1
|
Rusman Q, Hooiveld‐Knoppers S, Dijksterhuis M, Bloem J, Reichelt M, Dicke M, Poelman EH. Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. THE NEW PHYTOLOGIST 2022; 233:2548-2560. [PMID: 34953172 PMCID: PMC9305281 DOI: 10.1111/nph.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
- Present address:
Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Sanne Hooiveld‐Knoppers
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mirjam Dijksterhuis
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Janneke Bloem
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Strasse 807745JenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
2
|
Meng Y, Liang Y, Liao B, He W, Liu Q, Shen X, Xu J, Chen S. Genome-Wide Identification, Characterization and Expression Analysis of Lipoxygenase Gene Family in Artemisia annua L. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050655. [PMID: 35270126 PMCID: PMC8912875 DOI: 10.3390/plants11050655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/17/2023]
Abstract
Lipoxygenase (LOX) is a ubiquitous oxygenase found in animals and plants and plays a pivotal role in diverse biological processes, including defense and development. Artemisinin, which can only be obtained from Artemisia annua L., is the most effective therapeutic drug for malaria without serious side effects. This study identified and analyzed LOX gene family members in the A. annua genome at the chromosomal level. Twenty LOX genes with various molecular weights, isoelectric points, and amino acid numbers were identified and named AaLOX, which were located in the cytoplasm or chloroplast. The average protein length of all AaLOX was 850 aa. Phylogenetic tree analysis revealed that the AaLOX was divided into two major groups, 9-LOX and 13-LOX. The exon numbers ranged from 1 to 12, indicating that different AaLOX genes have different functions. The secondary structure was mainly composed of alpha helix and random coil, and the tertiary structure was similar for most AaLOX. Upstream promoter region analysis revealed that a large number of cis-acting elements were closely related to plant growth and development, light response, hormone, and other stress responses. Transcriptome data analysis of different tissues suggested that the gene family was differently expressed in the roots, stems, leaves, and flowers of two A. annua strains HAN1 and LQ9. qRT-PCR confirmed that AaLOX5 and AaLOX17 had the highest expression in flowers and leaves. This study provides a theoretical basis for the further functional analysis of the AaLOX gene family.
Collapse
Affiliation(s)
- Ying Meng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
| | - Yu Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
- College of Pharmaceutical Science, Dali University, Dali 671000, China;
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
| | - Wenrui He
- College of Pharmaceutical Science, Dali University, Dali 671000, China;
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Qianwen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
- Correspondence: (J.X.); (S.C.)
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China; (Y.L.); (B.L.); (Q.L.); (X.S.)
- Correspondence: (J.X.); (S.C.)
| |
Collapse
|
3
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Kang Y, Liu W, Guan C, Guan M, He X. Evolution and functional diversity of lipoxygenase (LOX) genes in allotetraploid rapeseed (Brassica napus L.). Int J Biol Macromol 2021; 188:844-854. [PMID: 34416264 DOI: 10.1016/j.ijbiomac.2021.08.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023]
Abstract
Lipoxygenase (LOX, EC 1.13.11.12) is a non-haeme iron-containing dioxygenase family that catalyzes the oxygenation of polyunsaturated fatty acids into bio-functionally fatty acid diverse (oxylipins) and plays vital role in plant growth and development and responses to abiotic and biotic stresses. Though LOX genes have been studied in many plant species, their roles in Brassicaceae species are still unknown. Here, a set of 14, 18, and 33 putative LOX genes were identified in Brassica rapa, Brassica oleracea and Brassica napus (allotetraploid rapeseed), respectively, which could be divided into 9-LOX (LOX1/5), 13-LOX type I (LOX3/4/6), and type II (LOX2) subgroups. There was an expansion of LOX2 orthologous genes in Brassicaceae. Most of the LOX genes are intron rich and conserved in gene structure, and the LOX proteins all have the conserved lipoxygenase and PLAT/LH2 domain. Ka/Ks ratio revealed that the majority of LOXs underwent purifying selection in Brassicaceae. The light-, ABA-, MeJA-related cis-elements and MYB-binding sites in the promoters of BnaLOXs were the most abundant. BnaLOXs displayed different spatiotemporal expression patterns and various abiotic/biotic stress responsive expression patterns. BnaLOX1/5 were slightly or no response to phytohormones and abiotic stresses. BnaLOX3/4/6 predominantly express in roots and were strongly up-regulated by salinity and PEG treatments, and BnaLOX3/4 were the methyl jasmonate (MeJA) and salicylic acid (SA) early response genes and strongly induced by infection of Sclerotinia sclerotiorum; while the BnaLOX2 members predominantly express in stamens, were MeJA and SA continuous response genes and strongly repressed by cold, heat and waterlogging treatments in leaves. Our results are useful for understanding the biological functions of the BnaLOX genes in allotetraploid rapeseed.
Collapse
Affiliation(s)
- Yu Kang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Mei Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Xin He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS, Zhang L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45276-45295. [PMID: 33860891 DOI: 10.1007/s11356-021-13755-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/29/2021] [Indexed: 05/08/2023]
Abstract
Drought is a major environmental threat limiting worldwide crop production. Drought stress affects the tobacco quality and yield; therefore, the current research studies were undertaken to investigate the effectiveness of arbuscular mycorrhizal fungi (AMF) under drought stress on morphological and biochemical attributes of tobacco (Nicotiana tabacum L. variety Yunyan 87). AMF-inoculated and AMF-non-inoculated plants were maintained in a greenhouse and irrigated with a half-strength Hoagland solution (100 mL pot-1) once a week. At harvesting, the plant height, number of leaves, fresh and dry weights, mycorrhizal colonization, and concentration of leaf photosynthetic pigments and photosynthetic rate were measured. Data were statistically analyzed by ANOVA and the principal component (PCA) analyses. The effect of root colonization significantly increased biomass production and essential oil accumulation. Results showed that drought at mild and severe stressed levels significantly affected tobacco growth by decreasing plant height, biomass, and a number of leaves. However, inoculation of AMF considerably increased plant height, fresh and dry weights, chlorophyll (a, b), total chlorophyll, and carotenoid content by 43.84, 40.87 and 49.76, 185.29, 325.60, 173.12, and 211.49%, respectively. Compared with non-inoculated plants, AMF inoculation significantly enhanced the essential oil yield and the uptake of nitrogen, phosphorus, and potassium with the increase of 257.36, 102.71, and 90.76, 62.32, and 84.51%, respectively, in mild drought + AMF-treated plants. Similarly, the antioxidant enzymatic activity, glomalin-related soil protein (GRSP), and accumulation of phenols and flavonoids and osmolytes content were also significantly improved in inoculated plants under drought stress. Additionally, AMF inoculation significantly upregulated the lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) enzymes by 197 and 298.44% under drought conditions. These findings depicted that the symbiotic association of AMF improved the overall growth pattern and secondary metabolism in tobacco plants under severe drought stress conditions and may be used as an approaching source of important drugs in the field of pharmacology.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | | | - Mudassar Iqbal
