1
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
2
|
Boegelein L, Schreiber P, Philipp A, Nusshag C, Essbauer S, Zeier M, Krautkrämer E. Replication kinetics of pathogenic Eurasian orthohantaviruses in human mesangial cells. Virol J 2024; 21:241. [PMID: 39354507 PMCID: PMC11446005 DOI: 10.1186/s12985-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Eurasian pathogenic orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI). The virulence of orthohantaviruses varies enormously and direct infection of different renal cell types contribute to pathogenesis. Glomerular mesangial cells play an essential role in the interplay between kidney cells and proper kidney function. Therefore, we analyzed the replication competence of different orthohantavirus species in primary mesangial cells and a mesangial cell line. METHODS We tested the suitability of the mesangial cell line CIHGM-1 (conditionally immortalized human glomerular mesangial cells) as cell culture model for orthohantavirus kidney infection by comparison with primary human renal mesangial cells (HRMCs). We analyzed infection with high pathogenic Hantaan virus (HTNV), moderate pathogenic Puumala virus (PUUV) and non-/low-pathogenic Tula virus (TULV). RESULTS Effective viral spread was observed for PUUV only, whereas infection with HTNV and TULV was abortive. However, in contrast to TULV, HTNV exhibits an initially high infection rate and declines afterwards. This replication pattern was observed in HRMCs and CIHGM-1 cells. Viability or adhesion was neither impaired for PUUV-infected CIHGM-1 nor HRMCs. A loss of migration capacity was observed in PUUV-infected CIHGM-1 cells, but not in HRMCs. CONCLUSIONS The identification of differences in the replication competence of pathogenic orthohantavirus strains in renal mesangial cells is of special interest and may provide useful insights in the virus-specific mechanisms of orthohantavirus induced AKI. The use of CIHGM-1 cells will facilitate the research in a relevant cell culture system.
Collapse
Affiliation(s)
- Lukas Boegelein
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Alexandra Philipp
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Sandra Essbauer
- Department Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, D-80937, Munich, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Stefanenko M, Fedoriuk M, Mamenko M, Semenikhina M, Nowling TK, Lipschutz JH, Maximyuk O, Staruschenko A, Palygin O. PAR1-mediated Non-periodical Synchronized Calcium Oscillations in Human Mesangial Cells. FUNCTION 2024; 5:zqae030. [PMID: 38984988 PMCID: PMC11384906 DOI: 10.1093/function/zqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.
Collapse
Affiliation(s)
- Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Ralph H. Johnson VAMC, Charleston, SC 29401, USA
| | - Oleksandr Maximyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Sachs W, Blume L, Loreth D, Schebsdat L, Hatje F, Koehler S, Wedekind U, Sachs M, Zieliniski S, Brand J, Conze C, Florea BI, Heppner F, Krüger E, Rinschen MM, Kretz O, Thünauer R, Meyer-Schwesinger C. The proteasome modulates endocytosis specifically in glomerular cells to promote kidney filtration. Nat Commun 2024; 15:1897. [PMID: 38429282 PMCID: PMC10907641 DOI: 10.1038/s41467-024-46273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Kidney filtration is ensured by the interaction of podocytes, endothelial and mesangial cells. Immunoglobulin accumulation at the filtration barrier is pathognomonic for glomerular injury. The mechanisms that regulate filter permeability are unknown. Here, we identify a pivotal role for the proteasome in a specific cell type. Combining genetic and inhibitor-based human, pig, mouse, and Drosophila models we demonstrate that the proteasome maintains filtration barrier integrity, with podocytes requiring the constitutive and glomerular endothelial cells the immunoproteasomal activity. Endothelial immunoproteasome deficiency as well as proteasome inhibition disrupt the filtration barrier in mice, resulting in pathologic immunoglobulin deposition. Mechanistically, we observe reduced endocytic activity, which leads to altered membrane recycling and endocytic receptor turnover. This work expands the concept of the (immuno)proteasome as a control protease orchestrating protein degradation and antigen presentation and endocytosis, providing new therapeutic targets to treat disease-associated glomerular protein accumulations.
Collapse
Affiliation(s)
- Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lisa Schebsdat
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Favian Hatje
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Sybille Koehler
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Wedekind
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Stephanie Zieliniski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | | | - Bogdan I Florea
- Bio-Organic Synthesis Group, Leiden University, Leiden, The Netherlands
| | - Frank Heppner
- Institute of Neuropathology, Charité, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Rinschen
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Thünauer
- Leibniz Institute of Virology, Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), University Hamburg, Hamburg, Germany
- Advanced Light and Fluorescence Microscopy (ALFM) Facility at the Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Kidney Health, Hamburg, Germany.
| |
Collapse
|
5
|
Cao Y, Su H, Zeng J, Xie Y, Liu Z, Liu F, Qiu Y, Yi F, Lin J, Hammes HP, Zhang C. Integrin β8 prevents pericyte-myofibroblast transition and renal fibrosis through inhibiting the TGF-β1/TGFBR1/Smad3 pathway in diabetic kidney disease. Transl Res 2024; 265:36-50. [PMID: 37931653 DOI: 10.1016/j.trsl.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Diabetic kidney disease (DKD) is one of the leading causes to develop end-stage kidney disease worldwide. Pericytes are implicated in the development of tissue fibrosis. However, the underlying mechanisms of pericytes in DKD remain largely unknown. We isolated and cultured primary pericytes and rat mesangial cells (HBZY-1). Western blot and qRT-PCR analysis were used to explore the role and regulatory mechanism of Integrin β8/transforming growth factor beta 1 (TGF-β1) pathway. We also constructed pericyte-specific Integrin β8 knock-in mice as the research objects to determine the role of Integrin β8 in vivo. We discovered that reduced Integrin β8 expression was closely associated with pericyte transition in DKD. Overexpressed Integrin β8 in pericytes dramatically suppressed TGF-β1/TGF beta receptor 1 (TGFBR1)/Smad3 signaling pathway and protected glomerular endothelial cells (GECs) in vitro. In vivo, pericyte-specific Integrin β8 knock-in ameliorated pericyte transition, endothelium injury and renal fibrosis in STZ-induced diabetic mice. Mechanistically, Murine double minute 2 (MDM2) was found to increase the degradation of Integrin β8 and caused TGF-β1 release and activation. Knockdown MDM2 could partly reverse the decline of Integrin β8 and suppress pericytes transition. In conclusion, the present findings suggested that upregulated MDM2 expression contributes to the degradation of Integrin β8 and activation of TGF-β1/TGFBR1/Smad3 signaling pathway, which ultimately leads to pericyte transition during DKD progression. These results indicate MDM2/Integrin β8 might be considered as therapeutic targets for DKD.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zezhou Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Yuan N, Diao J, Dong J, Yan Y, Chen Y, Yan S, Liu C, He Z, He J, Zhang C, Wang H, Wang M, He F, Xiao W. Targeting ROCK1 in diabetic kidney disease: Unraveling mesangial fibrosis mechanisms and introducing myricetin as a novel antagonist. Biomed Pharmacother 2024; 171:116208. [PMID: 38286036 DOI: 10.1016/j.biopha.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Diabetic kidney disease (DKD) stands as a pressing health challenge, with mesangial cell fibrosis identified as a pivotal hallmark leading to glomerular sclerosis. Gaining a deeper grasp on the molecular dynamics behind this can potentially introduce groundbreaking therapeutic avenues. Recent revelations from studies on ROCK1-deficient mice, which displayed resilience against high-fat diet (HFD)-induced glomerulosclerosis and mitochondrial fragmentation, spurred our hypothesis regarding ROCK1's potential role in mesangial cell fibrosis. Subsequent rigorous experiments corroborated our theory, highlighting the critical role of ROCK1 in orchestrating mesangial cell proliferation and fibrosis, especially in high-glucose settings. Mechanistically, ROCK1 inhibition led to a notable hindrance in the high-glucose-triggered MAPK signaling pathway, particularly emphasizing the ROCK1/ERK/P38 axis. To translate this understanding into potential therapeutic interventions, we embarked on a comprehensive drug screening journey. Leveraging molecular modeling techniques, Myricetin surfaced as an efficacious inhibitor of ROCK1. Dose-dependent in vitro assays substantiated Myricetin's prowess in curtailing mesangial cell proliferation and fibrosis via ROCK1/ERK/P38 pathway. In vivo verifications paralleled these findings, with Myricetin treatment resulting in significant renal function enhancements and diminished DKD pathological markers, all pivoted around the ROCK1/ERK/P38 nexus. These findings not only deepen our comprehension of DKD molecular underpinnings but also elevate ROCK1 to the pedestal of a promising therapeutic beacon. Concurrently, Myricetin is spotlighted as a potent natural contender, heralding a new era in DKD therapeutic design.
