily on water and carbon (C) dynamics. Changes in nutrient uptake might also affect tree performance under drought and there is a need to explore underlying mechanisms. We investigated effects of drought on (a) in situ nitrogen (N) uptake, accounting for both, N availability to fine roots in soil and actual N uptake, (b) physiological N uptake capacity of roots and (c) the availability of new assimilates to fine roots influencing the N uptake capacity using 15N and 13C labelling. We assessed saplings of six different tree species (Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl., Abies alba Mill., Picea abies (L.) H.Karst. and Pinus sylvestris L.). Drought resulted in significant reduction of in situ soil N uptake in deciduous trees accompanied by reduced C allocation to roots and by a reduction in root biomass available for N uptake. Although physiological root N uptake capacity was not affected by drought in deciduous saplings, reduced maximum ammonium but not nitrate uptake was observed for A. alba and P. abies. Our results indicate that drought has species-specific effects on N uptake. Even water limitations of only 5 weeks as assessed here can decrease whole-plant inorganic N uptake, independent of whether the physiological N uptake capacity is affected or not.
Collapse
Affiliation(s)
- Jobin Joseph
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jörg Luster
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Alessandra Bottero
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Nathalie Buser
- Universitätsklinik für Hals, Nasen- und Ohrenkrankheiten Kopf- und Halschirurgie, Freiburgstrasse-16, 3010 Bern, Switzerland
| | - Lukas Baechli
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Krunoslav Sever
- Faculty of Forestry, Department of Forest Genetics, Dendrology and Botany, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
40
|
Tan BZ, Close DC, Quin PR, Swarts ND. Nitrogen Use Efficiency, Allocation, and Remobilization in Apple Trees: Uptake Is Optimized With Pre-harvest N Supply. FRONTIERS IN PLANT SCIENCE 2021; 12:657070. [PMID: 34135922 PMCID: PMC8202005 DOI: 10.3389/fpls.2021.657070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 05/28/2023]
Abstract
Optimizing the utilization of applied nitrogen (N) in fruit trees requires N supply that is temporally matched to tree demand. We investigated how the timing of N application affected uptake, allocation, and remobilization within 14-year-old "Gala"/M26 apple trees (Malus domestica Borkh) over two seasons. In the 2017-2018 season, 30 g N tree-1 of 5.5 atom% 15N-calcium nitrate was applied by weekly fertigation in four equal doses, commencing either 4 weeks after full bloom (WAFB) (pre-harvest) or 1-week post-harvest, or fortnightly, divided between pre- and post-harvest (50:50 split). Nitrogen uptake derived from fertilizer (NDF) was monitored by leaf sampling before whole trees were destructively harvested at dormancy of the first season to quantify N uptake and allocation and at fruit harvest of the second season to quantify the remobilization of NDF. The uptake efficiency of applied N fertilizer (NUpE) was significantly higher from pre-harvest (32.0%) than from the other treatments (~17%). The leaf NDF concentration, an indicator of N uptake, increased concomitantly only when pre-harvest N was applied. Pre-harvest treated trees allocated more than half of the NDF into fruit and leaves and stored the same amount of NDF into perennial organs as the post-harvest treatment. Subsequent spring remobilization of NDF was not affected by the timing of N fertigation from the previous season. A seasonal effect of remobilization was observed with a decrease in root N status and a reciprocal increase in branch N status at fruit harvest of season two. These findings represent a shift in the understanding of dynamics of N use in mature deciduous trees and indicate that current fertilizer strategies need to be adjusted from post-harvest to primarily pre-harvest N application to optimize N use efficiency. This approach can provide adequate storage N to support early spring growth the following season with no detriment to fruit quality.
