1
|
Li D, Armand LC, Sun F, Hwang H, Wolfson D, Rampoldi A, Liu R, Forghani P, Hu X, Yu WM, Qu CK, Jones DP, Wu R, Cho HC, Maxwell JT, Xu C. AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling. Stem Cell Res Ther 2023; 14:322. [PMID: 37941041 PMCID: PMC10633979 DOI: 10.1186/s13287-023-03554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation. METHODS hiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli. RESULTS Treatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation. Conversely, the knockdown of AMPK inhibited mitochondrial maturation of hiPSC-CMs. In addition, AMPK activator-treated hiPSC-CMs had improved structural development and functional features-including enhanced Ca2+ transient kinetics and increased contraction. Transcriptomic, proteomic and metabolomic profiling identified differential levels of expression of genes, proteins and metabolites associated with a molecular signature of mature cardiomyocytes in AMPK activator-treated hiPSC-CMs. In response to pathological stimuli, AMPK activator-treated hiPSC-CMs had increased glycolysis, and other pathological outcomes compared to untreated cells. CONCLUSION AMPK activator-treated cardiac spheres could serve as a valuable model to gain novel insights into cardiac diseases.
Collapse
Affiliation(s)
- Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lawrence C Armand
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fangxu Sun
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David Wolfson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rui Liu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Xin Hu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Yang Q, Wang L, Liang Y, He Q, Sun Q, Luo J, Cao H, Fang Y, Zhou Y, Yang J, Wen P, Jiang L. Loss of UCP2 causes mitochondrial fragmentation by OMA1-dependent proteolytic processing of OPA1 in podocytes. FASEB J 2023; 37:e23265. [PMID: 37874273 DOI: 10.1096/fj.202301055r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Mitochondrial dysfunction plays an important role in the onset and progression of podocyte injury and proteinuria. However, the process by which the change in the podocyte mitochondria occurs is not well understood. Uncoupling protein 2 (UCP2) is a mitochondrial anion carrier protein, which is located in the mitochondrial inner membrane. Here, we reported that mice with podocyte-specific Ucp2 deficiency developed podocytopathy with proteinuria with aging. Furthermore, those mice exhibited increased proteinuria in experimental models evoked by Adriamycin. Our findings suggest that UCP2 mediates mitochondrial dysfunction by regulating mitochondrial dynamic balance. Ucp2-deleted podocytes exhibited increased mitochondrial fission and deficient in ATP production. Mechanistically, opacity protein 1 (OPA1), a key protein in fusion of mitochondrial inner membrane, was regulated by UCP2. Ucp2 deficiency promoted proteolysis of OPA1 by activation OMA1 which belongs to mitochondrial inner membrane zinc metalloprotease. Those finding demonstrate the role of UCP2 in mitochondrial dynamics in podocytes and provide new insights into pathogenesis associated with podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Qianqian Yang
- Division of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuehong Liang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyu He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Sun
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Luo
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Fang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
Yang Q, Yang S, Liang Y, Sun Q, Fang Y, Jiang L, Wen P, Yang J. UCP2 deficiency impairs podocyte autophagy in diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166705. [PMID: 37023910 DOI: 10.1016/j.bbadis.2023.166705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Podocytes have been indicated to be a critical factor for the development of diabetic kidney disease. Podocyte loss leads to irreversible glomerular injury and proteinuria in animal models. As terminal differentiated cells, autophagy is crucial for maintaining podocyte homeostasis. Previous studies have shown that Uncoupling proteins 2 (UCP2) regulate fatty acid metabolism, mitochondrial calcium uptake and reactive oxygen species (ROS) production. This study aimed to investigate whether UCP2 promote autophagy in podocyte and further explore the regulation mechanism of UCP2. METHODS For podocyte-specific UCP2-KO mice, we cross bred UCP2fl/fl mouse strain with the podocin-Cre mice. Diabetic mice were obtained by daily intraperitoneally injections of 40 mg/kg streptozotocin for 3 days. After 6 weeks, mice were scarified, and kidney tissues were analyzed by histological stain, Western blot, Immunofluorescence, and immunohistochemistry. Also, urine samples were collected for protein quantification. For in vitro study, podocytes were primary cultured from UCP2fl/fl mouse or transfected with adeno-associated virus (AAV)-UCP2. RESULTS Diabetic kidney showed elevated expression of UCP2 and specific ablation of UCP2 in podocyte aggravates diabetes-induced albuminuria and glomerulopathy. UCP2 protects hyperglycemia-induced podocyte injury by promoting autophagy in vivo and in vitro. Rapamycin treatment significantly ameliorates streptozotocin (STZ)-induced podocyte injury in UCP2-/- mice. CONCLUSION UCP2 expression in podocyte increased under diabetic condition and appeared to be an initial compensatory response. UCP2 deficiency in podocyte impaired autophagy and exacerbates podocyte injury and proteinuria in diabetic nephropathy.
Collapse
Affiliation(s)
- Qianqian Yang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223001, China
| | - Shuqing Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Yuehong Liang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Qi Sun
- Technology Department, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Fang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| | - Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
5
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
6
|
Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader GD, Nunes SS, Laflamme M, Keller G. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun 2021; 12:3155. [PMID: 34039977 PMCID: PMC8155185 DOI: 10.1038/s41467-021-23329-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs. Cardiomyocytes of heart ventricles consist of subpopulations of trabecular and compact subtypes. Here the authors describe the generation of structurally, metabolically and functionally mature compact ventricular cardiomyocytes as well as mature atrial cardiomyocytes from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olya Mastikhina
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada
| | - Michael Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Esfandiary A, Kutsche HS, Schreckenberg R, Weber M, Pak O, Kojonazarov B, Sydykov A, Hirschhäuser C, Wolf A, Haag D, Hecker M, Fink L, Seeger W, Ghofrani HA, Schermuly RT, Weißmann N, Schulz R, Rohrbach S, Li L, Sommer N, Schlüter KD. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovasc Res 2020; 115:1217-1227. [PMID: 30850841 PMCID: PMC6529920 DOI: 10.1093/cvr/cvz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Aims The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2−/−) protected against cardiac hypertrophy and failure. However, in UCP2−/− mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2−/− and wild-type mice were exposed to pulmonary arterial banding (PAB). Methods and results Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2−/− mice. UCP2−/− had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2−/− had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2−/−. Mitochondrial ROS production and respiration was similar between UCP2−/− or wild-type hearts. Conclusion Despite a mild pulmonary hypertension in UCP2−/− mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This—at least in part—depends on different behaviour of non-myocytes (fibroblasts).
Collapse
Affiliation(s)
| | - Hanna S Kutsche
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Martin Weber
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Oleg Pak
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Akylbek Sydykov
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Annemarie Wolf
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Daniela Haag
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Matthias Hecker
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Ludger Fink
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Werner Seeger
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | | | - Norbert Weißmann
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Susanne Rohrbach
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Ling Li
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Natascha Sommer
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| |
Collapse
|
8
|
Kutsche HS, Schreckenberg R, Weber M, Hirschhäuser C, Rohrbach S, Li L, Niemann B, Schulz R, Schlüter KD. Alterations in Glucose Metabolism During the Transition to Heart Failure: The Contribution of UCP-2. Cells 2020; 9:cells9030552. [PMID: 32120777 PMCID: PMC7140436 DOI: 10.3390/cells9030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.
Collapse
Affiliation(s)
- Hanna Sarah Kutsche
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
- Correspondence: ; Tel.: +49-641-99-47145
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Martin Weber
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Christine Hirschhäuser
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Bernd Niemann
- Universitätsklinikum Gießen, Klinik für Herz-, Kinderherz- und Gefäßchirurgie, 35392 Gießen, Germany;
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| |
Collapse
|
9
|
Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9340654. [PMID: 27642497 PMCID: PMC5011521 DOI: 10.1155/2016/9340654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection.
