1
|
Wu G, Bazer FW, Johnson GA, Satterfield MC, Washburn SE. Metabolism and Nutrition of L-Glutamate and L-Glutamine in Ruminants. Animals (Basel) 2024; 14:1788. [PMID: 38929408 PMCID: PMC11201166 DOI: 10.3390/ani14121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - M. Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Shannon E. Washburn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
2
|
Baumgaertner F, Menezes ACB, Diniz WJS, Hurlbert JL, Bochantin-Winders KA, Underdahl SR, Kirsch JD, Dorsam ST, McCarthy KL, Ramirez-Zamudio GD, Sedivec KK, Caton JS, Dahlen CR. Effects of rate of body weight gain during the first trimester of gestation on beef heifer and offspring performance, concentrations of hormones and metabolites, and response to vaccination. J Anim Sci 2024; 102:skae193. [PMID: 39028632 PMCID: PMC11337006 DOI: 10.1093/jas/skae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ± 2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW and assigned to either a basal diet targeting 0.28 kg/d gain (low [LG], n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (moderate gain [MG], n = 50) until day 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated on days -10 and 84; and fetal measurements were taken on days 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to prebreeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on days 62.3 ± 4.13 and 220.3 ± 4.13 postcalving. By design, MG dams were heavier (P < 0.0001) than LG on day 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) in MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.
Collapse
Affiliation(s)
- Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Wellison J S Diniz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sarah R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - German D Ramirez-Zamudio
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Kevin K Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
3
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Santos MM, Costa TC, Mendes TAO, Dutra LL, Silva DNL, Araújo RD, Serão NVL, Rennó LN, Silva YFRS, Detmann E, Martín-Tereso J, Carvalho IP, Gionbelli MP, Duarte MS. Can the post-ruminal urea release impact liver metabolism, and nutritional status of beef cows at late gestation? PLoS One 2023; 18:e0293216. [PMID: 37856443 PMCID: PMC10586634 DOI: 10.1371/journal.pone.0293216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
We aimed to evaluate the effects of post-ruminal supply of urea (PRU) on nutritional status, and liver metabolism of pregnant beef cows during late gestation. Twenty-four Brahman dams, pregnant from a single sire, and weighing 545 kg ± 23 kg were confined into individual pens at 174 ± 23 d of gestation, and randomly assigned into one of two dietary treatments up to 270 d of gestation: Control (CON, n = 12), consisting of a basal diet supplemented with conventional urea, where the cows were fed with diets containing 13.5 g conventional urea per kg dry matter; and PRU (PRU, n = 12), consisting of a basal diet supplemented with a urea coated to extensively prevent ruminal degradation while being intestinally digestible, where the cows were fed with diets containing 14,8 g urea protected from ruminal degradation per kg dry matter. Post-ruminal supply of urea reduced the urine levels of 3-methylhistidine (P = 0.02). There were no differences between treatments for dry matter intake (DMI; P = 0.76), total digestible nutrient (TDN) intake (P = 0.30), and in the body composition variables, such as, subcutaneous fat thickness (SFT; P = 0.72), and rib eye area (REA; P = 0.85). In addition, there were no differences between treatments for serum levels of glucose (P = 0.87), and serum levels of glucogenic (P = 0.28), ketogenic (P = 0.72), glucogenic, and ketogenic (P = 0.45) amino acids, neither for urea in urine (P = 0.51) as well as urea serum (P = 0.30). One the other hand, enriched pathways were differentiated related to carbohydrate digestion, and absorption, glycolysis, pyruvate metabolism, oxidative phosphorylation, pentose phosphate pathway, and biosynthesis of amino acids of the exclusively expressed proteins in PRU cows. Shifting urea supply from the rumen to post-ruminal compartments decreases muscle catabolism in cows during late gestation. Our findings indicate that post-ruminal urea supplementation for beef cows at late gestation may improve the energy metabolism to support maternal demands. In addition, the post-ruminal urea release seems to be able to trigger pathways to counterbalance the oxidative stress associated to the increase liver metabolic rate.
Collapse
Affiliation(s)
- Marta M. Santos
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Muscle Biology, and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Thaís C. Costa
- Muscle Biology, and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Tiago A. O. Mendes
- Department of Biochemistry, and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luana L. Dutra
- Department of Biochemistry, and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Davi N. L. Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Muscle Biology, and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Renato D. Araújo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Muscle Biology, and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Nick V. L. Serão
- StatsGaze Data Science Solutions, Liverpool, NY, United States of America
| | - Luciana N. Rennó
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Yamê F. R. S. Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Edenio Detmann
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Mateus P. Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Marcio S. Duarte
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Chai N, Zheng H, Zhang H, Li L, Yu X, Wang L, Bi X, Yang L, Niu T, Liu X, Zhao Y, Dong L. Spermidine Alleviates Intrauterine Hypoxia-Induced Offspring Newborn Myocardial Mitochondrial Damage in Rats by Inhibiting Oxidative Stress and Regulating Mitochondrial Quality Control. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133776. [PMID: 36945337 PMCID: PMC10024813 DOI: 10.5812/ijpr-133776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023]
Abstract
Background Intrauterine hypoxia (IUH) increases the risk of cardiovascular diseases in offspring. As a reactive oxygen species (ROS) scavenger, polyamine spermidine (SPD) is essential for embryonic and fetal survival and growth. However, further studies on the SPD protection and mechanisms for IUH-induced heart damage in offspring are required. Objectives This study aimed to investigate the preventive effects of prenatal SPD treatment on IUH-induced heart damage in newborn offspring rats and its underlying mitochondrial-related mechanism. Methods The rat model of IUH was established by exposure to 10% O2 seven days before term. Meanwhile, for seven days, the pregnant rats were given SPD (5 mg.kg-1.d-1; ip). The one-day offspring rats were sacrificed to assess several parameters, including growth development, heart damage, cardiomyocytes proliferation, myocardial oxidative stress, cell apoptosis, and mitochondrial function, and have mitochondrial quality control (MQC), including mitophagy, mitochondrial biogenesis, and mitochondrial fusion/fission. In in vitro experiments, primary cardiomyocytes were subjected to hypoxia with or without SPD for 24 hours. Results IUH decreased body weight, heart weight, cardiac Ki67 expression, the activity of SOD, and the CAT and adenosine 5'-triphosphate (ATP) levels and increased the BAX/BCL2 expression, and TUNEL-positive nuclei numbers. Furthermore, IUH also caused mitochondrial structure abnormality, dysfunction, and decreased mitophagy (decreased number of mitophagosomes), declined mitochondrial biogenesis (decreased expression of SIRT-1, PGC-1α, NRF-2, and TFAM), and led to fission/fusion imbalance (increased percentage of mitochondrial fragments, increased DRP1 expression, and decreased MFN2 expression) in the myocardium. Surprisingly, SPD treatment normalized the variations in the IUH-induced parameters. Furthermore, SPD also prevented hypoxia-induced ROS accumulation, mitochondrial membrane potential decay, and the mitophagy decrease in cardiomyocytes. Conclusion Maternal SPD treatment caused IUH-induced heart damage in newborn offspring rats by improving the myocardial mitochondrial function via anti-oxidation and anti-apoptosis, and regulating MQC.
Collapse
Affiliation(s)
- Nannan Chai
- College of Nursing, Chifeng University, Chifeng, China
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haihong Zheng
- The Second Affiliated Hospital Department of the Laboratory Animal, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingxu Li
- Department of Nephrology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xue Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Liyi Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Bi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yang
- College of Nursing, Chifeng University, Chifeng, China
| | - Tongxu Niu
- College of Nursing, Chifeng University, Chifeng, China
| | - Xiujuan Liu
- College of Nursing, Chifeng University, Chifeng, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Corresponding Author: Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Lijie Dong
- Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China
- Corresponding Author: Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China.
