1
|
Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev 2024; 327:100-110. [PMID: 39508795 DOI: 10.1111/imr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
Collapse
Affiliation(s)
| | | | | | | | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
2
|
Abedi A, Foroutan T, Mohaghegh Shalmani L, Dargahi L. Sex-dependent susceptibility to brain metabolic dysfunction and memory impairment in response to pre and postnatal high-fat diet. J Nutr Biochem 2024; 132:109675. [PMID: 38945454 DOI: 10.1016/j.jnutbio.2024.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
The developing brain is sensitive to the impacts of early-life nutritional intake. This study investigates whether maternal high fat diet (HFD) causes glucose metabolism impairment, neuroinflammation, and memory impairment in immature and adult offspring, and whether it may be affected by postweaning diets in a sex-dependent manner in adult offspring. After weaning, female rats were fed HFD (55.9% fat) or normal chow diet (NCD; 10% fat) for 8 weeks before mating, during pregnancy, and lactation. On postnatal day 21 (PND21), the male and female offspring of both groups were split into two new groups, and NCD or HFD feeding was maintained until PND180. On PND21 and PND180, brain glucose metabolism, inflammation, and Alzheimer's pathology-related markers were by qPCR. In adult offspring, peripheral insulin resistance parameters, spatial memory performance, and brain glucose metabolism (18F-FDG-PET scan and protein levels of IDE and GLUT3) were assessed. Histological analysis was also performed on PND21 and adult offspring. On PND21, we found that maternal HFD affected transcript levels of glucose metabolism markers in both sexes. In adult offspring, more profoundly in males, postweaning HFD in combination with maternal HFD induced peripheral and brain metabolic disturbances, impaired memory performance and elevated inflammation, dementia risk markers, and neuronal loss. Our results suggest that maternal HFD affects brain glucose metabolism in the early ages of both sexes. Postweaning HFD sex-dependently causes brain metabolic dysfunction and memory impairment in later-life offspring; effects that can be worsened in combination with maternal HFD.
Collapse
Affiliation(s)
- Azam Abedi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tahereh Foroutan
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Leila Mohaghegh Shalmani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hoch D, Majali-Martinez A, Bandres-Meriz J, Bachbauer M, Pöchlauer C, Kaudela T, Bankoglu EE, Stopper H, Glasner A, Hauguel-De Mouzon S, Gauster M, Tokic S, Desoye G. Obesity-associated non-oxidative genotoxic stress alters trophoblast turnover in human first-trimester placentas. Mol Hum Reprod 2024; 30:gaae027. [PMID: 39092995 PMCID: PMC11347397 DOI: 10.1093/molehr/gaae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Placental growth is most rapid during the first trimester (FT) of pregnancy, making it vulnerable to metabolic and endocrine influences. Obesity, with its inflammatory and oxidative stress, can cause cellular damage. We hypothesized that maternal obesity increases DNA damage in the FT placenta, affecting DNA damage response and trophoblast turnover. Examining placental tissue from lean and obese non-smoking women (4-12 gestational weeks), we observed higher overall DNA damage in obesity (COMET assay). Specifically, DNA double-strand breaks were found in villous cytotrophoblasts (vCTB; semi-quantitative γH2AX immunostaining), while oxidative DNA modifications (8-hydroxydeoxyguanosine; FPG-COMET assay) were absent. Increased DNA damage in obese FT placentas did not correlate with enhanced DNA damage sensing and repair. Indeed, obesity led to reduced expression of multiple DNA repair genes (mRNA array), which were further shown to be influenced by inflammation through in vitro experiments using tumor necrosis factor-α treatment on FT chorionic villous explants. Tissue changes included elevated vCTB apoptosis (TUNEL assay; caspase-cleaved cytokeratin 18), but unchanged senescence (p16) and reduced proliferation (Ki67) of vCTB, the main driver of FT placental growth. Overall, obesity is linked to heightened non-oxidative DNA damage in FT placentas, negatively affecting trophoblast growth and potentially leading to temporary reduction in early fetal growth.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martina Bachbauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Theresa Kaudela
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvija Tokic
- Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Parker J, Hofstee P, Brennecke S. Prevention of Pregnancy Complications Using a Multimodal Lifestyle, Screening, and Medical Model. J Clin Med 2024; 13:4344. [PMID: 39124610 PMCID: PMC11313446 DOI: 10.3390/jcm13154344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Prevention of pregnancy complications related to the "great obstetrical syndromes" (preeclampsia, fetal growth restriction, spontaneous preterm labor, and stillbirth) is a global research and clinical management priority. These syndromes share many common pathophysiological mechanisms that may contribute to altered placental development and function. The resulting adverse pregnancy outcomes are associated with increased maternal and perinatal morbidity and mortality and increased post-partum risk of cardiometabolic disease. Maternal nutritional and environmental factors are known to play a significant role in altering bidirectional communication between fetal-derived trophoblast cells and maternal decidual cells and contribute to abnormal placentation. As a result, lifestyle-based interventions have increasingly been recommended before, during, and after pregnancy, in order to reduce maternal and perinatal morbidity and mortality and decrease long-term risk. Antenatal screening strategies have been developed following extensive studies in diverse populations. Multivariate preeclampsia screening using a combination of maternal, biophysical, and serum biochemical markers is recommended at 11-14 weeks' gestation and can be performed at the same time as the first-trimester ultrasound and blood tests. Women identified as high-risk can be offered prophylactic low dose aspirin and monitored with angiogenic factor assessment from 22 weeks' gestation, in combination with clinical assessment, serum biochemistry, and ultrasound. Lifestyle factors can be reassessed during counseling related to antenatal screening interventions. The integration of lifestyle interventions, pregnancy screening, and medical management represents a conceptual advance in pregnancy care that has the potential to significantly reduce pregnancy complications and associated later life cardiometabolic adverse outcomes.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2522, Australia;
| | - Pierre Hofstee
- School of Medicine, University of Wollongong, Wollongong 2522, Australia;
- Tweed Hospital, Northern New South Wales Local Health District, Tweed Heads 2485, Australia
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
5
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 PMCID: PMC11808824 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Buckley LA, Kulhanek DR, Bruder A, Gisslen T, Paulsen ME. Inflammation as a Sex-Specific Mediator in the Relationship between Maternal and Offspring Obesity in C57Bl/6J Mice. BIOLOGY 2024; 13:399. [PMID: 38927279 PMCID: PMC11200566 DOI: 10.3390/biology13060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Maternal obesity is a well-established risk factor for offspring obesity development. The relationship between maternal and offspring obesity is mediated in part by developmental programming of offspring metabolic circuitry, including hypothalamic signaling. Dysregulated hypothalamic inflammation has also been linked to development of obesity. We utilized an established C57Bl/6J mouse model of high-fat, high-sugar diet induced maternal obesity to evaluate the effect of maternal obesity on systemic and hypothalamic TNF-α, IL-6, and IL-1β levels in neonatal and adult offspring. The offspring of dams with obesity demonstrated increased adiposity and decreased activity compared to control offspring. Maternal obesity was associated with decreased plasma TNF-α, IL-6 and IL-1β in adult female offspring and decreased plasma IL-6 in neonatal male offspring. Neonatal female offspring of obese dams had decreased TNF-α gene expression in the hypothalamus compared to control females, while neonatal and adult male offspring of obese dams had decreased IL-6 gene expression in the hypothalamus compared to control males. In summary, our results highlight important sex differences in the inflammatory phenotype of offspring exposed to maternal obesity. Sex-specific immunomodulatory mechanisms should be considered in future efforts to develop therapeutic interventions for obesity prevention and treatment.