Collapse
|
10
|
Overnutrition during lactation leads to impairment in insulin signaling, up-regulation of GLUT1 and increased mitochondrial carbohydrate oxidation in heart of weaned mice. J Nutr Biochem 2015; 29:124-32. [PMID: 26608021 DOI: 10.1016/j.jnutbio.2015.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/23/2015] [Indexed: 01/19/2023]
Abstract
Several studies have demonstrated that overnutrition during early postnatal period can increase the long-term risk of developing obesity and cardiac disorders, yet the short-term effects of postnatal overfeeding in cardiac metabolism remains unknown. The aim of our study was to investigate the cardiac metabolism of weaned mice submitted to overnutrition during lactation, particularly as to mitochondrial function, substrate preference and insulin signaling. Postnatal overfeeding was induced by litter size reduction in mice at postnatal day 3. At 21 days of age (weaning), mice in the overfed group (OG) presented biometric and biochemical parameters of obesity, including increased body weight, visceral fat, liver weight and increased left ventricle weight/tibia length ratio; indicating cardiac hypertrophy, hyperglycemia, hyperinsulinemia and increased liver glycogen content compared to control group. In the heart, we detected impaired insulin signaling, mainly due to decreased IRβ, pTyr-IRS1, PI3K, GLUT4 and pAkt/Akt and increased PTP1B, GLUT1 and pAMPKα/AMPKα content. Activities of lactate dehydrogenase and citrate synthase were increased, accompanied by enhanced carbohydrate oxidation, as observed by high-resolution respirometry. Moreover, OG hearts had lower CPT1, PPARα and increased UCP2 mRNA expression, associated with increased oxidative stress (4-HNE content), BAX/BCL2 ratio and cardiac fibrosis. Ultrastructural analysis of OG hearts demonstrated mild mitochondrial damage without alterations in OXPHOS complexes. In conclusion, overnutrition during early life induces short-term metabolic disturbances, impairment in heart insulin signaling, up-regulates GLUT-1 and switch cardiac fuel preference in juvenile mice.
Collapse
|
11
|
Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS, Jurczak MJ, Mannam P, Giordano F, Erzurum SC, Lee PJ. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol 2015; 35:1166-78. [PMID: 25814675 DOI: 10.1161/atvbaha.114.304865] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Pulmonary hypertension (PH) is a process of lung vascular remodeling, which can lead to right heart dysfunction and significant morbidity. The underlying mechanisms leading to PH are not well understood, and therapies are limited. Using intermittent hypoxia (IH) as a model of oxidant-induced PH, we identified an important role for endothelial cell mitophagy via mitochondrial uncoupling protein 2 (Ucp2) in the development of IH-induced PH. APPROACH AND RESULTS Ucp2 endothelial knockout (VE-KO) and Ucp2 Flox (Flox) mice were subjected to 5 weeks of IH. Ucp2 VE-KO mice exhibited higher right ventricular systolic pressure and worse right heart hypertrophy, as measured by increased right ventricle weight/left ventricle plus septal weight (RV/LV+S) ratio, at baseline and after IH. These changes were accompanied by increased mitophagy. Primary mouse lung endothelial cells transfected with Ucp2 siRNA and subjected to cyclic exposures to CoCl2 (chemical hypoxia) showed increased mitophagy, as measured by PTEN-induced putative kinase 1 and LC3BII/I ratios, decreased mitochondrial biogenesis, and increased apoptosis. Similar results were obtained in primary lung endothelial cells isolated from VE-KO mice. Moreover, silencing PTEN-induced putative kinase 1 in the endothelium of Ucp2 knockout mice, using endothelial-targeted lentiviral silencing RNA in vivo, prevented IH-induced PH. Human pulmonary artery endothelial cells from people with PH demonstrated changes similar to Ucp2-silenced mouse lung endothelial cells. CONCLUSIONS The loss of endothelial Ucp2 leads to excessive PTEN-induced putative kinase 1-induced mitophagy, inadequate mitochondrial biosynthesis, and increased apoptosis in endothelium. An endothelial Ucp2-PTEN-induced putative kinase 1 axis may be effective therapeutic targets in PH.
Collapse
Affiliation(s)
- Maria Haslip
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Iva Dostanic
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Yan Huang
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Yi Zhang
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Kerry S Russell
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Michael J Jurczak
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Praveen Mannam
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Frank Giordano
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Serpil C Erzurum
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Patty J Lee
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.).
| |
Collapse
|
12
|
Chu DT, Malinowska E, Gawronska-Kozak B, Kozak LP. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem 2014; 289:18478-88. [PMID: 24808178 DOI: 10.1074/jbc.m114.555821] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cohort of genes was selected to characterize the adipogenic phenotype in primary cell cultures from three tissue sources. We compared the quantitative expression of biomarkers in culture relative to their expression in vivo because the mere presence or absence of expression is minimally informative. Although all biomarkers analyzed have biochemical functions in adipocytes, the expression of some of the biomarkers varied enormously in culture relative to their expression in the adult fat tissues in vivo, i.e. inguinal fat for white adipocytes and brite cells, interscapular brown adipose tissue for brown adipocytes, and ear mesenchymal stem cells for white adipocytes from adult mice. We propose that the pattern of expression in vitro does not reflect gene expression in the adult mouse; rather it is predominantly the expression pattern of adipose tissue of the developing mouse between birth and weaning. The variation in gene expression among fat depots in both human and rodent has been an extensively studied phenomenon, and as recently reviewed, it is related to subphenotypes associated with immune function, the inflammatory response, fat depot blood flow, and insulin sensitivity. We suggest that adipose tissue biology in the period from birth to weaning is not just a staging platform for the emergence of adult white fat but that it has properties to serve the unique needs of energy metabolism in the newborn. A case in point is the differentiation of brite cells that occurs during this period followed by their involution immediately following weaning.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elzbieta Malinowska
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Leslie P Kozak
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
13
|
Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart--deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc 2013; 2:e000433. [PMID: 24275630 PMCID: PMC3886738 DOI: 10.1161/jaha.113.000433] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina Bayeva
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | | | | |
Collapse
|
14
|
Cheng G, Palanisamy AP, Evans ZP, Sutter AG, Jin L, Singh I, May H, Schmidt MG, Chavin KD. Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice. PLoS One 2013; 8:e75980. [PMID: 24086674 PMCID: PMC3785413 DOI: 10.1371/journal.pone.0075980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022] Open
Abstract
Fatty liver or hepatic steatosis is a common health problem associated with abnormal liver function and increased susceptibility to ischemia/reperfusion injury. The objective of this study was to investigate the effect of the fatty acid synthase inhibitor cerulenin on hepatic function in steatotic ob/ob mice. Different dosages of cerulenin were administered intraperitoneally to ob/ob mice for 2 to 7 days. Body weight, serum AST/ALT, hepatic energy state, and gene expression patterns in ob/ob mice were examined. We found that cerulenin treatment markedly improved hepatic function in ob/ob mice. Serum AST/ALT levels were significantly decreased and hepatic ATP levels increased in treated obese mice compared to obese controls, accompanied by fat depletion in the hepatocyte. Expression of peroxisome proliferator-activated receptors α and γ and uncoupling protein 2 were suppressed with cerulenin treatment and paralleled changes in AST/ALT levels. Hepatic glutathione content were increased in some cases and apoptotic activity in the steatotic livers was minimally changed with cerulenin treatment. In conclusion, these results demonstrate that fatty acid synthase blockade constitutes a novel therapeutic strategy for altering hepatic steatosis at non-stressed states in obese livers.