| |
Collapse
|
6
|
Rani-AGARWAL N, Sarovar BHAVESH N, KACHHAWA G, Fatai OYEYEMI B. Metabolic profiling of Serum and urine in preeclampsia and gestational diabetes in early pregnancy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
9
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Peine JL, Neville TL, Jia G, Van Emon ML, Kirsch JD, Hammer CJ, Meyer AM, O’Rourke ST, Reynolds LP, Caton JS. Effects of maternal nutrition and rumen-protected arginine supplementation on maternal carotid artery hemodynamics and circulating amino acids of ewes and offspring. J Anim Sci 2021; 99:skab201. [PMID: 34723341 PMCID: PMC8559166 DOI: 10.1093/jas/skab201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
Multiparous Rambouillet ewes (n = 32) were allocated in a completely randomized design to determine if rumen-protected L-arginine (RP-Arg) supplementation during mid- and late gestation would 1) alter maternal carotid artery hemodynamics and 2) affect circulating amino acids associated with arginine metabolism in dams from day 54 of gestation to parturition and in their offspring from birth to 54 d of age. Ewes were assigned to one of three treatments from day 54 ± 3.9 to parturition: control (CON; 100% nutrient requirements), restricted (RES; 60% of CON), and RES plus 180 mg RP-Arg•kg BW-1•d1 (RES-ARG). Ewes were penned individually in a temperature-controlled facility. Carotid artery hemodynamics was measured via Doppler ultrasound at day 50 and 130 of gestation. Maternal serum was collected at day 54 and 138 of gestation and at parturition. At parturition, lambs were immediately removed from their dams and reared independently. Lamb serum samples were collected at birth and 1, 3, 7, 33, and 54 d of age. Pulsatility index was the only hemodynamic measurement altered by dietary treatment, where day 130 measurements were greater (P ≤ 0.04) for RES and RES-ARG compared with CON. The change in pulsatility index was greater (P < 0.01) for RES compared with CON but tended to be intermediate (P ≥ 0.12) for RES-ARG. Maternal serum Arg, Cit, and Asp at day 138 were greater (P < 0.01) for CON compared with RES and RES-ARG; serum Orn at day 138 was greater (P = 0.04) for CON compared with RES. Maternal serum Cit at parturition was greater (P ≤ 0.03) for CON and RES-ARG compared with RES. Offspring serum Arg was affected by a maternal treatment by day of age interaction (P = 0.03), where at day 3, CON and RES-ARG had greater (P ≤ 0.03) serum Arg concentrations than RES, and at day 54, RES-ARG was greater than (P = 0.002) CON and RES was intermediate and did not differ from (P ≥ 0.09) CON and RES-ARG. Offspring serum Orn and Cit were less (P ≤ 0.03) for RES and RES-ARG compared with CON. Results indicate that distal tissue blood perfusion decreased due to maternal RES, and RES-ARG was able to improve perfusion but not to the level of CON ewes. Further, maternal RP-Arg altered offspring Arg and related amino acid concentrations during the postnatal period.
Collapse
Affiliation(s)
- Jena L Peine
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Tammi L Neville
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Guangquiang Jia
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Megan L Van Emon
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - James D Kirsch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Carolyn J Hammer
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Stephen T O’Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108,USA
| |
Collapse
|
11
|
Maternal Nutrition and Developmental Programming of Male Progeny. Animals (Basel) 2021; 11:ani11082216. [PMID: 34438674 PMCID: PMC8388505 DOI: 10.3390/ani11082216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of the following review is to describe available literature on the interaction between maternal nutrition and developmental programming in male offspring. The majority of current research focuses on female offspring or fails to take offspring sex into account, though sexual dimorphisms in response to maternal diet are well-recognized. This leaves a large gap in the understanding of male developmental programming. This review will specifically discuss the impacts of maternal dietary energy and protein on bull and ram growth, development, and reproductive capacity in later life. Abstract Poor maternal nutrition can cause several maladaptive phenotypes in exposed offspring. While non-sex-specific and female-specific adaptations are well-documented, male-specific outcomes are still poorly understood. Of particular interest are the outcomes in bulls and rams, as developmental programming directly impacts long-term productivity of the animal as well as human food security. The following review discusses the impact of poor maternal dietary energy and protein on bull and ram developmental programming as it relates to growth, development, and reproductive capacity. The review also highlights the importance of the timing of maternal dietary insult, as early-, mid-, and late-gestational insults can all have varying effects on offspring.
Collapse
|
12
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
13
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
14
|
Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 2021; 12:46. [PMID: 33827696 PMCID: PMC8028684 DOI: 10.1186/s40104-021-00567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of progesterone (P4) to ewes during the first 9 to 12 days of pregnancy accelerates blastocyst development by day 12 of pregnancy, likely due to P4-induced up-regulation of key genes in uterine epithelia responsible for secretion and transport of components of histotroph into the uterine lumen. This study determined if acceleration of blastocyst development induced by exogenous P4 during the pre-implantation period affects fetal-placental development on day 125 of pregnancy. Suffolk ewes (n = 35) were mated to fertile rams and assigned randomly to receive daily intramuscular injections of either corn oil vehicle (CO, n = 18) or 25 mg progesterone in CO (P4, n = 17) for the first 8 days of pregnancy. All ewes were hysterectomized on day 125 of pregnancy and: 1) fetal and placental weights and measurements were recorded; 2) endometrial and placental tissues were analyzed for the expression of candidate mRNAs involved in nutrient transport and arginine metabolism; and 3) maternal plasma, fetal plasma, allantoic fluid, and amniotic fluid were analyzed for amino acids, agmatine, polyamines, glucose, and fructose. RESULTS Treatment of ewes with exogenous P4 did not alter fetal or placental growth, but increased amounts of aspartate and arginine in allantoic fluid and amniotic fluid, respectively. Ewes that received exogenous P4 had greater expression of mRNAs for SLC7A1, SLC7A2, SLC2A1, AGMAT, and ODC1 in endometria, as well as SLC1A4, SLC2A5, SLC2A8 and ODC1 in placentomes. In addition, AZIN2 protein was immunolocalized to uterine luminal and glandular epithelia in P4-treated ewes, whereas AZIN2 localized only to uterine luminal epithelia in CO-treated ewes. CONCLUSIONS This study revealed that exogenous P4 administered in early pregnancy influenced expression of selected genes for nutrient transporters and the expression of a protein involved in polyamine synthesis on day 125 of pregnancy, suggesting a 'programming' effect of P4 on gene expression that affected the composition of nutrients in fetal-placental fluids.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
15
|
Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol 2021; 12:39. [PMID: 33663606 PMCID: PMC7934464 DOI: 10.1186/s40104-021-00554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Administration of exogenous progesterone (P4) to ewes during the pre-implantation period advances conceptus development and implantation. This study determined effects of exogenous P4 on transport of select nutrients and pathways that enhance conceptus development. Pregnant ewes (n = 38) were treated with either 25 mg P4 in 1 mL corn oil (P4, n = 18) or 1 mL corn oil alone (CO, n = 20) from day 1.5 through day 8 of pregnancy and hysterectomized on either day 9 or day 12 of pregnancy. Endometrial expression of genes encoding enzymes for synthesis of polyamines, transporters of glucose, arginine, and glycine, as well as progestamedins was determined by RT-qPCR. Results On day 12 of pregnancy, conceptuses from P4-treated ewes had elongated while those from CO-treated ewes were spherical. The mRNA expression of AZIN2, an arginine decarboxylase, was lower in endometria of P4-treated than CO-treated ewes on day 9 of pregnancy. Expression of FGF10, a progestamedin, was greater in endometria of CO and P4-treated ewes on day 12 of gestation in addition to P4-treated ewes necropsied on day 9 of gestation. Treatment with P4 down-regulated endometrial expression of amino acid transporter SLC1A4 on day 12 of pregnancy. Conclusions Results indicated that administration of exogenous P4 during the pre-implantation period advanced the expression of FGF10, which may accelerate proliferation of trophectoderm cells, but also was correlated with decreased expression of glycine and serine transporters and polyamine synthesis enzyme AZIN2. Further research with increased sample sizes may determine how differential expression affects endometrial functions and potentially embryonic loss. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00554-6.