- Department of Agricultural Chemistry, University of Agriculture, Peshawar, Peshawar, Pakistan
| | - Pingping Wang
- Shaanxi Tobacco Scientific Institution, Xi'an, 71000, China
| | | | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Cook J, Douglas GM, Zhang J, Glick BR, Langille MGI, Liu KH, Cheng Z. Transcriptomic profiling of Brassica napus responses to Pseudomonas aeruginosa. Innate Immun 2020; 27:143-157. [PMID: 33353474 PMCID: PMC7882811 DOI: 10.1177/1753425920980512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen of plants. Unlike the well-characterized plant defense responses to highly adapted bacterial phytopathogens, little is known about plant response to P. aeruginosa infection. In this study, we examined the Brassica napus (canola) tissue-specific response to P. aeruginosa infection using RNA sequencing. Transcriptomic analysis of canola seedlings over a 5 day P. aeruginosa infection revealed that many molecular processes involved in plant innate immunity were up-regulated, whereas photosynthesis was down-regulated. Phytohormones control many vital biological processes within plants, including growth and development, senescence, seed setting, fruit ripening, and innate immunity. The three main phytohormones involved in plant innate immunity are salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Many bacterial pathogens have evolved multiple strategies to manipulate these hormone responses in order to infect plants successfully. Interestingly, gene expression within all three phytohormone (SA, JA, and ET) signaling pathways was up-regulated in response to P. aeruginosa infection. This study identified a unique plant hormone response to the opportunistic bacterial pathogen P. aeruginosa infection.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | - Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | | | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Canada.,Department of Pharmacology, Dalhousie University, Canada.,Integrated Microbiome Resource (IMR), Dalhousie University, Canada
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, USA.,Department of Genetics, Harvard Medical School, USA.,State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwestern Agriculture and Forestry University, People's Republic of China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Canada
| |
Collapse
|
7
|
Density regulation of co-occurring herbivores via two indirect effects mediated by biomass and non-specific induced plant defenses. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Ji Q, Zhang T, Zhang D, Lv S, Tan A. Genome-wide identification and expression analysis of lipoxygenase genes in Tartary buckwheat. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1738956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Qiqi Ji
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, PR China
| | - Tianyuan Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, PR China
- National Data Center of Traditional Chinese Medicine of China, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Dong Zhang
- Chemical Laboratory, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Shiming Lv
- Basic Veterinary Laboratory, College of Animal Science, Guizhou University, Guiyang, Guizhou, PR China
| | - Aijuan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, PR China
| |
Collapse
|
9
|
Sarde SJ, Bouwmeester K, Venegas‐Molina J, David A, Boland W, Dicke M. Involvement of sweet pepper CaLOX2 in jasmonate-dependent induced defence against Western flower thrips. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1085-1098. [PMID: 30450727 PMCID: PMC6850143 DOI: 10.1111/jipb.12742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 05/25/2023]
Abstract
Insect herbivory can seriously hinder plant performance and reduce crop yield. Thrips are minute cell-content-feeding insects that are important vectors of viral plant pathogens, and are serious crop pests. We investigated the role of a sweet pepper (Capsicum annuum) lipoxygenase gene, CaLOX2, in the defense of pepper plants against Western flower thrips (Frankliniella occidentalis). This was done through a combination of in-silico, transcriptional, behavioral and chemical analyses. Our data show that CaLOX2 is involved in jasmonic acid (JA) biosynthesis and mediates plant resistance. Expression of the JA-related marker genes, CaLOX2 and CaPIN II, was induced by thrips feeding. Silencing of CaLOX2 in pepper plants through virus-induced gene silencing (VIGS) resulted in low levels of CaLOX2 transcripts, as well as significant reduction in the accumulation of JA, and its derivatives, upon thrips feeding compared to control plants. CaLOX2-silenced pepper plants exhibited enhanced susceptibility to thrips. This indicates that CaLOX2 mediates JA-dependent signaling, resulting in defense against thrips. Furthermore, exogenous application of JA to pepper plants increased plant resistance to thrips, constrained thrips population development and made plants less attractive to thrips. Thus, a multidisciplinary approach shows that an intact lipoxygenase pathway mediates various components of sweet pepper defense against F. occidentalis.
Collapse
Affiliation(s)
- Sandeep J Sarde
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AA WageningenThe Netherlands
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen UniversityP.O. Box 166700 AA, WageningenThe Netherlands
| | - Jhon Venegas‐Molina
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AA WageningenThe Netherlands
| | - Anja David
- Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 8D‐07745 JenaGermany
| | - Wilhelm Boland
- Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 8D‐07745 JenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AA WageningenThe Netherlands
| |
Collapse
|
10
|
Lortzing V, Oberländer J, Lortzing T, Tohge T, Steppuhn A, Kunze R, Hilker M. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner. PLANT, CELL & ENVIRONMENT 2019; 42:1019-1032. [PMID: 30252928 DOI: 10.1111/pce.13447] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/15/2018] [Indexed: 05/06/2023]
Abstract
Plants can improve their antiherbivore defence by taking insect egg deposition as cue of impending feeding damage. Previous studies showed that Pieris brassicae larvae feeding upon egg-deposited Brassicaceae perform worse and gain less weight than larvae on egg-free plants. We investigated how P. brassicae oviposition on Arabidopsis thaliana affects the plant's molecular and chemical responses to larvae. A transcriptome comparison of feeding-damaged leaves without and with prior oviposition revealed about 200 differently expressed genes, including enhanced expression of PR5, which is involved in salicylic acid (SA)-signalling. SA levels were induced by larval feeding to a slightly greater extent in egg-deposited than egg-free plants. The adverse effect of egg-deposited wild-type (WT) plants on larval weight was absent in an egg-deposited PR5-deficient mutant or other mutants impaired in SA-mediated signalling, that is, sid2/ics1, ald1, and pad4. In contrast, the adverse effect of egg-deposited WT plants on larvae was retained in egg-deposited npr1 and wrky70 mutants impaired further downstream in SA-signalling. Oviposition induced accumulation of flavonols in WT plants with and without feeding damage, but not in the PR5-deficient mutant. We demonstrated that egg-mediated improvement of A. thaliana's antiherbivore defence involves SA-signalling in an NPR1-independent manner and is associated with accumulation of flavonols.