Collapse
Affiliation(s)
- Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
| | - Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shihua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinyue He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Ministry of Education, Guangdong Pharmaceutical University, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
7
|
Fang Z, Lee K, He JC. A central role for mesangial cells in the initiation of diabetic nephropathy. Kidney Int 2023; 104:872-874. [PMID: 37863632 DOI: 10.1016/j.kint.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Zhengying Fang
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kyung Lee
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Department of Medicine, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, USA.
| |
Collapse
|
8
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
9
|
What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sci 2022; 311:121070. [DOI: 10.1016/j.lfs.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
10
|
Luvizotto MJ, Menezes-Silva L, Woronik V, Monteiro RC, Câmara NOS. Gut-kidney axis in IgA nephropathy: Role on mesangial cell metabolism and inflammation. Front Cell Dev Biol 2022; 10:993716. [PMID: 36467425 PMCID: PMC9715425 DOI: 10.3389/fcell.2022.993716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2023] Open
Abstract
IgA Nephropathy (IgAN) is the commonest primary glomerular disease around the world and represents a significant cause of end-stage renal disease. IgAN is characterized by mesangial deposition of IgA-immune complexes and mesangial expansion. The pathophysiological process includes an abnormally glycosylated IgA1, which is an antigenic target. Autoantibodies specifically recognize galactose-deficient IgA1 forming immune complexes that are amplified in size by the soluble IgA Fc receptor CD89 leading to deposition in the mesangium through interaction with non-classical IgA receptors. The local production of cytokines promotes local inflammation and complement system activation, besides the stimulation of mesangial proliferation. The spectrum of clinical manifestations is quite variable from asymptomatic microscopic hematuria to rapidly progressive glomerulonephritis. Despite all the advances, the pathophysiology of the disease is still not fully elucidated. The mucosal immune system is quoted to be a factor in triggering IgAN and a "gut-kidney axis" is proposed in its development. Furthermore, many recent studies have demonstrated that food intake interferes directly with disease prognosis. In this review, we will discuss how mucosal immunity, microbiota, and nutritional status could be interfering directly with the activation of intrinsic pathways of the mesangial cells, directly resulting in changes in their function, inflammation and development of IgAN.
Collapse
Affiliation(s)
- Mateus Justi Luvizotto
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Luísa Menezes-Silva
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Viktoria Woronik
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Renato C. Monteiro
- Centre de Recherche sur l’Inflammation, INSERM and CNRS, Université Paris Cité, Paris, France
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
13
|
Goligorsky MS. Emerging Insights into Glomerular Vascular Pole and Microcirculation. J Am Soc Nephrol 2022; 33:1641-1648. [PMID: 35853715 PMCID: PMC9529196 DOI: 10.1681/asn.2022030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, New York
| |
Collapse
|
14
|
PPARβ/δ Augments IL-1β-Induced COX-2 Expression and PGE2 Biosynthesis in Human Mesangial Cells via the Activation of SIRT1. Metabolites 2022; 12:metabo12070595. [PMID: 35888719 PMCID: PMC9320509 DOI: 10.3390/metabo12070595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, regulates lipid and glucose metabolism and inflammation. PPARβ/δ can exert an anti-inflammatory effect by suppressing proinflammatory cytokine production. Cyclooxygenase-2 (COX-2)-triggered inflammation plays a crucial role in the development of many inflammatory diseases, including glomerulonephritis. However, the effect of PPARβ/δ on the expression of COX-2 in the kidney has not been fully elucidated. The present study showed that PPARβ/δ was functionally expressed in human mesangial cells (hMCs), where its expression was increased by interleukin-1β (IL-1β) treatment concomitant with enhanced COX-2 expression and prostaglandin E2 (PGE2) biosynthesis. The treatment of hMCs with GW0742, a selective agonist of PPARβ/δ, or the overexpression of PPARβ/δ via an adenovirus-mediated approach significantly increased COX-2 expression and PGE2 production. PPARβ/δ could further augment the IL-1β-induced COX-2 expression and PGE2 production in hMCs. Moreover, both PPARβ/δ activation and overexpression markedly increased sirtuin 1 (SIRT1) expression. The inhibition or knockdown of SIRT1 significantly attenuated the effects of PPARβ/δ on the IL-1β-induced expression of COX-2 and PGE2 biosynthesis. Taken together, PPARβ/δ could augment the IL-1β-induced COX-2 expression and PGE2 production in hMCs via the SIRT1 pathway. Given the critical role of COX-2 in glomerulonephritis, PPARβ/δ may represent a novel target for the treatment of renal inflammatory diseases.