Collapse
Affiliation(s)
- Emily C Hoskins
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Michael C Satterfield
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
16
|
Halloran KM, Stenhouse C, Wu G, Bazer FW. Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:85-105. [PMID: 34251640 DOI: 10.1007/978-3-030-74180-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine is a key amino acid in pregnant females as it is the precursor for nitric oxide (NO) via nitric oxide synthase and for polyamines (putrescine, spermidine, and spermine) by either arginase II and ornithine decarboxylase to putrescine or via arginine decarboxylase to agmatine and agmatine to putrescine via agmatinase. Polyamines are critical for placental growth and vascularization. Polyamines stabilize DNA and mRNA for gene transcription and mRNA translation, stimulate proliferation of trophectoderm, and formation of multinucleated trophectoderm cells that give rise to giant cells in the placentae of species such as mice. Polyamines activate MTOR cell signaling to stimulate protein synthesis and they are important for motility through modification of beta-catenin phosphorylation, integrin signaling via focal adhesion kinases, cytoskeletal organization, and invasiveness or superficial implantation of blastocysts. Physiological levels of arginine, agmatine, and polyamines are critical to the secretion of interferon tau for pregnancy recognition in ruminants. Arginine, polyamines, and agmatine are very abundant in fetal fluids, fetal blood, and tissues of the conceptus during gestation. The polyamines are thus available to influence a multitude of events including activation of development of blastocysts, implantation, placentation, fetal growth, and development required for the successful establishment and maintenance of pregnancy in mammals.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Frank JW, Steinhauser CB, Wang X, Burghardt RC, Bazer FW, Johnson GA. Loss of ITGB3 in ovine conceptuses decreases conceptus expression of NOS3 and SPP1: implications for the developing placental vasculature†. Biol Reprod 2020; 104:657-668. [PMID: 33232974 DOI: 10.1093/biolre/ioaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
During the peri-implantation period of pregnancy in sheep, there is an initial period of loose apposition of the elongating conceptuses (embryos and associated placental membranes) to the endometrial luminal epithelium (LE) that is followed by adhesion of the conceptus trophectoderm to the endometrial LE for implantation. Integrins and maternal extracellular matrix (ECM) molecules are major contributors to stable adhesion at implantation, and the β3 integrin subunit (ITGB3) is implicated in the adhesion cascade for implantation in several species including the sheep. We blocked mRNA translation for trophectoderm-expressed ITGB3 by infusing morpholino antisense oligonucleotides into the uterine lumen of pregnant ewes on Day 9 to assess effects on conceptus elongation, and on Day 16 to assess effects on early placental development in sheep. Results indicate that sheep conceptuses elongate and implant to the uterine wall in the absence of ITGB3 expression by the conceptuses; however, loss of ITGB3 in conceptuses decreased the growth of embryos to Day 24 of gestation, and decreased expression of secreted phosphoprotein 1 (SPP1) and nitric oxide synthase 3 (NOS3). Abundant SPP1 was localized around the blood vessels in the placental allantoic membrane in normal sheep pregnancies. We hypothesize that NOS3 and SPP1 positively influence the development of the vasculature within the allantois, and that decreased expression of NOS3 and SPP1, in response to knockdown of ITGB3 in conceptuses, alters development of the vasculature in the allantois required to transport nutrients from the endometrium to support growth and development of the embryo.
Collapse
Affiliation(s)
- James W Frank
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Chelsie B Steinhauser
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Xiaoqiu Wang
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
18
|
Fenelon JC, Murphy BD. New functions for old factors: the role of polyamines during the establishment of pregnancy. Reprod Fertil Dev 2020; 31:1228-1239. [PMID: 30418870 DOI: 10.1071/rd18235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal-embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.
Collapse
Affiliation(s)
- Jane C Fenelon
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Bruce D Murphy
- Centre de recherché en reproduction et fertilité, Faculté de médicine vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
19
|
Prenatal Amino Acid Supplementation to Improve Fetal Growth: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092535. [PMID: 32825593 PMCID: PMC7551332 DOI: 10.3390/nu12092535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant fetal growth remains a leading cause of perinatal morbidity and mortality and is associated with a risk of developing non-communicable diseases later in life. We performed a systematic review and meta-analysis combining human and animal studies to assess whether prenatal amino acid (AA) supplementation could be a promising approach to promote healthy fetal growth. PubMed, Embase, and Cochrane libraries were searched to identify studies orally supplementing the following AA groups during gestation: (1) arginine family, (2) branched chain (BCAA), and (3) methyl donors. The primary outcome was fetal/birth weight. Twenty-two human and 89 animal studies were included in the systematic review. The arginine family and, especially, arginine itself were studied the most. Our meta-analysis showed beneficial effects of arginine and (N-Carbamyl) glutamate (NCG) but not aspartic acid and citrulline on fetal/birth weight. However, no effects were reported when an isonitrogenous control diet was included. BCAA and methyl donor supplementation did not affect fetal/birth weight. Arginine family supplementation, in particular arginine and NCG, improves fetal growth in complicated pregnancies. BCAA and methyl donor supplementation do not seem to be as promising in targeting fetal growth. Well-controlled research in complicated pregnancies is needed before ruling out AA supplements or preferring arginine above other AAs.
Collapse
|
20
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Adaptive responses to maternal nutrient restriction alter placental transport in ewes. Placenta 2020; 96:1-9. [PMID: 32421527 DOI: 10.1016/j.placenta.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Maternal nutrient partitioning, uteroplacental blood flow, transporter activity, and fetoplacental metabolism mediate nutrient delivery to the fetus. Inadequate availability or delivery of nutrients results in intrauterine growth restriction (IUGR), a leading cause of neonatal morbidity and mortality. Maternal nutrient restriction can result in IUGR, but only in an unforeseeable subset of individuals. METHODS To elucidate potential mechanisms regulating fetal nutrient availability, singleton sheep pregnancies were generated by embryo transfer. Pregnant ewes received either a 50% NRC (NR; n = 24) or 100% NRC (n = 7) diet from gestational Day 35 until necropsy on Day 125. Maternal weight did not correlate with fetal weight; therefore, the six heaviest (NR Non-IUGR) and five lightest (NR IUGR) fetuses from nutrient-restricted ewes, and seven 100% NRC fetuses, were compared to investigate differences in nutrient availability. RESULTS Insulin, multiple amino acids, and their metabolites, were reduced in fetal circulation of NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. In contrast, glucose in fetal fluids was not different between groups. There was a nearly two-fold reduction in placentome volume and fetal/maternal interface length in NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. Changes in amino acid concentrations were associated with altered expression of cationic (SLC7A2, SLC7A6, and SLC7A7) and large neutral (SLC38A2) amino acid transporters in placentomes. DISCUSSION Results establish a novel approach to study placental adaptation to maternal undernutrition in sheep and support the hypothesis that amino acids and polyamines are critical mediators of placental and fetal growth in sheep.
Collapse
|
22
|
Dunlap KA, White BG, Erikson DW, Satterfield MC, Pfarrer C, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. FTY720, a sphingosine analog, altered placentome histoarchitecture in ewes. J Anim Sci Biotechnol 2020; 11:2. [PMID: 31911836 PMCID: PMC6943922 DOI: 10.1186/s40104-019-0411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The lysosphingolipid, sphingosine-1-phosphate, is a well-described and potent pro-angiogenic factor. Receptors, as well as the sphingosine phosphorylating enzyme sphingosine kinase 1, are expressed in the placentomes of sheep and the decidua of rodents; however, a function for this signaling pathway during pregnancy has not been established. The objective of this study was to investigate whether sphingosine-1-phosphate promoted angiogenesis within the placentomes of pregnant ewes. Ewes were given daily jugular injections of FTY720 (2-amino-2[2-(− 4-octylphenyl)ethyl]propate-1,3-diol hydrochloride), an S1P analog. Results FTY720 infusion from days 30 to 60 of pregnancy did not alter maternal organ weights nor total number or mass of placentomes, but did alter placentome histoarchitecture. Interdigitation of caruncular crypts and cotyledonary villi was decreased, as was the relative area of cotyledonary tissue within placentomes. Also, the percentage of area occupied by cotyledonary villi per unit of placentome was increased, while the thickness of the caruncular capsule was decreased in ewes treated with FTY720. Further, FTY720 infusion decreased the number and density of blood vessels within caruncular tissue near the placentome capsule where the crypts emerge from the capsule. Finally, FTY720 infusion decreased asparagine and glutamine in amniotic fluid and methionine in allantoic fluid, and decreased the crown rump length of day 60 fetuses. Conclusions While members of the sphingosine-1-phosphate signaling pathway have been characterized within the uteri and placentae of sheep and mice, the present study uses FTY720 to address the influence of S1P signaling on placental development. We present evidence that modulation of the S1P signaling pathway results in the alteration of caruncular vasculature, placentome architecture, abundance of amino acids in allantoic and amniotic fluids, and fetal growth during pregnancy in sheep. The marked morphological changes in placentome histoarchitecture, including alteration in the vasculature, may be relevant to fetal growth and survival. It is somewhat surprising that fetal length was reduced as early as day 60, because fetal growth in sheep is greatest after day 60. The subtle changes observed in the fetuses of ewes exposed to FTY720 may indicate an adaptive response of the fetuses to cope with altered placental morphology.
Collapse
Affiliation(s)
- Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Bryan G White
- Okanagan College Salmon Arm Campus, Salmon Arm, British Columbia Canada
| | - David W Erikson
- 3Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Christiane Pfarrer
- 4Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Robert C Burghardt
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Kayla J Bayless
- 6Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - Greg A Johnson
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
23
|
Abstract
Amino acids are not only the building blocks of proteins, an indispensable component of cells, but also play versatile roles in regulating cell metabolism, proliferation, differentiation and growth by themselves or through their derivatives. At the whole body level, the bioavailability and metabolism of amino acids, interacting with other macronutrients, is critical for the physiological processes of reproduction including gametogenesis, fertilization, implantation, placentation, fetal growth and development. In fertilization and early pregnancy, histotroph in oviductal and uterine secretions provides nutrients and microenvironment for conceptus (embryo and extraembryonic membranes) development. These nutrients include select amino acids in histotroph (arginine, leucine and glutamine of particular interest) that stimulate conceptus growth and development, as well as interactions between maternal uterus and the conceptus, thus impacting maintenance of pregnancy, placental growth, development and functions, fetal growth and development, and consequential pregnancy outcomes. Gestational protein undernutrition causes fetal growth restriction and predisposes cardiovascular, metabolic diseases and others in offspring via multiple mechanisms, whereas the supplementation of glycine, leucine and taurine during pregnancy partially rescues growth restriction and beneficially modulates fetal programming. Thus, amino acids are essential for the fertility of humans and all animals.