Collapse
Affiliation(s)
- Vivien Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jana Oberländer
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Tobias Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Department Secondary Metabolism, Potsdam, Germany
| | - Anke Steppuhn
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Wulff JA, Kiani M, Regan K, Eubanks MD, Szczepaniec A. Neonicotinoid Insecticides Alter the Transcriptome of Soybean and Decrease Plant Resistance. Int J Mol Sci 2019; 20:E783. [PMID: 30759791 PMCID: PMC6387383 DOI: 10.3390/ijms20030783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
Neonicotinoids are widely used systemic insecticides that have been associated with spider mite outbreaks on diverse plants. These insecticides have complex effects on plant physiology, which have been speculated to drive enhanced performance of spider mites. We used RNA-Seq to explore how neonicotinoids modify gene expression in soybean thereby lowering plant resistance. We exposed soybean (Glycine max L.) to two neonicotinoid insecticides, thiamethoxam applied to seeds and imidacloprid applied as a soil drench, and we exposed a subset of these plants to spider mites (Tetranychus cinnabarinus). Applications of both insecticides downregulated genes involved in plant-pathogen interactions, phytohormone pathways, phenylpropanoid pathway, and cell wall biosynthesis. These effects were especially pronounced in plants exposed to thiamethoxam. Introduction of spider mites restored induction of genes in these pathways in plants treated with imidacloprid, while expression of genes involved in phenylpropanoid synthesis, in particular, remained downregulated in thiamethoxam-treated plants. Our outcomes indicate that both insecticides suppress genes in pathways relevant to plant⁻arthropod interactions, and suppression of genes involved in cell wall synthesis may explain lower plant resistance to spider mites, cell-content feeders. These effects appear to be particularly significant when plants are exposed to neonicotinoids applied to soybean seeds.
Collapse
Affiliation(s)
- Jason A Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | - Mahnaz Kiani
- Department of Entomology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA.
| | - Karly Regan
- Department of Entomology, Penn State University, University Park, PA 16801, USA.
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
12
|
Drizou F, Bruce TJA, Ray RV, Graham NS. Infestation by Myzus persicae Increases Susceptibility of Brassica napus cv. "Canard" to Rhizoctonia solani AG 2-1. FRONTIERS IN PLANT SCIENCE 2018; 9:1903. [PMID: 30619441 PMCID: PMC6308127 DOI: 10.3389/fpls.2018.01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Activation of plant defense pathways can be influenced by the presence of different species of attacking organisms. Understanding the complicated interactions triggering plant defense mechanisms is of great interest as it may allow the development of more effective and sustainable disease control methods. Myzus persicae and Rhizoctonia solani anastomosis group (AG) 2-1 are two important organisms attacking oilseed rape (OSR), causing disease and reduced yields. At present, is unclear how these two interact with each other and with OSR defenses and therefore the aim of the present study was to gain a better insight into the indirect interaction between aphids and pathogen. In separate experiments, we assessed the effect of AG 2-1 infection on aphid performance, measured as growth rate and population increase and then the effect of aphid infestation on AG 2-1 by quantifying disease and the amount of fungal DNA in plant stems and compost for two OSR varieties, "Canard" and "Temple." Additionally, we examined the expression of genes related to jasmonic acid (JA) and salicylic acid (SA) defense pathways. There was no significant effect of AG 2-1 infection on M. persicae performance. However, aphid infestation in one of the varieties, "Canard," resulted in significantly increased disease symptoms caused by AG 2-1, although, the amount of fungal DNA was not significantly different between treatments. This meant that "Canard" plants had become more susceptible to the disease. Expression of LOX3 and MYC2 was elevated under AG 2-1 treatment but downregulated in plants with both aphids and pathogen. Therefore it seems plausible that alterations in the JA signaling due to aphid infestation resulted in the increased susceptibility to AG 2-1.
Collapse
Affiliation(s)
- Fryni Drizou
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Toby J. A. Bruce
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Rumiana V. Ray
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Neil S. Graham
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
13
|
Harun-Or-Rashid M, Kim HJ, Yeom SI, Yu HA, Manir MM, Moon SS, Kang YJ, Chung YR. Bacillus velezensis YC7010 Enhances Plant Defenses Against Brown Planthopper Through Transcriptomic and Metabolic Changes in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1904. [PMID: 30622550 PMCID: PMC6308211 DOI: 10.3389/fpls.2018.01904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
Brown planthopper (BPH; Nilaparvata lugens Stål) is one of the most serious insect pests, which reduce rice yield remarkably in many rice-growing areas. A few plant growth-promoting rhizobacteria induce systemic resistance against herbivorous insects. Here we show that root drenching of rice seedlings with an endophytic strain Bacillus velezensis YC7010 enhanced defenses against BPH. Based on high-throughput transcriptome analysis, systemic resistance against BPH was induced by B. velezensis YC7010 via salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways. Increased leaf contents of secondary metabolites, tricin and C-glycosyl flavone and cell-wall contents of lignin and cellulose were the key defense mechanisms inducing resistance against BPH during the three-way interaction. This study shows for the first time that chemical changes and strengthening of physical barriers play important roles simultaneously in plant defense against BPH in rice by the endophytic bacteria. This defense was induced by lipopeptides including a novel bacillopeptin X.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Entomology, Bangladesh Agricultural Research Institute, Rangpur, Bangladesh
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Department of Food Science and Technology, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | - Surk-Sik Moon
- Department of Chemistry, Kongju National University, Gongju, South Korea
| | - Yang Jae Kang
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Young Ryun Chung
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
14
|
Tsuji J, Logan T, Russo A. A Hierarchy of Cues Directs the Foraging of Pieris rapae (Lepidoptera: Pieridae) Larvae. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1485-1492. [PMID: 30165377 DOI: 10.1093/ee/nvy124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
The foraging patterns of insects reflect a combination of biotic and abiotic constraints. Pieris rapae (L.) (Lepidoptera: Pieridae) larvae exhibit plasticity in their foraging behavior, and their movements in response to flowers, young foliage, light, and gravity were studied. As predicted for palatable cryptic larvae, young instars of P. rapae exhibited predator avoidance behaviors. First- and second-instar larvae fed underneath the leaves where their eggs were oviposited, while late second- and third-instar larvae migrated away from their feeding damage. Using taxis experiments and choice tests, the direction of larval movement was significantly influenced by a hierarchy of three cues. Third-instar larvae exhibited negative gravitaxis, which could be supplanted by positive trophotaxis to young leaves and flowers. The larvae exhibited a significantly greater attraction to the inflorescence than to young foliage. For both the inflorescence and young foliage, visual cues were sufficient to direct larval movement. Understanding the cues that guide larval foraging may lead to more efficient trap crops for pest management.