Collapse
Affiliation(s)
- Lauren A. Buckley
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55454, USA; (D.R.K.); (A.B.); (T.G.); (M.E.P.)
| | - Debra R. Kulhanek
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55454, USA; (D.R.K.); (A.B.); (T.G.); (M.E.P.)
| | - Adrienne Bruder
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55454, USA; (D.R.K.); (A.B.); (T.G.); (M.E.P.)
| | - Tate Gisslen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55454, USA; (D.R.K.); (A.B.); (T.G.); (M.E.P.)
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| | - Megan E. Paulsen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55454, USA; (D.R.K.); (A.B.); (T.G.); (M.E.P.)
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
7
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
8
|
Parker J, O’Brien CL, Yeoh C, Gersh FL, Brennecke S. Reducing the Risk of Pre-Eclampsia in Women with Polycystic Ovary Syndrome Using a Combination of Pregnancy Screening, Lifestyle, and Medical Management Strategies. J Clin Med 2024; 13:1774. [PMID: 38541997 PMCID: PMC10971491 DOI: 10.3390/jcm13061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/04/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multisystem disorder that presents with a variety of phenotypes involving metabolic, endocrine, reproductive, and psychological symptoms and signs. Women with PCOS are at increased risk of pregnancy complications including implantation failure, miscarriage, gestational diabetes, fetal growth restriction, preterm labor, and pre-eclampsia (PE). This may be attributed to the presence of specific susceptibility features associated with PCOS before and during pregnancy, such as chronic systemic inflammation, insulin resistance (IR), and hyperandrogenism, all of which have been associated with an increased risk of pregnancy complications. Many of the features of PCOS are reversible following lifestyle interventions such as diet and exercise, and pregnant women following a healthy lifestyle have been found to have a lower risk of complications, including PE. This narrative synthesis summarizes the evidence investigating the risk of PE and the role of nutritional factors in women with PCOS. The findings suggest that the beneficial aspects of lifestyle management of PCOS, as recommended in the evidence-based international guidelines, extend to improved pregnancy outcomes. Identifying high-risk women with PCOS will allow targeted interventions, early-pregnancy screening, and increased surveillance for PE. Women with PCOS should be included in risk assessment algorithms for PE.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2522, Australia
| | - Claire Louise O’Brien
- Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia;
| | - Christabelle Yeoh
- Next Practice Genbiome, 2/2 New McLean Street, Edgecliff 2027, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
9
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571680. [PMID: 38187648 PMCID: PMC10769274 DOI: 10.1101/2023.12.16.571680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide novel insights into fetal brain microglial programs, and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders in the setting of maternal exposures.
Collapse
Affiliation(s)
| | - Alexis M. Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A. Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H. Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna K. Slonim
- Department of Computer Science, Tufts University, Medford, MA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, MA
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Escalona R, Larqué C, Cortes D, Vilchis R, Granados-Delgado E, Sánchez A, Sánchez-Bringas G, Lugo-Martínez H. High-fat diet impairs glucose homeostasis by increased p16 beta-cell expression and alters glucose homeostasis of the progeny in a parental-sex dependent manner. Front Endocrinol (Lausanne) 2023; 14:1246194. [PMID: 37876538 PMCID: PMC10591070 DOI: 10.3389/fendo.2023.1246194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Obesity consists in the accumulation of adipose tissue accompanied by low grade chronic inflammation and is considered a pandemic disease. Recent studies have observed that obesity affects females and males in a sex-dependent manner. In addition, several works have demonstrated that parental obesity increases the risk to develop obesity, insulin resistance, diabetes, and reproductive disorders. Considering that intergenerational effects of obesity may occur in a sex-dependent manner, we studied male Wistar rat progeny (F1) obtained from mothers or fathers (F0) fed on a high-fat diet (HFD). Methods Five-week-old female and male Wistar rats were fed on a HFD (with 60% of calories provided by fat) for 18 weeks (F0). At the end of the treatment, animals were mated with young rats to obtain their progeny (F1). After weaning, F1 animals were fed on standard chow until 18 weeks of age. Body weight gain, fasting plasma glucose, insulin and leptin levels, glucose tolerance, insulin sensitivity, and adiposity were evaluated. In addition, beta-cell expression of nuclear p16 was assessed by immunofluorescence. Results and conclusions HFD altered plasma fasting glucose, insulin and leptin levels, glucose tolerance, adiposity, and beta-cell expression of p16 in F0 rats. Particularly, HFD showed sexual dimorphic effects on body weight gain and insulin sensitivity. Moreover, we observed that parental HFD feeding exerts parental-sex-specific metabolic impairment in the male progeny. Finally, parental metabolic dysfunction could be in part attributed to the increased beta-cell expression of p16; other mechanisms could be involved in the offspring glucose homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haydée Lugo-Martínez
- Laboratory of Embryology and Genetics, Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
11
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
13
|
Tong W, Ganguly E, Villalobos-Labra R, Quon A, Spaans F, Giussani DA, Davidge ST. Sex-Specific Differences in the Placental Unfolded Protein Response in a Rodent Model of Gestational Hypoxia. Reprod Sci 2022; 30:1994-1997. [PMID: 36574145 DOI: 10.1007/s43032-022-01157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Gestational hypoxia is a major contributor to fetal growth restriction (FGR) and perinatal morbidity and mortality and has been closely linked to the activation of the unfolded protein response (UPR) in the placenta. Recent studies on adverse pregnancy conditions show differential adaptive responses in pregnancies carrying male or female fetuses. Here, we use an established rat model of hypoxic pregnancy and FGR to test the hypothesis that chronic hypoxia promotes sexually dimorphic activation of the placental UPR. Our data showed that gestational hypoxia increased glucose regulatory protein 78 (GRP78) expression in male placentae, increased activating transcription factor 6 activation (ATF6) in female placentae, and did not induce changes in other UPR markers. In addition, gestational hypoxia reduced fetal weight only in males and ATF6 activation correlated with an increase in the fetal crown-rump-length/body weight ratio only in females. These results suggest sex-specific divergence in the placental adaptive response to gestational hypoxia, which may account for the sexual dimorphism observed in placental function and pregnancy outcomes in complicated pregnancies.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Esha Ganguly
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roberto Villalobos-Labra
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anita Quon
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada.
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Kuentzel KB, Bradić I, Mihalič ZN, Korbelius M, Rainer S, Pirchheim A, Kargl J, Kratky D. Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice. Int J Mol Sci 2022; 23:12286. [PMID: 36293139 PMCID: PMC9603336 DOI: 10.3390/ijms232012286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Advanced maternal age and obesity are the main risk factors to develop gestational diabetes mellitus (GDM). Obesity is a consequence of the increased storage of triacylglycerol (TG). Cytosolic and lysosomal lipid hydrolases break down TG and cholesteryl esters (CE) to release fatty acids (FA), free cholesterol, and glycerol. We have recently shown that intracellular lipases are present and active in the mouse placenta and that deficiency of lysosomal acid lipase alters placental and fetal lipid homeostasis. To date, intracellular lipid hydrolysis in GDM has been poorly studied despite the important role of FA in this condition. Therefore, we hypothesized that intracellular lipases are dysregulated in pregnancies complicated by maternal high-fat/high-cholesterol (HF/HCD) feeding with and without GDM. Placentae of HF/HCD-fed mice with and without GDM were more efficient, indicating increased nutrient transfer to the fetus. The increased activity of placental CE but not TG hydrolases in placentae of dams fed HF/HCD with or without GDM resulted in upregulated cholesterol export to the fetus and placental TG accumulation. Our results indicate that HF/HCD-induced dysregulation of placental lipid hydrolysis contributes to fetal hepatic lipid accumulation and possibly to fetal overgrowth, at least in mice.