Collapse
|
15
|
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun 2022; 13:3409. [PMID: 35701396 PMCID: PMC9192344 DOI: 10.1038/s41467-022-30633-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, the principal cell type of connective tissue, secrete extracellular matrix components during tissue development, homeostasis, repair and disease. Despite this crucial role, the identification and distinction of fibroblasts from other cell types are challenging and laden with caveats. Rapid progress in single-cell transcriptomics now yields detailed molecular portraits of fibroblasts and other cell types in our bodies, which complement and enrich classical histological and immunological descriptions, improve cell class definitions and guide further studies on the functional heterogeneity of cell subtypes and states, origins and fates in physiological and pathological processes. In this review, we summarize and discuss recent advances in the understanding of fibroblast identification and heterogeneity and how they discriminate from other cell types. In this review, the authors look at how recent progress in single-cell transcriptomics complement and enrich the classical, largely morphological, portraits of fibroblasts. The detailed molecular information now available provides new insights into fibroblast identity, heterogeneity and function.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neurobiology, Care sciences and Society, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden. .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
16
|
Ebefors K, Bergwall L, Nyström J. The Glomerulus According to the Mesangium. Front Med (Lausanne) 2022; 8:740527. [PMID: 35155460 PMCID: PMC8825785 DOI: 10.3389/fmed.2021.740527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures. The components as a unit ensure a high permselectivity hindering large plasma proteins from passing into the urine while readily filtering water and small solutes. There has been a long-standing interest and discussion regarding the functional contribution of the different cellular components but the mesangial cells have been somewhat overlooked in this context. The mesangium is situated in close proximity to all other cellular components of the glomerulus and should be considered important in pathophysiological events leading to glomerular disease. This review will highlight the role of the mesangium in both glomerular function and intra-glomerular crosstalk. It also aims to explain the role of the mesangium as a central component involved in disease onset and progression as well as signaling to maintain the functions of other glomerular cells to uphold permselectivity and glomerular health.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Craig DJ, James AW, Wang Y, Tavian M, Crisan M, Péault BM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:35-43. [PMID: 35641167 PMCID: PMC8895497 DOI: 10.1093/stcltm/szab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.
Collapse
Affiliation(s)
- David J Craig
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Mihaela Crisan
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Bruno M Péault
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author: Bruno Péault, PhD, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095-7358, USA.
| |
Collapse
|
18
|
Sánchez Fernández de la Vega J, Martínez-Onsurbe MP, Alonso Garcia S, Alba Losada J, Alonso Riaño M, Pardo Mindán FJ. [Reinterpretation of the Malpighian body in light of the existence of a single glomerular arteriole (Trabucco and Marquez)]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2021; 54:220-233. [PMID: 34544552 DOI: 10.1016/j.patol.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION In 1842 William Bowman described the microvascular system of the Malpighian body. Electron microscopic studies definitively revealed the spatial structure of its mesangial-capillary-epithelial component. In 1952-54 Trabucco and Marquez challenged the ideas of Bowman, demonstrating the existence of a single glomerular arteriole. Our study supports the finding of a single glomerular arteriole, leading to a definitive interpretation of the Malpighian body structure. MATERIALS AND METHODS Serial histological studies were carried out of the vascular pole in a case of oligomeganephrotic renal hypoplasia and the immunohistochemical study of embryonal glomerular development (15 embryos aged between 7 and 11weeks), with alpha-actin (smooth muscle marker), CD31 and CD34 (endothelial markers) and CD10 (podocyte marker). RESULTS The study of the glomerular vascular pole in the case of oligomeganephrotic renal hypoplasia supports the existence of a single glomerular arteriole. Our immunohistochemical study confirmed this finding and provided data on the morphogenesis of the mesangial-capillary-epithelial component of the Malpighian body. CONCLUSIONS There exist a single glomerular arteriole. Mesangial and endothelial cells originating from a single glomerular arteriole interact with an epithelial component derived from the nephrogenic vesicle which then generate the lobular glomerular tuft, providing the basis for a definitive interpretation of the structure of the Malpighian body. There is no scientific base to the interpretation of the glomerular microvascular system as having two glomerular arterioles with an intercalated capillary network.
Collapse
Affiliation(s)
| | - M Pilar Martínez-Onsurbe
- Anatomía Patológica, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, España
| | | | | | | | | |
Collapse
|
19
|
Ando K, Shih YH, Ebarasi L, Grosse A, Portman D, Chiba A, Mattonet K, Gerri C, Stainier DYR, Mochizuki N, Fukuhara S, Betsholtz C, Lawson ND. Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Dev Biol 2021; 479:11-22. [PMID: 34310924 DOI: 10.1016/j.ydbio.2021.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan.
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus Flemingsberg, Neo, Blickagången 16, Hiss S, Plan 7, SE-141 57, Huddinge, Sweden
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States.
| |
Collapse
|
20
|
Doxorubicin-Induced Fetal Mesangial Cell Death Occurs Independently of TRPC6 Channel Upregulation but Involves Mitochondrial Generation of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22147589. [PMID: 34299212 PMCID: PMC8305841 DOI: 10.3390/ijms22147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.
Collapse
|
21
|
Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun 2021; 12:2141. [PMID: 33837218 PMCID: PMC8035407 DOI: 10.1038/s41467-021-22331-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Molecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies. The molecular identity of renal glomerular cells is poorly characterized and rodent glomerulopathy models translate poorly to humans. Here, the authors show molecular signatures of glomerulus-associated cells using single cell RNA sequencing and highlight differences between mouse and human cells.
Collapse
|
22
|
Ziegler V, Fremter K, Helmchen J, Witzgall R, Castrop H. Mesangial cells regulate the single nephron GFR and preserve the integrity of the glomerular filtration barrier: An intravital multiphoton microscopy study. Acta Physiol (Oxf) 2021; 231:e13592. [PMID: 33269519 DOI: 10.1111/apha.13592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
AIM The intraglomerular mesangial cells are located between the glomerular capillaries. Here we hypothesized that mesangial cells regulate the single nephron glomerular filtration rate (snGFR) and that mesangial cells support the integrity of the glomerular filtration barrier. METHODS We assessed the function of mesangial cells in vivo by multiphoton microscopy. Mesangial cells were depleted in Munich Wistar Froemter rats using the Thy1.1 antibody model. RESULTS The Thy1.1 antibody caused the cell-specific loss of 82 ± 3% of mesangial cells. After mesangial cell depletion, the baseline snGFR was reduced to 12.0 ± 1.2 vs 32.4 ± 3.2 nL/min in controls. In control rats, the snGFR decreased after angiotensin II infusion by 61 ± 3% (P = .004), whereas it remained unchanged in Thy1.1-treated rats. The changes in the snGFR after angiotensin II infusion in control rats were accompanied by the marked rotation of the capillary loops within Bowman's space. This phenomenon was absent in anti-Thy1.1-treated rats. The glomerular sieving coefficient (GSCA ) for albumin, used as a measure of the integrity of the glomerular filtration barrier, was low in control rats (0.00061 ± 0.00004) and increased after angiotensin II infusion (0.00121 ± 0.00015). In Thy1.1-treated rats, the GSC was elevated (0.0032 ± 0.00059) and did not change in response to angiotensin II. Electron microscopy revealed the increased thickness of the glomerular basement membrane after mesangial cell depletion. CONCLUSION Our data suggest that mesangial cells actively contribute to the regulation of the snGFR. Furthermore, mesangial cells are crucially involved in maintaining the integrity of the glomerular filtration barrier, in part by modulating the thickness of the glomerular basement membrane.
Collapse
Affiliation(s)
- Vera Ziegler
- Institute of Physiology University of Regensburg Regensburg Germany
| | | | - Julia Helmchen
- Institute of Physiology University of Regensburg Regensburg Germany
| | - Ralph Witzgall
- Institute of Molecular and Cellular Anatomy University of Regensburg Regensburg Germany
| | - Hayo Castrop
- Institute of Physiology University of Regensburg Regensburg Germany
| |
Collapse
|
23
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
24
|
Abstract
The lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.