Collapse
Affiliation(s)
- Jun Tsuji
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| | - Tiffany Logan
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| | - Ashley Russo
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| |
Collapse
|
15
|
Cusumano A, Zhu F, Volkoff AN, Verbaarschot P, Bloem J, Vogel H, Dicke M, Poelman EH. Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores. Ecol Lett 2018; 21:957-967. [DOI: 10.1111/ele.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/11/2017] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Antonino Cusumano
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Feng Zhu
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - Anne-Nathalie Volkoff
- DGIMI UMR 1333; INRA; Université de Montpellier 2; Place Eugène Bataillon CC101, 34095 Montpellier Cedex France
| | - Patrick Verbaarschot
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Janneke Bloem
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Str. 8 D-07745 Jena Germany
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| |
Collapse
|
16
|
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M. Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proc Biol Sci 2018; 284:rspb.2017.1489. [PMID: 28878067 DOI: 10.1098/rspb.2017.1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity-ecosystem function relationships. We tested for relationships between trophobioses (facultative ant-hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores-frequently reported to drive community-wide effects of trophobioses in other ecosystems-seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany .,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Felix Fornoff
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Michael Staab
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| |
Collapse
|
17
|
Rioja C, Zhurov V, Bruinsma K, Grbic M, Grbic V. Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:935-945. [PMID: 28857675 DOI: 10.1094/mpmi-07-17-0168-cr] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-herbivore interactions evolved over long periods of time, resulting in an elaborate arms race between interacting species. While specialist herbivores evolved specific strategies to cope with the defenses of a limited number of hosts, our understanding of how generalist herbivores deal with the defenses of a plethora of diverse host plants is largely unknown. Understanding the interaction between a plant host and a generalist herbivore requires an understanding of the plant's mechanisms aimed at defending itself and the herbivore's mechanisms intended to counteract diverse defenses. In this review, we use the two-spotted spider mite (TSSM), Tetranychus urticae (Koch) as an example of a generalist herbivore, as this chelicerate pest has a staggering number of plant hosts. We first establish that the ability of TSSM to adapt to marginal hosts underlies its polyphagy and agricultural pest status. We then highlight our understanding of direct plant defenses against spider mite herbivory and review recent advances in uncovering mechanisms of spider mite adaptations to them. Finally, we discuss the adaptation process itself, as it allows TSSM to overcome initially effective plant defenses. A high-quality genome sequence and developing genetic tools, coupled with an ease of mite experimental selection to new hosts, make TSSM an outstanding system to study the evolution of host range, mechanisms of pest xenobiotic resistance and plant-herbivore interactions. In addition, knowledge of plant defense mechanisms that affect mite fitness are of practical importance, as it can lead to development of new control strategies against this important agricultural pest. In parallel, understanding mechanisms of mite counter adaptations to these defenses is required to maintain the efficacy of these control strategies in agricultural practices.
Collapse
Affiliation(s)
- Cristina Rioja
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Vladimir Zhurov
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Kristie Bruinsma
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Miodrag Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
- 2 University of La Rioja, Logrono, 26006, Spain
| | - Vojislava Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| |
Collapse
|
18
|
Rashid MHO, Chung YR. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:1816. [PMID: 29104585 PMCID: PMC5654954 DOI: 10.3389/fpls.2017.01816] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 05/08/2023]
Abstract
Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.
Collapse
Affiliation(s)
| | - Young R. Chung
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
19
|
Liang J, Ma Y, Wu J, Cheng F, Liu B, Wang X. Map-based cloning of the dominant genic male sterile Ms-cd1 gene in cabbage (Brassica oleracea). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:71-79. [PMID: 27704179 DOI: 10.1007/s00122-016-2792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 05/28/2023]
Abstract
Using map-based cloning, we delimited the Ms - cd1 gene responsible for the male sterile phenotype in B. oleracea to an approximately 39-kb fragment. Expression analysis suggests that a new predicted gene, a homolog of the Arabidopsis SIED1 gene, is a potential candidate gene. A dominant genic male sterile (DGMS) mutant 79-399-3 in Brassica oleracea (B. oleracea) is controlled by a single gene named Ms-cd1, which was genetically mapped on chromosome C09. The derived DGMS lines of 79-399-3 have been successfully applied in hybrid cabbage breeding and commercial hybrid seed production of several B. oleracea cultivars in China. However, the Ms-cd1 gene responsible for the DGMS has not been identified, and the molecular basis of the DGMS is unclear, which then limits its widespread application in hybrid cabbage seed production. In the present study, a large BC9 population with 12,269 individuals was developed for map-based cloning of the Ms-cd1 gene, and Ms-cd1 was mapped to a 39.4-kb DNA fragment between two InDel markers, InDel14 and InDel24. Four genes were identified in this region, including two annotated genes based on the available B. oleracea annotation database and two new predicted open reading frames (ORFs). Finally, a newly predicted ORF designated Bol357N3 was identified as the candidate of the Ms-cd1 gene. These results will be useful to reveal the molecular mechanism of the DGMS and develop more practical DGMS lines with stable male sterility for hybrid seed production in cabbage.
Collapse
Affiliation(s)
- Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Yuan Ma
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Bo Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
20
|
Santamaría ME, Martinez M, Arnaiz A, Ortego F, Grbic V, Diaz I. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:975. [PMID: 28649257 PMCID: PMC5466143 DOI: 10.3389/fpls.2017.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control.
Collapse
Affiliation(s)
- M. Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
21
|
Kroes A, Stam JM, David A, Boland W, van Loon JJA, Dicke M, Poelman EH. Plant-mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:981-991. [PMID: 27492059 DOI: 10.1111/plb.12490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown. We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses. Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations. Feeding by multiple herbivores differentially activates plant defences, which has plant-mediated negative consequences for a subsequently arriving herbivore. Plant population-specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
Collapse
Affiliation(s)
- A Kroes
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands.
| | - J M Stam
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands.
| | - A David
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - W Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - J J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | - M Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | - E H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
22
|
Ray S, Basu S, Rivera-Vega LJ, Acevedo FE, Louis J, Felton GW, Luthe DS. Lessons from the Far End: Caterpillar FRASS-Induced Defenses in Maize, Rice, Cabbage, and Tomato. J Chem Ecol 2016; 42:1130-1141. [PMID: 27704315 DOI: 10.1007/s10886-016-0776-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/04/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
Plant defenses to insect herbivores have been studied in response to several insect behaviors on plants such as feeding, crawling, and oviposition. However, we have only scratched the surface about how insect feces induce plant defenses. In this study, we measured frass-induced plant defenses in maize, rice, cabbage, and tomato by chewing herbivores such as European corn borer (ECB), fall armyworm (FAW), cabbage looper (CL), and tomato fruit worm (TFW). We observed that caterpillar frass induced plant defenses are specific to each host-herbivore system, and they may induce herbivore or pathogen defense responses in the host plant depending on the composition of the frass deposited on the plant, the plant organ where it is deposited, and the species of insect. This study adds another layer of complexity in plant-insect interactions where analysis of frass-induced defenses has been neglected even in host-herbivore systems where naturally frass accumulates in enclosed feeding sites over extended periods of time.