Collapse
|
41
|
Osada N. Differential springtime branch warming controls intra-crown nitrogen allocation and leaf photosynthetic traits in understory saplings of a temperate deciduous species. Oecologia 2021; 196:331-340. [PMID: 33963901 DOI: 10.1007/s00442-021-04929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
Between-branch nitrogen competition is expected to be important during spring in temperate deciduous trees as nitrogen allocation would be higher in branches from earlier budburst than in those from later budburst. Such phenology-induced branch interaction would influence plant photosynthesis, but this has not been evaluated. Warming experiments were conducted on whole crowns (warmed trees; trunks and all branches of the same tree were warmed) or parts of the crowns (warmed branches with unwarmed control branches in the same tree), with unwarmed control trees, in saplings of the deciduous species Fraxinus lanuginosa. Spring leaf phenology and leaf photosynthetic traits were investigated to determine how the difference in temperature affects leaf phenology and photosynthetic traits. The timing of budburst was influenced by temperature-budburst was earlier in warmed trees and warmed branches than in control trees and control branches, but budburst timing did not differ between control trees and control branches or between warmed trees and warmed branches. In contrast, leaf traits were affected by the variation in phenology within crowns-nitrogen content and photosynthetic capacity were greater in the leaves of the warmed branches than in the control branches, but they did not differ between the leaves of warmed trees and control trees. Thus, branch warming altered the distribution of nitrogen between warmed and unwarmed branches as warmed branches developed faster, resulting in intracrown variation in leaf photosynthetic traits.
Collapse
Affiliation(s)
- Noriyuki Osada
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya, 468-8502, Japan. .,Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, 053-0035, Japan.
| |
Collapse
|
42
|
Quadri P, Silva LCR, Zavaleta ES. Climate-induced reversal of tree growth patterns at a tropical treeline. SCIENCE ADVANCES 2021; 7:7/22/eabb7572. [PMID: 34039595 PMCID: PMC8153731 DOI: 10.1126/sciadv.abb7572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Globally, cold-limited trees and forests are expected to experience growth acceleration as a direct response to warming temperatures. However, thresholds of temperature limitation may vary substantially with local environmental conditions, leading to heterogeneous responses in tree ecophysiology. We used dendroecological and isotopic methods to quantify shifting tree growth and resource use over the past 143 years across topographic aspects in a high-elevation forest of central Mexico. Trees on south-facing slopes (SFS) grew faster than those on north-facing slopes (NFS) until the mid-20th century, when this pattern reversed notably with marked growth rate declines on SFS and increases on NFS. Stable isotopes of carbon, oxygen, and carbon-to-nitrogen ratios suggest that this reversal is linked to interactions between CO2 stimulation of photosynthesis and water or nitrogen limitation. Our findings highlight the importance of incorporating landscape processes and habitat heterogeneity in predictions of tree growth responses to global environmental change.
Collapse
Affiliation(s)
- Paulo Quadri
- Sky Island Alliance, Tucson, AZ 85719, USA.
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
43
|
Warth B, Marohn C, Asch F. Improved simulation of plant-animal interactions in African savannas with the extended land use change model LUCIA. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Cai Z, Xie T, Xu J. Source-sink manipulations differentially affect carbon and nitrogen dynamics, fruit metabolites and yield of Sacha Inchi plants. BMC PLANT BIOLOGY 2021; 21:160. [PMID: 33784996 PMCID: PMC8011213 DOI: 10.1186/s12870-021-02931-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/17/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Being a promising tropical woody oilseed crop, the evergreen and recurrent plants of Sacha Inchi (Plukenetia volubilis L.) has complex phenology and source-sink interactions. Carbon source-sink manipulations with control and two treatments (reduce source, ca. 10% mature leaf pruning; reduce sink, 10% fruitlet thinning) were conducted on 2.5-year-old field-grown P. volubilis plantation during the early-wet season in a seasonal tropical area. RESULTS Leaf photosynthetic rate and specific leaf area largely remained unchanged in response to defoliation or defloration. Compared with control, higher N contents on average were observed in both remaining leaves and branches of the defoliated plants, suggesting that N-mobilization was mainly due to the enhanced N uptake from soil. Carbon, but not N, is a source-driven growth process of P. volubilis plants, as defoliation reduced the contents of non-structural carbohydrates (especially sugar) in branches, although temporally, whereas defloration increased available C reserve. The seasonal dynamic pattern of fruit ripening was altered by source-sink regulations. Total seed yield throughout the growing season, which depends on fruit set and retention (i.e., number of matured fruit) rather than individual fruit development (size), was slightly increased by defloration but was significantly decreased by defoliation. Compared with control, defloration did not enrich the KEGG pathway, but defoliation downregulated the TCA cycle and carbohydrate and lipid metabolisms in fruitlets after 24 days of the applications of source-sink manipulation. CONCLUSION Carbohydrate reserves serve to buffer sink-source imbalances that may result from temporary adjustment in demand for assimilates (e.g., defloration) or shortfalls in carbon assimilation (e.g., defoliation). Defoliation is disadvantageous for the yield and also for carbohydrate and lipid accumulation in fruits of P. volubilis plants. Although more studies are needed, these results provide new insights to the further improvement in seed yield of the strong source-limited P. volubilis plants by source/sink manipulations.