Collapse
Affiliation(s)
- Gang Cheng
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Arun P. Palanisamy
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Zachary P. Evans
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alton G. Sutter
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lan Jin
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harold May
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael G. Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth D. Chavin
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
15
|
Georgiadi A, Boekschoten MV, Müller M, Kersten S. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. Physiol Genomics 2012; 44:352-61. [PMID: 22274564 DOI: 10.1152/physiolgenomics.00115.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6 h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and peroxisome proliferator-activated receptor (PPAR)α-/- mice to allow exploration of the specific contribution of PPARα. It was found that: 1) C18:3 had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between C18:2 and C18:3. Large similarity was also observed between PPARα agonist Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPARα-dependent manner, emphasizing the importance of PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g., Acot1, Angptl4, Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for natural killer T cell function. 6) Deletion and activation of PPARα had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPARα.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, the Netherlands
| | | | | | | |
Collapse
|
16
|
Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M, Kersten S. Induction of Cardiac Angptl4 by Dietary Fatty Acids Is Mediated by Peroxisome Proliferator-Activated Receptor β/δ and Protects Against Fatty Acid–Induced Oxidative Stress. Circ Res 2010; 106:1712-21. [DOI: 10.1161/circresaha.110.217380] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rationale
:
Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart.
Objective
:
To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences.
Methods and Results
:
Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)β/δ
−/−
and not PPARα
−/−
mice and was blunted on siRNA-mediated PPARβ/δ knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARβ/δ but not PPARα to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding.
Conclusions
:
Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARβ/δ is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid–induced oxidative stress.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Laeticia Lichtenstein
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Tatjana Degenhardt
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Mark V. Boekschoten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Marc van Bilsen
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Beatrice Desvergne
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Michael Müller
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Sander Kersten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| |
Collapse
|
17
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
18
|
Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20:78-87. [PMID: 19084428 DOI: 10.1016/j.tem.2008.10.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a major part in regulating energy homeostasis by integrating hormonal and nutritional signals. Increasing evidence shows that specific neurons in the hypothalamus respond to changing glucose, lipid and amino acid levels. However, the intracellular substrate for such 'fuel sensing' and its integration into the neuronal doctrine as it relates to energy homeostasis remains elusive. Evidence points to differential fuel utilization in response to nutrient availability and free radical formation as crucial components in regulating neuronal functions. This review places these components in the context of neurobiological aspects of circuit-specific hypothalamic output, focusing on the melanocortin system. The effects of glucose and fatty acids are discussed with emphasis on free radical production in orexigenic and anorexigenic neurons of the arcuate nucleus.
Collapse
Affiliation(s)
- Tamas L Horvath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
19
|
Pecqueur C, Bui T, Gelly C, Hauchard J, Barbot C, Bouillaud F, Ricquier D, Miroux B, Thompson CB. Uncoupling protein‐2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis‐derived pyruvate utilization. FASEB J 2007; 22:9-18. [PMID: 17855623 DOI: 10.1096/fj.07-8945com] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uncoupling protein-2 (UCP2) belongs to the mitochondrial carrier family and has been thought to be involved in suppressing mitochondrial ROS production through uncoupling mitochondrial respiration from ATP synthesis. However, we show here that loss of function of UCP2 does not result in a significant increase in ROS production or an increased propensity for cells to undergo senescence in culture. Instead, Ucp2-/- cells display enhanced proliferation associated with a metabolic switch from fatty acid oxidation to glucose metabolism. This metabolic switch requires the unrestricted availability of glucose, and Ucp2-/- cells more readily activate autophagy than wild-type cells when deprived of glucose. Altogether, these results suggest that UCP2 promotes mitochondrial fatty acid oxidation while limiting mitochondrial catabolism of pyruvate. The persistence of fatty acid catabolism in Ucp2+/+ cells during a proliferative response correlates with reduced cell proliferation and enhances resistance to glucose starvation-induced autophagy.
Collapse
Affiliation(s)
- Claire Pecqueur
- Université Paris Descartes, CNRS-UPR9078, Faculté de Médecine site Necker, 156 rue de vaugirard, 75730 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu X, Liu W, Yang L, Xia B, Li J, Zuo J, Li X. Increased connexin 43 expression improves the migratory and proliferative ability of H9c2 cells by Wnt-3a overexpression. Acta Biochim Biophys Sin (Shanghai) 2007; 39:391-8. [PMID: 17558443 DOI: 10.1111/j.1745-7270.2007.00296.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The change of connexin 43 (Cx43) expression and the biological behaviors of Cx43 in rat heart cell line H9c2, expressing Wnt-3a (wingless-type MMTV integration site family, member 3A), were evaluated in the present study. Plasmid pcDNA3.1/Wnt-3a was constructed and transferred into H9c2 cells. The cell model Wnt-3a(+)-H9c2 steadily expressing Wnt-3a was obtained. Compared with H9c2 and pcDNA3.1-H9c2 cells, the expression of Cx43 in Wnt-3a(+)-H9c2 cells was clearly increased, the proliferation of Wnt-3a(+)-H9c2 cells was significantly changed, and cell migration abilities were also improved(P<0.05). In comparison with H9c2 and pcDNA3.1-H9c2 cells, the G2 phase of the cell cycle increased by 11% in Wnt-3a(+)-H9c2 cells. Thus, Wnt-3a overexpression is associated with an increase in Cx43 expression and altered migratory and proliferative activity in H9c2 cells. Cx43 might be one of the downstream target genes regulated by Wnt-3a.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cellular and Genetic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 2006; 112:2686-95. [PMID: 16246967 DOI: 10.1161/circulationaha.105.554360] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obesity is a risk factor for cardiovascular disease and is strongly associated with insulin resistance and type 2 diabetes. Recent studies in obese humans and animals demonstrated increased myocardial oxygen consumption (MVO2) and reduced cardiac efficiency (CE); however, the underlying mechanisms remain unclear. The present study was performed to determine whether mitochondrial dysfunction and uncoupling are responsible for reduced cardiac performance and efficiency in ob/ob mice. METHODS AND RESULTS Cardiac function, MVO2, mitochondrial respiration, and ATP synthesis were measured in 9-week-old ob/ob and control mouse hearts. Contractile function and MVO2 in glucose-perfused ob/ob hearts were similar to controls under basal conditions but were reduced under high workload. Perfusion of ob/ob hearts with glucose and palmitate increased MVO2 and reduced CE by 23% under basal conditions, and CE remained impaired at high workload. In glucose-perfused ob/ob hearts, mitochondrial state 3 respirations were reduced but ATP/O ratios were unchanged. In contrast, state 3 respiration rates were similar in ob/ob and control mitochondria from hearts perfused with palmitate and glucose, but ATP synthesis rates and ATP/O ratios were significantly reduced in ob/ob, which suggests increased mitochondrial uncoupling. Pyruvate dehydrogenase activity and protein levels of complexes I, III, and V were reduced in obese mice. CONCLUSIONS These data indicate that reduced mitochondrial oxidative capacity may contribute to cardiac dysfunction in ob/ob mice. Moreover, fatty acid but not glucose-induced mitochondrial uncoupling reduces CE in obese mice by limiting ATP production and increasing MVO2.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | |
Collapse
|
23
|
Thompson MP, Kim D. Links between fatty acids and expression of UCP2 and UCP3 mRNAs. FEBS Lett 2004; 568:4-9. [PMID: 15196910 DOI: 10.1016/j.febslet.2004.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 05/03/2004] [Indexed: 12/31/2022]
Abstract
Physiological and pathological states that are associated with elevated plasma fatty acids (FAs) increase uncoupling protein 2 (UCP2) mRNA in white adipose tissue and UCP3 mRNA in skeletal muscle and heart. A direct effect of unsaturated fatty acids from all classes has been shown in various cultured cells. There is evidence that FAs could induce expression of UCPs by acting as ligands for peroxisome proliferator-activated receptors, influencing the function of sterol responsive element binding protein or activating 5'-AMP-activated protein kinase. Oleic acid has been shown to stimulate the activity of the promoter regions of UCP2 and UCP3 genes and the FA responsive regions are beginning to be characterised.