Collapse
|
25
|
Mehta N, Li R, Zhang D, Soomro A, He J, Zhang I, MacDonald M, Gao B, Krepinsky JC. miR299a-5p promotes renal fibrosis by suppressing the antifibrotic actions of follistatin. Sci Rep 2021; 11:88. [PMID: 33420269 PMCID: PMC7794215 DOI: 10.1038/s41598-020-80199-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Caveolin-1 (cav-1), an integral protein of the membrane microdomains caveolae, is required for synthesis of matrix proteins by glomerular mesangial cells (MC). Previously, we demonstrated that the antifibrotic protein follistatin (FST) is transcriptionally upregulated in cav-1 knockout MC and that its administration is protective against renal fibrosis. Here, we screened cav-1 wild-type and knockout MC for FST-targeting microRNAs in order to identity novel antifibrotic therapeutic targets. We identified that miR299a-5p was significantly suppressed in cav-1 knockout MC, and this was associated with stabilization of the FST 3'UTR. Overexpression and inhibition studies confirmed the role of miR299a-5p in regulating FST expression. Furthermore, the profibrotic cytokine TGFβ1 was found to stimulate the expression of miR299a-5p and, in turn, downregulate FST. Through inhibition of FST, miR299a-5p overexpression augmented, while miR299a-5p inhibition diminished TGFβ1 profibrotic responses, whereas miR299a-5p overexpression re-enabled cav-1 knockout MC to respond to TGFβ1. In vivo, miR299a-5p was upregulated in the kidneys of mice with chronic kidney disease (CKD). miR299a-5p inhibition protected these mice against renal fibrosis and CKD severity. Our data demonstrate that miR299a-5p is an important post-transcriptional regulator of FST, with its upregulation an important pathogenic contributor to renal fibrosis. Thus, miR299a-5p inhibition offers a potential novel therapeutic approach for CKD.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Asfia Soomro
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Juehua He
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Ivan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada.
- St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
26
|
Requirement of brain interleukin33 for aquaporin4 expression in astrocytes and glymphatic drainage of abnormal tau. Mol Psychiatry 2021; 26:5912-5924. [PMID: 33432186 PMCID: PMC8273186 DOI: 10.1038/s41380-020-00992-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Defective aquaporin4 (AQP4)-mediated glymphatic drainage has been linked to tauopathy and amyloid plaque in Alzheimer's disease. We now show that brain interleukin33 (IL33) is required for regulation of AQP4 expression in astrocytes, especially those at neuron-facing membrane domain (n-AQP4). First, IL33-deficient (Il33-/-) mice showed a loss of n-AQP4 after middle age, which coincided with a rapid accumulation of abnormal tau in neurons and a reduction in drainage of abnormal tau to peripheral tissues. Second, injection of recombinant IL33 induced robust expression of AQP4 at perivascular endfoot (p-AQP4) of astrocytes, but not n-AQP4, in Il33-/- brains. Although the increased p-AQP4 greatly accelerated drainage of intracerebroventricularly injected peptides, it did not substantially accelerate drainage of abnormal tau. These results suggest that p-AQP4 drives overall convective flow toward perivenous space, i.e., glymphatics, whereas n-AQP4 may generate an aqueous flow away from neurons to remove neuronal wastes, e.g., abnormal tau. We have previously shown the role of brain IL33 in DNA repair and autophagy in neurons with oxidative stress. Now, we show that IL33 deficiency also impairs glymphatic drainage. Defects in those mechanisms together may lead to chronic neurodegeneration and tauopathy at old age in IL33-deficient mice.
Collapse
|
27
|
Activated mesangial cells acquire the function of antigen presentation. Cell Immunol 2020; 361:104279. [PMID: 33422698 DOI: 10.1016/j.cellimm.2020.104279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Mesangial cells (MCs), as resident cells of the kidneys, play an important role in maintaining glomerular function. MCs are located between the capillary loops of the glomeruli and mainly support the capillary plexus, constrict blood vessels, extracellular matrix components, produce cytokines, and perform phagocytosis and clearance of macromolecular substances. When the glomerular environment changes, MCs are often affected, which can lead to functional transformation. The immune response is involved in the occurrence and development of various kidney diseases, in these diseases, antigen-presenting cells (APCs) play an important role. APCs can present antigens to T lymphocytes, causing them to become activated and proliferate. Studies have shown that MCs have phagocytic function and express APC markers on the cell surface. Additionally, MCs are stimulated by or produce various inflammatory factors to participate in the renal inflammatory response. Therefore, MCs have potential antigen presentation function and participate in the pathological changes of various kidney diseases as APCs upon activation. In this paper, by reviewing MC phagocytic function, activated MC expression of APC surface markers, and MC participation in the inflammatory response and local renal immune response, we confirm that activated MCs can act as APCs in renal disease.
Collapse
|
28
|
Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins (Basel) 2020; 12:E684. [PMID: 33138205 PMCID: PMC7693919 DOI: 10.3390/toxins12110684] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial injury. Injured tubular cells are a major source of transforming growth factor-β1 (TGF-β1), which induces myofibroblast transition from residual renal cells in damaged kidney, recruits inflammatory cells and thereby promotes extracellular matrix deposition in renal fibrosis. Moreover, IS upregulates signal transducers and activators of transcription 3 phosphorylation, followed by increases in TGF-β1, monocyte chemotactic protein-1 and α-smooth muscle actin production, which participate in interstitial inflammation, renal fibrosis and, consequently, CKD progression. Clinically, higher serum IS levels are independently associated with renal function decline and predict all-cause mortality in CKD. The poor removal of serum IS in conventional hemodialysis is also significantly associated with all-cause mortality and heart failure incidence in end-stage renal disease patients. Scavenging the IS precursor by AST-120 can markedly reduce tubular IS staining that attenuates renal tubular injury, ameliorates IS-induced oxidative stress and rescues antioxidant glutathione activity in tubular epithelial cells, thereby providing a protective role against tubular injury and ultimately retarding renal function decline.
Collapse
Affiliation(s)
- Tong-Hong Cheng
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei 235, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei 23148, Taiwan
| | - Yi-Chou Hou
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei 234, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei 242, Taiwan;
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei 242, Taiwan
| |
Collapse
|
29
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
30
|
Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, Chung IF, Lim YM. Decoding the differentiation of mesenchymal stem cells into mesangial cells at the transcriptomic level. BMC Genomics 2020; 21:467. [PMID: 32635896 PMCID: PMC7339572 DOI: 10.1186/s12864-020-06868-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells. Results Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process. Conclusions A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan
| | - Wailap Victor Ng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan
| | - Soon-Keng Cheong
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Ting-Yu Chang
- Department of Research, ChangHua Christian Hospital, 135, Nan-Hsiao Street, ChangHua City, Taiwan
| | - I-Fang Chung
- Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan. .,Preventive Medicine Research Center, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan.