Collapse
Affiliation(s)
- Katharina B. Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zala N. Mihalič
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
16
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
17
|
Mitchell AJ, Dunn GA, Sullivan EL. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:450-460. [PMID: 34915175 PMCID: PMC9086110 DOI: 10.1016/j.bpsc.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.
Collapse
Affiliation(s)
- A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
18
|
Combined exposure to maternal high-fat diet and neonatal lipopolysaccharide disrupts stress-related signaling but normalizes spatial memory in juvenile rats. Brain Behav Immun 2022; 102:299-311. [PMID: 35259428 DOI: 10.1016/j.bbi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022] Open
Abstract
Both neonatal infections and exposure to maternal obesity are inflammatory stressors in early life linked to increased rates of psychopathologies related to mood and cognition. Epidemiological studies indicate that neonates born to mothers with obesity have a higher likelihood of developing neonatal infections, however effects on offspring physiology and behavior resulting from the combination of these stressors have yet to be investigated. The aim of this study was to explore immediate and persistent phenotypes resulting from neonatal lipopolysaccharide (nLPS) administration in rat offspring born to dams consuming a high-fat diet (HFD). Neural transcript abundance of genes involved with stress regulation and spatial memory were examined alongside related behaviors. At the juvenile age point, unlike offspring exposed to maternal HFD (mHFD) or nLPS alone, offspring with combined exposure to mHFD + nLPS displayed altered transcript abundances of stress-related genes in the ventral hippocampus (HPC) in a manner conducive to potentiating stress responses. For memory-related phenotypes, juveniles exposed to mHFD + nLPS exhibited normalized spatial memory and levels of memory-related gene expression in the dorsal HPC similar to control diet offspring, while control diet + nLPS, and mHFD offspring exhibited reduced levels of memory-related gene expression and impaired spatial memory. These findings suggest that dual exposure to unique inflammatory stressors in early life can disrupt neural stress regulation but normalize spatial memory processes.
Collapse
|
19
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Wang Z, Chen Y, Wang W, Huang C, Hu Y, Johnston L, Wang F. Dietary Supplementation With Fine-Grinding Wheat Bran Improves Lipid Metabolism and Inflammatory Response via Modulating the Gut Microbiota Structure in Pregnant Sow. Front Microbiol 2022; 13:835950. [PMID: 35418966 PMCID: PMC8999112 DOI: 10.3389/fmicb.2022.835950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of fine-grinding wheat bran on pregnant sow body condition, lipid metabolism, inflammatory response, and gut microbiota. In this study, wheat bran was crushed into three particle sizes. A total of 60 Landrace × Yorkshire second parity sows were allotted to two groups: CWB (a diet containing coarse wheat bran with particle size of 605 μm) and FWB (a diet containing fine wheat bran with particle size of 438 μm). Fine-grinding wheat bran had higher soluble dietary fiber concentration, swelling capacity, water-holding capacity, and fermentability than coarse wheat bran. Pregnant sows fed FWB throughout pregnancy had lower body weight and fat deposition than sows fed CWB. And the piglet body weight at birth of the FWB group was remarkably increased. Serum concentrations of lipids (triglycerides, total cholesterol, and free fatty acid), interleukin 6, leptin, and resistin were decreased on day 90 of pregnancy by fine wheat bran supplementation. Feeding FWB significantly decreased abundance of Firmicutes and dramatically increased the abundance of Bacteroidetes at phylum level. At genus level, the abundance of Terrisporobacter was decreased in FWB feeding sows, but the abundance of Parabacteroides was increased. Fecal total short-chain fatty acids, propionate, and butyrate contents were markedly increased in the FWB group. The results suggested that the physicochemical properties of finely ground wheat bran had been improved. Dietary supplementation with fine wheat bran changed the gut microbiota structure and enhanced the short-chain fatty acids level, which improved the maternal body condition, metabolic and inflammatory status, and reproductive performance in sows.
Collapse
Affiliation(s)
- Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongfei Hu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Lee Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Napso T, Lean SC, Lu M, Mort EJ, Desforges M, Moghimi A, Bartels B, El‐Bacha T, Fowden AL, Camm EJ, Sferruzzi‐Perri AN. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf) 2022; 234:e13795. [PMID: 35114078 PMCID: PMC9286839 DOI: 10.1111/apha.13795] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
AIM The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex. METHODS Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high-resolution respirometry, stereology, and molecular analyses. RESULTS Diet-induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein-2 was decreased by maternal obesity in both fetal sexes. CONCLUSION Maternal obesity exerts sex-dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Samantha C. Lean
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Minhui Lu
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Mort
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Michelle Desforges
- Division of Developmental Biology and Medicine Maternal & Fetal Health Research Centre University of Manchester Manchester UK
| | - Ali Moghimi
- The Children’s Hospital at Westmead Westmead New South Wales Australia
- Department of Paediatrics Monash University Monash Victoria Australia
| | - Beverly Bartels
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Tatiana El‐Bacha
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Abigail L. Fowden
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Camm
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Amanda N. Sferruzzi‐Perri
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| |
Collapse
|
22
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Palei AC, Granger JP, Spradley FT. Placental Ischemia Says "NO" to Proper NOS-Mediated Control of Vascular Tone and Blood Pressure in Preeclampsia. Int J Mol Sci 2021; 22:ijms222011261. [PMID: 34681920 PMCID: PMC8541176 DOI: 10.3390/ijms222011261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we first provide a brief overview of the nitric oxide synthase (NOS) isoforms and biochemistry. This is followed by describing what is known about NOS-mediated blood pressure control during normal pregnancy. Circulating nitric oxide (NO) bioavailability has been assessed by measuring its metabolites, nitrite (NO2) and/or nitrate (NO3), and shown to rise throughout normal pregnancy in humans and rats and decline postpartum. In contrast, placental malperfusion/ischemia leads to systemic reductions in NO bioavailability leading to maternal endothelial and vascular dysfunction with subsequent development of hypertension in PE. We end this article by describing emergent risk factors for placental malperfusion and ischemic disease and discussing strategies to target the NOS system therapeutically to increase NO bioavailability in preeclamptic patients. Throughout this discussion, we highlight the critical importance that experimental animal studies have played in our current understanding of NOS biology in normal pregnancy and their use in finding novel ways to preserve this signaling pathway to prevent the development, treat symptoms, or reduce the severity of PE.