Collapse
Affiliation(s)
- Haijun Gao
- Department of Obstetrics & Gynecology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
24
|
Spermidine Prevents Heart Injury in Neonatal Rats Exposed to Intrauterine Hypoxia by Inhibiting Oxidative Stress and Mitochondrial Fragmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5406468. [PMID: 31217839 PMCID: PMC6537013 DOI: 10.1155/2019/5406468] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Intrauterine hypoxia (IUH) is a common intrauterine dysplasia that can cause programming of the offspring cardiovascular system. In this study, we hypothesized that placental treatment with spermidine (SPD) can prevent heart injury in neonatal offspring exposed to IUH. Pregnant rats were exposed to 21% O2 or 10% O2 (hypoxia) for 7 days prior to term or were exposed to hypoxia and intraperitoneally administered SPD or SPD+difluromethylornithine (DFMO) on gestational days 15-21. Seven-day-old offspring were then sacrificed to assess several parameters. Our results demonstrated that IUH led to decreased myocardial ornithine decarboxylase (ODC) and increased spermidine/spermine N1-acetyltransferase (SSAT) expression in the offspring. IUH also resulted in decreased offspring body weight, heart weight, cardiomyocyte proliferation, and antioxidant capacity and increased cardiomyocyte apoptosis and fibrosis. Furthermore, IUH caused mitochondrial structure abnormality, dysfunction, and decreased biogenesis and led to a fission/fusion imbalance in offspring hearts. In vitro, hypoxia induced mitochondrial ROS accumulation, decreased membrane potential, and increased fragmentation. Notably, all hypoxia-induced changes analyzed in this study were prevented by SPD. Thus, in utero SPD treatment is a potential strategy for preventing IUH-induced neonatal cardiac injury.
Collapse
|
25
|
Duan Y, Zhao Y, Zhu Q, Cai Q, Li H, Yin Y, Wang Z, Kong X. Dietary nutrient levels alter the metabolism of arginine family amino acids in the conceptus of Huanjiang mini-pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2132-2139. [PMID: 30298626 DOI: 10.1002/jsfa.9405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The arginine family amino acids (AFAAs) exert important roles in the metabolism, growth and development of the conceptus. However, to date, few studies have investigated the effects of maternal nutrient levels on the concentrations and metabolism of AFAAs in the conceptus. RESULTS Compared to low nutrient diets, high nutrient diets increased (P < 0.05) the concentrations of citrulline and proline (Pro) in plasma; the concentrations of arginine, glutamine, Pro and ornithine (Orn) in the amniotic fluid; and the concentrations of all detected AFAAs in the allantoic fluid, which were most pronounced on day 45 of pregnancy. High nutrient diets upregulated (P < 0.05) mRNA expression of arginase I (Arg I), Pro oxidase and spermidine synthetase (SRM) in the fetal placenta, as well as Arg II, SRM and spermine synthetase (SMS) expression in the fetal liver (most pronounced on day 45 of pregnancy). The same effect was observed for mRNA expression of NO synthase and Orn aminotransferase (OAT), mainly on day 110 of pregnancy, and for mRNA expression of Arg I, Arg II, OAT, Orn decarboxylase and SMS throughout pregnancy. High nutrient diets upregulated (P < 0.05) mRNA expression of Y+ L-type amino acid transporter (LAT) and cationic amino acid transporter 1 (CAT1) in the fetal jejunum throughout pregnancy. Dietary treatments did not affect (P > 0.05) mRNA expression of Y+ LAT1, sodium-coupled neutral amino acid transporter 2 (SNAT2) and CAT1 in the fetal placenta, skeletal muscle and colon. CONCLUSION High nutrient diets increased the concentration and transport of AFAAs in the mothers and conceptus, which likely improves growth and development of the conceptus. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Yue Zhao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Henan University of Science and Technology, College of Animal Science and Technology, Luoyang, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoli Cai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Huawei Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Zhanbin Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
| |
Collapse
|
26
|
Peine JL, Jia G, Van Emon ML, Neville TL, Kirsch JD, Hammer CJ, O’Rourke ST, Reynolds LP, Caton JS. Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J Anim Sci 2018; 96:3471-3481. [PMID: 29893847 PMCID: PMC6095351 DOI: 10.1093/jas/sky221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The hypothesis of this study was that arginine supplementation would overcome negative effects of restricted maternal feed intake during the last two-thirds of gestation on ewe performance and positively affect postnatal lamb growth and development. Multiparous, Rambouillet ewes (n = 32) were allocated to 3 treatments in a completely random design at 54 ± 3.9 d of gestation. Dietary treatments were 100% of nutrient requirements (control, CON), 60% of control (restricted, RES), or RES plus a rumen-protected arginine supplement dosed at 180 mg/kg BW once daily (RES-ARG). Ewes were penned individually in a temperature-controlled facility. At parturition, lambs were immediately removed from dams and reared independently. At day 54 ± 3 of age, lambs were stunned using captive bolt, exsanguinated, and organs were collected and weighed. Ewe BW from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON compared with RES or RES-ARG. Similarly, ewe BCS from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON than either RES or RES-ARG. Total ewe colostrum mass (g) at 3 h after parturition was greater (P ≤ 0.001) in CON than RES or RES-ARG. Lamb birth weight was greater (P = 0.04) in CON than RES ewes and tended (P = 0.10) to be greater in CON vs. RES-ARG. Lambs born to CON ewes had greater (P ≤ 0.03) BW than lambs from RES ewes at 7, 14, and 33 d postpartum. On day 19, lambs from CON and RES-ARG ewes both had greater (P ≤ 0.04) BW than lambs from RES ewes (12.0 and 11.5 vs. 10.3 ± 0.41 kg, respectively). Lambs born to CON and RES-ARG ewes had greater (P ≤ 0.04) ADG than lambs from RES ewes on day 19 (355.0 and 354.0 vs. 306.4 ± 15.77 g, respectively). Lambs from CON and RES-ARG ewes also had greater (P ≤ 0.02) girth circumference than lambs from RES ewes on day 19 (55.4 and 54.6 vs. 51.3 ± 0.97 cm, respectively). On day 54, lambs from RES-ARG ewes had greater (P = 0.003) curved crown rump length than lambs from RES ewes (99.8 vs. 93.9 ± 1.28 cm, respectively). Adrenal glands in lambs from CON dams had greater (P = 0.01) mass than adrenal glands in lambs from RES dams. Livers from lambs born to RES-ARG ewes weighed more (P = 0.05) than livers from lambs born to RES ewes. These results confirm our hypothesis that arginine supplementation during the last two-thirds of gestation can mitigate offspring, but not maternal negative consequences associated with restricted maternal nutrition.
Collapse
Affiliation(s)
- Jena L Peine
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Guangquiang Jia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Megan L Van Emon
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Tammi L Neville
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - James D Kirsch
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Stephen T O’Rourke
- Departments of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | | | - Joel S Caton
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
27
|
Herring CM, Bazer FW, Johnson GA, Wu G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp Biol Med (Maywood) 2018; 243:525-533. [PMID: 29466875 PMCID: PMC5882021 DOI: 10.1177/1535370218758275] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H2S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.