Collapse
Affiliation(s)
- Mary P Thompson
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
24
|
Jiang YJ, Lu B, Xu FY, Gartshore J, Taylor WA, Halayko AJ, Gonzalez FJ, Takasaki J, Choy PC, Hatch GM. Stimulation of cardiac cardiolipin biosynthesis by PPARα activation. J Lipid Res 2004; 45:244-52. [PMID: 14594999 DOI: 10.1194/jlr.m300314-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of peroxisome proliferator-activated receptor alpha (PPARalpha)-stimulated phospholipase A2 (PLA2) in cardiac mitochondrial cardiolipin (CL) biosynthesis was examined in both in vivo and in vitro models. Treatment of rat heart H9c2 cells with clofibrate increased the expression and activity of 14 kDa PLA2 but did not affect the pool size of CL. Clofibrate treatment stimulated de novo CL biosynthesis via an increase in phosphatidylglycerolphosphate (PGP) synthase activity, accounting for the unaltered CL content. Cardiac PLA2, PGP synthase, and CDP-1,2-diacyl-sn-glycerol synthase (CDS-2) activities and CDS-2 mRNA levels were elevated in mice fed clofibrate for 14 days compared with controls. In PPARalpha-null mice, clofibrate feeding did not alter cardiac PLA2, PGP synthase activities, or CDS-2 activity and mRNA level, confirming that these enzymes are regulated by PPARalpha activation. In contrast to mouse heart, clofibrate treatment did not affect the activity or mRNA levels of CDS-2 in H9c2 cells, indicating that CDS-2 is regulated differently in rat heart H9c2 cells in vitro and in mouse heart in vivo. These results clearly indicate that cardiac CL de novo biosynthesis is stimulated by PPARalpha activation in responsive rodent models and that CDS-2 is an example of an enzyme that exhibits alternative regulation in vivo and in cultured cell lines. This study is the first to demonstrate that CL de novo biosynthesis is regulated by PPARalpha activation.
Collapse
Affiliation(s)
- Yan J Jiang
- Center for Research and Treatment of Atherosclerosis and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Uncoupling proteins (UCPs) are located in the mitochondrial inner membrane and partially dissipate the transmembrane proton electrochemical gradient. UCP2 is expressed in various human and rodent tissues, including the heart, where its functional role is unknown. In the present study, we tested the hypothesis that UCP2 overexpression could protect cardiomyocytes from oxidative stress-induced cell death by reducing reactive oxygen species (ROS) production in mitochondria. Using an adenoviral vector containing human UCP2, we investigated the effects of UCP2 overexpression on the mitochondrial death pathway induced by oxidative stress (100 micromol/L H2O2) in cultured neonatal cardiomyocytes. UCP2 overexpression significantly suppressed markers of cell death, including TUNEL positivity, phosphatidylserine exposure, propidium iodide uptake, and caspase-3 cleavage. Furthermore, UCP2 remarkably prevented the catastrophic loss of mitochondrial inner membrane potential induced by H2O2, which is a critical early event in cell death. Ca2+ overload and the production of ROS in mitochondria, both of which contribute to mitochondrial inner membrane potential loss, were dramatically attenuated by UCP2 overexpression. Thus, overexpression of UCP2 attenuates ROS generation and prevents mitochondrial Ca2+ overload, revealing a novel mechanism of cardioprotection.
Collapse
Affiliation(s)
- Yasushi Teshima
- Institute of Molecular Cardiobiology, The Johns Hopkins University, Baltimore, Md 21205, USA
| | | | | | | |
Collapse
|
26
|
Gilde AJ, Van Bilsen M. Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:425-34. [PMID: 12864748 DOI: 10.1046/j.1365-201x.2003.01161.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. The three isoforms (PPARalpha, beta/delta and gamma) have been implicated in the regulation of the expression of genes involved in lipid metabolism. Although their prominent role in lipid homeostasis is well established, the way in which the activity of each of the PPAR isoforms is regulated under physiological and pathological conditions is still subject of intensive research. In skeletal as well as cardiac muscle cells it has been demonstrated that the expression of a large panel of proteins involved in the transport and metabolic conversion of fatty acids is under control of PPARs. The pivotal role of the PPARalpha isoform in cardiac fatty acid metabolism has been confirmed in PPARalpha-null mice. The exact role of PPARbeta/delta in the regulation of muscle metabolism is still a matter of debate. Whereas several studies provided evidence to support the notion that PPARalpha and PPARbeta/delta have redundant roles, other studies suggest that PPARalpha activity is counteracted by PPARbeta/delta. Marked effects of bona fide PPARgamma ligands (the anti-diabetic thiazolidinediones) on skeletal and cardiac muscle function and phenotype, have also been reported. However, next to activating PPARgamma, the thiazolidinediones do affect other cellular processes as well. To date it is being realized that the control of the trans-activating capacity of each of the PPAR isoforms is multi-factorial and, in addition to ligand availability, depends on such factors as isoform-specific phosphorylation and selective interaction with various proteins acting either as co-activator or co-repressor.
Collapse
Affiliation(s)
- A J Gilde
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
27
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)-alpha is a member of a large nuclear receptor superfamily whose main role is to activate genes involved in fatty acid oxidation in the liver, heart, kidney, and skeletal muscle. While currently used mainly as hypolipidemic agents, the cardiac effects and anti-inflammatory actions of PPAR-alpha agonists in arterial wall cells suggest other potential cardioprotective and antiatherosclerotic effects of these agents. This review summarizes current knowledge regarding the effects of PPAR-alpha agonists on lipid and lipoprotein metabolism, the heart, and the vessel wall and introduces some of the insights gained in these areas from studying PPAR-alpha-deficient mice. The introduction of new and more potent PPAR-alpha agonists will provide important insights into the overall benefits of activating PPAR-alpha clinically for the treatment of dyslipidemia and prevention of vascular disease.
Collapse
Affiliation(s)
- Gordon A Francis
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | |
Collapse
|
28
|
van der Putten HHAGM, Friesema ECH, Abumrad NA, Everts ME, Visser TJ. Thyroid hormone transport by the rat fatty acid translocase. Endocrinology 2003; 144:1315-23. [PMID: 12639914 DOI: 10.1210/en.2002-220520] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the hypothesis that rat fatty acid translocase (rFAT) mediates the cellular uptake of T(3) and other iodothyronines. Uninjected Xenopus laevis oocytes and oocytes injected 4 d previously with rFAT cRNA were incubated for 60 min at 25 C in medium containing 0.01-10 micro M [(125)I]T(3) and 0.1% BSA, or 1-100 micro M [(3)H]oleic acid and 0.5% BSA. Injection of rFAT cRNA resulted in a 1.9-fold increase in uptake of T(3) (10 nM) and a 1.4-fold increase in uptake of oleic acid (100 micro M). Total T(3) uptake was lower in the presence than in the absence of BSA, but relative to the free T(3) concentration, uptake was increased by BSA. The fold induction of T(3) uptake by rFAT was not influenced by BSA. By analyzing uptake as a function of the ligand concentration, we estimated a K(m) value of 3.6 micro M for (total) T(3) and 56 micro M for (total) oleic acid. In addition to T(3), rFAT mediates the uptake of T(4), rT(3), 3,3'-diiodothyronine, and T(3) sulfate. The injection of human type III deiodinase cRNA with or without rFAT cRNA resulted in the complete deiodination of T(3) taken up by the oocytes, indicating that T(3) is indeed transported to the cytoplasm. In conclusion, our results demonstrate transport of T(3) and other iodothyronines by rFAT.