Collapse
Affiliation(s)
- Swayamjit Ray
- Intercollegiate Graduate Program in Plant Biology, Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA, USA.,Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Saumik Basu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Loren J Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Dawn S Luthe
- Intercollegiate Graduate Program in Plant Biology, Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA, USA. .,Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
23
|
Li Y, Dicke M, Kroes A, Liu W, Gols R. Interactive Effects of Cabbage Aphid and Caterpillar Herbivory on Transcription of Plant Genes Associated with Phytohormonal Signalling in Wild Cabbage. J Chem Ecol 2016; 42:793-805. [PMID: 27530535 PMCID: PMC5045842 DOI: 10.1007/s10886-016-0738-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/01/2016] [Accepted: 07/07/2016] [Indexed: 10/25/2022]
Abstract
Plants are commonly attacked by a variety of insect herbivores and have developed specific defenses against different types of attackers. At the molecular level, herbivore-specific signalling pathways are activated by plants in response to attackers with different feeding strategies. Feeding by leaf-chewing herbivores predominantly activates jasmonic acid (JA)-regulated defenses, whereas feeding by phloem-sucking herbivores generally activates salicylic acid (SA)-regulated defenses. When challenged sequentially by both phloem-sucking and leaf-chewing herbivores, SA-JA antagonism may constrain the plant's ability to timely and adequately divert defense to the second herbivore that requires activation of a different defensive pathway. We investigated the effect of the temporal sequence of infestation by the aphid Brevicoryne brassicae and three caterpillar species, Plutella xylostella, Pieris brassicae, and Mamestra brassicae, on the interaction between JA and SA signal-transduction pathways in three wild cabbage populations. We found no support for SA-JA antagonism, irrespective of the temporal sequence of herbivore introduction or the identity of the caterpillar species based on the transcript levels of the JA- and SA-regulated marker genes LOX and PR-1, respectively, at the examined time points, 6, 24, and 48 h. In general, infestation with aphids alone had little effect on the transcript levels of the two marker genes, whereas the three caterpillar species upregulated not only LOX but also PR-1. Transcriptional changes were different for plants from the three different natural cabbage populations.
Collapse
Affiliation(s)
- Yehua Li
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Wen Liu
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Zebelo S, Song Y, Kloepper JW, Fadamiro H. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). PLANT, CELL & ENVIRONMENT 2016; 39:935-43. [PMID: 26715260 DOI: 10.1111/pce.12704] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
Gossypol is an important allelochemical produced by the subepidermal glands of some cotton varieties and important for their ability to respond to changing biotic stress by exhibiting antibiosis against some cotton pests. Plant growth-promoting rhizobacteria (PGPR) are root-colonizing bacteria that increase plant growth and often elicit defence against plant pathogens and insect pests. Little is known about the effect of PGPR on cotton plant-insect interactions and the potential biochemical and molecular mechanisms by which PGPR enhance cotton plant defence. Here, we report that PGPR (Bacillus spp.) treated cotton plants showed significantly higher levels of gossypol compared with untreated plants. Similarly, the transcript levels of the genes (i.e. (+)-δ-cadinene synthase gene family) involved in the biosynthesis of gossypol were higher in PGPR-treated plants than in untreated plants. Furthermore, the levels of jasmonic acid, an octadecanoid-derived defence-related phytohormone and the transcript level of jasmonic acid responsive genes were higher in PGPR-treated plants than in untreated plants. Most intriguingly, Spodoptera exigua showed reduced larval feeding and development on PGPR-treated plants. These findings demonstrate that treatment of plants with rhizobacteria may induce significant biochemical and molecular changes with potential ramifications for plant-insect interactions.
Collapse
Affiliation(s)
- Simon Zebelo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Yuanyuan Song
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Henry Fadamiro
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
25
|
Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B, Dicke M, Poelman EH. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles. Mol Ecol 2015; 24:2886-99. [DOI: 10.1111/mec.13164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Zhu
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| | - Colette Broekgaarden
- Wageningen UR Plant Breeding; Wageningen University; Wageningen The Netherlands
- Plant-Microbe Interactions; Department of Biology; Utrecht University; Utrecht The Netherlands
| | | | - Jeffrey A. Harvey
- Department of Terrestrial Ecology; Netherlands Institute of Ecology; Wageningen The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding; Wageningen University; Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
26
|
Chen Z, Chen X, Yan H, Li W, Li Y, Cai R, Xiang Y. The Lipoxygenase Gene Family in Poplar: Identification, Classification, and Expression in Response to MeJA Treatment. PLoS One 2015; 10:e0125526. [PMID: 25928711 PMCID: PMC4415952 DOI: 10.1371/journal.pone.0125526] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 11/23/2022] Open
Abstract
Background Lipoxygenases (LOXs) are important dioxygenases in cellular organisms. LOXs contribute to plant developmental processes and environmental responses. However, a systematic and comprehensive analysis has not been focused on the LOX gene family in poplar. Therefore, in the present study, we performed a comprehensive analysis of the LOX gene family in poplar. Results Using bioinformatics methods, we identified a total of 20 LOX genes. These LOX genes were clustered into two subfamilies. The gene structure and motif composition of each subfamily were relatively conserved. These genes are distributed unevenly across nine chromosomes. The PtLOX gene family appears to have expanded due to high tandem and low segmental duplication events. Microarray analysis showed that a number of PtLOX genes have different expression pattern across disparate tissues and under various stress treatments. Quantitative real-time PCR (qRT-PCR) analysis was further performed to confirm the responses to MeJA treatment of the 20 poplar LOX genes. The results show that the PtLOX genes are regulated by MeJA (Methyl jasmonate) treatment. Conclusions This study provides a systematic analysis of LOX genes in poplar. The gene family analysis reported here will be useful for conducting future functional genomics studies to uncover the roles of LOX genes in poplar growth and development.
Collapse
Affiliation(s)
- Zhu Chen
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
| | - Weiwei Li
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
| | - Ronghao Cai
- Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, China
- * E-mail:
| |
Collapse
|
27
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
28
|
Menzel TR, Weldegergis BT, David A, Boland W, Gols R, van Loon JJA, Dicke M. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4821-31. [PMID: 25318119 PMCID: PMC4144767 DOI: 10.1093/jxb/eru242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant's phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation.
Collapse
Affiliation(s)
- Tila R Menzel
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
29
|
Miyazaki J, Stiller WN, Truong TT, Xu Q, Hocart CH, Wilson LJ, Wilson IW. Jasmonic acid is associated with resistance to twospotted spider mites in diploid cotton (Gossypium arboreum). FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:748-757. [PMID: 32481029 DOI: 10.1071/fp13333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 05/27/2023]
Abstract
The twospotted spider mite (Tetranychus urticae Koch) is capable of dramatically reducing the yield of cotton crops and is often difficult and expensive to control. This study investigated and compared two important plant hormones, jasmonic acid (JA) and salicylic acid (SA), as constitutive and/or induced defence response components in a mite susceptible commercial cotton cultivar, Sicot 71 (Gossypium hirsutum L.) and a resistant diploid cotton BM13H (Gossypium arboreum L.). Foliar application of JA and methyl jasmonate (MeJA) reduced the mite population and leaf damage but application of other potential elicitors, SA and methyl salicylate (MeSA) did not. The concentrations of JA and SA in leaf tissues of induced and non-induced Sicot 71 and BM13H were quantified by liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). The JA content was constitutively higher in BM13H than Sicot 71 and also highly induced by mite infestation in BM13H but not in Sicot 71. However, SA was not significantly induced in either BM13H or Sicot 71. The expression levels of JA related genes, LOX, AOS and OPR were measured by quantitative PCR and elevated expression levels of JA related genes were detected in mite-infested BM13H. Therefore, JA and MeJA were implicated as key biochemical components in both the constitutive and induced defence responses of BM13H to spider mites.