Collapse
Affiliation(s)
- Cassandra M Herring
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
28
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
29
|
Lenis YY, Elmetwally MA, Tang W, Satterfield C, Dunlap K, Wu G, Bazer FW. Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 2017; 50:293-308. [PMID: 29196820 DOI: 10.1007/s00726-017-2515-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023]
Abstract
This study investigated the effect of agmatine (Agm) in proliferation of ovine trophecdoderm cells (oTr1) as well as the importance of the arginine decarboxylase (ADC) and agmatinase (AGMAT) alternative pathway for synthesis of polyamines in ovine conceptuses during the peri-implantation period of pregnancy. Morpholino antisense oligonucleotides (MAOs) were used to inhibit translation of mRNAs for ODC1 alone, AGMAT alone, and their combination. Rambouillet ewes (N = 50) were assigned randomly to the following treatments on Day 8 of pregnancy: MAO control (n = 10); MAO-ODC1 (n = 8); MAO-ADC (n = 6); MAO-ODC1:MAO-ADC (n = 9); or MAO-ODC1:MAO-AGMAT (n = 9). Ewes were ovario-hysterectomized on Day 16 of pregnancy to obtain uterine flushings, uterine endometrium, and conceptus tissues. Inhibition of translation of both ODC1 and AGMAT resulted in 22% of ewes having morphologically and functionally normal (elongated and healthy) conceptuses designated MAO-ODC1:MAO-AGMAT (A). But, 78% of the MAO-ODC1:MAO-AGMAT ewes had morphologically and functionally abnormal (not elongated and fragmented) conceptuses designated MAO-ODC1:MAO-AGMAT (B). The pregnancy rate was less (22%; P < 0.05) for MAO-ODC1:MAO-AGMAT ewes than for MAO-control (80%), MAO-ODC1 (75%), MAO-ADC (84%), and MAO-ODC1:MAO-ADC (44%) ewes. Moreover, inhibition of translational of both ODC1 and AGMAT mRNAs increased expression of ADC, SLC22A1, SLC22A2, and SLC22A3 mRNAs, as well as abundances of agmatine, putrescine, spermindine, and spermine in conceptus tissue. However, MAO-ODC1:AGMAT(B) ewes had greater abundances of agmatine, putrescine, and spermidine and reduced amounts of spermine in uterine flushes. Thus, in vivo knockdown of translation of ODC1 and AGMAT mRNAs increased expression of genes for the synthesis and transport of polyamines in ovine conceptuses during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Yasser Y Lenis
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.,Faculty of Agricultural Sciences, UDCA, Calle 222 No. 55-37, Bogota, Colombia
| | - Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Faculty of Veterinary Medicine, Department of Theriogenology, Mansoura University, Mansoura, 35516, Egypt
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA. .,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
30
|
Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai Z, Wang J, Wu Z, Wang X. Functional amino acids in the development of the pig placenta. Mol Reprod Dev 2017; 84:870-882. [PMID: 28390193 DOI: 10.1002/mrd.22809] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
The mammalian placenta is essential for supplying nutrients (e.g., amino acids and water) and oxygen from the mother to fetus and for removing fetal metabolites (e.g., ammonia and CO2 ) from fetus to mother. Thus, placental growth and development are determinants of fetal survival, growth, and development. Indeed, low birth weight is closely associated with reduced placental growth. Providing gestating gilts or sows with dietary supplementation of arginine and glutamine, increases placental growth (including vascular growth), improves embryonic/fetal growth and survival, and reduces the large variation in birth weight among litters. These two amino acids serve as building blocks for tissue protein as well as substrates for the production of polyamines and nitric oxide, which stimulate DNA and protein synthesis and angiogenesis and vascular growth in the placenta. These recent findings not only greatly advance the field of mammalian amino acid metabolism and nutrition, but also provide practical, mechanism-based methods to enhance reproductive efficiency in swine. These results may also help improve embryonic/fetal survival and growth in other livestock species (e.g., sheep and cattle) and in humans.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Cassandra Herring
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan, China
| |
Collapse
|
31
|
Abstract
Polyamines are polycationic molecules that contain two or more amino groups (-NH3 +) and are present in all eukaryotic and prokaryotic cells. Polyamines are synthesized from arginine, ornithine, and proline, and from methionine as the methyl-group donor. In the traditional pathway for polyamine synthesis, arginase converts arginine into ornithine, which is decarboxylated by ornithine decarboxylase (ODC1) to generate putrescine. The latter is converted to spermidine and spermine. Recent studies have indicated the existence of 'non-classical pathways' for the generation of putrescine from arginine and proline in animal cells. Specifically, arginine decarboxylase (ADC) catalyzes the conversion of arginine into agmatine, which is hydrolyzed by agmatinase (AGMAT) to form putrescine. Additionally, proline is oxidized by proline oxidase to yield pyrroline-5-carboxylate, which undergoes transamination with glutamate to produce ornithine for decarboxylation by ODC1. Intracellular production of polyamines is controlled by antizymes binding to and inactivating ODC1. Polyamines exert effects that include stimulation of cell division and proliferation, gene expression for the survival of cells, DNA and protein synthesis, regulation of apoptosis, oxidative stress, angiogenesis, and cell-cell communication activity. Accordingly, polyamines are essential for early embryonic development and successful pregnancy outcome in mammals. In this paper the main concepts on the history, structure and molecular pathways of polyamines as well as their physiological role on angiogenesis, and reproductive physiology are reviewed.
Collapse
|
32
|
Ravikumar N, Houlihan DD, Morrison JJ. Effects of Polyamines on Human Umbilical Artery Tone In Vitro. ACTA ACUST UNITED AC 2016; 11:536-9. [PMID: 15582498 DOI: 10.1016/j.jsgi.2004.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Polyamines act as endogenous modulators of cell function and excitability. There are no data in relation to their effects on the human fetoplacental circulation. The aim of this study was to investigate the effects of the polyamines, spermine, and spermidine on human umbilical artery resistance in vitro. METHODS Isometric tension recordings were performed under physiologic conditions on human umbilical arterial rings (n = 12). The in vitro effects of spermine and spermidine (at concentrations ranging between 10(-9) M to 10(-3) M) were measured, and compared with those measured in vehicle control experiments. The maximal inhibition (MMI) at the highest concentration and the pD2 (-log EC50) values for each compound were calculated and compared. RESULTS Spermine and spermidine exerted a potent relaxant effect on human umbilical arterial tone in comparison to vehicle control experiments. The MMI +/- SEM for spermine was 18.41 +/- 1.437% (n = 6; P <.001) and for spermidine was 38.31 +/- 3.572% (n = 6; P <.001). There was no difference observed between the pD2 +/- SEM values for spermine (5.78 +/- 1.54; n = 6) and spermidine (6.27 +/-0.85; n = 6) (P = .517). CONCLUSION The polyamines spermine and spermidine exert a potent relaxant effect on human umbilical artery tone suggestive of an endogenous role for these compounds in vasomotor regulation of the fetoplacental circulation.
Collapse
Affiliation(s)
- Nandini Ravikumar
- Department of Obstetrics and Gynaecology, Clinical Science Institute, National University of Ireland Galway, University College Hospital, Galway, Ireland
| | | | | |
Collapse
|
33
|
Li J, Xia H, Yao W, Wang T, Li J, Piao X, Thacker P, Wu G, Wang F. Effects of arginine supplementation during early gestation (day 1 to 30) on litter size and plasma metabolites in gilts and sows. J Anim Sci 2016; 93:5291-303. [PMID: 26641049 DOI: 10.2527/jas.2014-8657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two experiments were conducted, under typical commercial swine production conditions, to determine effects of dietary arginine supplementation during early gestation on the performance of gilts and sows. In Exp. 1, between d 1 and 30 of gestation, 62 Landrace gilts and 113 sows consumed a corn- and soybean meal-based diet supplemented with 1.3% -arginine HCl or 2.2% -alanine. Total numbers of piglets born ( < 0.05) and born alive ( < 0.01) per litter and litter birth weights of piglets born ( < 0.05) and born alive ( < 0.05) were increased in the arginine group compared with the control. In Exp. 2, 155 multiparous Landrace sows received 1.3% -arginine HCl supplementation between d 1 and 14 (T2; = 41), d 15 and 30 (T3; = 40), or d 1 and 30 (T4; = 37), whereas the control group received 2.2% -alanine supplementation between d 1 and 30 (T1; = 37). Blood samples were randomly obtained from 6 sows per group on d 1, 14, and 28 of gestation to determine plasma concentrations of AA and related metabolites. Total numbers of piglets born ( = 0.084) and born alive ( = 0.080) per litter tended to be higher for sows supplemented with arginine between d 1 and 14 of gestation (T2) than for control sows (T1). Concentrations of arginine and nitric oxide metabolites were greater ( < 0.05) in T4 compared with T1 and T3 on d 14 of gestation and were also greater in T4 compared with T1 and T2 on d 28 of gestation. Plasma concentrations of spermidine ( < 0.001) were increased in T3 and T4 compared with T1 and T2 on d 28. These results indicate that dietary arginine supplementation during early gestation improves the reproductive performance of gilts and sows, possibly via nitric oxide and polyamine-dependent mechanisms.