Collapse
|
29
|
Brauner P, Kopecký P, Flachs P, Ruffer J, Sebron V, Plavka R, Vítková I, Vorlícek J, Kopecký J. Induction of uncoupling protein 3 gene expression in skeletal muscle of preterm newborns. Pediatr Res 2003; 53:691-7. [PMID: 12612210 DOI: 10.1203/01.pdr.0000054687.07095.0b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prematurity is associated with delayed postnatal activation of mitochondrial oxidative phosphorylation and impaired switch from glycolytic to oxidative metabolism. Fatty acids (FA), which represent a major energy substrate in mature muscle cells, are engaged in the postnatal activation of genes of energy metabolism and lipid oxidation. To understand the mechanism activating mitochondria in human newborns, expression of the genes for mitochondrial uncoupling proteins (UCP) was characterized in autopsy samples of skeletal (n = 28) and cardiac (n = 13) muscles of preterm neonates, who mostly died during the first postnatal month, and two aborted fetuses. Transcripts levels for UCP2, UCP3, and also for genes engaged in the transport of FA between cytoplasm and mitochondria were measured using real-time reverse transcriptase PCR. In accordance with studies in mice, our results document postnatal induction of UCP3 gene expression in skeletal muscle, involvement of nutritional FA in the induction, and a role of UCP3 in mitochondrial FA oxidation. They suggest impaired postnatal activation of UCP3 gene in neonates delivered before approximately 26 wk of gestation. Mean levels of the UCP3 transcript in skeletal muscle were by two orders of magnitude higher than in the heart. In contrast to UCP3, the UCP2 gene was active in fetuses, and its expression was not affected by nutrition. Our results support a role of UCP3 in postnatal activation of lipid oxidation in skeletal muscle and suggest the involvement of UCP3 in the delayed activation of mitochondrial energy conversion in very immature preterm neonates.
Collapse
Affiliation(s)
- Petr Brauner
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gilde AJ, van der Lee KAJM, Willemsen PHM, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 2003; 92:518-24. [PMID: 12600885 DOI: 10.1161/01.res.0000060700.55247.7c] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Long-chain fatty acids (FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the significance of PPARalpha in FA-mediated expression has been demonstrated, the role of the PPARbeta/delta and PPARgamma isoforms in cardiac lipid metabolism is unknown. To explore the involvement of each of the PPAR isoforms, neonatal rat cardiomyocytes were exposed to FA or to ligands specific for either PPARalpha (Wy-14,643), PPARbeta/delta (L-165041, GW501516), or PPARgamma (ciglitazone and rosiglitazone). Their effect on FA oxidation rate, expression of metabolic genes, and muscle-type carnitine palmitoyltransferase-1 (MCPT-1) promoter activity was determined. Consistent with the PPAR isoform expression pattern, the FA oxidation rate increased in cardiomyocytes exposed to PPARalpha and PPARbeta/delta ligands, but not to PPARgamma ligands. Likewise, the FA-mediated expression of FA-handling proteins was mimicked by PPARalpha and PPARbeta/delta, but not by PPARgamma ligands. As expected, in embryonic rat heart-derived H9c2 cells, which only express PPARbeta/delta, the FA-induced expression of genes was mimicked by the PPARbeta/delta ligand only, indicating that FA also act as ligands for the PPARbeta/delta isoform. In cardiomyocytes, MCPT-1 promoter activity was unresponsive to PPARgamma ligands. However, addition of PPARalpha and PPARbeta/delta ligands dose-dependently induced promoter activity. Collectively, the present findings demonstrate that, next to PPARalpha, PPARbeta/delta, but not PPARgamma, plays a prominent role in the regulation of cardiac lipid metabolism, thereby warranting further research into the role of PPARbeta/delta in cardiac disease.
Collapse
Affiliation(s)
- Andries J Gilde
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Degens H, Gilde AJ, Lindhout M, Willemsen PHM, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 2003; 284:H108-15. [PMID: 12388319 DOI: 10.1152/ajpheart.00282.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In heart failure, thyroid hormone (TH) treatment improves cardiac performance. The long-term effects of TH on cardiac function and metabolism, however, are incompletely known. To investigate the effects of up to 28 days of TH treatment, male Wistar rats received 3,3',5-triiodo-l-thyronine (200 microg/kg sc per day) leading to a 2.5-fold rise in plasma fatty acid (FA) level and progressive cardiac hypertrophy (+47% after 28 days) (P < 0.001). Ejection fraction (echocardiography) was increased (+12%; P < 0.05) between 7 and 14 days and declined thereafter. Neither cardiac FA oxidation, glycolytic capacity (homogenates) per unit muscle mass, nor mRNA levels of proteins involved in FA and glucose uptake and metabolism (Northern blots and microarray) were altered. After 28 days of treatment, mRNA levels of uncoupling proteins (UCP) 2 and 3 and atrial natriuretic factor were increased (P < 0.05). This indicates that TH-induced hypertrophy is associated with an initial increase in cardiac performance, followed by a decline in cardiac function and increased expression of UCPs and atrial natriuretic factor, suggesting that detrimental effects eventually prevail.
Collapse
Affiliation(s)
- H Degens
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Patanè G, Anello M, Piro S, Vigneri R, Purrello F, Rabuazzo AM. Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition. Diabetes 2002; 51:2749-56. [PMID: 12196468 DOI: 10.2337/diabetes.51.9.2749] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In rat pancreatic islets chronically exposed to high glucose or high free fatty acid (FFA) levels, glucose-induced insulin release and mitochondrial glucose oxidation are impaired. These abnormalities are associated with high basal ATP levels but a decreased glucose-induced ATP production (Delta of increment over baseline 0.7 +/- 0.5 or 0.5 +/- 0.3 pmol/islet in islets exposed to glucose or FFA vs. 12.0 +/- 0.6 in control islets, n = 3; P < 0.01) and, as a consequence, with an altered ATP/ADP ratio. To investigate further the mechanism of the impaired ATP formation, we measured in rat pancreatic islets glucose-stimulated pyruvate dehydrogenase (PDH) activity, a key enzyme for pyruvate metabolism and for the subsequent glucose oxidation through the Krebs cycle, and also the uncoupling protein-2 (UCP-2) content by Western blot. In islets exposed to high glucose or FFA, glucose-stimulated PDH activity was impaired and UCP-2 was overexpressed. Because UCP-2 expression is modulated by a peroxisome proliferator- activated receptor (PPAR)-dependent pathway, we measured PPAR-gamma contents by Western blot and the effects of a PPAR-gamma antagonist. PPAR-gamma levels were overexpressed in islets cultured with high FFA levels but unaffected in islets exposed to high glucose. In islets exposed to high FFA concentration, a PPAR-gamma antagonist was able to prevent UCP-2 overexpression and to restore insulin secretion and the ATP/ADP ratio. These data indicate that in rat pancreatic islets chronically exposed to high glucose or FFA, glucose-induced impairment of insulin secretion is associated with (and might be due to) altered mitochondrial function, which results in impaired glucose oxidation, overexpression of the UCP-2 protein, and a consequent decrease of ATP production. This alteration in FFA cultured islets is mediated by the PPAR-gamma pathway.