Collapse
Affiliation(s)
- Junji Miyazaki
- CSIRO Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia
| | | | - Thy T Truong
- Research School of Biology, Mass Spectrometry Facility, The Australian National University, ACT 0200, Australia
| | - Qian Xu
- CSIRO Plant Industry, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Charles H Hocart
- Research School of Biology, Mass Spectrometry Facility, The Australian National University, ACT 0200, Australia
| | - Lewis J Wilson
- CSIRO Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia
| | - Iain W Wilson
- CSIRO Plant Industry, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| |
Collapse
|
30
|
Wei J, van Loon JJA, Gols R, Menzel TR, Li N, Kang L, Dicke M. Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3289-98. [PMID: 24759882 PMCID: PMC4071845 DOI: 10.1093/jxb/eru181] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The jasmonic acid (JA) and salicylic acid (SA) signalling pathways, which mediate induced plant defence responses, can express negative crosstalk. Limited knowledge is available on the effects of this crosstalk on host-plant selection behaviour of herbivores. We report on temporal and dosage effects of such crosstalk on host preference and oviposition-site selection behaviour of the herbivorous spider mite Tetranychus urticae towards Lima bean (Phaseolus lunatus) plants, including underlying mechanisms. Behavioural observations reveal a dynamic temporal response of mites to single or combined applications of JA and SA to the plant, including attraction and repellence, and an antagonistic interaction between SA- and JA-mediated plant responses. Dose-response experiments show that concentrations of 0.001mM and higher of one phytohormone can neutralize the repellent effect of a 1mM application of the other phytohormone on herbivore behaviour. Moreover, antagonism between the two signal-transduction pathways affects phytohormone-induced volatile emission. Our multidisciplinary study reveals the dynamic plant phenotype that is modulated by subtle changes in relative phytohormonal titres and consequences for the dynamic host-plant selection by an herbivore. The longer-term effects on plant-herbivore interactions deserve further investigation.
Collapse
Affiliation(s)
- Jianing Wei
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Tila R Menzel
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | - Na Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| |
Collapse
|
31
|
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gómez-Cadenas A, Van de Peer Y, Grbić M, Clark RM, Van Leeuwen T, Grbić V. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. PLANT PHYSIOLOGY 2014; 164:384-99. [PMID: 24285850 PMCID: PMC3875816 DOI: 10.1104/pp.113.231555] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Collapse
|
32
|
Pineda A, Zheng SJ, van Loon JJA, Dicke M. Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:83-90. [PMID: 22348327 DOI: 10.1111/j.1438-8677.2011.00549.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Beneficial microbes, such as plant growth-promoting rhizobacteria and mycorrhizal fungi, may have a plant-mediated effect on insects aboveground. The plant growth-promoting rhizobacterium Pseudomonas fluorescens can induce systemic resistance in Arabidopsis thaliana against several microbial pathogens and chewing insects. However, the plant-mediated effect of these beneficial microbes on phloem-feeding insects is not well understood. Using Arabidopsis as a model, we here report that P. fluorescens has a positive effect on the performance (weight gain and intrinsic rate of increase) of the generalist aphid Myzus persicae, while no effect was recorded on the crucifer specialist aphid Brevicoryne brassicae. Additionally, transcriptional analyses of selected marker genes revealed that in the plant-microbe interaction with M. persicae, rhizobacteria (i) prime the plant for enhanced expression of LOX2, a gene involved in the jasmonic acid (JA)-regulated defence pathway, and (ii) suppress the expression of ABA1, a gene involved in the abscisic acid (ABA) signalling pathway, at several time points. In contrast, almost no effect of the plant-microbe interaction with B. brassicae was found at the transcriptional level. This study presents the first data on rhizobacteria-induced systemic susceptibility to an herbivorous insect, supporting the pattern proposed for other belowground beneficial microbes and aboveground phloem feeders. Moreover, we provide further evidence that at the transcript level, soil-borne microbes modify plant-aphid interactions.
Collapse
Affiliation(s)
- A Pineda
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proc Natl Acad Sci U S A 2011; 108:19647-52. [PMID: 22084113 DOI: 10.1073/pnas.1110748108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.
Collapse
|
34
|
Soler R, Badenes-Pérez FR, Broekgaarden C, Zheng SJ, David A, Boland W, Dicke M. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01902.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect. J Chem Ecol 2011; 37:818-29. [PMID: 21691809 DOI: 10.1007/s10886-011-9984-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/17/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
The jasmonic acid (JA) signaling pathway and defensive secondary metabolites such as glucosinolates are generally considered to play central roles in the defense of brassicaceous plants against herbivorous insects. To determine the function of specific plant genes in plant-insect interactions, signaling or biosynthetic mutants are needed. However, mutants are not yet available for brassicaceous plants other than Arabidopsis thaliana, e.g., cabbage (Brassica oleracea). We employed virus-induced gene silencing (VIGS) by using tobacco rattle virus (TRV) to knock down the endogenous expression of lipoxygenase (LOX), an upstream enzyme of the JA pathway and thioglucoside glucohydrolase: myrosinase (TGG1/TGG2), a hydrolytic enzyme that catalyzes the release of defensive volatile products originating from glucosinolates, in Arabidopsis thaliana. This was done by using the heterologous gene sequences from B. oleracea. Silencing these genes in A. thaliana plants is efficient and specific. Only 18 nucleotides with 100% identity between the trigger (BoMYR) and the target (AtTGG1/2) sequence are sufficient to achieve gene silencing. LOX-silenced plants showed significantly reduced AtLOX2 transcript accumulation after Pieris rapae larval feeding. TGG-silenced plants exhibited significantly lower TGG1/TGG2 transcript levels only after shorter larval feeding. The inhibition of TGG1/TGG2 transcript accumulation via gene silencing may be overruled by longer larval feeding. Specialist P. rapae larvae developed significantly better on both types of silenced plants than on empty vector (EV) control plants, while generalist Mamestra brassicae larvae developed significantly better on the TGG1/TGG2 silenced plants than on EV control plants. This shows that not only the generalist herbivore but also the Brassicaceae-specialist P. rapae is negatively affected by the ability of brassicaceous plants to produce their specific secondary metabolites, i.e., glucosinolates. Our results demonstrate the important roles of AtLOX2 and AtTGG1/TGG2 genes, which were silenced by heterologous gene sequences from B. oleracea BoLOX and BoMYR, in A. thaliana resistance to the specialist P. rapae and the generalist M. brassicae.
Collapse
|
36
|
Peng J, van Loon JJA, Zheng S, Dicke M. Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:276-284. [PMID: 21309974 DOI: 10.1111/j.1438-8677.2010.00364.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When attacked by herbivores, plants release herbivore-induced plant volatiles (HIPV) that may function in direct defence by repelling herbivores or reducing their growth. Emission of HIPV may also contribute to indirect defence by attracting natural enemies of the herbivore. Here, cabbage (Brassica oleracea L.) plants (receiver plants) previously exposed to HIPV and subsequently induced through feeding by five Pieris brassicae L. caterpillars attracted more Cotesia glomerata L. parasitoids than control plants. HIPVs to which receiver plants had been exposed were emitted by B. oleracea infested with 50 P. brassicae caterpillars. Control plants had been exposed to volatiles from undamaged plants. In contrast, there were no differences in the attraction of wasps to receiver plants induced through feeding of one or ten larvae of P. brassicae compared to control plants. In addition, RT-PCR demonstrated higher levels of LIPOXYGENASE (BoLOX) transcripts in HIPV-exposed receiver plants. Exposure to HIPV from emitter plants significantly inhibited the growth rate of both P. brassicae and Mamestra brassicae caterpillars compared to growth rates of caterpillars feeding on control receiver plants. Our results demonstrate plant-plant signalling leading to priming of both indirect and direct defence in HIPV-exposed B. oleracea plants.