Collapse
|
34
|
van der Linden DS, Sciascia Q, Sales F, Wards NJ, Oliver MH, McCoard SA. Intravenous maternal -arginine administration to twin-bearing ewes during late pregnancy enhances placental growth and development. J Anim Sci 2016; 93:4917-25. [PMID: 26523584 DOI: 10.2527/jas.2014-8396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate if intravenous maternal Arg administration to well-fed twin-bearing ewes, from 100 to 140 d of gestation or birth, could enhance placental development and placental nutrient transport. Ewes received intravenous infusions of saline (control) or 345 μmol Arg HCl/kg of BW 3 times daily from d 100 of pregnancy (P100) to d 140 of pregnancy (P140; cohort 1) or from P100 to birth (cohort 2). At P140, ewes in cohort 1 were euthanized and individual placentae per fetus were dissected and placentomes were classed per type (A to D) and size (light to heavy). Placentome number and individual weight were recorded. As an indicator of placental nutrient transport, blood plasma was collected from the uterine ovarian vein (UOV), uterine artery (UA), and umbilical vein and artery at the time of euthanasia and analyzed for metabolites and free AA concentrations. The ewes in cohort 2 were allowed to lamb and lambs were weighed at birth. The expelled placenta was dissected and number of cotyledons and weights of total cotyledons, remaining fetal membranes, and total placenta were recorded. At P140, Arg-infused ewes had a 63% ( = 0.03) greater number of unoccupied caruncles than control ewes. No differences were observed for placental weight at P140. At birth, lambs from Arg-infused ewes tended to have 11% ( = 0.09) greater placental weight and 34% ( = 0.03) greater total cotyledon weight compared with control lambs. Arginine-infused ewes (Arg-infused) had increased concentrations of Arg ( = 0.0001) and ornithine (Orn; = 0.004) but decreased concentrations of Met ( = 0.01) and His ( = 0.02 and = 0.09, respectively) compared with control ewes in plasma UOV and UA. Fetuses from Arg-infused ewes had increased concentrations of Orn ( = 0.005) and decreased concentrations of His ( = 0.006), Met ( = 0.003), and Lys ( = 0.01) but no differences in Arg ( > 0.10) concentrations were found compared with control fetuses in umbilical artery and vein plasma. This study showed that maternal Arg administration of well-fed twin-bearing ewes during late pregnancy tended to improve placental growth and development.
Collapse
|
35
|
Chen J, Gong X, Chen P, Luo K, Zhang X. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: a meta-analysis. BMC Pregnancy Childbirth 2016; 16:225. [PMID: 27528012 PMCID: PMC4986189 DOI: 10.1186/s12884-016-1009-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/04/2016] [Indexed: 12/02/2022] Open
Abstract
Background Intrauterine growth restriction (IUGR) is associated with perinatal morbidity and mortality. Several clinical trials have reported L-arginine and sildenafil citrate had effect on intrauterine growth restriction fetuses. A meta-analysis of available randomized controlled trials (RCTs) was conducted to investigate the effects of L-arginine and sildenafil citrate on major clinical outcomes of IUGR fetuses. Methods Systematically searched Medline, Embase, the Cochrane Library, and Clinical Trials, references of retrieved articles, and conference proceedings from 1960 to 2015. We included randomized controlled trials assessing the effects of L-arginine and sildenafil citrate on IUGR. Outcomes analyzed were the birth weight, gestational age at labor, Apgar score at 1and 5 min, the ratio of NRDS, the ratio of ICH and neonatal death, etc. Results Ten trials were included. Nine trials (576 patients) compared L-arginine with either placebo or no intervention. In the L-arginine treatment groups of the L-arginine trials, there was a significant increase in fetal birth weight (SMD 0.41, 95 % CI [0.24,0.58]), gestational age (SMD 0.30, 95 % CI [0.07,0.54]); L-arginine treatment group have a significant reduction in the ratio of neonatal respiratory distress syndrome (P = 0.009), intracranial hemorrhage of fetuses (P = 0.002), but the number of included studies and people on these outcomes are small. As only one trial (41 patients) compared sildenafil citrate with placebo, it was too small for reliable conclusions about possible differential effects could be drawn. Conclusions The results of this meta-analysis showed that L-arginine increased birth weight and prolonged gestational age at labor of IUGR fetuses. However, further large-scale RCTs are needed to adequately assess the effect of L-arginine and Sildenafil citrate on clinical outcomes, because the number of study may be small. Electronic supplementary material The online version of this article (doi:10.1186/s12884-016-1009-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juncao Chen
- Division of Neonatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Xiaoyuan Gong
- Division of Neonatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Pingyang Chen
- Division of Neonatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China.
| | - Kaiju Luo
- Division of Neonatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Xiuquan Zhang
- Department Obstetrics and Gynecology and Reproductive Genetics, University of Utah, Salt Lake City, UT, 84132, USA
| |
Collapse
|
36
|
Zhu YH, Lin G, Dai ZL, Zhou TJ, Yuan TL, Feng CP, Chen F, Wu GY, Wang JJ. Developmental changes in polyamines and autophagic marker levels in normal and growth-restricted fetal pigs. J Anim Sci 2016; 93:3503-11. [PMID: 26440019 DOI: 10.2527/jas.2014-8743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyamines are essential for embryonic and fetal survival, growth, and development. Additionally, polyamines may induce autophagy in mammalian cells. However, little is known about the availability of polyamines or autophagy in the porcine conceptus with intrauterine growth restriction (IUGR). The present study was performed to evaluate the developmental changes of polyamine concentrations in IUGR and normal porcine fetuses as well as autophagic marker levels in the fetal intestinal mucosa during the second half of gestation when most fetal growth occurs. Allantoic fluid (ALF), amniotic fluid (AMF), umbilical vein, and the small-intestinal mucosa were obtained from both IUGR and normal fetal pigs at d 60, 90, and 110 of gestation. Concentrations of polyamines in fetal fluids as well as protein abundances of microtubule-associated protein light chain 3B (LC3B), an autophagic marker, in the fetal small-intestinal mucosa were determined. Concentrations of polyamines varied greatly in different fetal compartments and changed substantially with advancing gestation. Concentrations of polyamines in IUGR fetal fluids and the small-intestinal mucosa were markedly different from those in their normal counterparts at d 60 and 90 of gestation, whereas most of the differences were not detected by late (d 110) gestation. Specifically, polyamine levels were lower in the umbilical vein plasma but higher in ALF and AMF from IUGR fetuses. Furthermore, enhanced levels of an autophagic marker were observed in the small-intestinal mucosa of IUGR fetuses throughout mid and late gestation in association with abnormal spermidine levels in fetal plasma. These findings support the notion that enhanced autophagy may be an important survival mechanism in IUGR fetuses. Collectively, our findings provide a new framework for future studies to define the roles for polyamines in the prevention and treatment of IUGR in both human medicine and animal production.
Collapse
|
37
|
Bairagi S, Quinn K, Crane A, Ashley R, Borowicz P, Caton J, Redden R, Grazul-Bilska A, Reynolds L. Maternal environment and placental vascularization in small ruminants. Theriogenology 2016; 86:288-305. [DOI: 10.1016/j.theriogenology.2016.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
|
38
|
Lenis YY, Wang X, Tang W, Wu G, Bazer FW. Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 2016; 48:2389-99. [DOI: 10.1007/s00726-016-2216-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
|
39
|
Ibana JA, Cutay SJ, Romero M, Schust DJ. Parallel Expression of Enzyme Inhibitors of CD8T Cell Activity in Tumor Microenvironments and Secretory Endometrium. Reprod Sci 2015; 23:289-301. [PMID: 26335176 DOI: 10.1177/1933719115602762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The divergent requirement for tolerance to support conception and protective response against sexually transmitted infections defines the unique immunological dynamics in the female reproductive tract (FRT). In part, these requirements are achieved by the cyclic modulation of cytolytic CD8T cell function in the FRT that underlie the respective immunosuppressive and immunocompetent milieus during the secretory and proliferative phases of the menstrual cycle. The CD8T cell function can be dampened by exposure to indoleamine 2,3-dioxygenase and/or arginase enzymes. Indeed, these 2 enzymes are known as primary inducers of immune suppression in tumor microenvironments. This review discusses the intriguing parallel expression of these 2 enzymes in tumor microenvironments and in the secretory endometrium. We surmise that investigating the underlying natural mechanisms that suppress and restore the immunocompetence of CD8T cells in the FRT each month may provide valuable insights into ways to artificially recapitulate these mechanisms and inhibit immune suppression in tumor microenvironments.