| | - Yang-Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
31
|
Odendaal L, Davis AS, Fosgate GT, Clift SJ. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Young Lambs. Vet Pathol 2019; 57:66-81. [PMID: 31842723 DOI: 10.1177/0300985819882633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A clear distinction can be made regarding the susceptibility to and the severity of lesions in young lambs when compared to adult sheep. In particular, there are important differences in the lesions and tropism of Rift Valley fever virus (RVFV) in the liver, kidneys, and lymphoid tissues of young lambs. A total of 84 lambs (<6 weeks old), necropsied during the 2010 to 2011 Rift Valley fever (RVF) outbreak in South Africa, were examined by histopathology and immunohistochemistry (IHC). Of the 84 lambs, 71 were positive for RVFV. The most striking diagnostic feature in infected lambs was diffuse necrotizing hepatitis with multifocal liquefactive hepatic necrosis (primary foci) against a background of diffuse hepatocellular death. Lymphocytolysis was present in all lymphoid organs except for the thymus. Lesions in the kidney rarely progressed beyond hydropic change and occasional pyknosis or karyolysis in renal tubular epithelial cells. Viral antigen was diffusely present in the cytoplasm of hepatocytes, but this labeling was noticeably sparse in primary foci. Immunolabeling for RVFV in young lambs was also detected in macrophages, vascular smooth muscle cells, adrenocortical epithelial cells, renal tubular epithelial cells, renal perimacular cells, and cardiomyocytes. RVFV immunolabeling was also often present in capillaries and small blood vessels either as non-cell-associated viral antigen, as antigen in endothelial cells, or intravascular cellular debris. Specimens from the liver, spleen, kidney, and lungs were adequate to confirm a diagnosis of RVF. Characteristic lesions were present in these organs with the liver and spleen being the most consistently positive for RVFV by IHC.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
32
|
Sadashiv R, Bannur BM, Shetty P, Dinesh US, K Vishwanatha J, Deshpande SK, Bargale A, E S, Ruikar K. Comparative expression analysis of phospholipid binding protein annexina1 in nephrogenesis and kidney cancer. J Basic Clin Physiol Pharmacol 2019; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0179/jbcpp-2019-0179.xml. [PMID: 31730527 DOI: 10.1515/jbcpp-2019-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Background The expression in the glomerular mesangial cells, papillary, and collecting duct cells demonstrated annexin A1 (AnxA1)'s role in specific renal functions. With varying concentrations of calcium (Ca2+), it is considered to regulate cellular processes such as cell proliferation, apoptosis, and clearance of apoptotic cells by forming ceramides, a key lipid mediator of apoptosis. It also participates in tumorigenesis based on its location. On account of these features, we investigated the expression of this apoptosis-associated protein in fetal kidneys at different gestational periods, mature kidneys and in kidney cancer tissues in order to localize and possibly characterize its role during nephrogenesis and renal tumors. Methods AnxA1 expression was evaluated by an immunohistochemistry technique in "paraffin-embedded" renal tissue sections from autopsied fetuses at different gestational ages, in mature kidneys and renal cancer tissues. Results The current study data demonstrated that AnxA1 is expressed in the mesangial cells and podocytes of maturing glomeruli in the developing renal cortex of fetal kidneys at 14 to 19 weeks of gestation. The expression in the mesangial cells declined in later weeks of gestation and persisted into adulthood. AnxA1 expression increased with the progression of clear cell renal cell carcinoma (CCRCC) and also in other cancer types indicating a potential role of the protein in tumorigenesis. Conclusions We presume that AnxA1 in the podocytes and mesangial cells play important roles in various signaling pathways in the functioning of the glomerulus. These results and concepts provide a framework to further dissect its biological properties and thereby develop diagnostic, prognostic, and therapeutic strategies targeting the molecule in various renal pathologies.
Collapse
Affiliation(s)
- Roshni Sadashiv
- Department of Anatomy, BLDE (Deemed to be) University, Vijayapur, Karnataka, India.,Central Research Laboratory, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India.,SDM College of Medical Sciences and Hospital, Department of Anatomy, Dharwad, Karnataka, India
| | | | - Praveenkumar Shetty
- K.S. Hegde Medical Academy, Department of Biochemistry, Mangalore, Karnataka, India.,Nitte University Center for Science Education and Research/Department of Biochemistry, K.S. Hegde Medical Academy, Mangalore, Karnataka, India, Phone: +91824-2204292-303, Fax: +918242204308
| | - Udupi Shastry Dinesh
- Department of Pathology, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India
| | - Jamboor K Vishwanatha
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | | | - Anil Bargale
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India
| | - Sarathkumar E
- Nitte University Center for Science Education and Research, Mangalore, Karnataka, India
| | - Komal Ruikar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India.,Department of Physiology, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India
| |
Collapse
|
33
|
Wakisaka M, Kamouchi M, Kitazono T. Lessons from the Trials for the Desirable Effects of Sodium Glucose Co-Transporter 2 Inhibitors on Diabetic Cardiovascular Events and Renal Dysfunction. Int J Mol Sci 2019; 20:E5668. [PMID: 31726765 PMCID: PMC6888253 DOI: 10.3390/ijms20225668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Recent large placebo-controlled trials of sodium glucose co-transporter 2 (SGLT2) inhibitors revealed desirable effects on heart failure (HF) and renal dysfunction; however, the mechanisms underlying these effects are unknown. The characteristic changes in the early stage of diabetic cardiomyopathy (DCM) are myocardial and interstitial fibrosis, resulting in diastolic and subsequent systolic dysfunction, which leads to clinical HF. Pericytes are considered to play crucial roles in myocardial and interstitial fibrosis. In both DCM and diabetic retinopathy (DR), microaneurysm formation and a decrease in capillaries occur, triggered by pericyte loss. Furthermore, tubulointerstitial fibrosis develops in early diabetic nephropathy (DN), in which pericytes and mesangial cells are thought to play important roles. Previous reports indicate that pericytes and mesangial cells play key roles in the pathogenesis of DCM, DR and DN. SGLT2 is reported to be functionally expressed in pericytes and mesangial cells, and excessive glucose and Na+ entry through SGLT2 causes cellular dysfunction in a diabetic state. Since SGLT2 inhibitors can attenuate the high glucose-induced dysfunction of pericytes and mesangial cells, the desirable effects of SGLT2 inhibitors on HF and renal dysfunction might be explained by their direct actions on these cells in the heart and kidney microvasculature.