Collapse
Affiliation(s)
- Ana C. Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Joey P. Granger
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Frank T. Spradley
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
24
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
25
|
Natarajan SK, Bruett T, Muthuraj PG, Sahoo PK, Power J, Mott JL, Hanson C, Anderson-Berry A. Saturated free fatty acids induce placental trophoblast lipoapoptosis. PLoS One 2021; 16:e0249907. [PMID: 33886600 PMCID: PMC8062006 DOI: 10.1371/journal.pone.0249907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Obesity during pregnancy increases the risk for maternal complications like gestational diabetes, preeclampsia, and maternal inflammation. Maternal obesity also increases the risk of childhood obesity, intrauterine growth restriction (IUGR) and diabetes to the offspring. Increased circulating free fatty acids (FFAs) in obesity due to adipose tissue lipolysis induces lipoapoptosis to hepatocytes, cholangiocytes, and pancreatic-β-cells. During the third trimester of human pregnancy, there is an increase in maternal lipolysis and release of FFAs into the circulation. It is currently unknown if increased FFAs during gestation as a result of maternal obesity cause placental cell lipoapoptosis. Increased exposure of FFAs during maternal obesity has been shown to result in placental lipotoxicity. The objective of the present study is to determine saturated FFA-induced trophoblast lipoapoptosis and also to test the protective role of monounsaturated fatty acids against FFA-induced trophoblast lipoapoptosis using in vitro cell culture model. Here, we hypothesize that saturated FFAs induce placental trophoblast lipoapoptosis, which was prevented by monounsaturated fatty acids. METHODS Biochemical and structural markers of apoptosis by characteristic nuclear morphological changes with DAPI staining, and caspase 3/7 activity was assessed. Cleaved PARP and cleaved caspase 3 were examined by western blot analysis. RESULTS Treatment of trophoblast cell lines, JEG-3 and JAR cells with palmitate (PA) or stearate (SA) induces trophoblast lipoapoptosis as evidenced by a significant increase in apoptotic nuclear morphological changes and caspase 3/7 activity. We observed that saturated FFAs caused a concentration-dependent increase in placental trophoblast lipoapoptosis. We also observed that monounsaturated fatty acids like palmitoleate and oleate mitigates placental trophoblast lipoapoptosis caused due to PA exposure. CONCLUSION We show that saturated FFAs induce trophoblast lipoapoptosis. Co-treatment of monounsaturated fatty acids like palmitoleate and oleate protects against FFA-induced trophoblast lipoapoptosis.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail:
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Prakash K. Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Jillian Power
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Corrine Hanson
- College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
26
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
27
|
Transgenerational modification of dopaminergic dysfunctions induced by maternal immune activation. Neuropsychopharmacology 2021; 46:404-412. [PMID: 32919409 PMCID: PMC7852665 DOI: 10.1038/s41386-020-00855-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Prenatal exposure to infectious and/or inflammatory insults is increasingly recognized to contribute to the etiology of psychiatric disorders with neurodevelopmental components. Recent research using animal models suggests that maternal immune activation (MIA) can induce transgenerational effects on brain and behavior, possibly through epigenetic mechanisms. Using a mouse model of MIA that is based on gestational treatment with the viral mimeticpoly(I:C) (= polyriboinosinic-polyribocytidilic acid), the present study explored whether the transgenerational effects of MIA are extendable to dopaminergic dysfunctions. We show that the direct descendants born to poly(I:C)-treated mothers display signs of hyperdopaminergia, as manifested by a potentiated sensitivity to the locomotor-stimulating effects of amphetamine (Amph) and increased expression of tyrosine hydroxylase (Th) in the adult ventral midbrain. In stark contrast, second- and third-generation offspring of MIA-exposed ancestors displayed blunted locomotor responses to Amph and reduced expression of Th. Furthermore, we found increased DNA methylation at the promoter region of the dopamine-specifying factor, nuclear receptor-related 1 protein (Nurr1), in the sperm of first-generation MIA offspring and in the ventral midbrain of second-generation offspring of MIA-exposed ancestors. The latter effect was further accompanied by reduced mRNA levels of Nurr1 in this brain region. Together, our results suggest that MIA has the potential to modify dopaminergic functions across multiple generations with opposite effects in the direct descendants and their progeny. The presence of altered DNA methylation in the sperm of MIA-exposed offspring highlights the possibility that epigenetic processes in the male germline play a role in the transgenerational effects of MIA.
Collapse
|
28
|
Developmental Programming and Glucolipotoxicity: Insights on Beta Cell Inflammation and Diabetes. Metabolites 2020; 10:metabo10110444. [PMID: 33158303 PMCID: PMC7694373 DOI: 10.3390/metabo10110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Stimuli or insults during critical developmental transitions induce alterations in progeny anatomy, physiology, and metabolism that may be transient, sometimes reversible, but often durable, which defines programming. Glucolipotoxicity is the combined, synergistic, deleterious effect of simultaneously elevated glucose (chronic hyperglycemia) and saturated fatty acids (derived from high-fat diet overconsumption and subsequent metabolism) that are harmful to organs, micro-organs, and cells. Glucolipotoxicity induces beta cell death, dysfunction, and failure through endoplasmic reticulum and oxidative stress and inflammation. In beta cells, the misfolding of pro/insulin proteins beyond the cellular threshold triggers the unfolded protein response and endoplasmic reticulum stress. Consequentially there is incomplete and inadequate pro/insulin biosynthesis and impaired insulin secretion. Cellular stress triggers cellular inflammation, where immune cells migrate to, infiltrate, and amplify in beta cells, leading to beta cell inflammation. Endoplasmic reticulum stress reciprocally induces beta cell inflammation, whereas beta cell inflammation can self-activate and further exacerbate its inflammation. These metabolic sequelae reflect the vicious cycle of beta cell stress and inflammation in the pathophysiology of diabetes.
Collapse
|
29
|
Bidne KL, Rister AL, McCain AR, Hitt BD, Dodds ED, Wood JR. Maternal obesity alters placental lysophosphatidylcholines, lipid storage, and the expression of genes associated with lipid metabolism‡. Biol Reprod 2020; 104:197-210. [PMID: 33048132 DOI: 10.1093/biolre/ioaa191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Dyslipidemia is a characteristic of maternal obesity and previous studies have demonstrated abnormalities in fatty acid oxidation and storage in term placentas. However, there is little information about the effect of pre-pregnancy obesity on placental lipid metabolism during early pregnancy. The objective of this study was to determine the relationship between lipid profiles and markers of metabolism in placentas from obese and lean dams at midgestation. Mice were fed a western diet (WD) or normal diet (ND) and lysophosphatidylcholines (LPCs) and/or phosphatidylcholines (PCs) were measured in dam circulation and placenta sections using liquid chromatography-tandem mass spectrometry and mass spectrometry imaging, respectively. In WD dam, circulating LPCs containing 16:1, 18:1, 20:0, and 20:3 fatty acids were increased and 18:2 and 20:4 were decreased. In WD placenta from both sexes, LPC 18:1 and PC 36:1 and 38:3 were increased. Furthermore, there were moderate to strong correlations between LPC 18:1, PC 36:1, and PC 38:3. Treatment-, spatial-, and sex-dependent differences in LPC 20:1 and 20:3 were also detected. To identify genes that may regulate diet-dependent differences in placenta lipid profiles, the expression of genes associated with lipid metabolism and nutrient transport was measured in whole placenta and isolated labyrinth using droplet digital PCR and Nanostring nCounter assays. Several apolipoproteins were increased in WD placentas. However, no differences in nutrient transport or fatty acid metabolism were detected. Together, these data indicate that lipid storage is increased in midgestation WD placentas, which may lead to lipotoxicity, altered lipid metabolism and transport to the fetus later in gestation.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alana L Rister
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea R McCain
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brianna D Hitt
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
30
|
Virginkar N, Christians JK. Maternal Obesity Does Not Exacerbate the Effects of LPS Injection on Pregnancy Outcomes in Mice. BIOLOGY 2020; 9:biology9090293. [PMID: 32947926 PMCID: PMC7563678 DOI: 10.3390/biology9090293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Obesity increases the risk of a number of pregnancy complications, potentially due to chronic inflammation. We predicted that an obesogenic high-fat diet (HFD) in mice would create an inflammatory environment that would exacerbate the effects of lipopolysaccharide (LPS), an inflammatory insult, administered during pregnancy. Females were placed on a HFD or a low-fat diet (LFD) prior to mating, injected with 2 µg LPS or control on gestational day 7 and collected on day 14. Treatment with LPS increased the odds that a female thought to be pregnant at injection had no conceptuses at day 14 (p = 0.024), suggesting that injection with LPS was more likely to induce complete abortion. However, there was no effect of diet on the odds of having no conceptuses at day 14 and no interaction between diet and LPS injection. Diet and LPS injection had no effect on the number of viable fetuses in females still pregnant at day 14. For fetal weight, there was a significant interaction between diet and treatment (p = 0.017), whereby LPS reduced fetal weight in HFD females but not in LFD females. However, LPS treatment of HFD females reduced fetal weight to that observed in control-injected LFD females. Although LPS increased the odds of abortion, there was little evidence that a HFD exacerbated the effects of LPS.