Collapse
Affiliation(s)
- Zhiquan Cai
- Department of Horticulture, Foshan University, Foshan, 528000, China.
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Tao Xie
- Department of Horticulture, Foshan University, Foshan, 528000, China.
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
45
|
Bueno A, Pritsch K, Simon J. Responses of native and invasive woody seedlings to combined competition and drought are species-specific. TREE PHYSIOLOGY 2021; 41:343-357. [PMID: 33079201 DOI: 10.1093/treephys/tpaa134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Woody species invasions are a major threat to native communities with intensified consequences during increased periods of summer drought as predicted for the future. Competition for growth-limiting nitrogen (N) between native and invasive tree species might represent a key mechanism underlying the invasion process, because soil water availability and N acquisition of plants are closely linked. To study whether the traits of invasive species provide an advantage over natives in Central Europe in the competition for N under drought, we conducted a greenhouse experiment. We analyzed the responses of three native (i.e., Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L.) and two invasive woody species (i.e., Prunus serotina Ehrh. and Robinia pseudoacacia L.) to competition in terms of their organic and inorganic N acquisition, as well as allocation of N to N pools in the leaves and fine roots. In our study, competition resulted in reduced growth and changes in internal N pools in both native and invasive species mediated by the physiological characteristics of the target species, the competitor, as well as soil water supply. Nitrogen acquisition, however, was not affected by competition indicating that changes in growth and N pools were rather linked to the remobilization of stored N. Drought led to reduced N acquisition, growth and total soluble protein-N levels, while total soluble amino acid-N levels increased, most likely as osmoprotectants as an adaptation to the reduced water supply. Generally, the consequences of drought were enhanced with competition across all species. Comparing the invasive competitors, P. serotina was a greater threat to the native species than R. pseudoacacia. Furthermore, deciduous and coniferous native species affected the invasives differently, with the species-specific responses being mediated by soil water supply.
Collapse
Affiliation(s)
- Andrea Bueno
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstädter Landstrasse 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
46
|
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. Rhizosphere 'Trade' Is an Unnecessary Analogy: Response to Noë. Trends Ecol Evol 2021; 36:176-177. [PMID: 33419596 DOI: 10.1016/j.tree.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Cindy E Prescott
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T1Z4, Canada.