Collapse
Affiliation(s)
- Joyce A Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Sandra Jelyn Cutay
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Maevel Romero
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Danny Joseph Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
40
|
Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 2015; 92:75. [PMID: 25653279 DOI: 10.1095/biolreprod.114.125989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammal species, arginine is a multifunctional amino acid required for survival, growth, and development of conceptuses (embryo/fetus and associated extraembryonic membranes) during the peri-implantation period of pregnancy. However, functional roles of arginine with respect to it being a substrate for production of nitric oxide (NO) and polyamines on trophectoderm cell proliferation and function remain largely unknown. To systematically assess roles of arginine in conceptus development and its effect on interferon tau (IFNT) production for pregnancy recognition signaling in ruminants, an established ovine trophectoderm (oTr1) cell line isolated from Day-15 ovine conceptuses were used to determine their response to arginine, putrescine, and NO donors, as well as their associated inhibitors. Arginine at physiological concentration (0.2 mM) stimulated maximum oTr cell proliferation (increased 2.0-fold at 48 h and 2.6-fold at 96 h; P < 0.05), stimulated IFNT production (IFNT/cell increased 3.1-fold; P < 0.05), and increased total protein per cell by more than 1.5-fold (P < 0.05). It also increased phosphorylated tuberous sclerosis protein (p-TSC2) and phosphorylated mechanistic target of rapamycin (MTOR) abundance by more than 2.7- and 4.3-fold (P < 0.0001) after long-term incubation, respectively. When Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; NO synthase inhibitor), DL-α-difluoromethylornithine hydrochloride hydrate (DFMO; ornithine decarboxylase inhibitor), and the combination (L-NAME + DFMO) were added, the effects of arginine on cell proliferation was reduced by 10.7%, 16.1%, and 22.3% (P < 0.05) at 48 h, and 15.3%, 27.2%, and 39.1% (P < 0.05) at 96 h of incubation, respectively, but values remained 1.5-fold higher (P < 0.05) than for the arginine-free control, which suggests that arginine, per se, serves as a growth factor. Both putrescine and NO stimulate cell proliferation via activation of the TSC2-MTOR signaling cascade, whereas only putrescine increased IFNT production. Collectively, our results indicate that arginine is essential for oTr1 cell proliferation and IFNT production via the NO/polyamine-TSC2-MTOR signaling pathways, particularly the pathway involving polyamine biosynthesis.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jared J Romero
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
41
|
Kong X, Wang X, Yin Y, Li X, Gao H, Bazer FW, Wu G. Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod 2014; 91:106. [PMID: 25253735 DOI: 10.1095/biolreprod.113.113977] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insufficient placental growth is a major factor contributing to intrauterine growth retardation in mammals. There is growing evidence that putrescine produced from arginine (Arg) and proline via ornithine decarboxylase is a key regulator of angiogenesis, embryogenesis, as well as placental and fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that putrescine stimulates protein synthesis by activating the mechanistic target of rapamycin (mTOR) signaling pathway in porcine trophectoderm cell line 2 cells. The cells were cultured for 2 to 4 days in customized Arg-free Dulbecco modified Eagle Ham medium containing 0, 10, 25, or 50 μM putrescine or 100 μM Arg. Cell proliferation, protein synthesis, and degradation, as well as the abundance of total and phosphorylated mTOR, ribosomal protein S6 kinase 1, and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. Our results indicate that putrescine promotes cell proliferation and protein synthesis in a dose- and time-dependent manner, which was inhibited by difluoro-methylornithine (an inhibitor of ornithine decarboxylase). Moreover, supplementation of culture medium with putrescine increased the abundance of phosphorylated mTOR and its downstream targets, 4EBP1 and p70 S6K1 proteins. Collectively, these findings reveal a novel and important role for putrescine in regulating the mTOR signaling pathway in porcine placental cells. We suggest that dietary supplementation with or intravenous administration of putrescine may provide a new and effective strategy to improve survival and growth of embryos/fetuses in mammals.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Department of Animal Science, Texas A&M University, College Station, Texas Hunan Provincial Engineering Research Center of Healthy Livestock and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiaoqiu Wang
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Yulong Yin
- Hunan Provincial Engineering Research Center of Healthy Livestock and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Haijun Gao
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Bazrafshan A, Owji M, Yazdani M, Varedi M. Activation of mitosis and angiogenesis in diabetes-impaired wound healing by processed human amniotic fluid. J Surg Res 2014; 188:545-52. [DOI: 10.1016/j.jss.2014.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/12/2013] [Accepted: 01/24/2014] [Indexed: 01/13/2023]
|
43
|
Ramos RDS, Mesquita FS, D'Alexandri FL, Gonella-Diaza AM, Papa PDC, Binelli M. Regulation of the polyamine metabolic pathway in the endometrium of cows during early diestrus. Mol Reprod Dev 2014; 81:584-94. [DOI: 10.1002/mrd.22323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/17/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Roney dos Santos Ramos
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; Universidade de São Paulo; Pirassununga Brazil
| | | | - Fabio L. D'Alexandri
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; Universidade de São Paulo; Pirassununga Brazil
| | - Angela Maria Gonella-Diaza
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; Universidade de São Paulo; Pirassununga Brazil
| | - Paula de Carvalho Papa
- Department of Surgery; School of Veterinary Medicine and Animal Science; Universidade de São Paulo; São Paulo Brazil
| | - Mario Binelli
- Department of Animal Reproduction; School of Veterinary Medicine and Animal Science; Universidade de São Paulo; Pirassununga Brazil
| |
Collapse
|
44
|
Waterman RC, Caton JS, Löest CA, Petersen MK, Roberts AJ. Beef Species Symposium: an assessment of the 1996 Beef NRC: metabolizable protein supply and demand and effectiveness of model performance prediction of beef females within extensive grazing systems. J Anim Sci 2014; 92:2785-99. [PMID: 24398839 DOI: 10.2527/jas.2013-7062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interannual variation of forage quantity and quality driven by precipitation events influence beef livestock production systems within the Southern and Northern Plains and Pacific West, which combined represent 60% (approximately 17.5 million) of the total beef cows in the United States. The beef cattle requirements published by the NRC are an important tool and excellent resource for both professionals and producers to use when implementing feeding practices and nutritional programs within the various production systems. The objectives of this paper include evaluation of the 1996 Beef NRC model in terms of effectiveness in predicting extensive range beef cow performance within arid and semiarid environments using available data sets, identifying model inefficiencies that could be refined to improve the precision of predicting protein supply and demand for range beef cows, and last, providing recommendations for future areas of research. An important addition to the current Beef NRC model would be to allow users to provide region-specific forage characteristics and the ability to describe supplement composition, amount, and delivery frequency. Beef NRC models would then need to be modified to account for the N recycling that occurs throughout a supplementation interval and the impact that this would have on microbial efficiency and microbial protein supply. The Beef NRC should also consider the role of ruminal and postruminal supply and demand of specific limiting AA. Additional considerations should include the partitioning effects of nitrogenous compounds under different physiological production stages (e.g., lactation, pregnancy, and periods of BW loss). The intent of information provided is to aid revision of the Beef NRC by providing supporting material for changes and identifying gaps in existing scientific literature where future research is needed to enhance the predictive precision and application of the Beef NRC models.
Collapse
Affiliation(s)
- R C Waterman
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301-4016
| | - J S Caton
- Department of Animal Sciences, North Dakota State University, Fargo 58108-6050
| | - C A Löest
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces 88003-8003
| | - M K Petersen
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301-4016
| | - A J Roberts
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301-4016
| |
Collapse
|
45
|
Greene JM, Feugang JM, Pfeiffer KE, Stokes JV, Bowers SD, Ryan PL. L-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod Biol Endocrinol 2013; 11:15. [PMID: 23442442 PMCID: PMC3598371 DOI: 10.1186/1477-7827-11-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/24/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at the level of the endometrium. To this end, this study determined the effect that L-arginine has on apoptosis and cell proliferation in human endometrial RL95-2 cells. RESULTS L-arginine at physiological (200 micromol/L) and supra-physiological (800 micromol/L) concentrations increased cell proliferation at days 2 and 4 post-treatment with a dose-dependent effect being observed on day 2. Additionally, inhibition of nitric oxide (NO) synthase and arginase, which are responsible for the conversion of L-arginine to NO and polyamines, respectively, reduced the proliferative effect of L-arginine. L-arginine also decreased the proportion of cells with TUNEL positive nuclei and increased the ratio of cells with healthy mitochondria compared to cells with a disrupted mitochondrial membrane potential, indicating that L-arginine prevents mitochondrial mediated apoptosis in endometrial RL95-2 cells. Furthermore, exposure to L-arginine did not affect total BAD protein expression; however, L-arginine increased the abundance of phosphorylated BAD protein. CONCLUSIONS In summary, L-arginine added to the culture media at physiological (200 micromol/L) and supraphysiological concentrations (800 micromol/L) enhanced endometrial RL95-2 cell proliferation through mechanisms mediated by NO and polyamine biosynthesis. In addition, L-arginine reduced endometrial RL95-2 mitochondrial mediated apoptosis through increased phosphorylation of BAD protein.