Collapse
Affiliation(s)
- Natasha Virginkar
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada;
| | - Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada;
- Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- British Columbia Children’s Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
- Women’s Health Research Institute, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada
- Correspondence:
| |
Collapse
|
31
|
Kislal S, Shook LL, Edlow AG. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat Diagn 2020; 40:1109-1125. [PMID: 32643194 DOI: 10.1002/pd.5784] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Evidence from epidemiological, clinical, and animal model studies clearly demonstrates that prenatal and lactational maternal obesity and high-fat diet consumption are associated with cardiometabolic morbidity in offspring. Fetal and offspring sex may be an important effect modifier. Adverse offspring cardiometabolic outcomes observed in the setting of maternal obesity include an increased risk for obesity, features of metabolic syndrome (hypertension, hyperglycemia and insulin resistance, hyperlipidemia, increased adiposity), and non-alcoholic fatty liver disease. This review article synthesizes human and animal data linking maternal obesity and high-fat diet consumption in pregnancy and lactation to adverse cardiometabolic outcomes in offspring. We review key mechanisms underlying skeletal muscle, adipose tissue, pancreatic, liver, and central brain reward programming in obesity-exposed offspring, and how such malprogramming contributes to offspring cardiometabolic morbidity.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Glendining KA, Higgins MBA, Fisher LC, Jasoni CL. Maternal obesity modulates sexually dimorphic epigenetic regulation and expression of leptin receptor in offspring hippocampus. Brain Behav Immun 2020; 88:151-160. [PMID: 32173454 DOI: 10.1016/j.bbi.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is associated with a greater risk for obesity and neurodevelopmental deficits in offspring. This developmental programming of disease is proposed to involve neuroendocrine, inflammatory, and epigenetic factors during gestation that disrupt normal fetal brain development. The hormones leptin and insulin are each intrinsically linked to metabolism, inflammation, and neurodevelopment, which led us to hypothesise that maternal obesity may disrupt leptin or insulin receptor signalling in the developing brain of offspring. Using a C57BL/6 mouse model of high fat diet-induced maternal obesity (mHFD), we performed qPCR to examine leptin receptor (Lepr) and insulin receptor (Insr) gene expression in gestational day (GD) 17.5 fetal brain. We found a significant effect of maternal diet and offspring sex on Lepr regulation in the developing hippocampus, with increased Lepr expression in female mHFD offspring (p < 0.05) compared to controls. Maternal diet did not alter hippocampal Insr in the fetal brain, or Lepr or Insr in prefrontal cortex, amygdala, or hypothalamus of female or male offspring. Chromatin immunoprecipitation revealed decreased binding of histones possessing the repressive histone mark H3K9me3 at the Lepr promoter (p < 0.05) in hippocampus of female mHFD offspring compared to controls, but not in males. Sex-specific deregulation of Lepr could be reproduced in vitro by exposing female hippocampal neurons to the obesity related proinflammatory cytokine IL-6, but not IL-17a or IFNG. Our findings indicate that the obesity-related proinflammatory cytokine IL-6 during pregnancy leads to sexually dimorphic changes in the modifications of histones binding at the Lepr gene promoter, and concomitant changes to Lepr transcription in the developing hippocampus. This suggests that exposure of the fetus to metabolic inflammatory molecules can impact epigenetic regulation of gene expression in the developing hippocampus.
Collapse
Affiliation(s)
- K A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - M B A Higgins
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - L C Fisher
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - C L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
33
|
Does early weaning shape future endocrine and metabolic disorders? Lessons from animal models. J Dev Orig Health Dis 2020; 11:441-451. [PMID: 32487270 DOI: 10.1017/s2040174420000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its complications occur at alarming rates worldwide. Epidemiological data have associated perinatal conditions, such as malnutrition, with the development of some disorders, such as obesity, dyslipidemia, diabetes, and cardiovascular diseases, in childhood and adulthood. Exclusive breastfeeding has been associated with protection against long-term chronic diseases. However, in humans, the interruption of breastfeeding before the recommended period of 6 months is a common practice and can increase the risk of several metabolic disturbances. Nutritional and environmental changes within a critical window of development, such as pregnancy and breastfeeding, can induce permanent changes in metabolism through epigenetic mechanisms, leading to diseases later in life via a phenomenon known as programming or developmental plasticity. However, little is known regarding the underlying mechanisms by which precocious weaning can result in adipose tissue dysfunction and endocrine profile alterations. Here, the authors give a comprehensive report of the different animal models of early weaning and programming that can result in the development of metabolic syndrome. In rats, for example, pharmacological and nonpharmacological early weaning models are associated with the development of overweight and visceral fat accumulation, leptin and insulin resistance, and neuroendocrine and hepatic changes in adult progeny. Sex-related differences seem to influence this phenotype. Therefore, precocious weaning seems to be obesogenic for offspring. A better understanding of this condition seems essential to reducing the risk for diseases. Additionally, this knowledge can generate new insights into therapeutic strategies for obesity management, improving health outcomes.
Collapse
|
34
|
Shook LL, Kislal S, Edlow AG. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat Diagn 2020; 40:1126-1137. [PMID: 32362000 DOI: 10.1002/pd.5724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Both human epidemiologic and animal model studies demonstrate that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with adverse neurodevelopmental outcomes in offspring. Neurodevelopmental outcomes described in offspring of obese women include cognitive impairment, autism spectrum disorder (ASD), attention deficit hyperactivity disorder, anxiety and depression, disordered eating, and propensity for reward-driven behavior, among others. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development, and neurodevelopmental and psychiatric morbidity in offspring. It highlights key mechanisms by which maternal obesity and maternal diet impact fetal and offspring development, and sex differences in offspring programming. In addition, we review placental effects of maternal obesity, and the role the placenta might play as an indicator vs mediator of fetal programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sezen Kislal
- Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Repercussions of maternal exposure to high-fat diet on offspring feeding behavior and body composition: a systematic review. J Dev Orig Health Dis 2020; 12:220-228. [DOI: 10.1017/s2040174420000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractMaternal nutrition is an environmental determinant for offspring growth and development, especially in critical periods. Nutritional imbalances during these phases can promote dysregulations in food intake and feeding preference in offspring, affecting body composition. The aim of this review is to summarize and discuss the effects of maternal high-fat diet (HFD) on offspring feeding behavior and body composition. A search was performed in the PUBMED, SCOPUS, Web of Science, and LILACS databases. Inclusion criteria were studies in rodents whose mothers were submitted to HFD that assessed outcomes of food or caloric intake on offspring and food preference associated or not with body weight or body composition analysis. At the end of the search, 17 articles with the proposed characteristics were included. In these studies, 15 articles manipulated diet during pregnancy and lactation, 1 during pregnancy only, and 1 during lactation only. Maternal exposure to a HFD leads to increased food intake, increased preference for HFDs, and earlier food independence in offspring. The offspring from HFD mothers present low birthweight but become heavier into adulthood. In addition, these animals also exhibited greater fat deposition on white adipose tissue pads. In conclusion, maternal exposure to HFD may compromise parameters in feeding behavior and body composition of offspring, impairing the health from conception until adulthood.