Collapse
Affiliation(s)
- J Peng
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Ongena M, Thonart P, Dommes J. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC PLANT BIOLOGY 2011; 11:29. [PMID: 21294872 PMCID: PMC3042376 DOI: 10.1186/1471-2229-11-29] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 02/04/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance. RESULTS We analyzed the activities of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX), key enzymes of the phenylpropanoid and oxylipin pathways respectively, in tomato treated or not with P. putida BTP1. The bacterial treatment did not stimulate PAL activity and linoleate-consuming LOX activities. Linolenate-consuming LOX activity, on the contrary, was significantly stimulated in P. putida BTP1-inoculated plants before and two days after infection by B. cinerea. This stimulation is due to the increase of transcription level of two isoforms of LOX: TomLoxD and TomLoxF, a newly identified LOX gene. We showed that recombinant TomLOXF preferentially consumes linolenic acid and produces 13-derivative of fatty acids. After challenging with B. cinerea, the increase of transcription of these two LOX genes and higher linolenic acid-consuming LOX activity were associated with a more rapid accumulation of free 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids, two antifungal oxylipins, in bacterized plants. CONCLUSION In addition to the discovery of a new LOX gene in tomato, this work is the first to show differential induction of LOX isozymes and a more rapid accumulation of 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids in rhizobacteria mediated-induced systemic resistance.
Collapse
Affiliation(s)
- Martin Mariutto
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Francéline Duby
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Akram Adam
- Walloon Centre of Industrial Biology, University of Liège, Boulevard du Rectorat, 29, Liège, Belgium
| | - Charlotte Bureau
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Marie-Laure Fauconnier
- Plant Biology Unit, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2A, Gembloux, Belgium
| | - Marc Ongena
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, Belgium
| | - Philippe Thonart
- Walloon Centre of Industrial Biology, University of Liège, Boulevard du Rectorat, 29, Liège, Belgium
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, Belgium
| | - Jacques Dommes
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| |
Collapse
|
38
|
Liu S, Han B. Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant. BMC PLANT BIOLOGY 2010; 10:228. [PMID: 20969806 PMCID: PMC3095316 DOI: 10.1186/1471-2229-10-228] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/25/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lipoxygenase (LOXs) is a large family of plant enzymes that catalyse the hydroperoxidation of free polyunsaturated fatty acids into diverse biologically active compounds, collectively named phyto-oxylipins. Although multiple isoforms of LOXs have been identified in a wide range of annual herbaceous plants, the genes encoding these enzymes in perennial woody plants have not received as much attention. In Camellia sinensis (L.) O. Kuntze, no LOX gene of any type has been isolated, and its possible role in tea plant development, senescence, and defence reaction remains unknown. The present study describes the isolation, characterization, and expression of the first tea plant LOX isoform, namely CsLOX1, and seeks to clarify the pattern of its expression in the plant's defence response as well as in flower opening and senescence. RESULTS Based on amino acid sequence similarity to plant LOXs, a LOX was identified in tea plant and named CsLOX1, which encodes a polypeptide comprising 861 amino acids and has a molecular mass of 97.8 kDa. Heterologous expression in yeast analysis showed that CsLOX1 protein conferred a dual positional specificity since it released both C-9 and C-13 oxidized products in equal proportion and hence was named 9/13-CsLOX1. The purified recombinant CsLOX1 protein exhibited optimum catalytic activity at pH 3.6 and 25°C. Real-time quantitative PCR analysis showed that CsLOX1 transcripts were detected predominantly in flowers, up-regulated during petal senescence, and down-regulated during flower bud opening. In leaves, the gene was up-regulated following injury or when treated with methyl jasmonate (MeJA), but salicylic acid (SA) did not induce such response. The gene was also rapidly and highly induced following feeding by the tea green leafhopper Empoasca vitis, whereas feeding by the tea aphid Toxoptera aurantii resulted in a pattern of alternating induction and suppression. CONCLUSIONS Analysis of the isolation and expression of the LOX gene in tea plant indicates that the acidic CsLOX1 together with its primary and end products plays an important role in regulating cell death related to flower senescence and the JA-related defensive reaction of the plant to phloem-feeders.
Collapse
Affiliation(s)
- Shouan Liu
- Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Baoyu Han
- Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
39
|
Utsumi S, Ando Y, Miki T. Linkages among trait-mediated indirect effects: a new framework for the indirect interaction web. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0237-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Zheng SJ, Snoeren TAL, Hogewoning SW, van Loon JJA, Dicke M. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae. THE NEW PHYTOLOGIST 2010; 186:733-45. [PMID: 20298487 DOI: 10.1111/j.1469-8137.2010.03213.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.
Collapse
Affiliation(s)
- Si-Jun Zheng
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Broekgaarden C, Poelman EH, Voorrips RE, Dicke M, Vosman B. Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown Brassica oleracea cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:807-19. [PMID: 19934173 PMCID: PMC2814112 DOI: 10.1093/jxb/erp347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 05/05/2023]
Abstract
Intraspecific differences in plant defence traits are often correlated with variation in transcriptional profiles and can affect the composition of herbivore communities on field-grown plants. However, most studies on transcriptional profiling of plant-herbivore interactions have been carried out under controlled conditions in the laboratory or greenhouse and only a few examine intraspecific transcriptional variation. Here, intraspecific variation in herbivore community composition and transcriptional profiles between two Brassica oleracea cultivars grown in the field is addressed. Early in the season, no differences in community composition were found for naturally occurring herbivores, whereas cultivars differed greatly in abundance, species richness, and herbivore community later in the season. Genome-wide transcriptomic analysis using an Arabidopsis thaliana oligonucleotide microarray showed clear differences for the expression levels of 26 genes between the two cultivars later in the season. Several defence-related genes showed higher levels of expression in the cultivar that harboured the lowest numbers of herbivores. Our study shows that herbivore community composition develops differentially throughout the season on the two B. oleracea cultivars grown in the field. The correlation between the differences in herbivore communities and differential expression of particular defence-related genes is discussed.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Plant Research International BV, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Bruinsma M, van Broekhoven S, Poelman EH, Posthumus MA, Müller MJ, van Loon JJA, Dicke M. Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 2010; 162:393-404. [PMID: 19806367 PMCID: PMC2808510 DOI: 10.1007/s00442-009-1459-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/31/2009] [Indexed: 12/13/2022]
Abstract
Herbivore-induced plant defences influence the behaviour of insects associated with the plant. For biting-chewing herbivores the octadecanoid signal-transduction pathway has been suggested to play a key role in induced plant defence. To test this hypothesis in our plant-herbivore-parasitoid tritrophic system, we used phenidone, an inhibitor of the enzyme lipoxygenase (LOX), that catalyses the initial step in the octadecanoid pathway. Phenidone treatment of Brussels sprouts plants reduced the accumulation of internal signalling compounds in the octadecanoid pathway downstream of the step catalysed by LOX, i.e. 12-oxo-phytodienoic acid (OPDA) and jasmonic acid. The attraction of Cotesia glomerata parasitoids to host-infested plants was significantly reduced by phenidone treatment. The three herbivores investigated, i.e. the specialists Plutella xylostella, Pieris brassicae and Pieris rapae, showed different oviposition preferences for intact and infested plants, and for two species their preference for either intact or infested plants was shown to be LOX dependent. Our results show that phenidone inhibits the LOX-dependent defence response of the plant and that this inhibition can influence the behaviour of members of the associated insect community.