Collapse
Affiliation(s)
- Jonathan M Greene
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kathryn E Pfeiffer
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - John V Stokes
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Susan D Bowers
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
46
|
Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev 2012; 58:180-8. [PMID: 22738901 DOI: 10.1262/jrd.2011-019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon tau (IFNT) is the pregnancy recognition signal from ruminant conceptuses. IFNT also acts with P4 to induce expression of genes for transport of nutrients, such as glucose (Gluc) and arginine (Arg) into the uterine lumen to activate mechanistic mammalian target of rapamycin (MTOR) cell signaling that stimulates proliferation, migration, gene transcription and mRNA translation by conceptus trophectoderm (Tr). In ewes, Arg and Gluc increase significantly in the uterine lumen between Days 10 and 15 of pregnancy due to increased expression of transporters for Gluc (SLC2A1 and SLC5A1) and Arg (SLC7A2B) by uterine epithelia. Arg and Gluc stimulate proliferation, migration and mRNA translation by Tr. Arg increases expression of GTP cyclohydrolase 1 (GCH1) and IFNT mRNAs while Arg and Gluc increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1 mRNAs and proteins by Tr cells. GCH1 is required for synthesis of tetrahydrobiopterin, an essential cofactor for all NOS isoforms. Arg is metabolized to nitric oxide and polyamines that increase proliferation and migration of Tr cells. In pigs, Gluc, Arg, leucine (Leu) and glutamine (Gln) increase in the uterine lumen between Days 12 and 15 of pregnancy due to enhanced expression of transporters for Gluc and amino acids. Transporters for Gluc in porcine uterine LE (SLC2A1) and conceptus trophectoderm (SLC2A2) are abundant. Transporters for glutamate and neutral (SLC1A1, SLC1A4) and cationic (SLC7A1, SLC7A2, SLC7A7, SLC7A9) amino acids are expressed in uterine LE and SLC7A3 mRNA is expressed in conceptus Tr. Arg and Leu increase MTOR cell signaling and proliferation of pig Tr, as do Gluc and fructose. Azaserine, an inhibitor of hexosamine biosynthesis, inhibits effects of Gluc and fructose. Thus, select nutrients in the uterine lumen affect gene transcription and mRNA translation to affect conceptus development.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology, Texas A&M University, Texas 77843-2471, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Urea production and arginine metabolism are reduced in the growth restricted ovine foetus. Animal 2012; 1:699-707. [PMID: 22444470 DOI: 10.1017/s1751731107710273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urea production may be impaired in intrauterine growth restriction (IUGR), increasing the risk of toxic hyperammonaemia after birth. Arginine supplementation stimulates urea production, but its effects in IUGR are unknown. We aimed to determine the effects of IUGR and arginine supplementation on urea production and arginine metabolism in the ovine foetus. Pregnant ewes and their foetuses were catheterised at 110 days of gestation and randomly assigned to control or IUGR groups. IUGR was induced by placental embolisation. At days 120 and 126 of gestation, foetal urea production was determined from [14C]-urea kinetics and arginine metabolism was determined from the appearance of radioactive metabolites from [3H]-arginine, both at baseline and in response to arginine or an isonitrogenous mixed amino acid supplementation. Urea production decreased with gestational age in the embolised animals (13.9 ± 3.1 to 11.2 ± 3.0 μmol/kg per min, P ≤ 0.05) but not in the controls (13.3 ± 3.5 to 14.8 ± 6.0 μmol/kg per min). Arginine supplementation increased urea production in both groups, but only at 126 days of gestation (control: 15.0 ± 8.5 to 17.0 ± 9.4 μmol/kg per min; embolised: 11.7 ± 3.1 to 14.3 ± 3.1 μmol/kg per min, P ≤ 0.05). Embolisation reduced foetal arginine concentrations by 20% ( P ≤ 0.05) while foetal arginine consumption was reduced by 27% ( P ≤ 0.05). The proportions of plasma citrulline and hydroxyproline derived from arginine were reduced in the embolised animals. These data suggest that foetal urea production and arginine metabolism are perturbed in late gestation after placental embolisation.
Collapse
|
48
|
High-protein–low-carbohydrate diet during pregnancy alters maternal plasma amino acid concentration and placental amino acid extraction but not fetal plasma amino acids in pigs. Br J Nutr 2012; 108:2176-89. [DOI: 10.1017/s0007114512000414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A high protein–low-carbohydrate diet during pregnancy can cause intra-uterine growth restriction. However, its impact during pregnancy on maternal, umbilical and fetal plasma amino acid (AA) profiles is unknown. A maternal high-protein (30 %)–low-carbohydrate (HP-LC) diet was compared with isoenergetic standard (12·1 % crude protein; ST) and low-protein (6·5 %)–high-carbohydrate (LP-HC) diets fed to nulliparous pregnant sows to examine changes in AA concentrations in maternal, venous and arterial umbilical and fetal plasma in mid and late pregnancy. At 64 and 94 days of pregnancy (dp), sows underwent Caesarean section, and maternal, umbilical and fetal plasma samples were collected. The HP-LC diet mainly affected maternal plasma AA concentrations. Plasma concentrations of Ile and Val were increased and those of Ala, Glu and Gly were decreased (P ≤ 0·05) in HP-LC compared with ST sows at 64 and 94 dp. The LP-HC diet decreased fetal plasma Glu concentration compared with the ST diet at 94 dp. Substantial AA catabolism was reflected by increased (P ≤ 0·05) maternal and fetal plasma urea concentrations with the HP-LC compared with the ST and LP-HC diets at 94 dp. Fractional placental extraction of Val was higher whereas those of Ala, Gln and Glu were lower in the HP-LC compared with the ST sows at 64 and 94 dp (P ≤ 0·05). Reduced fetal mass at 94 dp was accompanied by reduced fetal extraction of Lys and Pro in the HP-LC group (P ≤ 0·05). In conclusion, a maternal HP-LC diet during pregnancy altered maternal plasma composition of many AA and modified placental AA extraction to compensate for imbalanced maternal nutrient intake.
Collapse
|
49
|
Krause BJ, Prieto CP, Muñoz-Urrutia E, San Martín S, Sobrevia L, Casanello P. Role of arginase-2 and eNOS in the differential vascular reactivity and hypoxia-induced endothelial response in umbilical arteries and veins. Placenta 2012; 33:360-6. [PMID: 22391327 DOI: 10.1016/j.placenta.2012.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/28/2022]
Abstract
The main vasodilator in the placenta is nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS). Arginase-2 competes with eNOS for l-arginine, and its activity has been related with vascular dysfunction. Recently, we showed that hypoxia induces arginase-2, and decreases eNOS activity in human umbilical vein endothelial cells (HUVEC). However there is evidence that vascular responses to hypoxia are not similar throughout the placental vascular tree. We studied whether arginase-2 plays a role controlling vascular tone in human umbilical vessels, and the changes in the expression of arginase-2 and eNOS proteins by hypoxia in endothelial cells from umbilical arteries (HUAEC) and veins (HUVEC). In isolated umbilical vessels the presence of eNOS and arginase-2 was determined in the endothelium, and the NO-dependent vasoactive responses in the presence and absence of S-(2-boronoethyl)-L-cysteine (BEC, arginase inhibitor) were studied. Additionally, HUAEC and HUVEC were exposed (0-24 h) to hypoxia (2% O2) or normoxia (5% O2), and protein levels of eNOS (total and phosphorylated at serine-1177) and arginase-2 were determined. In umbilical arteries and veins arginase-2 and eNOS were detected mainly at the endothelium. BEC induced a higher concentration-dependent relaxation in umbilical arteries than veins, and these responses were NOS-dependent. In HUAEC exposed to hypoxia there were no changes in eNOS and arginase-2 levels, however there was a significant increase of p-eNOS. In contrast, HUVEC showed an increase in arginase-2 and a reduction of p-eNOS in response to hypoxia. These results show that arginases have a vascular role in placental vessels counteracting the NOS-dependent relaxation, which is differentially regulated in placental artery and vein endothelial cells.
Collapse
Affiliation(s)
- B J Krause
- Perinatology Research Laboratory and Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The polyamines are ubiquitous polycationic compounds. Over the past 40 yr, investigation has shown that some of these, namely spermine, spermidine, and putrescine, are essential to male and female reproductive processes and to embryo/fetal development. Indeed, their absence is characterized by infertility and arrest in embryogenesis. Mammals synthesize polyamines de novo from amino acids or import these compounds from the diet. Information collected recently has shown that polyamines are essential regulators of cell growth and gene expression, and they have been implicated in both mitosis and meiosis. In male reproduction, polyamine expression correlates with stages of spermatogenesis, and polyamines appear to function in promoting sperm motility. There is evidence for polyamine involvement in ovarian follicle development and ovulation in female mammals, and polyamine synthesis is required for steroidogenesis in the ovary. Studies of the embryo indicate a polyamine requirement that can be met from maternal sources before implantation, whereas elimination of polyamine synthesis abrogates embryo development at gastrulation. Polyamines play roles in embryo implantation, in decidualization, and in placental formation and function, and polyamine privation during gestation results in intrauterine growth retardation. Emerging information implicates dietary arginine and dietary polyamines as nutritional regulators of fertility. The mechanisms by which polyamines regulate these multiple and diverse processes are not yet well explored; thus, there is fertile ground for further productive investigation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Canada QC J2S 2M2
| | | | | |
Collapse
|