Collapse
|
36
|
Tamayev L, Schreiber L, Marciano A, Bar J, Kovo M. Are there gender-specific differences in pregnancy outcome and placental abnormalities of pregnancies complicated with small for gestational age? Arch Gynecol Obstet 2020; 301:1147-1151. [PMID: 32239281 DOI: 10.1007/s00404-020-05514-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Adaptations to pathological intrauterine environment might differ in relation to fetal gender. We aimed to study sex-specific differences in placental pathology of pregnancies complicated by small for gestational age (SGA). METHODS The medical records and placental histology reports of all neonates with a birth-weight ≤ 10th percentile, born between 24 and 42 weeks of gestation, during 2010-2018, were reviewed. Composite neonatal outcome was defined as one or more of early following complications: neonatal sepsis, blood transfusion, phototherapy, respiratory morbidity, cerebral morbidity, necrotizing enterocolitis, or death. Results were compared between the male and female groups of neonates. Placental lesions were classified into maternal and fetal vascular malperfusion (MVM and FVM) lesions, maternal and fetal inflammatory responses (MIR and FIR), and villitis of unknown etiology (VUE). RESULTS The male SGA group (n = 380) and the female SGA group (n = 363) did not differ in regard to maternal age, BMI, smoking, associated pregnancy complications, gestational age, and mode of delivery. Neonates in the SGA male group had increased birth-weight and increased respiratory morbidity as compared to the female SGA group (p = 0.007, p = 0.005, respectively). There was no between-group differences in the rate of placental lesions. By multivariate logistic regression analysis, male gender (aOR 1.55, 95% CI 1.05-2.30, p = 0.025), FIR (aOR 4.83, 95% CI 1.07-13.66, p = 0.003), and VUE (aOR 1.89, 95% CI 1.03-3.47, p = 0.04), were found to be independently associated with adverse composite neonatal outcome. DISCUSSION Male gender as well as placental FIR and VUE are independently associated with adverse neonatal outcome in SGA neonates.
Collapse
Affiliation(s)
- Liliya Tamayev
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel.
| | - Letizia Schreiber
- Departments of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Adi Marciano
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| | - Jacob Bar
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| | - Michal Kovo
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| |
Collapse
|
37
|
Abdelnour SA, Abd El-Hack ME, Noreldin AE, Batiha GE, Beshbishy AM, Ohran H, Khafaga AF, Othman SI, Allam AA, Swelum AA. High Salt Diet Affects the Reproductive Health in Animals: An Overview. Animals (Basel) 2020; 10:ani10040590. [PMID: 32244412 PMCID: PMC7222834 DOI: 10.3390/ani10040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Simple summary Halophytic plants are a promising animal feed source. However, the extreme NaCl2 salt content constraints their use. Excess diet salt adversely affects growth performance and animal’s reproduction worldwide. This review focuses on the impact of high salt intake on growth performance and reproduction ability in animals. Abstract Salinity is a reliable issue of crop productivity loss in the world and in certain tropical and subtropical zones. However, tremendous progress in the genetic improvement of plants for salinity tolerance has been made over several decades. In light of this, halophytic plants can be used as animal feeds and have promising features because they are a good feed resource. However, the main constraint of saline pasture systems is the extreme concentration of NaCl salt in drinking water and forage plants for grazing animals. Ecological reports revealed that excess diet salt causes mortality and morbidity worldwide. Animal fed halophytic forages may have adverse effects on growth performance and reproductive function in males and females due to inducing reductions in hormone regulation, such as testosterone, FSH, LH, and leptin. It was indicated that high salt intake promotes circulating inflammatory factors in the placenta and is associated with adversative effects on pregnancy. This review focuses on the scientific evidence related to the effect of high salt intake on growth performance, spermatogenesis, sperm function, and testicular morphology changes in male animals. In addition, the review will also focus on its effect on some female reproductive features (e.g., ovarian follicle developments, placental indices, and granulosa cell function).
Collapse
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Gaber Elsaber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; (G.E.B.); (A.M.B.)
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amani Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; (G.E.B.); (A.M.B.)
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Sarah I. Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt;
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (AAS);
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
38
|
Claycombe-Larson KG, Bundy AN, Roemmich JN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J Nutr Biochem 2020; 81:108373. [PMID: 32422425 DOI: 10.1016/j.jnutbio.2020.108373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
We previously have shown that male offspring (F1) of fathers (F0) fed a high-fat (HF) diet and that exercised had greater skeletal muscle insulin signaling and reduced type 2 diabetes mellitus (T2DM) risk compared to fathers fed HF diet and that remained sedentary. The current study extends this work by hypothesizing that F0 HF diet and exercise regulate F1 T2DM risk by alterations in placental tissue growth via changes in sperm miRNA expression. To test these hypotheses, 3-week-old male C57BL/6 mice were fed a normal-fat diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months. Results showed that F0 sperm miRNA 193b expression was decreased while miRNA 204 was increased by paternal exercise. Protein expression of dimethylated histone 3 lysine 9 was decreased with F0 HF diet. Placental and fetal tissue weights were decreased by F0 HF diet in F1 males. Placental interleukin-1β and tumor necrosis factor (TNF)-α mRNA expression was reduced by paternal exercise, while nutrient transporter mRNA expression was decreased by paternal HF diet only in the placentae of F1 females. Treatment of primary placental cell with miRNA 193b inhibited TNF-α mRNA expression, and treatment of TNF-α decreased SLC38a2 mRNA expression. Moreover, paternal exercise increased body weight at weaning in a female offspring. These results demonstrate that placental tissue weight, placental nutrient transporter gene expression and fetal weights are altered by paternal exercise, while placental inflammatory gene expression is influenced by paternal exercise in offspring in a sex-specific manner.
Collapse
Affiliation(s)
- Kate G Claycombe-Larson
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Amy N Bundy
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| |
Collapse
|
39
|
de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore TJ, Blackmore HL, Fernandez-Twinn DS, Carmo MDGTD, Ozanne SE. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes (Lond) 2020; 44:1087-1096. [PMID: 32203108 PMCID: PMC7188669 DOI: 10.1038/s41366-020-0561-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. .,Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Nutritional Epidemiology Observatory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Laura C Kusinski
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Phoebe Wilsmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maria das Graças T do Carmo
- Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Maternal Obesity Programs Offspring Development and Resveratrol Potentially Reprograms the Effects of Maternal Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051610. [PMID: 32131513 PMCID: PMC7084214 DOI: 10.3390/ijerph17051610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Maternal obesity during pregnancy is a now a public health burden that may be the culprit underlying the ever-increasing rates of adult obesity worldwide. Understanding the association between maternal obesity and adult offspring’s obesity would inform policy and practice regarding offspring health through available resources and interventions. This review first summarizes the programming effects of maternal obesity and discusses the possible underlying mechanisms. We then summarize the current evidence suggesting that maternal consumption of resveratrol is helpful in maternal obesity and alleviates its consequences. In conclusion, maternal obesity can program offspring development in an adverse way. Maternal resveratrol could be considered as a potential regimen in reprogramming adverse outcomes in the context of maternal obesity.