Collapse
Affiliation(s)
- Masanori Wakisaka
- Wakisaka Naika (Wakisaka Internal Medicine Clinic), Internal medicine, Fukuoka 814-0013, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Qin Z, Hoh CK, Olson ES, Jahromi AH, Hall DJ, Barback CV, You YH, Yanagita M, Sharma K, Vera DR. Molecular Imaging of the Glomerulus via Mesangial Cell Uptake of Radiolabeled Tilmanocept. J Nucl Med 2019; 60:1325-1332. [PMID: 30796169 PMCID: PMC6910642 DOI: 10.2967/jnumed.118.223727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
An unmet need for the clinical management of chronic kidney disease is a predictive tool of kidney function during the first decade of the disease, when there is silent loss of glomerular function. The objective of this study was to demonstrate receptor-mediated binding of tilmanocept to CD206 within the kidney and provide evidence of kinetic sensitivity of this binding to renal function. Methods: Rats were positioned in a PET scanner with the liver and kidneys within the field of view. After an intravenous injection of 68Ga-IRDye800-tilmanocept, using 1 of 2 scaled molar doses (0.02 nmol/g, n = 5; or 0.10 nmol/g, n = 5), or coinjection (n = 3) of 68Ga-IRDye800-tilmanocept (0.10 nmol/g) and unlabeled tilmanocept (5.0 nmol/g), or a negative control, 68Ga-IRDye800-DTPA-galactosyl-dextran (0.02 nmol/g, n = 5), each animal was imaged for 20 min followed by a whole-body scan. Frozen kidney sections were stained for podocytes and CD206 using immunofluorescence. Molecular imaging of diabetic db/db mice (4.9 wk, n = 6; 7.3 wk, n = 4; 13.3 wk, n = 6) and nondiabetic db/m mice (n = 6) was performed with fluorescence-labeled 99mTc-tilmanocept (18.5 MBq, 2.6 nmol). Thirty minutes after injection, blood, liver, kidneys, and urine were assayed for radioactivity. Renal time-activity curves were generated. Results: Rat PET whole-body images and time-activity curves of 68Ga-IRDye800-tilmanocept demonstrated receptor-mediated renal accumulation with evidence of glomerular uptake. Activity within the renal cortex persisted during the 40-min study. Histologic examination demonstrated colocalization of CD206 and IRDye800-tilmanocept within the glomerulus. The glomerular accumulation of the coinjection and the negative control studies were significantly less than the CD206-targeted agent. The db/db mice displayed a multiphasic renal time-activity curve with high urinary bladder accumulation; the nondiabetic mice exhibited renal uptake curves dominated by a single phase with low bladder accumulation. Conclusion: This study demonstrated receptor-mediated binding to the glomerular mesangial cells and kinetic sensitivity of tilmanocept to chronic renal disease. Given the role of mesangial cells during the progression of diabetic nephropathy, PET or SPECT renal imaging with radiolabeled tilmanocept may provide a noninvasive quantitative assessment of glomerular function.
Collapse
Affiliation(s)
- Zhengtao Qin
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Carl K Hoh
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Emilia S Olson
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Amin Haghighat Jahromi
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - David J Hall
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Christopher V Barback
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Young-Hyun You
- Center for Renal Translational Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Division of Nephrology, University of California, San Diego, La Jolla, California; and
| | | | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Division of Nephrology, University of California, San Diego, La Jolla, California; and
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
35
|
Den Hartogh DJ, Tsiani E. Health Benefits of Resveratrol in Kidney Disease: Evidence from In Vitro and In Vivo Studies. Nutrients 2019; 11:nu11071624. [PMID: 31319485 PMCID: PMC6682908 DOI: 10.3390/nu11071624] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Different diseases and disorders that affect the kidneys include, but are not limited to, glomerulonephritis, diabetic nephropathy, polycystic kidney disease, kidney stones, renal fibrosis, sepsis, and renal cell carcinoma. Kidney disease tends to develop over many years, making it difficult to identify until much later when kidney function is severely impaired and undergoing kidney failure. Although conservative care, symptom management, medication, dialysis, transplantation, and aggressive renal cancer therapy are some of the current strategies/approaches to kidney disease treatment, new preventative targeted therapies are needed. Epidemiological studies have suggested that a diet rich in fruits and vegetables is associated with health benefits including protection against kidney disease and renal cancer. Resveratrol, a polyphenol found in grapes and berries, has been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, and anti-cancer properties. The current review summarizes the existing in vitro and in vivo animal and human studies examining the nephroprotective effects of resveratrol.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
36
|
Brandl F, Merten H, Zimmermann M, Béhé M, Zangemeister-Wittke U, Plückthun A. Influence of size and charge of unstructured polypeptides on pharmacokinetics and biodistribution of targeted fusion proteins. J Control Release 2019; 307:379-392. [PMID: 31252038 DOI: 10.1016/j.jconrel.2019.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Abstract
Alternative non-IgG binding proteins developed for therapy are small in size and, thus, are rapidly cleared from the circulation by renal filtration. To avoid repeated injection or continuous infusion for the maintenance of therapeutic serum concentrations, extensions of unfolded polypeptides have been developed to prolong serum half-life, but systematic, comparative studies investigating the influence of their size and charge on serum half-life, extravasation, tumor localization and excretion mechanisms have so far been lacking. Here we used a high-affinity Designed Ankyrin Repeat Protein (DARPin) targeting the tumor marker epithelial cell adhesion molecule (EpCAM) in a preclinical tumor xenograft model in mice, and fused it with a series of defined unstructured polypeptides. We used three different sizes of two previously described polypeptides, an uncharged one consisting of only Pro, Ala and Ser (termed PAS) and a charged one consisting of Pro, Ala, Ser, Thr, Gly, Glu (termed XTEN) and performed for the first time a precise comparative localization, distribution and extravasation study. Pharmacokinetic analysis showed a clear linear relationship between hydrodynamic radius and serum half-life across both polypeptides, reaching a half-life of up to 21 h in mice. Tumor uptake was EpCAM-dependent and directly proportional to half-life and size, showing an even tumor penetration for all fusion proteins without unspecific accumulation in non-target tissue. Unexpectedly, charge had no influence on any parameter, neither tumor nor tissue accumulation nor kidney elimination kinetics. Thus, both polypeptide types have a very similar potential for precise half-life modification and tumor targeting.
Collapse
Affiliation(s)
- Fabian Brandl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Hannes Merten
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martina Zimmermann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Béhé
- Center of Radiopharmaceutical Sciences, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Uwe Zangemeister-Wittke
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Mehta N, Zhang D, Li R, Wang T, Gava A, Parthasarathy P, Gao B, Krepinsky JC. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun Signal 2019; 17:37. [PMID: 30995923 PMCID: PMC6472091 DOI: 10.1186/s12964-019-0351-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously showed that caveolin-1 (cav-1), an integral membrane protein, is required for the synthesis of matrix proteins by glomerular mesangial cells (MC). In a previous study to understand how cav-1 is involved in regulating matrix production, we had identified significant upregulation of the antifibrotic protein follistatin in cav-1 knockout MC. Follistatin inhibits the profibrotic effects of several members of the transforming growth factor beta superfamily, in particular the activins. Here, we characterize the molecular mechanism through which cav-1 regulates the expression of follistatin. METHODS Kidneys from cav-1 wild type and knockout (KO) mice were analyzed and primary cultures of MC from cav-1 wild-type and KO mice were utilized. FST promoter deletion constructs were generated to determine the region of the promoter important for mediating FST upregulation in cav-1 KO MC. siRNA-mediated down-regulation and overexpression of Sp1 in conjunction with luciferase activity assays, immunoprecipitation, western blotting and ChiP was used to assess the role of Sp1 in transcriptionally regulating FST expression. Pharmacologic kinase inhibitors and specific siRNA were used to determine the post-translational mechanism through which cav-1 affects Sp1 activity. RESULTS Our results establish that follistatin upregulation occurs at the transcript level. We identified Sp1 as the critical transcription factor regulating activation of the FST promoter in cav-1 KO MC through binding to a region within 123 bp of the transcription start site. We further determined that the lack of cav-1 increases Sp1 nuclear levels and transcriptional activity. This occurred through increased phosphoinositide 3-kinase (PI3K) activity and downstream protein kinase C (PKC) zeta-mediated phosphorylation and activation of Sp1. CONCLUSIONS These findings shed light on the transcriptional mechanism by which cav-1 represses the expression of a major antifibrotic protein, and can inform the development of novel antifibrotic treatment strategies.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata Gava
- Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada. .,St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
38
|
Alcendor DJ. Human Vascular Pericytes and Cytomegalovirus Pathobiology. Int J Mol Sci 2019; 20:E1456. [PMID: 30909422 PMCID: PMC6471229 DOI: 10.3390/ijms20061456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multipotent cells of the vascular system with cytoplasmic extensions proximal to endothelial cells that occur along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes are essential for proper microvascular formation, development, stabilization, and maintenance. Pericytes are essential for the regulation of paracellular flow between cells, transendothelial fluid transport, angiogenesis, and vascular immunosurveillance. They also influence the chemical composition of the surrounding microenvironment to protect endothelial cells from potential harm. Dysregulation or loss of pericyte function can result in microvascular instability and pathological consequences. Human pericytes have been shown to be targets for human cytomegalovirus (HCMV) infection and lytic replication that likely contribute to vascular inflammation. This review focuses on human vascular pericytes and their permissiveness for HCMV infection. It also discusses their implication in pathogenesis in the blood⁻brain barrier (BBB), the inner blood⁻retinal barrier (IBRB), the placenta⁻blood barrier, and the renal glomerulus as well as their potential role in subclinical vascular disease.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA.