Collapse
Affiliation(s)
- Giovanni Patanè
- Institute of Internal Medicine, Endocrinology and Metabolism, "Signorelli" Diabetes Center, University of Catania, Ospedale Garibaldi and Ospedale Cannizzaro, Catania, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol 2002; 283:H949-57. [PMID: 12181123 DOI: 10.1152/ajpheart.00226.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hearts from diabetic db/db mice, a model of Type 2 diabetes, exhibit left ventricular failure and altered metabolism of exogenous substrates. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands reduce plasma lipid and glucose concentrations and improve insulin sensitivity in db/db mice. Consequently, the effect of 4- to 5-wk treatment of db/db mice with a novel PPAR-alpha ligand (BM 17.0744; 25-38 mg x kg(-1) x day(-1)), commencing at 8 wk of age, on ex vivo cardiac function and metabolism was determined. Elevated plasma concentrations of glucose, fatty acids, and triacylglycerol (34.0 +/- 3.6, 2.0 +/- 0.4, and 0.9 +/- 0.1 mM, respectively) were reduced to normal after treatment with BM 17.0744 (10.8 +/- 0.6, 1.1 +/- 0.1, and 0.6 +/- 0.1 mM). Plasma insulin was also reduced significantly in treated compared with untreated db/db mice. Chronic treatment of db/db mice with the PPAR-alpha agonist resulted in a 50% reduction in rates of fatty acid oxidation, with a concomitant increase in glycolysis (1.7-fold) and glucose oxidation (2.3- fold). Correction of the diabetes-induced abnormalities in systemic and cardiac metabolism after BM 17.0744 treatment did not, however, improve left ventricular contractile function.
Collapse
Affiliation(s)
- Ellen Aasum
- Department of Medical Physiology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
34
|
Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002; 51:1938-48. [PMID: 12031984 DOI: 10.2337/diabetes.51.6.1938] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is related directly to hyperglycemia. Cell death such as apoptosis plays a critical role in cardiac pathogenesis. Whether hyperglycemia induces myocardial apoptosis, leading to diabetic cardiomyopathy, remains unclear. We tested the hypothesis that apoptotic cell death occurs in the diabetic myocardium through mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetic mice produced by streptozotocin and H9c2 cardiac myoblast cells exposed to high levels of glucose were used. In the hearts of diabetic mice, apoptotic cell death occurred as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Correspondingly, caspase-3 activation as determined by enzymatic assay and mitochondrial cytochrome c release detected by Western blotting analysis were observed. Supplementation of insulin inhibited diabetes-induced myocardial apoptosis as well as suppressed hyperglycemia. To explore whether apoptosis in diabetic hearts is related directly to hyperglycemia, we exposed cardiac myoblast H9c2 cells to high levels of glucose (22 and 33 mmol/l) in cultures. Apoptotic cell death was detected by TUNEL assay and DAPI nuclear staining. Caspase-3 activation with a concomitant mitochondrial cytochrome c release was also observed. Apoptosis or activation of caspase-3 was not observed in the cultures exposed to the same concentrations of mannitol. Inhibition of caspase-3 with a specific inhibitor, Ac-DEVD-cmk, suppressed apoptosis induced by high levels of glucose. In addition, reactive oxygen species (ROS) generation was detected in the cells exposed to high levels of glucose. These results suggest that hyperglycemia directly induces apoptotic cell death in the myocardium in vivo. Hyperglycemia-induced myocardial apoptosis is mediated, at least in part, by activation of the cytochrome c-activated caspase-3 pathway, which may be triggered by ROS derived from high levels of glucose.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo MO, Carruba MO, Ricquier D, Federspil G, Nisoli E. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes (Lond) 2002; 26:838-47. [PMID: 12037655 DOI: 10.1038/sj.ijo.0802005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Revised: 12/20/2001] [Accepted: 01/04/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE It has been reported that an increased availability of free fatty acids (NEFA) not only interferes with glucose utilization in insulin-dependent tissues, but may also result in an uncoupling effect of heart metabolism. We aimed therefore to investigate the effect of an increased availability of NEFA on gene expression of proteins involved in transmembrane fatty acid (FAT/CD36) and glucose (GLUT4) transport and of the uncoupling proteins UCP2 and 3 at the heart and skeletal muscle level. STUDY DESIGN Euglycemic hyperinsulinemic clamp was performed after 24 h Intralipid(R) plus heparin or saline infusion in lean Zucker rats. Skeletal and heart muscle glucose utilization was calculated by 2-deoxy-[1-(3)H]-D-glucose technique. Quantification of FAT/CD36, GLUT4, UCP2 and UCP3 mRNAs was obtained by Northern blot analysis or RT-PCR. RESULTS In Intralipid(R) plus heparin infused animals a significant decrease in insulin-mediated glucose uptake was observed both in the heart (22.62+/-2.04 vs 10.37+/-2.33 ng/mg/min; P<0.01) and in soleus muscle (13.46+/-1.53 vs 6.84+/-2.58 ng/mg/min; P<0.05). FAT/CD36 mRNA was significantly increased in skeletal muscle tissue (+117.4+/-16.3%, P<0.05), while no differences were found at the heart level in respect to saline infused rats. A clear decrease of GLUT4 mRNA was observed in both tissues. The 24 h infusion of fat emulsion resulted in a clear enhancement of UCP2 and UCP3 mRNA levels in the heart (99.5+/-15.3 and 80+/-4%) and in the skeletal muscle (291.5+/-24.7 and 146.9+/-12.7%). CONCLUSIONS As a result of the increased availability of NEFA, FAT/CD36 gene expression increases in skeletal muscle, but not at the heart level. The augmented lipid fuel supply is responsible for the depression of insulin-mediated glucose transport and for the increase of UCP2 and 3 gene expression in both skeletal and heart muscle.
Collapse
Affiliation(s)
- R Vettor
- Internal Medicine, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marti A, Vaquerizo J, Zulet MA, Moreno-Aliaga MJ, Martínez JA. Down-regulation of heart HFABP and UCP2 gene expression in diet-induced (cafeteria) obese rats. J Physiol Biochem 2002; 58:69-74. [PMID: 12435081 DOI: 10.1007/bf03179841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Long-term exposure to hypercaloric high fat diet induced marked tissue fatty acid accumulation and may influence cell function. Previous results in our laboratory showed that uncoupling proteins (UCPs) and fatty acid-binding protein (FABP) gene expression are changed in adipose tissue and skeletal muscle tissue in diet-induced (cafeteria) obese animals. The aim of this study was to examine heart FABP (HFABP) and UCP2 gene expressions in dietary obese rats. Rats fed on a high-fat diet for 65 days had significantly higher fat stores and body weight than control rats. Interestingly, we found that both HFABP and UCP2 mRNA levels were significantly reduced in cafeteria-obese rats when compared to control animals. Moreover, a statistically significant correlation was observed between the two gene expression levels. The down-regulation of heart HFABP and UCP2 parallels the lower lipid utilization which may account for an enhanced fat deposition. It is plausible that these two genes are regulated by the same family of transcription factors.