Collapse
|
41
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
42
|
Alves JM, Luo S, Chow T, Herting M, Xiang AH, Page KA. Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain Behav 2020; 10:e01522. [PMID: 31903710 PMCID: PMC7010582 DOI: 10.1002/brb3.1522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Animal studies have shown that male but not female offspring exposed to maternal obesity have abnormal hippocampal development. Similar sex differences were observed in animal models of developmental programming by prenatal stress or maternal diabetes. We aimed to translate this work into humans by examining sex-specific effects of exposure to maternal obesity on hippocampal volume in children. METHODS Eighty-eight children (37 boys and 51 girls) aged 7-11 years completed the study. Maternal prepregnancy body mass index (BMI) was obtained from electronic medical records. A high-resolution anatomical scan was performed using a 3-Tesla magnetic resonance imaging (MRI) scanner. Total hippocampal volume and hippocampal subfield volumes were analyzed using FreeSurfer 6.0. Linear regression was used to investigate sex differences in relationships between maternal prepregnancy BMI and child hippocampal volume. RESULTS Maternal prepregnancy BMI ranged from 19.0 to 50.4 kg/m2 . We observed a significant interaction between maternal prepregnancy BMI and sex on total hippocampal volume (p < .001) such that boys (r = -.39, p = .018) but not girls (r = .11, p = .45) had a significant negative relationship between maternal prepregnancy BMI and total hippocampal volume. This relationship in boys remained significant after adjusting for child and maternal covariates (β = -126.98, p = .012). The sex interactions with prepregnancy BMI were consistently observed in hippocampal subfields CA1 (p = .008), CA2/3 (p = .016), CA4 (p = .002), dentate gyrus (p < .001), and subiculum (p < .001). CONCLUSIONS Our results support findings in animal models and suggest that boys may be more vulnerable to the adverse effects of exposure to maternal obesity on hippocampal development than girls.
Collapse
Affiliation(s)
- Jasmin M. Alves
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Shan Luo
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Ting Chow
- Department of Research and EvaluationPasadenaCAUSA
| | - Megan Herting
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Kathleen A. Page
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
43
|
Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTTN, Matthews SG, Lye SJ, Bloise E. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J Nutr Biochem 2020; 78:108329. [PMID: 32004932 DOI: 10.1016/j.jnutbio.2019.108329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
The placenta promotes fetal growth through nutrient transfer and selective barrier systems. An optimally developed placenta can adapt to changes in the pregnancy environment, buffering the fetus from adverse exposures. We hypothesized that the placenta adapts differently to suboptimal maternal diets, evidenced by changes in placental morphology, developmental markers and key transport systems. Mice were fed a control diet (CON) during pregnancy, undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5 or fed 60% high-fat diet (HF) 8 weeks before and during pregnancy. At GD18.5, placental morphometry, development and transport were assessed. Junctional and labyrinthine areas of UN and HF placentae were smaller than CON by >10%. Fetal blood space area and fetal blood space:fetal weight ratios were reduced in HF vs. CON and UN. Trophoblast giant cell marker Ctsq mRNA expression was lower in UN vs. HF, and expression of glycogen cell markers Cx31.1 and Pcdh12 was lower in HF vs. UN. Efflux transporter Abcb1a mRNA expression was lower in HF vs. UN, and Abcg2 expression was lower in UN vs. HF. mRNA expression of fatty acid binding protein Fabppm was higher in UN vs. CON and HF. mRNA and protein levels of the lipid transporter FAT/CD36 were lower in UN, and FATP4 protein levels were lower in HF vs. UN. UN placentae appear less mature with aberrant transport, whereas HF placentae adapt to excessive nutrient supply. Understanding placental adaptations to common nutritional adversities may reveal mechanisms underlying the developmental origins of later disease.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Denisova EI, Kozhevnikova VV, Bazhan NM, Makarova EN. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio 2019; 10:96-106. [PMID: 31703240 PMCID: PMC6943234 DOI: 10.1002/2211-5463.12757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity during pregnancy has been shown to increase the risk of metabolic diseases in the offspring. However, the factors within the maternal milieu which affect offspring phenotypes and the underlying mechanisms remain unknown. The adipocyte hormone leptin plays a key role in regulating energy homeostasis and is known to participate in sex‐specific developmental programming. To examine the action of leptin on fetal growth, placental gene expression and postnatal offspring metabolism, we injected C57BL mice with leptin or saline on gestational day 12 and then measured body weights (BWs) of offspring fed on a standard or obesogenic diet, as well as mRNA expression levels of insulin‐like growth factors and glucose and amino acid transporters. Male and female offspring born to leptin‐treated mothers exhibited growth retardation before and a growth surge after weaning. Mature male offspring, but not female offspring, exhibited increased BWs on a standard diet. Leptin administration prevented the development of hyperglycaemia in the obese offspring of both sexes. The placentas of the male and female foetuses differed in size and gene expression, and leptin injection decreased the fetal weights of both sexes, the placental weights of the male foetuses and placental gene expression of the GLUT1 glucose transporter in female foetuses. The data suggest that mid‐pregnancy is an ontogenetic window for the sex‐specific programming effects of leptin, and these effects may be exerted via fetal sex‐specific placental responses to leptin administration.
Collapse
Affiliation(s)
- Elena I Denisova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeria V Kozhevnikova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda M Bazhan
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Physiology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena N Makarova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
45
|
Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165535. [PMID: 31442531 DOI: 10.1016/j.bbadis.2019.165535] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 08/15/2019] [Indexed: 01/28/2023]
Abstract
The placenta is a transitory organ, located between the mother and the foetus, which supports intrauterine life. This organ has nutritional, endocrine and immunologic functions to support foetal development. Several factors are related to the correct functioning of the placenta including foetal and maternal blood flow, appropriate nutrients, expression and function of receptors and transporters, and the morphology of the placenta itself. Placental morphology is crucial for understanding the pathophysiology of the organ as represents the physical structure where nutrient exchange occurs. In pathologies of pregnancy such as diabetes mellitus in humans and animal models, several changes in the placental morphology occur, related mainly with placental size, hypervascularization, higher branching capillaries of the villi and increased glycogen deposits among others. Gestational diabetes mellitus is associated with modifications in the structure of the human placenta including changes in the surface area and volume, as well as histological changes including an increased volume of intervillous space and terminal villi, syncytiotrophoblast number, fibrinoid areas, and glycogen deposits. These modifications may result in functional changes in this organ thus limiting the wellbeing of the developing foetus. This review gives an overview of recurrent morphological changes at macroscopic and histological levels seen in the placenta from gestational diabetes in humans and animal models. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
|
46
|
Effect of postnatal overfeeding on the male and female Wistar rat reproductive parameters. J Dev Orig Health Dis 2019; 10:667-675. [PMID: 31156080 DOI: 10.1017/s2040174419000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractOverweight/obesity has become a worldwide epidemic, and factors such as a sedentary lifestyle and inadequate eating habits directly contribute to the development of this condition. Studies indicate that rapid weight gain at critical development stages, such as the lactation period, is associated with the development of obesity, cardiovascular diseases, and diabetes in the long term. In addition to metabolic changes during adulthood, overweight/obesity may influence reproductive function of the population. In this context, the present study aimed to evaluate postnatal overfeeding effects on male and female Wistar rat reproductive parameters. Postnatal overfeeding was induced by applying the litter reduction method for both sexes. Forty animals were used, divided into four groups: two with normal litters (NL♂ and NL♀) and two with small litters (SL♂ and SL♀). The males were euthanized at 90 days of age, on the same date the females were mated. Females were also euthanized after the 20-day gestation. Metabolic and reproductive variables were analyzed. Regarding males, SL animals showed increased body weight, adiposity, and decreased relative weight of the seminal vesicle, prostate, and epididymis as well as changes in the ITT and OGTT glycemic tests. Concerning females, SL animals presented increased body weight, relative perigonadal fat weight, glucose intolerance as well as modify the vaginal opening and increased weight of female pup. The litter reduction method was efficient in leading to metabolic and reproductive alterations in male and female Wistar rat.