| | - Sue J Grayston
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T1Z4, Canada
| | - Heljä-Sisko Helmisaari
- Department of Forest Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Eva Kaštovská
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice 37005, Czech Republic
| | - Christian Körner
- Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056 Basel, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Ina C Meier
- Department of Biology, University of Hamburg, Haidkrugsweg 1, 22885 Barsbüttel-Willinghusen, Germany
| | - Peter Millard
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
47
|
Qubain CA, Yano Y, Hu J. Nitrogen acquisition strategies of mature Douglas‐fir: a case study in the northern Rocky Mountains. Ecosphere 2021. [DOI: 10.1002/ecs2.3338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Claire A. Qubain
- Ecology Department Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Yuriko Yano
- Ecology Department Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Jia Hu
- School of Natural Resources and the Environment University of Arizona 1064 East Lowell Street Tucson Arizona85712USA
| |
Collapse
|
48
|
Choquette NE, Ainsworth EA, Bezodis W, Cavanagh AP. Ozone tolerant maize hybrids maintain Rubisco content and activity during long-term exposure in the field. PLANT, CELL & ENVIRONMENT 2020; 43:3033-3047. [PMID: 32844407 PMCID: PMC7756399 DOI: 10.1111/pce.13876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/21/2023]
Abstract
Ozone pollution is a damaging air pollutant that reduces maize yields equivalently to nutrient deficiency, heat, and aridity stress. Therefore, understanding the physiological and biochemical responses of maize to ozone pollution and identifying traits predictive of ozone tolerance is important. In this study, we examined the physiological, biochemical and yield responses of six maize hybrids to elevated ozone in the field using Free Air Ozone Enrichment. Elevated ozone stress reduced photosynthetic capacity, in vivo and in vitro, decreasing Rubisco content, but not activation state. Contrary to our hypotheses, variation in maize hybrid responses to ozone was not associated with stomatal limitation or antioxidant pools in maize. Rather, tolerance to ozone stress in the hybrid B73 × Mo17 was correlated with maintenance of leaf N content. Sensitive lines showed greater ozone-induced senescence and loss of photosynthetic capacity compared to the tolerant line.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| | - William Bezodis
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Amanda P. Cavanagh
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- School of Life SciencesUniversity of EssexColchesterUK
| |
Collapse
|
49
|
Sprout Regeneration of Shrub Willows after Cutting. PLANTS 2020; 9:plants9121684. [PMID: 33271821 PMCID: PMC7761489 DOI: 10.3390/plants9121684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022]
Abstract
Shrub willow (Salix L. spp.) is a promising bioenergy resource crop due to its high growth rates and superb regenerative ability. Sprouting capacity is influenced by many factors, such as parent tree species and size, which are important limiting factors for stump survival or sprout growth. In this study, we aimed to quantify the survival and regeneration performance of sprouts (including sprout height, sprout diameter, sprout number, leaf morphological traits, leaf chlorophyll content, and ground part dry biomass) from the stumps of two Salix species from three diameter classes (10–15, 16–19, and 20–30 mm). An attempt was made to explore why the stump size affects the regeneration of willows by analyzing the carbon and nitrogen proportion of stumps. Stump survival did not differ between the two Salix species. However, the sprout regeneration of S. triandra was much better than that of S. suchowensis. An increase in stump diameter caused increases in the number of sprouts produced per stump, the mean height and basal diameter of sprouts per stump, the leaf chlorophyll content, and the biomass of sprouts per stump. By contrast, stump diameter did not significantly affect stump survival. The results indicate that the larger stumps store more carbon and nitrogen than small-sized stumps, which may be one of the reasons why the larger willow stumps have a stronger resprouting ability. This study provides essential information regarding the sprout regeneration of short-rotation coppice willow plantations after harvest.
Collapse
|
50
|
Zhang Y, Ye X, Zhang X, Huang W, Zhao H. Natural Variations and Dynamic Changes of Nitrogen Indices throughout Growing Seasons for Twenty Tea Plant ( Camellia sinensis) Varieties. PLANTS 2020; 9:plants9101333. [PMID: 33050287 PMCID: PMC7599643 DOI: 10.3390/plants9101333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) leaves are harvested multiple times annually accompanied by a large amount of nitrogen (N) removed. Therefore, tea plantations are characterized by high requirements of N. This study aimed to assess the variations of N-level, apparent N remobilization efficiency (ANRE), and N utilization efficiency (NUtE) and their dynamic changes during growing seasons for twenty tea varieties. The N-level was highest in the one bud with two leaves as the youngest category, followed by mature leaves attached to green-red stems, and then by aging leaves attached to grey stems. The dynamic N-level presented different profiles of “S”-, “U”-, and “S-like”-shape in the three categories of leaves during the growing seasons. Here, specifically defined ANRE indicated N fluxes in a specific category of leaves, showing that sources and sinks alternate during the period of two consecutive rounds of growth. The dynamic of averaged NUtE followed an “S”-shape. The results revealed annual rhythms and physiological characters related with N indices, which were variety dependent and closely related with the amount of N requirements at proper time. An optimized NUtE is a complex character determined by the combination of tea plantation management and breeding practices to achieve sustainable development with economic benefit.
Collapse
Affiliation(s)
- Yange Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangsheng Ye
- College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xinwan Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|