Collapse
Affiliation(s)
- A Marti
- Dpto de Fisiología y Nutrición, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
37
|
Taegtmeyer H, Razeghi P, Young ME. Mitochondrial proteins in hypertrophy and atrophy: a transcript analysis in rat heart. Clin Exp Pharmacol Physiol 2002; 29:346-50. [PMID: 11985548 DOI: 10.1046/j.1440-1681.2002.03656.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Metabolic processes are acutely and chronically regulated in response to changes in the workload of the heart. Acute changes in cardiac work result in activation and inactivation of existing enzymes and in altered fluxes through existing metabolic pathways. Sustained or chronic changes in cardiac work result in both trophic and transcriptional alterations. 2. The metabolic consequences of a sustained increase or decrease in the workload of the heart are surprisingly uniform and consist of a switch from the predominant oxidation of fatty acids to oxidation of glucose. 3. This switch is reflected in the changes of the transcript levels of three key regulators of mitochondrial function: pyruvate dehydrogenase kinase 4 (PDK4), which phosphorylates and inactivates the pyruvate dehydrogenase complex, malonyl-CoA decarboxylase (MCD), which regulates malonyl-CoA levels and, therefore, rates of beta-oxidation of long-chain fatty acids, and uncoupling protein 3 (UCP-3), which uncouples the oxidative phosphorylation of ADP. 4. The transcript levels of all three proteins are downregulated in hypertrophy as well as in atrophy of rat heart. All three transcripts are transcriptionally regulated by the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). 5. Diminished expression of PPARalpha and PPARalpha-regulated genes constitutes an adaptive mechanism in response to altered workload, because reactivation of PPARalpha in hypertrophied heart results in severe contractile dysfunction.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- The University of Texas Houston Medical School, Department of Internal Medicine, Division of Cardiology, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
38
|
Hamano T, Kobayashi K, Sakairi T, Hayashi M, Mutai M. Peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist, WY-14,643, increased transcription of myosin light chain-2 in cardiomyocytes. J Toxicol Sci 2001; 26:275-84. [PMID: 11871124 DOI: 10.2131/jts.26.275] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by xenobiotics and natural fatty acids. To assess the potential physiological activity of PPAR ligands on cardiac muscular cells, the effects of PPAR alpha agonist, WY-14,643, on both rat hearts and a rat cardiomyocyte cell line (H9c2 cells) were investigated. Male F344 rats were fed a diet containing WY-14,643 at a concentration of 100 ppm for 26 weeks. Cardiac muscular hypertrophy was revealed by morphometric analysis in which the diameter of the muscular fibers in WY-14,643-treated rats was larger than those of control rats. Using H9c2 cells in vitro, the protein content per cell was increased in a dose-dependent manner with the treatment of WY-14,643. The transcription of myosin light chain-2 (MLC-2), a parameter of myocardial hypertrophy, was increased in H9c2 cells transfected with the rat MLC-2/luciferase fusion gene by WY-14,643 as well as other peroxisome proliferators, clofibrate and di(2-ethylhexyl) phthalate. In addition, accumulation of myosin light chain protein was confirmed in H9c2 cells treated with WY-14,643 at 10 micrograms/ml for 7 days or more by immunohistochemistry. These results suggest that PPAR alpha ligands have a potential to regulate MLC-2, which is a contractile protein in cardiomyocytes and may play a part of role in the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- T Hamano
- Toxicology Laboratory, Mitsubishi Pharma Co., 100-5 Yana, Kisarazu-shi, Chiba 292-0812, Japan
| | | | | | | | | |
Collapse
|
39
|
Wu Q, Haunerland NH. A novel fatty acid response element controls the expression of the flight muscle FABP gene of the desert locust, Schistocerca gregaria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5894-900. [PMID: 11722577 DOI: 10.1046/j.0014-2956.2001.02538.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many tissues, fatty acid binding protein (FABP) expression is stimulated by exposure to elevated fatty acid levels. In contrast to the FABP genes expressed in other tissues, the molecular mechanisms that mediate the upregulation of the muscle FABP gene have not been elucidated. We have studied the expression of locust flight muscle FABP, a protein that is highly homologous to the mammalian H-FABPs. A 130-bp promoter fragment of the locust gene, which includes a canonical TATA box and several GC boxes, is sufficient for the transcription of a reporter gene in mammalian L6 myoblasts. Twofold higher expression rates are observed when the promoter contains 280 bp or more of upstream sequence. Treatment of myoblasts with various fatty acids leads to a marked increase of expression in the longer constructs, but not in the minimal promoter. We have identified a 19-bp inverted repeat (-162/-180) as the element responsible for the fatty acid-mediated induction of gene expression. Deletion of this element eliminates the fatty acid response, and gel shift analysis demonstrates specific binding to nuclear proteins from both L6 myoblasts and locust flight muscle cells. This fatty acid response element bears no similarity to any known transcription factor binding site. A similar palindrome was also found in the promoter of the Drosophila melanogaster muscle FABP gene, and in reverse orientation upstream of all mammalian heart FABP genes. Given the structural and functional conservation of muscle FABPs and their genes, it is possible that this fatty acid response element also modulates the expression of the mammalian H-FABP genes.
Collapse
Affiliation(s)
- Q Wu
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
40
|
Van der Lee KA, Willemsen PH, Samec S, Seydoux J, Dulloo AG, Pelsers MM, Glatz JF, Van der Vusse GJ, Van Bilsen M. Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31501-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Abstract
Over the past 10 years it has become evident that fatty acids regulate cellular functions by modulating gene expression. Fatty acids and fatty acid metabolites exert some of their effects on gene expression by affecting the activity of nuclear transcription factors, peroxisome proliferator-activated receptors and sterol regulatory element binding protein type 1. The present review describes the latest developments in the field, with particular emphasis on the physiological roles of the various peroxisome proliferator-activated receptor isotypes, including their implication in the control of proliferation and differentiation of normal and malignant cells, and on the mechanisms implicated in the regulation of sterol regulatory element binding protein type 1 activity by polyunsaturated fatty acids.
Collapse
Affiliation(s)
- P A Grimaldi
- INSERM U470, Institut de Signalisation, Biologie du Développement et Cancer, Centre de Biochimie, UFR Sciences, Parc Valrose, 06108 Nice cedex, France.
| |
Collapse
|
42
|
Carroll R, Severson DL. Peroxisome proliferator-activated receptor-alpha ligands inhibit cardiac lipoprotein lipase activity. Am J Physiol Heart Circ Physiol 2001; 281:H888-94. [PMID: 11454595 DOI: 10.1152/ajpheart.2001.281.2.h888] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate gene expression of lipoprotein lipase (LPL) in liver and adipose tissue. We examined the direct effect of PPAR-alpha ligands on LPL catalytic activity in cultured cardiomyocytes from adult rat heart. After overnight culture (16 h), 1 microM Wy-14643 and 10 microM BM-17.0744 decreased total cellular LPL activity to approximately 50% of control with no change in enzyme synthesis or mass; as a consequence, PPAR-alpha activation produced a significant decrease in LPL specific activity (mU/ng LPL protein). Wy-14643 and BM-17.0744 also reduced heparin-releasable LPL activity and mass in the culture medium. Inhibition of LPL activity by Wy-14643 did not reduce the ability of insulin plus dexamethasone to stimulate cellular and heparin-releasable LPL activities. A similar inhibitory effect on cellular and heparin-releasable LPL activity was observed when cardiomyocytes were cultured with 60 microM linoleic acid. In conclusion, two different PPAR-alpha ligands (Wy-14643 and BM-17.0744) inhibited cellular LPL activity in cultured cardiomyocytes by a posttranscriptional and posttranslational mechanism.