Collapse
|
47
|
Ganguly E, Aljunaidy MM, Kirschenman R, Spaans F, Morton JS, Phillips TEJ, Case CP, Cooke CLM, Davidge ST. Sex-Specific Effects of Nanoparticle-Encapsulated MitoQ (nMitoQ) Delivery to the Placenta in a Rat Model of Fetal Hypoxia. Front Physiol 2019; 10:562. [PMID: 31178743 PMCID: PMC6543892 DOI: 10.3389/fphys.2019.00562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications associated with chronic fetal hypoxia have been linked to the development of adult cardiovascular disease in the offspring. Prenatal hypoxia has been shown to increase placental oxidative stress and impair placental function in a sex-specific manner, thereby affecting fetal development. As oxidative stress is central to placental dysfunction, we developed a placenta-targeted treatment strategy using the antioxidant MitoQ encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative/nitrosative stress and improve placental function without direct drug exposure to the fetus in order to avoid off-target effects during development. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ prevents hypoxia-induced placental oxidative/nitrosative stress, promotes angiogenesis, improves placental morphology, and ultimately improves fetal oxygenation. Additionally, we assessed whether there were sex differences in the effectiveness of nMitoQ treatment. Pregnant rats were intravenously injected with saline or nMitoQ (100 μl of 125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15 to 21. On GD21, placentae from both sexes were collected for detection of superoxide, nitrotyrosine, nitric oxide, CD31 (endothelial cell marker), and fetal blood spaces, Vegfa and Igf2 mRNA expression in the placental labyrinth zone. Prenatal hypoxia decreased male fetal weight, which was not changed by nMitoQ treatment; however, placental efficiency (fetal/placental weight ratio) decreased by hypoxia and was increased by nMitoQ in both males and females. nMitoQ treatment reduced the prenatal hypoxia-induced increase in placental superoxide levels in both male and female placentae but improved oxygenation in only female placentae. Nitrotyrosine levels were increased in hypoxic female placentae and were reduced by nMitoQ. Prenatal hypoxia reduced placental Vegfa and Igf2 expression in both sexes, while nMitoQ increased Vegfa and Igf2 expression only in hypoxic female placentae. In summary, our study suggests that nMitoQ treatment could be pursued as a potential preventative strategy against placental oxidative stress and programming of adult cardiovascular disease in offspring exposed to hypoxia in utero. However, sex differences need to be taken into account when developing therapeutic strategies to improve fetal development in complicated pregnancies, as nMitoQ treatment was more effective in placentae from females than males.
Collapse
Affiliation(s)
- Esha Ganguly
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mais M. Aljunaidy
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Jude S. Morton
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - C. Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, United Kingdom
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Maternal gut microbiota is associated with newborn anthropometrics in a sex-specific manner. J Dev Orig Health Dis 2019; 10:659-666. [PMID: 31106719 DOI: 10.1017/s2040174419000138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal gut microbiota is thought to be one of the important factors in the developmental origins of health and disease (DOHaD) concept, but the effects of maternal gut microbiota on foetal growth are not well known. In this study, the association between maternal gut microbiota and foetal growth was investigated. Maternal and newborn information, as well as stool samples at the third trimester of pregnancy, were obtained from 51 mother-newborn pairs from the Chiba study of Mother and Child Health (C-MACH). Gut microbiota was analysed by 16S rRNA sequencing of stool samples and short-chain fatty acids (SCFAs) in stool were analysed by gas chromatography-tandem mass spectrometry. After adjustment for covariates, it was found that maternal gut microbial diversity had a positive association with head circumference in newborn males (Chao 1: adjusted r = 0.515, p = 0.029). Genus Parabacteroides and genus Eggerthella showed negative associations with newborn head circumference and weight, respectively in males (genus Parabacteroides: adjusted r = -0.598, p = 0.009, genus Eggerthella: adjusted r = -0.481, p = 0.043). On the other hand, genus Streptococcus showed a negative association with newborn height in females (adjusted r = -0.413, p = 0.040). In addition, hexanoate was involved in the association between maternal gut microbiota and newborn anthropometrics in the univariate analysis, but not in the multivariate analysis. These data suggest that maternal gut microbiota has sex-specific effects on foetal growth. Maternal gut microbiota is an important factor for optimal intrauterine growth.
Collapse
|
49
|
Al-Ofi EA. Implications of inflammation and insulin resistance in obese pregnant women with gestational diabetes: A case study. SAGE Open Med Case Rep 2019; 7:2050313X19843737. [PMID: 31041103 PMCID: PMC6477763 DOI: 10.1177/2050313x19843737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Obesity is one of the leading pregnancy risks for both the mother and the neonate. The prevalence of gestational diabetes mellitus has been increasing, especially with the increase in obesity in reproductive-aged women. A high body mass index, a sedentary lifestyle, a previous macrosomic infant, polycystic ovary syndrome and hypothyroidism are the main risk factors for gestational diabetes mellitus. Early gestational diabetes mellitus detection in high-risk individuals is a useful method for preventing further complications and/or preventing this disease by improving the patient's lifestyle. Case presentation A morbidly obese woman with a high body mass index (>36) at 24 weeks gestational age presented with several gestational diabetes mellitus risk factors. Her glucose tolerance test verified gestational diabetes mellitus, and, incidentally, her C-reactive protein level was elevated without obvious reason. Her plasma levels of inflammatory cytokines had also been assessed and were exaggerated. After lifestyle intervention, including weight management, the patient's inflammatory mediators, including her C-reactive protein level, dropped. Therefore, this study aimed to identify the relationship between the patient's inflammation and obesity. Conclusion Antenatal C-reactive protein screening could be used throughout pregnancy to predict inflammation from high-risk pregnant women. This case scenario describes the interrelationships between inflammation, insulin resistance and adipokines, as well as the contributions of hypothyroidism and polycystic ovary syndrome. Further research should emphasise the relationships between inflammation and obesity in pregnancy.
Collapse
Affiliation(s)
- Ebtisam Aziz Al-Ofi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Upadhyay A, Anjum B, Godbole NM, Rajak S, Shukla P, Tiwari S, Sinha RA, Godbole MM. Time-restricted feeding reduces high-fat diet associated placental inflammation and limits adverse effects on fetal organ development. Biochem Biophys Res Commun 2019; 514:415-421. [PMID: 31053302 DOI: 10.1016/j.bbrc.2019.04.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Maternal nutrition has become a major public health concern over recent years and is a known predictor of adverse long-term metabolic derangement in offspring. Time-restricted feeding (TRF), wherein food consumption is restricted to the metabolically active phase of the day, is a dietary approach that improves metabolic parameters when consuming a high-fat diet (HFD). Here, we tested whether TRF could reduce maternal HFD associated inflammation and thereby mitigate defects in fetal organ developmental. Female rats were kept on following three dietary regimens; Ad libitum normal chow diet (NCD-AL), Ad libitum HFD (HFD-AL) and Time-restricted fed HFD (HFD-TRF) from 5 months prior to mating and continued throughout pregnancy. Rat dams were sacrificed at embryonic day 18.5 (ED18.5) and placental tissues from these rats were processed for the analysis of cellular apoptosis, inflammatory cytokines (TNFα and IL-6), oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Furthermore, fetal hepatic triglyceride (TG) content and fetal lung maturation were assessed at ED18.5. Biochemical analysis revealed that HFD-TRF rat had significantly lower serum TG levels and body weight compared to HFD-AL rats. Additionally, TRF significantly blocked HFD-induced placental apoptosis and inflammation via minimizing cellular stress, and restoring autophagic flux. In addition, fetal hepatosteatosis and delayed fetal lung maturation induced by HFD was significantly ameliorated in HFD-TRF compared to HFD-AL. Collectively, our results suggest that reducing placental inflammation via TRF could prevent adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Dept. of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; Dr. A.P.J. Abdul Kalam Technical University Uttar Pradesh, Lucknow, India
| | - B Anjum
- Dept. of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; Dept of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Nachiket M Godbole
- Dept. of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sangam Rajak
- Dept of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pooja Shukla
- Dept of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Dept. of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rohit A Sinha
- Dept of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Madan M Godbole
- Dept. of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|