| |
Collapse
|
39
|
McCullough PA, Soman S. Cardiorenal Syndrome: A Call to Action for a Pressing Medical Issue. Adv Chronic Kidney Dis 2018; 25:379-381. [PMID: 30309454 DOI: 10.1053/j.ackd.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
|
40
|
Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/β-catenin pathway. Biosci Rep 2018; 38:BSR20180100. [PMID: 29572389 PMCID: PMC6269139 DOI: 10.1042/bsr20180100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indicate cigarette smoking is an independent risk factor for chronic kidney disease including DN; however, the underlying molecular mechanisms are not clear. Recent studies have demonstrated that nicotine, one of the active compounds in cigarette smoke, contributes to the pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the characteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the present study, we examined the involvement of Wnt/β-catenin pathway in nicotine-mediated mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by evaluation for cell growth. In the presence of normal glucose, nicotine increased both the total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation, nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased the expression of Wnts, β-catenin, and fibronectin in normal glucose medium, but further increased mesangial cell expression of these proteins in high glucose milieu. Pharmacological inhibition or genetic knockdown of β-catenin activity or expression with specific inhibitor FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and fibronectin production. We conclude that nicotine may enhance renal mesangial cell proliferation and fibronectin production under high glucose milieus partly through activating Wnt/β-catenin pathway. Our study provides insight into molecular mechanisms involved in DN.
Collapse
|
41
|
Conlin CC, Huang Y, Gordon BAJ, Zhang JL. Quantitative characterization of glomerular fibrosis with magnetic resonance imaging: a feasibility study in a rat glomerulonephritis model. Am J Physiol Renal Physiol 2018; 314:F747-F752. [PMID: 29357425 DOI: 10.1152/ajprenal.00529.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glomerular fibrosis occurs in the early stages of multiple renal diseases, including hypertensive and diabetic nephropathy. Conventional assessment of glomerular fibrosis relies on kidney biopsy, which is invasive and does not reflect physiological aspects such as blood perfusion. In this study, we sought to assess potential changes of cortical perfusion and microstructure at different degrees of glomerular fibrosis using magnetic resonance imaging (MRI). A rat model of glomerular fibrosis was induced by injecting anti-Thy-1 monoclonal antibody OX-7 to promote mesangial extracellular matrix proliferation. For six rats on day 5 and five rats on day 12 after the induction, we measured renal cortical perfusion and spin-spin relaxation time (T2) in a 3-Tesla MRI scanner. T2 reflects tissue microstructural changes. Glomerular fibrosis severity was evaluated by histological analysis and proteinuria. Four rats without fibrosis were included as controls. In the control rats, the periodic acid-Schiff (PAS)-positive area was 22 ± 1% of total glomerular tuft, which increased significantly to 56 ± 12% and 45 ± 10% in the day 5 and day 12 fibrotic groups, respectively ( P < 0.01). For the three groups (control, day 5, and day 12 after OX-7 injection), cortical perfusion was 7.27 ± 2.54, 3.78 ± 2.17, and 3.32 ± 2.62 ml·min-1·g-1, respectively, decreasing with fibrosis severity ( P < 0.01), and cortical T2 was 75.2 ± 4.6, 84.1 ± 3.0, and 87.9 ± 5.6 ms, respectively ( P < 0.01). In conclusion, extracellular matrix proliferation in glomerular mesangial cells severely diminished blood flow through the glomeruli and also altered cortical microstructure to increase cortical T2. The MRI-measured parameters are proven to be sensitive markers for characterizing glomerular fibrosis.