Collapse
Affiliation(s)
- R Carroll
- Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
43
|
Dulloo AG, Samec S. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 2001; 86:123-39. [PMID: 11502224 DOI: 10.1079/bjn2001412] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the past few years, there have been two major developments, if not revolutions, in the field of energy balance and weight regulation. The first at the molecular level, which was catalysed by developments in DNA screening technology together with the mapping of the human genome, has been the tremendous advances made in the identification of molecules that play a role in the control of food intake and metabolic rate. The second, at the systemic level, which centered upon the use of modern technologies or more robust analytical techniques for assessing human energy expenditure in response to starvation and overfeeding, has been the publication of several papers providing strong evidence that adaptive thermogenesis plays a much more important role in the regulation of body weight and body composition than previously thought. Within these same few years, several new members of the mitochondrial carrier protein family have been identified in a variety of tissues and organs. All apparently possess uncoupling properties in genetically-modified systems, with two of them (uncoupling protein (UCP) 2 and UCP3) being expressed in adipose tissues and skeletal muscles, which are generally recognised as important sites for variations in thermogenesis and/or in substrate oxidation. Considered as breakthrough discoveries, the cloning of these genes has generated considerable optimism for rapid advances in our molecular understanding of adaptive thermogenesis, and for the identification of new targets for pharmacological management of obesity and cachexia. The present paper traces first, from a historical perspective, the landmark events in the field of thermogenesis that led to the identification of these genes encoding candidate UCP, and then addresses the controversies and on-going debate about their physiological importance in adaptive thermogenesis, in lipid oxidation or in oxidative stress. The general conclusion is that UCP2 and UCP3 may have distinct primary functions, with UCP3 implicated in regulating the flux of lipid substrates across the mitochondria and UCP2 in the control of mitochondrial generation of reactive oxygen species. The distinct functions of these two UCP1 homologues have been incorporated in a conceptual model to illustrate how UCP2 and UCP3 may act in concert in the overall regulation of lipid oxidation concomitant to the prevention of lipid-induced oxidative damage.
Collapse
Affiliation(s)
- A G Dulloo
- Institute of Physiology, Department of Medicine, University of Fribourg, Rue du Musée 5, Fribourg, Switzerland.
| | | |
Collapse
|
44
|
Chevillotte E, Rieusset J, Roques M, Desage M, Vidal H. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor beta. J Biol Chem 2001; 276:10853-60. [PMID: 11278377 DOI: 10.1074/jbc.m008010200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids have been postulated to regulate uncoupling protein (UCP) gene expression in skeletal muscle in vivo. We have identified, at least in part, the mechanism by which polyunsaturated fatty acids increase UCP-2 expression in primary culture of human muscle cells. omega-6 fatty acids and arachidonic acid induced a 3-fold rise in UCP-2 mRNA levels possibly through transcriptional activation. This effect was prevented by indomethacin and mimicked by prostaglandin (PG) E(2) and carbaprostacyclin PGI(2), consistent with a cyclooxygenase-mediated process. Incubation of myotubes for 6 h with 100 micrometer arachidonic acid resulted in a 150-fold increase in PGE(2) and a 15-fold increase in PGI(2) in the culture medium. Consistent with a role of cAMP and protein kinase A, both prostaglandins induced a marked accumulation of cAMP in human myotubes, and forskolin reproduced the effect of arachidonic acid on UCP-2 mRNA expression. Inhibition of protein kinase A with H-89 suppressed the effect of PGE(2), whereas cPGI(2) and arachidonic acid were still able to increase ucp-2 gene expression, suggesting additional mechanisms. We found, however, that the MAP kinase pathway was not involved. Prostaglandins, particularly PGI(2), are potent activators of the peroxisome proliferator-activated receptors. A specific agonist of peroxisome proliferator-activated receptor (PPAR) beta (L165041) increased UCP-2 mRNA levels in myotubes, whereas activation of PPARalpha or PPARgamma was ineffective. These results suggest thus that ucp-2 gene expression is regulated by omega-6 fatty acids in human muscle cells through mechanisms involving at least protein kinase A and the nuclear receptor PPARbeta.
Collapse
Affiliation(s)
- E Chevillotte
- INSERM U449, Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, and CRNHL Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, 69372 Lyon, France
| | | | | | | | | |
Collapse
|
45
|
Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, Stepkowski SM, Davies PJ, Taegtmeyer H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J 2001; 15:833-45. [PMID: 11259402 DOI: 10.1096/fj.00-0351com] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Relatively little is known concerning the regulation of uncoupling proteins (UCPs) in the heart. We investigated in the adult rodent heart 1) whether changes in workload, substrate supply, or cytokine (TNF-alpha) administration affect UCP-2 and UCP-3 expression, and 2) whether peroxisome proliferator-activated receptor alpha (PPARalpha) regulates the expression of either UCP-2 or UCP-3. Direct comparisons were made between cardiac and skeletal muscle. UCP-2, UCP-3, and PPARalpha expression were reduced when cardiac workload was either increased (pressure overload by aortic constriction) or decreased (mechanical unloading by heterotopic transplantation). Similar results were observed during cytokine administration. Reduced dietary fatty acid availability resulted in decreased expression of both cardiac UCP-2 and UCP-3. However, when fatty acid (the natural ligand for PPARalpha) supply was increased (high-fat feeding, fasting, and STZ-induced diabetes), cardiac UCP-3 but not UCP-2 expression increased. Comparable results were observed in rats treated with the specific PPARalpha agonist WY-14,643. The level of cardiac UCP-3 but not UCP-2 expression was severely reduced (20-fold) in PPARalpha-/- mice compared to wild-type mice. These results suggest that in the adult rodent heart, UCP-3 expression is regulated by PPARalpha. In contrast, cardiac UCP-2 expression is regulated in part by a fatty acid-dependent, PPARalpha-independent mechanism.
Collapse
Affiliation(s)
- M E Young
- Division of Cardiology, Department of Integrative Biology, University of Texas Houston Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Echtay KS, Winkler E, Frischmuth K, Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 2001; 98:1416-21. [PMID: 11171965 PMCID: PMC29271 DOI: 10.1073/pnas.98.4.1416] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Indexed: 11/18/2022] Open
Abstract
Based on the discovery of coenzyme Q (CoQ) as an obligatory cofactor for H(+) transport by uncoupling protein 1 (UCP1) [Echtay, K. S., Winkler, E. & Klingenberg, M. (2000) Nature (London) 408, 609-613] we show here that UCP2 and UCP3 are also highly active H(+) transporters and require CoQ and fatty acid for H(+) transport, which is inhibited by low concentrations of nucleotides. CoQ is proposed to facilitate injection of H(+) from fatty acid into UCP. Human UCP2 and 3 expressed in Escherichia coli inclusion bodies are solubilized, and by exchange of sarcosyl against digitonin, nucleotide binding as measured with 2'-O-[5-(dimethylamino)naphthalene-1-sulfonyl]-GTP can be restored. After reconstitution into vesicles, Cl(-) but no H(+) are transported. The addition of CoQ initiates H(+) transport in conjunction with fatty acids. This increase is fully sensitive to nucleotides. The rates are as high as with reconstituted UCP1 from mitochondria. Maximum activity is at a molar ratio of 1:300 of CoQ:phospholipid. In UCP2 as in UCP1, ATP is a stronger inhibitor than ADP, but in UCP3 ADP inhibits more strongly than ATP. Thus UCP2 and UCP3 are regulated differently by nucleotides, in line with their different physiological contexts. These results confirm the regulation of UCP2 and UCP3 by the same factors CoQ, fatty acids, and nucleotides as UCP1. They supersede reports that UCP2 and UCP3 may not be H(+) transporters.
Collapse
Affiliation(s)
- K S Echtay
- Institute for Physiological Chemistry, University of Munich, Schillerstrasse 44, D-80336 Munich, Germany
| | | | | | | |
Collapse
|