Collapse
Affiliation(s)
- Maaike Bruinsma
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
- Present Address: Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Sarah van Broekhoven
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Maarten A. Posthumus
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 8026, 6700 EG Wageningen, The Netherlands
| | - Martin J. Müller
- Julius-von-Sachs-Institut für Biowissenschaften, Pharmazeutische Biologie, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
43
|
Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc Natl Acad Sci U S A 2009; 106:21202-7. [PMID: 19965373 DOI: 10.1073/pnas.0907890106] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-beta-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme beta-ocimene synthase that catalyzes the synthesis of (E)-beta-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels.
Collapse
|
44
|
Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2575-87. [PMID: 19451186 PMCID: PMC2692006 DOI: 10.1093/jxb/erp101] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/16/2009] [Accepted: 03/10/2009] [Indexed: 05/18/2023]
Abstract
Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting-chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps.
Collapse
Affiliation(s)
- Maaike Bruinsma
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Maarten A. Posthumus
- Laboratory of Organic Chemistry, Wageningen University, PO Box 8026, 6700 EG Wageningen, The Netherlands
| | - Roland Mumm
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Martin J. Mueller
- Julius-von-Sachs-Institut für Biowissenschaften, Pharmazeutische Biologie, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
45
|
Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 2009; 106:653-7. [PMID: 19124770 DOI: 10.1073/pnas.0811861106] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicitor activity, we tested representatives from three different elicitor classes on the time course of defense-related phytohormone production, including ethylene (E), jasmonic acid (JA), and salicylic acid, in a range of plant species spanning angiosperm diversity. All families examined responded to at least one elicitor class with significant increases in E and JA production within 1 to 2 h after treatment, yet elicitation activity among species was highly idiosyncratic. The fatty-acid amino acid conjugate volicitin exhibited the widest range of phytohormone and volatile inducing activity, which spanned maize (Zea mays), soybean (Glycine max), and eggplant (Solanum melongena). In contrast, the activity of inceptin-related peptides, originally described in cowpea (Vigna unguiculata), was limited even within the Fabaceae. Similarly, caeliferin A16:0, a disulfooxy fatty acid from grasshoppers, was the only elicitor with demonstrable activity in Arabidopsis thaliana. Although precise mechanisms remain unknown, the unpredictable nature of elicitor activity between plant species supports the existence of specific receptor-ligand interactions mediating recognition. Despite the lack of an ideal plant model for studying the action of numerous elicitors, E and JA exist as highly conserved and readily quantifiable markers for future discoveries in this field.
Collapse
|
46
|
Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B. Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. PLANT, CELL & ENVIRONMENT 2008; 31:1592-605. [PMID: 18721268 DOI: 10.1111/j.1365-3040.2008.01871.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Intraspecific variation in resistance or susceptibility to herbivorous insects has been widely studied through bioassays. However, few studies have combined this with a full transcriptomic analysis. Here, we take such an approach to study the interaction between the aphid Brevicoryne brassicae and four white cabbage (Brassica oleracea var. capitata) cultivars. Both under glasshouse and field conditions, two of the cultivars clearly supported a faster aphid population development than the other two, indicating that aphid population development was largely independent of the environmental conditions. Genome-wide transcriptomic analysis using 70-mer oligonucleotide microarrays based on the Arabidopsis thaliana genome showed that only a small number of genes were differentially regulated, and that this regulation was highly cultivar specific. The temporal pattern in the expression behaviour of two B. brassicae-responsive genes in all four cultivars together with targeted studies employing A. thaliana knockout mutants revealed a possible role for a trypsin-and-protease inhibitor in defence against B. brassicae. Conversely, a xyloglucan endotransglucosylase seemed to have no effect on aphid performance. Overall, this study shows clear intraspecific variation in B. brassicae susceptibility among B. oleracea cultivars under glasshouse and field conditions that can be partly explained by certain differences in induced transcriptional changes.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Plant Research International, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Poelman EH, Broekgaarden C, Van Loon JJA, Dicke M. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 2008; 17:3352-65. [PMID: 18565114 DOI: 10.1111/j.1365-294x.2008.03838.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Induction of plant defences by early season herbivores can mediate interspecific herbivore competition. We have investigated plant-mediated competition between three herbivorous insects through studies at different levels of biological integration. We have addressed (i) gene expression; (ii) insect behaviour and performance under laboratory conditions; and (iii) population dynamics under field conditions. We studied the expression of genes encoding a trypsin inhibitor and genes that are involved in glucosinolate biosynthesis in response to early season herbivory by Pieris rapae caterpillars in Brassica oleracea plants. Furthermore, we studied the interaction of these transcriptional responses with responses to secondary herbivory by the two specialist herbivores, P. rapae and Plutella xylostella, and the generalist Mamestra brassicae. P. rapae-induced responses strongly interacted with plant responses to secondary herbivory. Sequential feeding by specialist herbivores resulted in enhanced or similar expression levels of defence-related genes compared to primary herbivory by specialists. Secondary herbivory by the generalist M. brassicae resulted in lower gene expression levels than in response to primary herbivory by this generalist. Larval performance of both specialist and generalist herbivores was negatively affected by P. rapae-induced plant responses. However, in the field the specialist P. xylostella was more abundant on P. rapae-induced plants and preferred these plants over undamaged plants in oviposition experiments. In contrast, the generalist M. brassicae was more abundant on control plants and preferred undamaged plants for oviposition. P. rapae did not discriminate between plants damaged by conspecifics or undamaged plants. Our study shows that early season herbivory differentially affects transcriptional responses involved in plant defence to secondary herbivores and their population development dependent upon their degree of host plant specialization.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Zheng SJ, Dicke M. Ecological genomics of plant-insect interactions: from gene to community. PLANT PHYSIOLOGY 2008; 146:812-7. [PMID: 18316634 PMCID: PMC2259077 DOI: 10.1104/pp.107.111542] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/28/2007] [Indexed: 05/19/2023]
Affiliation(s)
- Si-Jun Zheng
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|