Collapse
Affiliation(s)
- Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah.,Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | | | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah.,Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|
42
|
Lacy ER, Reale E. A unique juxtaglomerular apparatus in the river ray, Potamotrygon humerosa, a freshwater stingray. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0372-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Li M, Xu L, Feng G, Zhang Y, Wang X, Wang Y. High glucose downregulates myocardin expression in rat glomerular mesangial cells via the ERK signaling pathway. Oncotarget 2017; 8:87390-87400. [PMID: 29152089 PMCID: PMC5675641 DOI: 10.18632/oncotarget.20498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 01/26/2023] Open
Abstract
Mesangial cells (MCs), which are vascular smooth muscle-derived cells, occupy the central position in the glomerulus. Diabetic nephropathy (DN) is one of the most common diabetes complications and is likely attributed to the loss of MC contractility. Myocardin stimulates downstream vascular smooth muscle genes and regulates the contractility of vascular smooth muscle cells. Therefore, we hypothesized that myocardin is expressed in MCs and that high glucose is involved in the regulation of myocardin and downstream contractile genes in the context of DN. Confocal microscopy revealed that myocardin is expressed in rat MCs. Western blot and RT-qPCR analyses showed that treatment with 30 mM D-glucose significantly downregulated the mRNA and protein levels of myocardin and downstream SM α-actin. As an isotonic contrast, 30 mM mannitol did not affect myocardin mRNA levels but did downregulate myocardin protein levels. Treatment with 30 mM mannitol also downregulated SM α-actin mRNA and protein levels. Conversely, as another isotonic contrast, 30 mM L-glucose also had no effect on myocardin and SM α-actin expression in MCs. The extracellular signal-regulated kinase (ERK) pathway was activated by treatment with 30 mM D-glucose or mannitol, while specific inhibitors of the ERK pathway (PD98059) compromised the downregulation of myocardin and SM α-actin triggered by high glucose or mannitol. Thus we revealed that myocardin is expressed in MCs and that high glucose downregulates myocardin expression and downstream contractile protein SM α-actin via the ERK pathway. Our results suggest a novel mechanism for high glucose inhibition of MC contraction, which contributes to DN pathogenesis.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, China.,Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Lijuan Xu
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Zhang
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Xin Wang
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Yuebing Wang
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
44
|
Suyama M, Miyazaki Y, Matsusaka T, Sugano N, Ueda H, Kawamura T, Ogura M, Yokoo T. Forced expression of vascular endothelial growth factor-A in podocytes decreases mesangial cell numbers and attenuates endothelial cell differentiation in the mouse glomerulus. Clin Exp Nephrol 2017; 22:266-274. [DOI: 10.1007/s10157-017-1450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/18/2017] [Indexed: 11/30/2022]
|
45
|
Lu Y, Ye Y, Bao W, Yang Q, Wang J, Liu Z, Shi S. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 2017; 92:1119-1129. [PMID: 28709640 DOI: 10.1016/j.kint.2017.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Gene expression differs substantially among individual cells of the same type. We speculate that genes that are expressed in all but a portion of cells of a given cell type would be likely essential and required for either the cell survival (housekeeping) or for the cell type's unique structure and function, enabling the organism to survive. Here, we performed RNA-seq of 20 mouse podocytes using the Fluidigm C1 system and identified 335 genes that were expressed in all of them. Among them, 239 genes were also expressed in mesangial and endothelial cells and were involved in energy metabolism, protein synthesis, etc., as housekeeping genes. In contrast, 92 genes were preferentially expressed in podocytes (over five-fold versus expression in mesangial and endothelial cells) and are, therefore, the essential candidate genes specific for podocytes. Assessments by bioinformatics, conserved expression in human podocytes, and association with injury/disease all support the essentiality of these genes for podocytes. Factually, 27 of the 92 genes are already known to be essential for podocyte structure and function. Thirty-seven novel genes were functionally analyzed by siRNA silencing, and we found that a deficiency of 30 genes led to either cytoskeletal injury (FGFR1, AOX1, AIF1L, HAUS8, RAB3B, LPIN2, GOLIM4, CERS6, ARHGEF18, ARPC1A, SRGAP1, ITGB5, ILDR2, MPP5, TSC22D1, DNAJC11, SEPT10, MOCS2, FNBP1L, and TMOD3) or significant downregulation of CD2AP and synaptopodin (IFT80, MYOM2, ANXA4, CYB5R4, GPC1, ZNF277, NSF, ITGAV, CRYAB, and MTSS1). Thus, the list of genes essential for podocyte cytoskeletons is expanded by single-cell RNA sequencing. It appears that podocyte-specific essential genes are mainly associated with podocyte cytoskeletons.
Collapse
Affiliation(s)
- Yuqiu Lu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yuting Ye
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Wenduona Bao
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Qianqian Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jinquan Wang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
46
|
Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. Kidney Int 2017; 92:504-513. [PMID: 28320530 DOI: 10.1016/j.kint.2017.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022]
Abstract
Mesangial cells are essential for the structure and function of glomeruli, but the mechanisms underlying these roles are not well understood. Here, we performed a single-cell RNA-sequence (RNA-seq) analysis of mouse mesangial cells using the Fluidigm C1 platform. We found that gene expression in individual mesangial cells was tremendously heterogeneous, with mean correlation coefficients of 0.20, and most mesangial genes were actually expressed in only a portion of mesangial cells and are therefore presumably dispensable. In contrast, 1,045 genes were expressed in every single mesangial cell and were considered mesangial cell essential genes. A gene ontology analysis revealed a significant enrichment of genes associated with the endothelium, supporting the inference that mesangial cells function as pericytes. Among 58 endothelium-associated genes, 18 encode proteins that are secreted and may be directly involved in endothelial homeostasis. Importantly, 11 (Angpt2, Anxa5, Axl, Ecm1, Eng, Fn1, Mfge8, Msn, Nrp1, Serpine2, and Sparc) were upregulated, while 2 (Apoe and Fgf1) were downregulated in various glomerulopathies. The enrichment of genes associated with other reported functions of mesangial cells was also found. Furthermore, we identified 173 genes specifically expressed in every mesangial cell in glomeruli from the mesangial cell essential gene list. Finally, based on single mesangial cell RNA-seq results, we found that commonly used glomerular cell type markers, including Fhl2, Igfbp5, Wt1, Tek/Tie2, Kdr/Flk1, Flt1/Vegfr1, and Cd34, are actually not specific. Thus, single mesangial cell RNA-seq analysis has provided insights into the functions and underlying mechanisms of mesangial cells.
Collapse
|
47
|
Wang S, Zeng H, Chen ST, Zhou L, Xie XJ, He X, Tao YK, Tuo QH, Deng C, Liao DF, Chen JX. Ablation of endothelial prolyl hydroxylase domain protein-2 promotes renal vascular remodelling and fibrosis in mice. J Cell Mol Med 2017; 21:1967-1978. [PMID: 28266128 PMCID: PMC5571552 DOI: 10.1111/jcmm.13117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence demonstrates that hypoxia-inducible factor (HIF-α) hydroxylase system has a critical role in vascular remodelling. Using an endothelial-specific prolyl hydroxylase domain protein-2 (PHD2) knockout (PHD2EC KO) mouse model, this study investigates the regulatory role of endothelial HIF-α hydroxylase system in the development of renal fibrosis. Knockout of PHD2 in EC up-regulated the expression of HIF-1α and HIF-2α, resulting in a significant decline of renal function as evidenced by elevated levels of serum creatinine. Deletion of PHD2 increased the expression of Notch3 and transforming growth factor (TGF-β1) in EC, thus further causing glomerular arteriolar remodelling with an increased pericyte and pericyte coverage. This was accompanied by a significant elevation of renal resistive index (RI). Moreover, knockout of PHD2 in EC up-regulated the expression of fibroblast-specific protein-1 (FSP-1) and increased interstitial fibrosis in the kidney. These alterations were strongly associated with up-regulation of Notch3 and TGF-β1. We concluded that the expression of PHD2 in endothelial cells plays a critical role in renal fibrosis and vascular remodelling in adult mice. Furthermore, these changes were strongly associated with up-regulation of Notch3/TGF-β1 signalling and excessive pericyte coverage.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sean T Chen
- Duke University School of Medicine, Durham, NC, USA
| | - Liying Zhou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.,Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Qin-Hui Tuo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Changqin Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
48
|
Huang BY, Hu P, Zhang DD, Jiang GM, Liu SY, Xu Y, Wu YF, Xia X, Wang Y. C-type natriuretic peptide suppresses mesangial proliferation and matrix expression via a MMPs/TIMPs-independent pathway in vitro. J Recept Signal Transduct Res 2017; 37:355-364. [PMID: 28554303 DOI: 10.1080/10799893.2017.1286674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bao Yu Huang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Guang Mei Jiang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yang Fang Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xun Xia
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ya Wang
- Anhui Provincial Children’s Hospital, Hefei, PR China
| |
Collapse
|
49
|
The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis. Cytokine 2016; 88:115-125. [DOI: 10.1016/j.cyto.2016.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
|
50
|
Abstract
Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.
Collapse
|